
#RSAC

SESSION ID:

David A. Wheeler Dan Reddy

Countering Development
Environment Attacks

ASD-W01

Adjunct Faculty: Engineering & Technology

Quinsigamond Community College

@danlj28

Research Staff Member

Institute for Defense Analyses (IDA)

@drdavidawheeler

#RSAC

Today’s Development Environment

 Developers are pressed to produce complex functionality with

 Inherited code

 Short product development cycles

 “Software is an art not a science” mindset

 Hard to grasp that new security practices are worth the time investment

 Remember when quality management was an “unnecessary distraction”

 Security is only one dimension of code improvement

 Automation, reuse, geo development, collaboration, change management,
virtualized environment, …

 Who can stop the train?

2

#RSAC

The Problem

 These are important but not the only problems:

 Unintentional vulnerabilities inserted by developers (See SAFECode, Fundamental Practices for Secure
Software Development, Secure Programming HOWTO)

 Secure distribution (e.g., code signing, SSL/TLS)

 Attackers can also attack development environments

 Exfiltrated/intercepted secrets: proprietary source code, vulnerability reports & analyses,
crypto keys/passwords

 Subverted supply chains for sourcing from upstream repositories & 3rd parties

 Insertion of malicious code into source

 Outsider and (different levels of) insider; may be plausibly deniable or maliciously-misleading

 Subverted binaries

 Not compiler/toolchain + Compiler/toolchain (“trusting trust” attack)

 Countermeasures exist!

3

#RSAC Exfiltrated/intercepted Secrets: Source Code,
Vulnerability Reports & Analyses

 Example: RSA SecurID / Lockheed (2011)

 “Recently, our security systems identified an extremely sophisticated

cyber attack in progress being mounted against RSA… resulted in

certain information being extracted… related to RSA's SecurID two-

factor authentication products.”

 “Sources close to Lockheed point to compromised RSA SecurID

tokens… as playing a pivotal role…” [DailyTech]

 “… we are seeing increases in attacks on one organization to be

leveraged in an attack on another organization…” - Art Coviello,

Executive Chairman, RSA [Coviello2011]

4

#RSAC Subverted Supply Chains / Upstream
Repositories

 Subverted external repositories: SourceForge/Apache (2001);

Debian (2003); Haskell (2015)

 Linux kernel (2003) attempt to add malicious code

+ if ((options == (__WCLONE|__WALL)) && (current->uid = 0))

+ retval = -EINVAL;

 retval = -ECHILD;

 Attack countered due to configuration management tools, developer

review, & coding conventions [Miller2003] [Andrews2003]

5

#RSAC Insertion of Malicious Code into Source
(outsider and insider)

 Timothy Lloyd at Omega Engineering

 Timothy Lloyd planted a 6-line logic bomb into employer’s systems (Omega Engineering)

 Went off on July 31, 1996

 Erased all of the company’s contracts and proprietary software used by their manufacturing tools

 $12 million in damages, 80 people permanently lost their jobs, loss of competitive edge

 Plant manager Jim Ferguson: “We will never recover”. [Ulsch2000] [Gardian]

 Roger Duronio at UBS PaineWebber

 System administrator for 2 years

 Installed a logic bomb to detonate on March 4, 2002 (only a few lines of C and shell) and resigned

 Caused over 1,000 / 1,500 networked computers to begin deleting files

 $3 million to assess and repair the damage, plus undetermined lost business [Gaudin2006a]

6

#RSAC Insertion of Malicious Code into Source
(outsider and insider) cont’d

 Borland InterBase/Firebird Back Door (inserted 1994, discovered

2001)

 User: politically, password: correct, Hidden for 7 years in proprietary

product

 Found after release as OSS in 5 months

 Unclear if malicious, but has its form

7

#RSAC Countermeasures to Development
Environment Attacks

 Fundamentals / best practices (may be scaled to large & small
companies)

 Protected final build environment

 More advanced / less common

 Detect repo/build attacks: customized IDS, e.g., OWASP AppSensor

 Counter subverted build environment: Reproduceable builds

 Malicious/backdoor code detection

 Counter maliciously-misleading code

 Countering trusting trust: Diverse Double-Compiling

8

#RSAC Fundamentals - Development Defense
Best Practices

 Infrastructure

 Regular credentialed scanning for vulnerabilities and compliance to
hardened OS (e.g., DISA STIG audit guidelines)

 Critical patches applied in timely way. Within week to 30 days by
properly trained techs? “Automatic”? Can they be reversed?

 Physical and virtual !

 Priority based remediation that emphasizes security posture

 Change Management process for infrastructure changes

 Comparable test and dev environments to what is in production

 Final “Build farms” are segregated from dev environments

9

#RSAC Fundamentals - Development Defense
Best Practices

 Access Control

 Separation of privileges between server/OS admins and code developers

 True role separation based on “need to know” / “need to change”

 Is everyone skilled and trusted equally?

 Who actually has to collaborate on code? How often verified?

 Build culture of teamwork with independent reviews. New fact of life

 Separate development teams from build teams doing final builds

 Repository admins are separate from OS owners

 Promote two person controls for critical actions (with auditing)

 If one person becomes malicious, others can detect

 E.g., repo owners need their own oversight

10

#RSAC Fundamentals - Development Defense
Best Practices

 Sourcing

 Documented process for all sources

 Integrity checks must be required (counter MITM)

 Meets legal licensing issues (third party including open source

software)

 Published profiles on source organizations (BSD community, Apache)

 Separate sandbox environment for preliminary scanning and review

 Don’t bring right into dev environment

 Copying and pasting of code snippets gets independent review too

11

#RSAC Fundamentals - Development Defense
Best Practices

 Protect final build environment

 Dev builds != Final builds

 Final builds solely created from governed sources

 Developer can’t binary-patch final build

 Limit who’s allowed to change final build environment

 Ensure that build environment cannot be changed by build

12

#RSAC Countering Subverted Binaries
(except compiler/toolchain)

13

Debian reproducible build status, per

https://wiki.debian.org/ReproducibleBuilds

 What if protection of binary build
process, or its results, fail?

 Reproducible builds

 Regenerate exact binaries from
source (modify build or record info)

 Can detect subverted binaries if
source and compiler/toolchain
protected

 Challenges: embedded timestamps,
“random” (unforced) order of results,
embedded build data, results
generated from uninitialized data

 Tor & Debian working on this & have
had significant progress

#RSAC Other Advanced Countermeasures:
Scan Sources for Indicators of Back Doors etc.

 Build “back door” or other attack attribute profiles that source code scanners can
leverage.

 Scan all source code for back door attributes that trip sensors

 What might they look like in code? 80/20 rule. Make it harder

 E.g., date/time checks, starting network communication, rm –rf, drop all tables

 This is not easy or broadly implemented today

 Be careful of vendor claims

 Apply to all external party software (open source software, proprietary software, trusted
partners’ code)

 Must automate eventually in order to scale

 Start by examining the historical code one time

 Calculate diffs on stable code

14

#RSAC Maliciously-misleading Code Inserted into
Source (e.g., by insider)

 Source code can be written to look innocent yet it do something

subtly evil – counters manual review of two-person control

 Many examples in “Underhanded C Contest” & “Obfuscated V

contest”

 Learn from past contest results to develop countermeasures

15

#RSAC

Paul A. Parkanzky: Buffer Overflow

int main() {

 unsigned int Tally[4] = {0};

 unsigned char Other, Nader, Bush, Kerry;

 char LogMesg[11] = {0};

 char *day;

 day = getDay(); // Returns first, second, etc.

 while ((Input=getchar())!=EOF) {

 unsigned char Vote=Input;

 sprintf (LogMesg,"LOG VOTE: November %s %c\n",day,Vote);

 paperTrail(LogMesg);

16

#RSAC

Michael Moore: Comment Games

/*

 The design goal in the main loop is to minimize

 the code to simplify the process of analyzing the code …

 The production code fragment to be replaced is:

 /* Input is space, use -1, otherwise locate() */

 /* locate() guaranteed not to return -1 */

 (isspace(x) ?

 testing PHASE 1:

…

*/

17

#RSAC

Obfuscated V Contest: Common Approaches

 Buffer overflow

 Misleading #define

 Misleading comments with embedded code /* … */ /* … */

 Order of operations (including argument passing) undefined

 Hiding (nested) scopes

 Confuse 1 with l, 0 with O, = with ==

18

#RSAC

Underhanded C contest Example Winners

 2005: covertly insert unique and useful “fingerprinting” data into processed image

 Winners: uninitialized data structures, reuse of pointers, embedding of machine code in
constants

 2006: word count with vastly different runtimes on different platforms

 Winners: fork implementation errors, optimization problems, endian differences, various
API implementation differences

 2007: encrypt/decrypt with strong algorithm s.t. a low % may be quickly cracked

 Winners: misimplementations of RC4, misused API calls, incorrect function prototypes

 2008: redact image to allow (partial) reconstruction

 Winners: xor’ed with retrievable pseudo-random mask, appended masked data to file
end, used improperly defined macros, zeroed out pixel values while keeping the number
of digits intact in a text-based format

19

Sources: http://www.underhanded-c.org and
https://en.wikipedia.org/wiki/Underhanded_C_Contest

http://www.underhanded-c.org/
http://www.underhanded-c.org/
http://www.underhanded-c.org/
http://www.underhanded-c.org/
http://www.underhanded-c.org/
https://en.wikipedia.org/wiki/Underhanded_C_Contest
https://en.wikipedia.org/wiki/Underhanded_C_Contest
https://en.wikipedia.org/wiki/Underhanded_C_Contest

#RSAC Countermeasures for Maliciously Misleading
(“underhanded”) Code

 In general, learn from past attacks

 When practical use memory-safe languages (or at least ASAN)

 Force code reformatting & use highlighting

 Maximize use of warnings (nested scopes, order of operations, bad

function prototypes, uninitialized data, etc.)

 Use multiple static & dynamic analysis tools (buffer overflows, etc.)

 Precise test cases, including for what it should NOT do

 Limit detailed knowledge of software analysis techniques used, &

create some specialized techniques not known to developers

20

#RSAC Subverted Binaries (compiler/toolchain):
“Trusting trust” attack

 1974: Karger & Schell first described (obliquely)

 1984: Ken Thompson demonstrated attack

 2009: Win32.Induc virus attacks Delphi compilers, infects generated [Mills2009] [Feng2009]

21

#RSAC Solution for Subverted Compiler/toolchain:
Diverse Double-Compiling (DDC)

 Use second compiler/toolkit in unusual way to reproduce executable

 Works even though different compilers produce different results

 If can reproduce, executable and source match

22

Source:
[Wheeler2009]
Fully Countering
Trusting Trust through
Diverse Double-
Compiling
http://www.dwheeler.
com/trusting-trust

#RSAC Diverse Double-Compiling (DDC)
Requirements

 DDC does not assume that different compilers produce identical executables

 DDC must be performed by trusted programs/processes

 Includes trusted compiler cT, trusted environments, trusted comparer, trusted acquirers
for cA, sP, sA

 Trusted = justified confidence that it does not have triggers and payloads that would affect
the results of DDC. Could be malicious, as long as DDC is unaffected

 Can do multiple times to increase confidence even further (cumulative)

 Correct languages (Java compiler for Java source)

 Compiler defined by parent’s source is deterministic (same inputs always produce same
outputs)

 Real compilers typically deterministic

 Non-deterministic compilers hard to test & can’t use compiler bootstrap test

23

#RSAC Other Advanced Countermeasures:
Trusted Final Builds

 Create trusted build environments

 Invest in added controls for actual final environments that build and
produce shippable code.

 What to include?

 Best practices that tie to specific threats that can be mitigated

 Trusted location, state-of-the-art physical security, deeper background
checks, rigidly enforced separation of duties, structured oversight,
strict promotion of gold disk code to be built.

 Would your most skeptical customers approve and feel confident
after a review of all the controls in pace for final build?

24

#RSAC Other Advanced Countermeasures:
Dev Tool Specific App Sensors

 Open Web Application Security Project (OWASP) - AppSensor

 Provides methodology, documentation, code and pilots

More info: [Watson2011] http://appsensor.org/
https://www.owasp.org/index.php/OWASP_AppSensor_Project

 Design Application aware sensors for critical repos & build tools

 Build more than traditional network defenses & hardened OS

 Context-aware analysis in real-time from inside the application

 Differentiate among normal behavior, suspicious behavior and attacks

 Monitoring the state of running application

 Leverage threat modeling & find application specific detection points

 Can be integrated into app or retrofitted

 Alerts can tie into Security Information and Event Management (SIEM)

25

http://appsensor.org/
http://appsensor.org/
http://appsensor.org/
https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/OWASP_AppSensor_Project

#RSAC

Apply Slide

 Top priority:

 Ensure you have fundamentals in place to protect development

environment (infrastructure, access control, sourcing)

 Then:

 Establish a protected build environment

 Require individually-signed commits into repository

 Establish two-person controls

 Then:

 Determine if need to counter more advanced threats

26

#RSAC

References

 [Andrews2003] Andrews, Jeremy. November 5, 2003. “Linux: Kernel ‘Back Door’ Attempt”. Kerneltrap. http://kerneltrap.org/node/1584

 [Coviello2011] Coviello, Art. October 4, 2011. Written Testimony, U.S. House of Representatives Permanent Select Committee on
Intelligence. http://intelligence.house.gov/sites/intelligence.house.gov/files/documents/100411CyberHearingCoviello.pdf

 [DailyTech] Mick, Jason. May 30, 2011. “Reports: Hackers Use Stolen RSA Information to Hack Lockheed Martin” Daily Tech.
http://www.dailytech.com/Reports+Hackers+Use+Stolen+RSA+Information+to+Hack+Lockheed+Martin/article21757.htm

 [Gardian] Gardian. Undated. Infragard National Member Alliance. http://www.infragardconferences.com/thegardian/3_22.html

 [Gaudin2006a] Gaudin, Sharon. June 27, 2006. “How A Trigger Set Off A Logic Bomb At UBS PaineWebber”. InformationWeek.
http://www.informationweek.com/showArticle.jhtml?articleID=189601826

 [Miller2003] Miller, Robin “Roblimo” and Joe “warthawg” Barr. November 6, 2003. “Linux kernel development process thwarts subversion
attempt”. NewsForge. http://www.newsforge.com/article.pl?sid=03/11/06/1532223

 [Ulsch2000] Ulsch, MacDonnell. July 2000. “Security Strategies for E-Companies (EC Does it series)”. Information Security Magazine.
https://web.archive.org/web/20060328015848/http://infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml

 [Watson2011] Watson, Colin, et al. September 2011. “Creating Attack-Aware Software Applications with Real-Time Defenses”.CrossTalk
OWASP http://www.crosstalkonline.org/storage/issue-archives/2011/201109/201109-0-Issue.pdf (OWASP AppSensor Project)

 [Wheeler2009] Wheeler, David A. 2009. Fully Countering Trusting Trust through Diverse Double-Compiling.
http://www.dwheeler.com/trusting-trust

27

http://kerneltrap.org/node/1584
http://kerneltrap.org/node/1584
http://www.infragardconferences.com/thegardian/3_22.html
http://www.infragardconferences.com/thegardian/3_22.html
http://www.informationweek.com/showArticle.jhtml?articleID=189601826
http://www.informationweek.com/showArticle.jhtml?articleID=189601826
http://www.newsforge.com/article.pl?sid=03/11/06/1532223
http://www.newsforge.com/article.pl?sid=03/11/06/1532223
https://web.archive.org/web/20060328015848/http:/infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml
https://web.archive.org/web/20060328015848/http:/infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml
https://web.archive.org/web/20060328015848/http:/infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust
http://www.dwheeler.com/trusting-trust

