
SESSION ID:

Nicholas Sullivan
Systems Engineer 

CloudFlare 
@grittygrease

Running Secure Server Software on Insecure
Hardware without a Parachute

STU-M06B

#RSAC

What this talk is about

! The web is changing — consolidation at the edge
! Fundamental assumptions about server security are wrong
! How do we design server software with the worst case in mind?

! Distinguish between long and short term secrets
! Devise approaches for protecting each

!2

Let’s Talk About Web
Infrastructure

#RSAC

!4

#RSAC

Global Website Traffic

!5

#RSAC

Global Website Traffic with CDN

!6

#RSAC

Current Map

!7

#RSAC

Future Map

!8

#RSAC

Future Map

!9

Edge Computing
Threat Model

#RSAC

Traditional server threat model

! Assume server is secure
! Add layers of protection to keep attackers out

! Network layer protection
! Operating System Level: principle of least privilege
! Protection against maliciously installed code
! More advanced barriers

!11

#RSAC

Globally distributed servers

! Less jurisdictional control = less physical security
! Physical access trumps static defense layers

!
! Traditional defenses helpful, but not ideal

! Cannot rely on security of keys
! Single break-in results in immediate compromise

!12

A More Effective
Approach

#RSAC

Approach system security the ‘DRM way’

! Assume attacker has bypassed all static defenses
! Goal is to refresh secrets they are compromised
! Split system into long-term secrets and short-term secrets
! Focus on renewability of secrets

!14

#RSAC

Secrets must be split into two tiers

! Long-term Secrets
! Useful for attacker for long period of time
! Do not store at the edge

!
! Short-term Secrets

! Expire after a short period of time
! Cannot be re-used

!15

#RSAC

Example: Traditional TLS termination

! TLS handshake with nginx and Apache
! SSL keys on disk
! Read from disk, use in memory

!
! Cryptographic elements at risk if server is compromised

! Private key
! Session key

!16

#RSAC

TLS revisited for untrusted hardware

! Long term secrets
! Private key

!
! Short term secrets

! Session key
! Session IDs and Session ticket keys
! Credentials to access private keys

!17

How to Protect  
Short-term Secrets

#RSAC

Short-term secrets — threat model

! Must live on machines in unsafe locations
! Memory
! Control Flow

! By the time a secret is broken, it should be expired
! Don’t keep secrets in a useable state
! Impose computational cost to retrieve the original secret
! Expire secrets quickly

!

!19

#RSAC

Techniques from DRM are applicable

! White-box cryptography
! Code obfuscation

!20

#RSAC

Standard Cryptography Threat Model

!21

Alice Bob

Eve

#RSAC

White-box Cryptography Threat Model

!22

Alice Bob

Eve

#RSAC

White-box Cryptography Threat Model

!23

Aleve Bob

#RSAC

White-box cryptography

! Hide the cryptographic key from everyone
! Protect against key extraction in the strongest threat model

!
! Takes time to extract key — lots of math
! Choose difficulty based on secret lifetime

!24

#RSAC

White-box cryptography implementations

!25

! Commercial products
! Irdeto, Arxan, SafeNet, etc.

! Open source
! OpenWhiteBox

#RSAC

Code obfuscation

!26

#RSAC

Code obfuscation

! Making reverse engineering difficult
! Compile-time control-flow modification
! Data transformation in memory
! Anti-debugging

!27

#RSAC

Before

!28

#RSAC

After

!29

#RSAC

Code obfuscation implementations

! Commercial products
! Arxan, Irdeto, etc.

! Open source
! Obfuscator-LLVM

!30

Long-term Secrets

#RSAC

Keyless SSL

! SSL without keys? Surely you’re joking.
! SSL without keys at the edge. That’s better.

!32

#RSAC

How Keyless SSL Works

! Split the TLS state machine geographically
! Perform private key operation at site owner’s facility (in HSM, etc)
! Perform rest of handshake at edge
! Communicate with signing server over mutually authenticated TLS

!33

#RSAC

Keyless SSL Diagram

!34

#RSAC

!35

Conclusion

#RSAC

Conclusion

! Untrusted hardware requires a new approach
! Split secrets into long-term and short-term
! Design for rapid renewal — replace secrets faster than they can be broken
! Leverage short-term secrets to access long-term secrets

!37

