RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Harnessing Big Data for Application Security Intelligence

SESSION ID: SPO1-T08

Or Katz - Principal Security Researcher Tsvika Klein - Product Manager

Akamai Security BU

It All Started When...

Hello Akamai, We're Under Attack...

So We Analyzed this Attack

WordPress Remote File Inclusion Vulnerability

GET /wp-content/plugins/wordtube/wordtube-button.php?wpPATH=http://www.google.com/humans.txt? HTTP/1.1

Host: www.test.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_4) AppleWebKit/537.36 (KHTML, like Gecko)

Trying to inject to this HTTP parameter wpPATH

The content of this URL http://www.google.com/humans.txt?

Content of hummans.txt

Some Question that Crossed Our Minds:

- Why RFI exploit from 2007?
- Why trying to exploit PHP inclusion on .NET application?
- Why including a legitimate page?

What Else Did This Hacker Do On This Site?

Sending 2212 different RFI exploits

Any Other Akamai Customers Hit by This Hacker?

Any Other Akamai Customers Hit by This Hacker?

Lets find similar activity across the internet...

Bot Network that include **272** machines Targeting **1696** Web applications Sending **1358980** attacks

Still Some Questions that Need to be Answered...

Why RFI Exploit from 2007?

Hacker trying to be lucky using old exploits

Why Including a Legitimate Page?

Hacker checking exploit feasibility

Why trying to Exploit PHP Inclusion on .NET Application?

Hacker is just shooting all over the place

Attack Summary

- Distributed attack campaign.
- 200 compromised web servers

Lasting over more than a month.
 RSACONFERENCE 2014

Big Data at Akamai

120,000+ Servers 2,000+ Locations 750+ Cities 82 Countries 1,100+ Networks

Highlights:

- 100 million page views per second and 500 billion hits per day
- 734 Million IP addresses seen quarterly
- 260+ Terabytes of compressed daily logs
- 30% of all internet traffic

2 Petabytes of security data 10 Terabytes of daily attack traffic 600K log lines per second 140K concurrent connection

800 queries daily

45 days retention

Market Trends

Forecast intent before exploitation

Filter malicious client

Shift to context aware security

Client Reputation

- Identify malicious clients
- Block access to web application

Data

User identification

IP address

Passive fingerprinting

Active fingerprinting

Algorithms

Distribution

Magnitude

Behavior

Duration

Sources similarity

Scores

Decay scores when malicious activity stops

Crowdsourcing

Reputation Use Cases

- Block access
- Enrichment
- Challenge
- Incorporate with additional controls

Big Data Analysis for Client Reputation

Client reputation

A mean to detect malicious clients...

WAF Triggers

Web attacks behavioral profiling

RS/CONFERENCE 2014

WAF Triggers

Web attacks behavioral profiling

Where can Behavioral Profiling Complement Traditional Protections?

Distributed Activity

Reconnaissance

Targeted Attacks

Behavioral?!

WAF Big Data

Applications

Clients

Case Study: Detecting Malicious Clients That are Targeting PHP Applications

Objective

Find attackers that send PHP attacks

3 Steps Technique

Step 1 - Analyze Applications' Behavior

Fingerprint platform behind each app (e.g. PHP)

RSACONFERENCE 2014

Step 2 - Analyze Client Behavior

Look for clients that try to access PHP URLs on ASP.NET apps

RSACONFERENCE 2014

Step 3 - Big Data Analysis

Calculate clients maliciousness based on the number of apps scanned

RSACONFERENCE 2014

Step 1 - Analyze Applications' Behavior

Fingerprint platform behind each app (e.g. PHP)

Step 2 - Analyze Client Behavior

Look for clients that try to access PHP URLs on ASP.NET apps

Step 3 - Big Data Analysis

Calculate clients maliciousness based on the number of apps scanned

Let's Test Drive This Approach...

We analyzed 10% of Akamai traffic over a 1-week time period

950

Malicious clients were detected over one week

The average amount of applications scanned by client

236

Highest number of scanned applications by one client in one hour

7.2

The average score that represents clients maliciousness

43%

Of the detected clients are web servers

4 days

The average amount of time client was maliciously active

Further Analysis of Clients Traffic

- PHP known vulnerabilities RFI, XSS, SQLi, Path traversal...
- Brute force attacks looking for WordPress and Joomla login pages
- Comment spamming
- And in the future: Zero day exploits...

Summary

- Big data != Analytics/Reporting
 - Huge potential for active defense
- Big Data complements traditional detection techniques
- "Fight fire with fire" distributed attacks call for "distributed detections"

Q&A

RSACONFERENCE 20.