
#RSAC 

SESSION ID: 

David A. Wheeler Dan Reddy 

Countering Development 
Environment Attacks 

ASD-W01 

Adjunct Faculty: Engineering & Technology 

Quinsigamond Community College 

@danlj28 

Research Staff Member 

Institute for Defense Analyses (IDA) 

@drdavidawheeler 



#RSAC 

Today’s Development Environment 

 Developers are pressed to produce complex functionality with 

 Inherited code 

 Short product development cycles 

 “Software is an art not a science” mindset 

 Hard to grasp that new security practices are worth the time investment 

 Remember when quality management was an “unnecessary distraction” 

 Security is only one dimension of code improvement 

 Automation, reuse, geo development, collaboration, change management, 
virtualized environment, … 

 Who can stop the train? 

 

2 



#RSAC 

The Problem 

 These are important but not the only problems: 

 Unintentional vulnerabilities inserted by developers (See SAFECode, Fundamental Practices for Secure 
Software Development, Secure Programming HOWTO) 

 Secure distribution (e.g., code signing, SSL/TLS) 

 Attackers can also attack development environments 

 Exfiltrated/intercepted secrets: proprietary source code, vulnerability reports & analyses, 
crypto keys/passwords 

 Subverted supply chains for sourcing from upstream repositories & 3rd parties 

 Insertion of malicious code into source 

 Outsider and (different levels of) insider; may be plausibly deniable or maliciously-misleading 

 Subverted binaries 

 Not compiler/toolchain + Compiler/toolchain (“trusting trust” attack) 

 Countermeasures exist! 

3 



#RSAC Exfiltrated/intercepted Secrets: Source Code, 
Vulnerability Reports & Analyses 

 Example: RSA SecurID / Lockheed (2011) 

 “Recently, our security systems identified an extremely sophisticated 

cyber attack in progress being mounted against RSA… resulted in 

certain information being extracted… related to RSA's SecurID two-

factor authentication products.” 

 “Sources close to Lockheed point to compromised RSA SecurID 

tokens… as playing a pivotal role…” [DailyTech] 

 “… we are seeing increases in attacks on one organization to be 

leveraged in an attack on another organization…” - Art Coviello, 

Executive Chairman, RSA [Coviello2011] 

4 



#RSAC Subverted Supply Chains / Upstream 
Repositories 

 Subverted external repositories: SourceForge/Apache (2001); 

Debian (2003); Haskell (2015) 

 Linux kernel (2003) attempt to add malicious code 

+  if ((options == (__WCLONE|__WALL)) && (current->uid = 0)) 

+                  retval = -EINVAL; 

   retval = -ECHILD; 

 Attack countered due to configuration management tools, developer 

review, & coding conventions [Miller2003] [Andrews2003] 

5 



#RSAC Insertion of Malicious Code into Source 
(outsider and insider) 

 Timothy Lloyd at Omega Engineering 

 Timothy Lloyd planted a 6-line logic bomb into employer’s systems (Omega Engineering) 

 Went off on July 31, 1996 

 Erased all of the company’s contracts and proprietary software used by their manufacturing tools 

 $12 million in damages, 80 people permanently lost their jobs, loss of competitive edge 

 Plant manager Jim Ferguson: “We will never recover”. [Ulsch2000] [Gardian] 

 Roger Duronio at UBS PaineWebber 

 System administrator for 2 years 

 Installed a logic bomb to detonate on March 4, 2002 (only a few lines of C and shell) and resigned 

 Caused over 1,000 / 1,500 networked computers to begin deleting files 

 $3 million to assess and repair the damage, plus undetermined lost business [Gaudin2006a] 

6 



#RSAC Insertion of Malicious Code into Source 
(outsider and insider) cont’d 

 Borland InterBase/Firebird Back Door (inserted 1994, discovered 

2001) 

 User: politically, password: correct, Hidden for 7 years in proprietary 

product 

 Found after release as OSS in 5 months 

 Unclear if malicious, but has its form 

7 



#RSAC Countermeasures to Development 
Environment Attacks 

 Fundamentals / best practices (may be scaled to large & small 
companies) 

 Protected final build environment 

 More advanced / less common 

 Detect repo/build attacks: customized IDS, e.g., OWASP AppSensor 

 Counter subverted build environment: Reproduceable builds 

 Malicious/backdoor code detection 

 Counter maliciously-misleading code 

 Countering trusting trust: Diverse Double-Compiling 

8 



#RSAC Fundamentals - Development Defense 
Best Practices 

 Infrastructure 

 Regular credentialed scanning for vulnerabilities and compliance to 
hardened OS (e.g., DISA STIG audit guidelines) 

 Critical patches applied in timely way.  Within week to 30 days by 
properly trained techs?  “Automatic”? Can they be reversed? 

 Physical and virtual ! 

 Priority based remediation that emphasizes security posture 

 Change Management process for infrastructure changes 

 Comparable test and dev environments to what is in production 

 Final “Build farms” are segregated from dev environments 

9 



#RSAC Fundamentals - Development Defense 
Best Practices 

 Access Control 

 Separation of privileges between server/OS admins and code developers 

 True role separation based on “need to know” / “need to change” 

 Is everyone skilled and trusted equally? 

 Who actually has to collaborate on code? How often verified? 

 Build culture of teamwork with independent reviews. New fact of life 

 Separate development teams from build teams doing final builds 

 Repository admins are separate from OS owners 

 Promote two person controls for critical actions (with auditing) 

 If one person becomes malicious, others can detect 

 E.g., repo owners need their own oversight 

10 



#RSAC Fundamentals - Development Defense 
Best Practices 

 Sourcing 

 Documented process for all sources 

 Integrity checks must be required (counter MITM) 

 Meets legal licensing issues (third party including open source 

software) 

 Published profiles on source organizations (BSD community, Apache) 

 Separate sandbox environment for preliminary scanning and review 

 Don’t bring right into dev environment 

 Copying and pasting of code snippets gets independent review too 

11 



#RSAC Fundamentals - Development Defense 
Best Practices 

 Protect final build environment 

 Dev builds != Final builds 

 Final builds solely created from governed sources 

 Developer can’t binary-patch final build 

 Limit who’s allowed to change final build environment 

 Ensure that build environment cannot be changed by build 

12 



#RSAC Countering Subverted Binaries 
(except compiler/toolchain) 

13 

Debian reproducible build status, per 

https://wiki.debian.org/ReproducibleBuilds 

 What if protection of binary build 
process, or its results, fail? 

 Reproducible builds 

 Regenerate exact binaries from 
source (modify build or record info) 

 Can detect subverted binaries if 
source and compiler/toolchain 
protected 

 Challenges: embedded timestamps, 
“random” (unforced) order of results, 
embedded build data, results 
generated from uninitialized data 

 Tor & Debian working on this & have 
had significant progress 



#RSAC Other Advanced Countermeasures: 
Scan Sources for Indicators of Back Doors etc. 

 Build “back door” or other attack attribute profiles that source code scanners can 
leverage. 

 Scan all source code for back door attributes that trip sensors 

 What might they look like in code? 80/20 rule. Make it harder 

 E.g., date/time checks, starting network communication, rm –rf, drop all tables 

 This is not easy or broadly implemented today 

 Be careful of vendor claims 

 Apply to all external party software (open source software, proprietary software, trusted 
partners’ code) 

 Must automate eventually in order to scale 

 Start by examining the historical code one time 

 Calculate diffs on stable code 

14 



#RSAC Maliciously-misleading Code Inserted into 
Source (e.g., by insider) 

 Source code can be written to look innocent yet it do something 

subtly evil – counters manual review of two-person control 

 Many examples in “Underhanded C Contest” & “Obfuscated V 

contest” 

 Learn from past contest results to develop countermeasures 

15 



#RSAC 

Paul A. Parkanzky: Buffer Overflow 

int main() { 

 unsigned int Tally[4] = {0}; 

 unsigned char Other, Nader, Bush, Kerry; 

 char LogMesg[11] = {0}; 

 char *day; 

 day = getDay();  // Returns first, second, etc. 

 while ((Input=getchar())!=EOF) { 

      unsigned char Vote=Input; 

  sprintf (LogMesg,"LOG VOTE: November %s %c\n",day,Vote); 

  paperTrail(LogMesg);  

16 



#RSAC 

Michael Moore: Comment Games 

/*  

   The design goal in the main loop is to minimize 

   the code to simplify the process of analyzing the code … 

   The production code fragment to be replaced is: 

    /* Input is space, use -1, otherwise locate() */ 

    /* locate() guaranteed not to return -1 */ 

                  (isspace(x) ? 

   testing PHASE 1: 

… 

*/ 

17 



#RSAC 

Obfuscated V Contest: Common Approaches 

 Buffer overflow 

 Misleading #define 

 Misleading comments with embedded code /* … */ /* … */ 

 Order of operations (including argument passing) undefined 

 Hiding (nested) scopes 

 Confuse 1 with l, 0 with O, = with == 

18 



#RSAC 

Underhanded C contest Example Winners 

 2005: covertly insert unique and useful “fingerprinting” data into processed image 

 Winners: uninitialized data structures, reuse of pointers, embedding of machine code in 
constants 

 2006: word count with vastly different runtimes on different platforms 

 Winners: fork implementation errors, optimization problems, endian differences, various 
API implementation differences 

 2007: encrypt/decrypt with strong algorithm s.t. a low % may be quickly cracked 

 Winners: misimplementations of RC4, misused API calls, incorrect function prototypes 

 2008: redact image to allow (partial) reconstruction 

 Winners: xor’ed with retrievable pseudo-random mask, appended masked data to file 
end, used improperly defined macros, zeroed out pixel values while keeping the number 
of digits intact in a text-based format 

19 

Sources: http://www.underhanded-c.org and 
https://en.wikipedia.org/wiki/Underhanded_C_Contest 

http://www.underhanded-c.org/
http://www.underhanded-c.org/
http://www.underhanded-c.org/
http://www.underhanded-c.org/
http://www.underhanded-c.org/
https://en.wikipedia.org/wiki/Underhanded_C_Contest
https://en.wikipedia.org/wiki/Underhanded_C_Contest
https://en.wikipedia.org/wiki/Underhanded_C_Contest


#RSAC Countermeasures for Maliciously Misleading 
(“underhanded”) Code 

 In general, learn from past attacks 

 When practical use memory-safe languages (or at least ASAN) 

 Force code reformatting & use highlighting 

 Maximize use of warnings (nested scopes, order of operations, bad 

function prototypes, uninitialized data, etc.) 

 Use multiple static & dynamic analysis tools (buffer overflows, etc.) 

 Precise test cases, including for what it should NOT do 

 Limit detailed knowledge of software analysis techniques used, & 

create some specialized techniques not known to developers 

20 



#RSAC Subverted Binaries (compiler/toolchain): 
“Trusting trust” attack 

 1974: Karger & Schell first described (obliquely) 

 1984: Ken Thompson demonstrated attack 

 2009: Win32.Induc virus attacks Delphi compilers, infects generated [Mills2009] [Feng2009] 

21 



#RSAC Solution for Subverted Compiler/toolchain: 
Diverse Double-Compiling (DDC) 

 Use second compiler/toolkit in unusual way to reproduce executable 

 Works even though different compilers produce different results 

 If can reproduce, executable and source match 

22 

Source: 
[Wheeler2009] 
Fully Countering 
Trusting Trust through 
Diverse Double-
Compiling 
http://www.dwheeler.
com/trusting-trust  



#RSAC Diverse Double-Compiling (DDC) 
Requirements 

 DDC does not assume that different compilers produce identical executables 

 DDC must be performed by trusted programs/processes 

 Includes trusted compiler cT, trusted environments, trusted comparer, trusted acquirers 
for cA, sP, sA 

 Trusted = justified confidence that it does not have triggers and payloads that would affect 
the results of DDC.  Could be malicious, as long as DDC is unaffected 

 Can do multiple times to increase confidence even further (cumulative) 

 Correct languages (Java compiler for Java source) 

 Compiler defined by parent’s source is deterministic (same inputs always produce same 
outputs) 

 Real compilers typically deterministic 

 Non-deterministic compilers hard to test & can’t use compiler bootstrap test 

23 



#RSAC Other Advanced Countermeasures: 
Trusted Final Builds 

 Create trusted build environments 

 Invest in added controls for actual final environments that build and 
produce shippable code. 

 What to include? 

 Best practices that tie to specific threats that can be mitigated 

 Trusted location, state-of-the-art physical security, deeper background 
checks, rigidly enforced separation of duties, structured oversight, 
strict promotion of gold disk code to be built. 

 Would your most skeptical customers approve and feel confident 
after a review of all the controls in pace for final build? 

24 



#RSAC Other Advanced Countermeasures: 
Dev Tool Specific App Sensors 

 Open Web Application Security Project (OWASP) - AppSensor 

 Provides methodology, documentation, code and pilots 

More info:  [Watson2011] http://appsensor.org/ 
https://www.owasp.org/index.php/OWASP_AppSensor_Project 

 Design Application aware sensors for critical repos & build tools 

 Build more than traditional network defenses & hardened OS 

 Context-aware analysis in real-time from inside the application 

 Differentiate among normal behavior, suspicious behavior and attacks 

 Monitoring the state of running application 

 Leverage threat modeling & find application specific detection points 

 Can be integrated into app or retrofitted 

 Alerts can tie into Security Information and Event Management (SIEM) 

25 

http://appsensor.org/
http://appsensor.org/
http://appsensor.org/
https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/OWASP_AppSensor_Project


#RSAC 

Apply Slide 

 Top priority: 

 Ensure you have fundamentals in place to protect development 

environment (infrastructure, access control, sourcing) 

 Then: 

 Establish a protected build environment 

 Require individually-signed commits into repository 

 Establish two-person controls 

 Then: 

 Determine if need to counter more advanced threats 

26 



#RSAC 

References 

 [Andrews2003] Andrews, Jeremy. November 5, 2003. “Linux: Kernel ‘Back Door’ Attempt”. Kerneltrap. http://kerneltrap.org/node/1584 

 [Coviello2011] Coviello, Art. October 4, 2011. Written Testimony, U.S. House of Representatives Permanent Select Committee on 
Intelligence. http://intelligence.house.gov/sites/intelligence.house.gov/files/documents/100411CyberHearingCoviello.pdf 

 [DailyTech] Mick, Jason.  May 30, 2011. “Reports: Hackers Use Stolen RSA Information to Hack Lockheed Martin” Daily Tech.  
http://www.dailytech.com/Reports+Hackers+Use+Stolen+RSA+Information+to+Hack+Lockheed+Martin/article21757.htm 

 [Gardian] Gardian. Undated. Infragard National Member Alliance. http://www.infragardconferences.com/thegardian/3_22.html 

 [Gaudin2006a] Gaudin, Sharon. June 27, 2006. “How A Trigger Set Off A Logic Bomb At UBS PaineWebber”. InformationWeek. 
http://www.informationweek.com/showArticle.jhtml?articleID=189601826 

 [Miller2003] Miller, Robin “Roblimo” and Joe “warthawg” Barr. November 6, 2003. “Linux kernel development process thwarts subversion 
attempt”. NewsForge. http://www.newsforge.com/article.pl?sid=03/11/06/1532223 

 [Ulsch2000] Ulsch, MacDonnell. July 2000. “Security Strategies for E-Companies (EC Does it series)”. Information Security Magazine.  
https://web.archive.org/web/20060328015848/http://infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml 

 [Watson2011] Watson, Colin, et al. September 2011.  “Creating Attack-Aware Software Applications with Real-Time Defenses”.CrossTalk 
OWASP http://www.crosstalkonline.org/storage/issue-archives/2011/201109/201109-0-Issue.pdf (OWASP AppSensor Project) 

 [Wheeler2009] Wheeler, David A. 2009. Fully Countering Trusting Trust through Diverse Double-Compiling. 
http://www.dwheeler.com/trusting-trust 

27 

http://kerneltrap.org/node/1584
http://kerneltrap.org/node/1584
http://www.infragardconferences.com/thegardian/3_22.html
http://www.infragardconferences.com/thegardian/3_22.html
http://www.informationweek.com/showArticle.jhtml?articleID=189601826
http://www.informationweek.com/showArticle.jhtml?articleID=189601826
http://www.newsforge.com/article.pl?sid=03/11/06/1532223
http://www.newsforge.com/article.pl?sid=03/11/06/1532223
https://web.archive.org/web/20060328015848/http:/infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml
https://web.archive.org/web/20060328015848/http:/infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml
https://web.archive.org/web/20060328015848/http:/infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust

