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What this talk is about

! The web is changing — consolidation at the edge 
! Fundamental assumptions about server security are wrong 
! How do we design server software with the worst case in mind? 

! Distinguish between long and short term secrets 
! Devise approaches for protecting each
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Let’s Talk About Web 
Infrastructure
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Global Website Traffic
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Global Website Traffic with CDN
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Current Map
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Future Map
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Future Map
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Edge Computing 
Threat Model
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Traditional server threat model

! Assume server is secure 
! Add layers of protection to keep attackers out 

! Network layer protection 
! Operating System Level: principle of least privilege 
! Protection against maliciously installed code 
! More advanced barriers
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Globally distributed servers

! Less jurisdictional control = less physical security 
! Physical access trumps static defense layers 

!
! Traditional defenses helpful, but not ideal 

! Cannot rely on security of keys 
! Single break-in results in immediate compromise
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A More Effective 
Approach
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Approach system security the ‘DRM way’

! Assume attacker has bypassed all static defenses 
! Goal is to refresh secrets they are compromised 
! Split system into long-term secrets and short-term secrets 
! Focus on renewability of secrets
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Secrets must be split into two tiers

! Long-term Secrets 
! Useful for attacker for long period of time 
! Do not store at the edge 

!
! Short-term Secrets 

! Expire after a short period of time 
! Cannot be re-used
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Example: Traditional TLS termination

! TLS handshake with nginx and Apache 
! SSL keys on disk 
! Read from disk, use in memory 

!
! Cryptographic elements at risk if server is compromised 

! Private key 
! Session key
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TLS revisited for untrusted hardware

! Long term secrets 
! Private key 

!
! Short term secrets 

! Session key 
! Session IDs and Session ticket keys 
! Credentials to access private keys
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How to Protect  
Short-term Secrets
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Short-term secrets — threat model

! Must live on machines in unsafe locations 
! Memory 
! Control Flow 

! By the time a secret is broken, it should be expired 
! Don’t keep secrets in a useable state 
! Impose computational cost to retrieve the original secret 
! Expire secrets quickly 

!
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Techniques from DRM are applicable

! White-box cryptography 
! Code obfuscation
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Standard Cryptography Threat Model
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White-box Cryptography Threat Model
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White-box Cryptography Threat Model
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White-box cryptography

! Hide the cryptographic key from everyone 
! Protect against key extraction in the strongest threat model 

!
! Takes time to extract key — lots of math 
! Choose difficulty based on secret lifetime
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White-box cryptography implementations
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! Commercial products 
! Irdeto, Arxan, SafeNet, etc. 

! Open source 
! OpenWhiteBox
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Code obfuscation
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Code obfuscation

! Making reverse engineering difficult 
! Compile-time control-flow modification 
! Data transformation in memory 
! Anti-debugging
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Before
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After
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Code obfuscation implementations

! Commercial products 
! Arxan, Irdeto, etc. 

! Open source 
! Obfuscator-LLVM
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Long-term Secrets
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Keyless SSL

! SSL without keys?  Surely you’re joking. 
! SSL without keys at the edge.  That’s better.
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How Keyless SSL Works

! Split the TLS state machine geographically 
! Perform private key operation at site owner’s facility (in HSM, etc) 
! Perform rest of handshake at edge 
! Communicate with signing server over mutually authenticated TLS
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Keyless SSL Diagram
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Conclusion

! Untrusted hardware requires a new approach 
! Split secrets into long-term and short-term 
! Design for rapid renewal — replace secrets faster than they can be broken 
! Leverage short-term secrets to access long-term secrets
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