RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

SESSION ID: BR-W03

Watt, Me Worry? Analyzing AC Power to Find Malware

Ben Ransford, Ph.D.

Chief Technical Officer Virta Laboratories, Inc. @virtalabs

Denis Foo Kune, Ph.D.

Chief Executive Officer Virta Laboratories, Inc. @virtalabs

Your Speakers

- Ben Ransford, Ph.D., CTO Virta Labs
 - Medical device attacks & "zero-power" defenses
 - Power analysis attacks and defenses
- Denis Foo Kune, Ph.D., CEO Virta Labs
 - EMI injection attacks on medical devices
 - Privacy attacks on GSM phones

Co-founded Virta Labs in 2013 to find malware via the power line

#question

How can we monitor machines that we can't modify at all?

Legacy Systems Challenges

- Systems stay in service long past operating system EoL
- Often performing critical roles
- Hard or impossible or forbidden to upgrade/patch
- Clear high-ROI entry point for attackers!

Legacy Systems Challenges

- Systems stay in service long past operating system EoL
- Often performing critical roles
- Hard or impossible or forbidden to upgrade/patch
- Clear high-ROI entry point for attackers!

Are we doomed to repeat the same problems with IoT?

Legacy Systems Challenges

- Systems stay in service long past operatir
- Often performing critical roles
- Hard or impossible or forbidden to upgrad
- Clear high-ROI entry point for attackers!

Are we doomed to repeat the same proble

Today: Analyzing AC Power to Find Malware

- Side channels 101
- AC power side channels
 - Demo!
 - Using side channels to attack privacy
- Demo!

What are Side Channels?

- Information flows in channels by design
 - e.g., video signals
 - e.g., encrypted Wi-Fi frames
- Side channels are accidental channels of information flow
 - Example: timing differences that reveal plaintext

Side Channels in Context

- Adversary can observer side channels to compromise security
 - Generally a passive adversary, e.g., eavesdropper

- Long history of side-channel attacks. Examples:
 - WWI: signals intelligence on buried TX lines
 - Differential power analysis (Kocher et al., CRYPTO '99)
 - Tromer lab's work with acoustic (Tel Aviv)

Timing Side Channels in SSH

SSHv1 sent a packet every time you pressed a key...

- Eavesdropper can infer typed text from inter-keystroke timings!
- "Timing Analysis of Keystrokes and SSH Timing Attacks," USENIX Security 2001

Optical Eavesdropping

Raster scan of a CRT's electron beam = time-varying light intensity

(artist's rendition)

 "Optical Time-Domain Eavesdropping Risks of CRT Displays," IEEE S&P 2002

TEMPEST

- NSA program since '60s (?)
- Super-sensitive RX gear
- Electromagnetic emanations betray plaintext!
- Remediations: shielding, spacing, separation
 - \$\$\$\$\$

TEMPEST Shielding

TEMPEST Shielding

- E.g.: KG-13 crypto machine (1960s)
- AC power filter to prevent secrets leaking onto power lines!

AC Power Side Channels

- Main idea: power consumption contains information
 - Which computer is this?
 - What is the computer doing?

- What makes AC power analysis possible?
- What makes AC power analysis challenging?
- What makes AC power analysis work in practice?

Side Channel Analyst's Toolbox

Physical side channels: scope, scope, scope, store!

- Sensors that output voltage proportional to signal

 - Measure voltage across the sense resistor to measure current (V=IR)

Side Channel Measurement Points

Side Channel Measurement Points

AC Power Analysis: Enabling Factors

- Probe points are easily accessible (hot, neutral, ground)
 - No need to open the box!
 - No need to hunt for signal wires!
- Changes in DC current consumption readily visible to probes

What do we see on the wire?

Signals on the Wire

Signals on the Wire

- Today's CPUs and software are careful to use power management!
 - Modern systems exhibit high dynamic range

- Workloads → patterns of high/low
 - ◆ CPU busy → more current
 - Peripherals busy → more current
 - Idle time → less current

AC Power Analysis: Challenges

- Signals to analyze are noisy; where's the information?
- Power supply aggregates signals
 - CPU's power consumption +
 - Hard drive's power consumption +
 - Memory's power consumption + ...
- Difficult to disentangle signals
 - Our approach: machine learning

AC Power Analysis Example: Private Browsing

- Threat model: you can access my AC outlet
 - ~15 seconds to swap a faceplate...

- Q: Which webpage am I visiting?
- Analyze power during webpage loading
 - Train a classifier to recognize webpages' power-line signatures
 - Test new signals against the trained classifier

Task: Webpage Identification

Intuition: pages exercise computing resources differently

VS.

RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

Demo: Page Loads on the Wire

Page Loads on the Wire

Training a Binary Classifier

Supervised learning: assemble and label a training set

Labels for the X-classifier: {X, not-X} Google Chunk **Features** (10s)Google Power trace Chunk of Google **Features** (10s)(30 sec) Google Chunk **Features** (10s)Not-Google Chunk Features Yahoo! Not-Google Chunk **Features** Virta_abs ~~

Instrumenting an Outlet

Building a Training Set

- Instrumented outlet
- Scripted page loads + power traces
- 9,240 traces (~72 hours of traces)

Webpage Classification Results

- > 99% accuracy, 99% precision, 99% recall
 - > 98% accuracy excluding samples of 441 unknown webpages
- More details: Current Events: Identifying Webpages by Tapping the Electrical Outlet, ESORICS '13

Robustness of Classification To Changes In...

AC Power Analysis for Other Domains

- Webpage identification is an attack
 - Spy on people by watching web traffic

- Defensive applications!
 - Turning traditional side channel analysis on its head
 - Spy on malware instead

AC Power Analysis to Find Malware

Motivation: Legacy devices without AV or patching

Root causes:

COTS OS means short development cycle, but...

Many manufacturers lack upgrade path!

Zombie pseudo-embedded machines!

- Often can't get inside the box
 - ... or install software

Medical Device Example

"information systems department together with the pharmacy has requested that [X] provide a microsoft security patch to prevent this infection from occurring again. [X] is unwilling to allow these patches to be applied to the [X] [compounder]. Instead [X] has recommend that we place a router with the functionality for a firewall between the compounder and the network (b) (4) as protection."

—FDA MAUDE report #1621627

Medica

"informat together requeste microsoft this infecti is unwilling to be appl Instead [> place a ro a firewall and the protection —FDA MA

Medical Device Example

"information systems department together with the pharmacy has requested that [X] provide a microsoft security patch to prevent this infection from occurring again. [X] is unwilling to allow these patches to be applied to the [X] [compounder]. Instead [X] has recommend that we place a router with the functionality for a firewall between the compounder and the network (b) (4) as protection."

—FDA MAUDE report #1621627

Other High-Assurance Examples

- Medical: infusion pumps, bedside monitors, fetal monitors...
- Industrial: SCADA systems
- Point-of-sale terminals
 - RAM scrapers steal payment card data!

ATMs

 Common element: lagging software, difficult change management!

IT Administrators' Crucial Dilemma

- Cannot patch or install AV
- Device serves a critical role
- Take device offline or leave it unprotected?
- Partial solution #1: NIDS for network traffic
 - Won't find malware that doesn't use network
- Partial solution #2: Power analysis to find malware

Power Analysis to Find Malware

- Like webpages, many software operations induce distinct powerconsumption patterns
- Learn normal activity for a given machine
- Learn patterns of malware execution
- Spy on execution to look for unusual or alarming patterns suggesting malware

- Good visibility into patterns of operations
- Limited visibility into individual operations

Power Analysis Workflow: Anomaly Detection

Power Analysis Workflow: Malware Detection

- On a pharmaceutical compounder:
 - ◆ 88.5% accuracy; **93.5% precision**; 92.1% recall
- On a SCADA substation computer (XP):
 - ◆ 84.9% accuracy; **98.3% precision**; 80.8% recall
- Simple technique already compares well to state-of-the-art malware detection (behavioral & signature-based)
- More: WattsUpDoc: Power Side Channels to Nonintrusively Discover Untargeted Malware on Embedded Medical Devices, HealthTech '13

RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

Demo:
Detecting Malware on the Wire

Example: RAM Scrapers

- This is what a clean system looks like
- Normal software activity shown on left side

Example: RAM Scrapers

- This is the same system infected with BackOff v1.56
- Check out these horizontal lines

Example: RAM Scrapers

- This is the same system with 0-day variant of BackOff
- The features are recognizable!

GoPro Motocross vs Bill Gates

Autodesk vs BackOff

BackOff on top of Autodesk

Conclusion

- We need to think outside the box for endpoint security
 - Legacy devices: no good solutions for visibility/monitoring
 - Side channels can tell us information
 - Sometimes that information is useful
 - Sometimes it's just argyle

Apply: Find Unpatchable Systems

- High-assurance systems that don't go out of service
- Systems that have undergone extensive regulatory testing
- Systems that are simply old

If you work in a medical environment: get MDS2 forms and keep bothering manufacturers!

RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

{ben, denis}@virtalabs.com/ https://www.virtalabs.com/

