

Smart Grid Security: A Look to the Future

SESSION ID: TECH-W03A

Gib Sorebo

Chief Cybersecurity Technologist Leidos @gibsorebo

Overview

- Distributed Energy
- Plug-in Vehicles
- Evolving Threats: Market Manipulation, Cascading Failure Modes

Distributed Generation: Cybersecurity Threats and Vulnerabilities

- Depends on a sophisticated communications infrastructure to be always available
 - Needs instantaneous information on status of generation resource, particularly wind and solar
 - Often widely dispersed from control centers and vulnerable to cable cuts and radio frequency interference
 - May leverage public networks that are more vulnerable to infiltration or bandwidth limitations

Distributed Generation: Cybersecurity Threats and Vulnerabilities

Integrity of Information is Critical

- Using complex algorithms, renewable resources such as solar and wind can be dispatchable
- Tampering with or errors in algorithms can lead to power outages when an expected power resource is not available
- Protection of the software supply chain will be critical

Distributed Generation: Cybersecurity Threats and Vulnerabilities

- Do-It-Yourself Generation
 - People have been able to sell back power to utility for decades, but not at any scale
 - Potential for manipulation of generation data or even intentional disruption of grid
 - Analogous to BotNet networks; if malicious actors can control thousands of micro-generation sites, the consequences could be significant

Plug-In Vehicles: Grid to Vehicle

- Plug-in vehicles will require significant instrumentation and data reporting
 - Utilities will need feedback from vehicles to predict demand
 - Potential privacy concerns will need to be addressed
 - Charging stations need trusted communications infrastructure and data reporting
 - More monitoring of traditional grid components
 - Communication with vehicle over home area network (HAN) needs higher level of protection

Plug-In Vehicles: Grid to Vehicle

- Public Charging and Roaming
 - Payment systems for charging
 - Should someone be able to roam and use their vehicle's identification number like cell phones or simply pay owner of facility without utility involved?
 - Potential for fraud and privacy issues; tax collection

Plug-In Vehicles: Vehicle to Grid

- The Potential for Energy Storage
 - Utilities can draw from potentially thousands of energy storage resources without having to pay for the capital costs
 - Vehicle owners have option to sell back electricity during peak times and charge during low peak
 - Requires vehicle owner to accurately predict driving habits and for battery technology to inform the utility of the available power in real time

Plug-In Vehicles: Vehicle to Grid

- Cybersecurity Challenges
 - Similar to "do-it-yourself generation;" people can send false information to manipulate how much a utility thinks it is paying for
 - Someone else's vehicle identifier could be stolen or hacker could manipulate whose power is used
 - Potential for privacy issues
 - Potential for malfunctioning vehicles to disrupt grid
 - Need a mini balancing authority for vehicles and a reliable system for detecting abuse

Evolving Threats: Market Manipulation, Cascading Failure Modes

Evolving Threats: Market Manipulation

- Market Manipulation
 - With distributed energy resources come exchanges to buy and sell energy
 - Markets can be manipulated by obtaining generation capabilities and demand data before it is available to the general market
 - Data can be manipulated to influence markets

Evolving Threats: Cascading Failure Modes

Cascading Failure Modes

- We have limited information of the failure modes of many new and critical devices on the distribution and transmission side
- Can sensor feeds, at a high enough volume, overwhelm a system?
- Will automation and safety protocols lead to unintended consequences such as the Yuma, Arizona, incident; protection devices seek to prevent further damage but cause more
- Automated controls often need human sanity checks

Key Takeaways

- For Utilities
 - Build your architecture to support cybersecurity for future innovation
 - Assume manufacturers of consumer products won't build in adequate security
 - When creating new markets, assume someone will look to exploit them
 - Be prepared to operate in a world where you have less control
- For Residential and Business Customers
 - Don't assume the utility can protect you from whatever you connect to the grid
 - Demand that product vendors spell out how security is implemented
 - Always have a manual override and analog gauges available

Questions?

Thank You.

Gib Sorebo

Chief Cybersecurity Technologist

tel: 703-676-0269 | email: sorebog@leidos.com

Available at the RSA Bookstore

