
SESSION ID:

Mobile Application Assessment By The
Numbers – A Whole-istic View

MBS-F02

Dan Cornell
CTO

Denim Group
@danielcornell

#RSAC

Agenda

 Background
 Mobile Application Threat Model

 Assessment Methodology

 Data Collected

 Findings
 Types of Vulnerabilities Identified

 Where Vulnerabilities Were Identified

 How Vulnerabilities Were Identified

2

Background

#RSAC

Introduction

 Data comes from:

 61 Assessments

 20 Applications

 What we found:

 957 Vulnerabilities

 Assessment with the most vulnerabilities: 3 assessments had 10 Critical vulnerabilities

 Assessments with the least vulnerabilities: only three assessments had one
vulnerability (all others had more)

4

#RSAC

Research Background

 Mobile application threat model

 Assessment methodology
 Static versus dynamic testing

 Automated versus manual testing

 Why CWE?

 Assessment data

5

#RSAC

Mobile Application Threat Model

 More complicated than a “typical”
web application threat model

 Not just about code running on the
device

 Main components:
 Mobile application
 Enterprise web services
 3rd party web services

6

#RSAC

Assessment Methodology

 Testing activities

 Combination of both static and dynamic activities

 Combination of automated tools, manual review of automated test results and manual testing

 Tools include Fortify SCA, IBM Rational AppScan, Portswigger BurpSuite

 Scope can include:

 Code running on the device itself

 Enterprise services

 3rd party supporting services

7

#RSAC

Determining Severity

Based on customized DREAD model

 Damage potential
 Reproducibility
 Exploitability
 Affected users
 Discoverability

 Each factor ranked 1-3

Collapsed to single dimension

 Critical: > 2.6
 High: 2.3 – 2.6
 Medium: 2.0 – 2.3
 Low: < 2

8

#RSAC

Why CWE?

 Vulnerability taxonomy used was MITRE’s Common Weakness
Enumeration (CWE)
 http://cwe.mitre.org/

 Every tool has its own “spin” on naming vulnerabilities

 OWASP Top 10 / WASC 24 are helpful but not comprehensive

 CWE is exhaustive (though a bit sprawling at times)

 Reasonably well-adopted standard

 Many tools have mappings to CWE for their results

9

http://cwe.mitre.org/

#RSAC

Assessment Data

 Subset of mobile assessments

 Mostly customer-facing applications from financial services
organizations

 Primarily iOS and Android applications
 Some WAP, Windows Phone 7

10

What Did We Find?

#RSAC

Types of Vulnerabilities Found

 Top 10 Most Prevalent CWEs – Overall

 Top 10 Most Prevalent CWEs – Critical/High Risk

12

#RSAC

Top 10 Most Prevalent CWEs – Overall

13

14

14

16

20

21

21

22

26

271

284

0 50 100 150 200 250 300

Use of a Broken or Risky Cryptographic Algorithm - LOW RISK

Information Exposure Through an Error Message - LOW RISK

Cross-Site Request Forgery (CSRF) - LOW RISK

Information Leak Through Debug Information - LOW RISK

External Control of System or Configuration Setting - LOW RISK

Improper Input Validation - LOW RISK

Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection') - CRITICAL

Cleartext Transmission of Sensitive Information - LOW RISK

Information Exposure - LOW RISK

Information Leak Through Log Files - LOW RISK

#RSAC

Top 10 Most Prevalent CWEs – Critical/High Risk

14

1

1

2

3

3

3

4

6

6

22

0 50 100 150 200 250 300

Uncontrolled Resource Consumption ('Resource Exhaustion') - CRITICAL

Failure to Preserve Web Page Structure ('Cross-Site Scripting') - CRITICAL

Missing XML Validation - CRITICAL

Uncontrolled Resource Consumption ('Resource Exhaustion') - CRITICAL

Incorrect User Management - CRITICAL

Exposure of Access Control List Files to an Unauthorized Control Sphere - CRITICAL

Access Control (Authorization) Issues - CRITICAL

Access Control Bypass Through User-Controlled Key - CRITICAL

Information Leak Through Caching - HIGH

Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection') - CRITICAL

#RSAC

OWASP Top 10 Mobile Risks

 Similar to the OWASP Top 10 Web Application Risks, but targeted at
mobile applications (obviously)

 Top risks to mobile applications:
 https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=T

op_Ten_Mobile_Risks

 Work in progress to update this based on industry-contributed data

15

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_Ten_Mobile_Risks

#RSAC

OWASP Top 10 Mobile Risks

M1: Insecure Data Storage
M2: Weak Server Side Controls
M3: Insufficient Transport Layer
Protection
M4: Client Side Injection
M5: Poor Authorization and
Authentication

M6: Improper Session Handling
M7: Security Decisions Via Untrusted
Inputs
M8: Side Channel Data Leakage
M9: Broken Cryptography
M10: Sensitive Information
Disclosure

16

#RSAC

Compare to OWASP Top 10 Mobile Risks

17

Strong Overlap

• Weak server-side controls
• Poor authentication and

authorization
• Security decisions via

untrusted inputs
• Sensitive information

disclosure

Overlap

• Insecure data storage
• Insufficient transport layer

data protection
• Improper session handling
• Side channel data leakage
• Broken cryptography

Weak Overlap

• Client-side injection

#RSAC

Where Did We Find Overall Vulnerabilities?

18

Corporate Web
Service

591
62%

Device
342
36%

Third-Party
Web Service

24
2%

#RSAC

Where Did We Find Critical/High Risk Vulnerabilities?

19

Corporate
Web Service

41
70%

Device
15

25%

ThirdParty
Web Service

3
5%

#RSAC

Analysis of “Where” Data

 Mobile security is about more than
the code running on the device

 The things we really care about
(Critical, High) are most frequently
found on corporate web services
 Then on the device
 Then on 3rd party web services

 Reflects the “scale” benefits of
finding web services vulnerabilities

20

#RSAC

How Did We Find Vulnerabilities?

 Static vs. dynamic testing

 Automated vs. manual testing

 What techniques identified the most vulnerabilities?

 What techniques identified the most serious vulnerabilities?

21

#RSAC

Static vs. Dynamic Method of Finding Vulnerabilities

22

Critical, 10

Critical, 33

High Risk, 14

High Risk, 2

Medium Risk, 84

Medium Risk, 9

Low Risk, 206

Low Risk, 599

0 100 200 300 400 500 600 700

Dynamic

Static

#RSAC

Static vs. Dynamic Method of Finding Vulnerabilities

23

Critical
5%

High Risk
0%

Medium
Risk
2%

Low Risk
93%

Static

Critical
3%

High Risk
4%

Medium
Risk
27%

Low Risk
66%

Dynamic

#RSAC

Critical and High Risk Vulnerabilities
 Static testing was more effective

when finding serious (Critical and
High) vulnerabilities

 But it also found a lot of lower-risk
vulnerabilities (as well as results
that had to be filtered out)

24

Found with
Dynamic
Testing

24
41%

Found with
Static

Testing
35

59%

Critical/High Risk Vulnerabilities Found

#RSAC

Automated vs. Manual Method
of Finding Vulnerabilities

25

Critical, 33

Critical, 10

High Risk, 1

High Risk, 15

Medium Risk, 4

Medium Risk, 89

Low Risk, 526

Low Risk, 279

0 100 200 300 400 500 600

Automatic

Manual

#RSAC

Automated vs. Manual Method of Finding
Vulnerabilities

26

Critical
6%
High Risk

0%
Medium

Risk
1%

Low Risk
93%

Automatic

Critical
2%

High Risk
4% Medium

Risk
23%

Low Risk
71%

Manual

#RSAC

Automated vs. Manual Method of Finding
Vulnerabilities (Critical and High)
 Automated testing was more

effective when finding serious
(Critical and High) vulnerabilities

27

Found with
Automated

Testing
34

58%

Found with
Manual
Testing

25
42%

Critical/High Risk Vulnerabilities Found

#RSAC

Automated vs. Manual, Static vs. Dynamic Methods

28

Critical, 33

Critical, 10

Critical, 0

High Risk, 1

High Risk, 14

High Risk, 1

Medium Risk, 4

Medium Risk, 84

Medium Risk, 73

Low Risk, 526

Low Risk, 206

Low Risk, 5

0 100 200 300 400 500 600

Automatic / Static

Manual / Dynamic

Manual / Static

Automatic / Static Manual / Dynamic Manual / Static
Low Risk 526 206 5
Medium Risk 4 84 73
High Risk 1 14 1
Critical 33 10 0

#RSAC

Automated vs. Manual, Static vs. Dynamic Methods

29

Automatic, 564

Automatic, 0

Manual, 79

Manual, 314

0 100 200 300 400 500 600

Static

Dynamic

Static Dynamic
Manual 79 314
Automatic 564 0

#RSAC

Automated vs. Manual, Static vs. Dynamic for
Critical and High Vulnerabilities

30

Automatic, 34

Automatic, 0

Manual, 1

Manual, 24

0 5 10 15 20 25 30 35 40

Static

Dynamic

Static Dynamic
Manual 1 24
Automatic 34 0

#RSAC

Analysis of “How” Data

 A comprehensive mobile application security assessment program
must incorporate a significant manual testing component

 Automated tools for testing mobile applications are not as mature as
those for testing web applications

 Web services can be challenging to test in an automated manner

31

#RSAC

On-Device Vulnerabilities By Platform

Platforms Number of
Assessments
on Device

Number of Total
Vulnerabilities
on Device

Average Number of
Vulnerabilities Found per
Assessment

iOS 39 252 6.5

Android 19 84 4.4

Windows Phone 7 1 3 3

WAP 1 3 3

32

#RSAC

Other Observations

 We also include “other observations” as part of our assessments

 These reflect:
 Application weaknesses

 Coding flaws or behavior that are not “best practice” but do not reflect an
immediate, exploitable vulnerability

 We had 1,948 “other observations”
 Roughly twice as many as actual vulnerabilities

33

#RSAC

Other Observations – Where Were They Found?

34

Corporate
Web Service

55
3%

Device
1892
97%

Third-Party
Web Service

1
0%

#RSAC

What Does This Mean?

 Most of these “other observations” are about code on the device
 Mobile application developers need help building better code

 AND automated code scanning tools need to be better about filtering less
valuable results

 Something that is not a problem today could be later on
 Identification of new platform vulnerabilities

 Changes coming along with a new application release

35

#RSAC

Conclusions

 What To Test?
 Mobile “apps” are not standalone applications

 They are systems of applications

 Serious vulnerabilities can exist in any system component

 How To Test?
 Mobile application testing does benefit from automation

 Manual review and testing is required to find the most serious issues

 A combination of static and dynamic testing is required for coverage

36

#RSAC

Recommendations

 Plan your mobile application assessment strategy with coverage in mind

 Evaluate the value of automation for your testing

 More “cost” than simply licensing – deployment time and results culling

 Look for opportunities to streamline

 Fast application release cycles can require frequent assessments

 Control scope:

 Assess application changes (versus entire applications)

 Manage cost of reporting

37

#RSAC

Next Steps (For Us)

 Incorporate more assessment data

 Possible collaboration with OWASP Top 10 Mobile Risks
 Currently being reworked based on data sets such as ours

 Better analysis of applications over time

38

	Mobile Application Assessment By The Numbers – A Whole-istic View
	Agenda
	Background
	Introduction
	Research Background
	Mobile Application Threat Model
	Assessment Methodology
	Determining Severity
	Why CWE?
	Assessment Data
	What Did We Find?
	Types of Vulnerabilities Found
	Top 10 Most Prevalent CWEs – Overall
	Top 10 Most Prevalent CWEs – Critical/High Risk
	OWASP Top 10 Mobile Risks
	OWASP Top 10 Mobile Risks
	Compare to OWASP Top 10 Mobile Risks
	Where Did We Find Overall Vulnerabilities?
	Where Did We Find Critical/High Risk Vulnerabilities?
	Analysis of “Where” Data
	How Did We Find Vulnerabilities?
	Static vs. Dynamic Method of Finding Vulnerabilities
	Static vs. Dynamic Method of Finding Vulnerabilities
	Critical and High Risk Vulnerabilities
	Automated vs. Manual Method �of Finding Vulnerabilities
	Automated vs. Manual Method of Finding Vulnerabilities
	Automated vs. Manual Method of Finding Vulnerabilities (Critical and High)
	Automated vs. Manual, Static vs. Dynamic Methods
	Automated vs. Manual, Static vs. Dynamic Methods
	Automated vs. Manual, Static vs. Dynamic for Critical and High Vulnerabilities
	Analysis of “How” Data
	On-Device Vulnerabilities By Platform
	Other Observations
	Other Observations – Where Were They Found?
	What Does This Mean?
	Conclusions
	Recommendations
	Next Steps (For Us)

