
SESSION ID:

#RSAC

Christopher Kruegel

Evasive Malware

Exposed and Deconstructed

Chief Scientist

Lastline, Inc.

CRWD-T08

#RSAC

Who am I?

 Co-founder and Chief Scientist at Lastline, Inc.

 Lastline offers protection against zero-day threats and advanced
malware

 effort to commercialize our research

 Professor in Computer Science at UC Santa Barbara (on leave)

 many systems security papers in academic conferences

 started malware research in about 2004

 built and released practical systems (Anubis, Wepawet, …)

2

#RSAC

What are we talking about?

 What is evasion and why should I care?

 Evasion as a significant threat to automated malware analysis

 detect analysis environment

 avoid being seen by automated analysis

 Improvements to analysis systems

 automate defenses against classes of evasion approaches

3

#RSAC

Evasive Malware

4

#RSAC

Evasive Malware

 Attackers have always tried to escape or avoid detection

 as we build new defenses, attackers try to bypass them

 result is the arms race in computer security

 Evasion has been used by malware authors for decades

 initially, evasion was targeting anti-virus (AV) solutions

 AV systems relied heavily on signatures and static analysis

5

#RSAC

Evading Static Analysis

 Make (relevant) code unavailable

 packing / encrypting

 delay inclusion of code (run-time code loading or generation)

 Exploit differences in the parsing capabilities

 parsing of executable (the target is the OS)

 parsing of document (the target is, for example, Office application)

 Make operations dependent on values known only at run-time

 table lookups based on user-provided input

6

#RSAC

Evading Static Analysis

7

64% of AV scanners
fail to identify “1%
hardest to detect”
malware after 1 yr.

#RSAC

Evading Static Analysis

8

#RSAC

Dynamic Malware Analysis

9

#RSAC

 Also known as malware analysis sandbox

 Implemented as instrumented execution environment

 run program and observe its activity

 make determination whether code is malicious or not

 Sandboxes are great!

 can handle zero day threats (signature-less defense)

 automate tasks done by human analysts and reverse engineers

Dynamic Malware Analysis

10

#RSAC

Dynamic Malware Analysis

 Recently emerged as a new silver bullet in security

11

#RSAC

Dynamic Malware Analysis

Protected company

Internet

Network appliance

APT

12

#RSAC

Dynamic Malware Analysis

Protected company

Internet

Network appliance

APT

13

#RSAC

Dynamic Malware Analysis

Protected company

Internet

Network appliance

APT

14

#RSAC

Dynamic Malware Analysis

Protected company

Internet

Network appliance

APT

15

#RSAC

Not All Sandboxes Are Equal

16

“It is easy to build a sandbox,
 it is hard to build an effective sandbox!”

Lawrence Orans
“The Executive's Guide to Cyberthreats”
(Gartner Symposium, October 2013)

#RSAC

Sandbox Designs

Windows API Windows API

Hardware

Software

Native System Call Interface

User mode

Kernel mode

17

#RSAC

Sandbox Designs

Hook API functions

- monitor interactions

with OS

- easy to implement

- needs process

modifications

- no kernel visibility

Windows API Windows API

Native System Call Interface

18

#RSAC

Sandbox Designs

Hook system calls

- monitor interactions

with OS

- easy to implement

- minimal kernel

visibility

Windows API Windows API

Native System Call Interface

19

#RSAC

Sandbox Designs

Full system emulation

- monitor interactions

with OS and all

instructions

- full kernel visibility

- implementation is

more difficult

Windows API Windows API

Native System Call Interface

20

#RSAC

VM Approach versus CPU Emulation

21

#RSAC

Visibility Does Matter

 See more types of behavior

 which connection is used to leak sensitive data

 allows automated detection of C&C channels

 how does the malware process inputs from C&C channels

 enumeration of C&C commands (and malware functionality)

 insights into keyloggers (often passive in sandbox)

 take memory snapshots after decryption for forensic analysis

 Combat evasion

 see everything and adapt to attacker’s threats

 detect triggers

 bypass stalling code

22

#RSAC

Evading Sandboxes

#RSAC

Evading Dynamic Analysis

 Malware authors don’t sleep

 they got the news that sandboxes are all the rage now

 since the code is executed, malware authors have options

 Evasion

 develop code that exhibits no malicious behavior in sandbox,

but that infects the intended target

 can be achieved in various ways

24

#RSAC

Evasion Going Mainstream

25

#RSAC

Evasion Going Mainstream

26

2X growth last year

#RSAC

Evasion Going Mainstream

2X growth last year

27

+ many more behaviors per sample

#RSAC

Evading Dynamic Analysis

 Malware can detect runtime or analysis environment

 differences between virtualized and bare metal environment

 checks based on system (CPU) features

 checks based on operating system artifacts (files, processes, …)

 Malware can exploit limited context

 Malware can avoid being analyzed

 tricks in making code run that analysis system does not see

 wait until someone does something

 time out analysis before any interesting behaviors are revealed

 simple sleeps, but more sophisticated implementations possible

 move code into kernel space (rootkits)

28

Environmental
Awareness

Timing-based
Evasion

#RSAC

Detect Analysis Environment

 Check Windows Product ID

 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductID

 Check for specific user name, process names, hard disk names

 HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\DISK\ENUM

 Check for unexpected loaded DLLs or Mutex names

 Check for color of background pixel

 Check of presence of 3-button mouse, keyboard layout, …

 WMI queries

29

#RSAC

Detect Analysis Environment

30

#RSAC

Detect Analysis Environment

31

#RSAC

Detect Analysis Environment

 Current usage of both physical and virtual memory
 GlobalMemoryStatus

 CPU properties
 NtOpenKey (Hardware\Description\System\CentralProcessor\0)

 Check for hard drive properties
 DeviceIoControl (IOCTL_STORAGE_QUERY_PROPERTY)

 DeviceIoControl (IIOCTL_DISK_GET_LENGTH_INFO

 Device name
 SetupDiGetDeviceRegistryProperty (SPDRP_FRIENDLYNAME)

 Check for number of processors
 GetSystemInfo

32

#RSAC

Detect Analysis Environment

33

#RSAC

Exploit Limited Context

 In certain cases, malware is targeted for specific organization

 malware doesn’t need to detect analysis environment

 instead, only run on very specific, intended target

 This idea has become more popular in APT attacks

 attacker can leverage much of previously discussed techniques

 additional information could come from local network environment

34

#RSAC

Avoid Monitoring

 Open window and wait for user to click

 or, as discovered by our competitor, click multiple times ;-)

 Only do bad things after system reboots

 system could catch the fact that malware tried to make itself
persistent

 Bypass in-process hooks (e.g., of library functions)

35

#RSAC

Avoid Monitoring

Bypass in-process hooks (e.g., of library functions)

jump to second

instruction of library

function

36

#RSAC

Avoid Monitoring

 Sleep for a while (analysis systems have time-outs)

 typically, a few minutes will do

 Anti-sleep-acceleration

 some sandboxes skip long sleeps, but malware authors have figured

that out …

 “Sleep” in a smarter way (stalling code)

37

#RSAC

The Simple Sleep Attack

push 20000000h

call Sleep
Sleep(x) - sleeps x milliseconds

38

#RSAC

Sandbox Controls Time APIs

 Sleep (NtDelayExecution)

 SetTimer (NtSetTimer)

 NtWaitforSingleObject (NtWaitFor*)

 WaitForMultipleObjects (NtWaitFor*)

39

#RSAC

Avoid Monitoring

Anti-sleep-acceleration

 introduce a race condition that involves sleeping

 Sample creates two threads

1. sleep() + NtTerminateProcess()

2. decrypts and runs payload

 Another variation

1. sleep() + DeleteFileW(<name>.bat)

2. start <name>.bat file

40

#RSAC

Timing Attack: Race Condition

push edi ;hTemplateFile

push edi ;dwFlagsAndAttributes

push 3 ;dwCreattionDesposition

push edi ;lpSecurityAttributes

push 1 ;dwShareMode

push 80000000h ;dwDesiredAccess

push ebx ;lpFileName

call CreateFileA

cmp eax, 0FFFFFFFFh

jz fail

lea eax, [ebp + NumberOfBytesRead]

push edi lpOverlapped

push ecx ; plNuberOfBytesRead

push esi ; nNumberOfBytesToRead

push [ebp + DecryptExecutePayload]

push eax

call ReadFile

cmp [ebp + NumberOfBytesRead], edi

jbe fail

; Decrypts and execute an encypted code,

: which creates a new thread for a payload function

call [ebp + DecryptExecutePayload]

push 0x493e0

call Sleep

fail:

push edi

call ExitProcess

CreateFile

ReadFile

CreateThread

Sleep (5000 * 60)

ExitProcess

DecryptExecutePayload

 Thread 2

 Thread 1

41

#RSAC

Avoid Monitoring

Anti-sleep-acceleration

 explicitly check for time that has passed

 sometimes using and comparing multiple time sources

42

#RSAC

Timing Attack: Sleep and TSC

 rdtsc
 mov [ebp+RDTSC1_EAX], eax
 mov [ebp+RDTSC1_EDX], edx
 push 20000h
 call Sleep
 rdtsc
 sub edx, [ebp+RDTSC1_EDX]
 cmp edx, 0
 jg short return_success
 sub eax, [ebp+RDTSC1_EAX]
 cmp eax, 20000h
 jge short return success
 mov eax, 1
 retn
return success:
 mov eax, 0
 retn

 int detect_time_manipulation()
 {

rdtsc_value1 = get_rdtsc_value();
Sleep (0x20000);
rdtsc_value2 = get_rdtsc_value();

if (rdtsc_value2 - rdtsc_value1 >= 0x20000)
 return 0;
return 1;

 }

43

#RSAC

Timing Attack: Sleep, TSC and Ticks

rdtsc
mov [esp+RDTSC1_EAX], eax
mov [esp+RDTSC1_EDX], edx
call GetTickCount
mov ebx, eax ; EBX contains Tick Counter 1
push 10000
call Sleep
rdtsc
; Calculate RDTSC difference
sub eax, [esp+RDTSC1_EAX]
sbb edx, [esp+RDTSC1_EDX]
mov [esp+RDTSC_DIFF_EAX], eax
mov [esp+RDTSC_DIFF_EDX], edx
call GetTickCount
; Calculate GetTickCount difference
mov ecx, eax
sub ecx, ebx
cmp [esp+RDTSC_DIFF_EDX], 0
jnz short fail
cmp [esp+RDTSC_DIFF_EAX], 50000000
jb short return1_fail
jmp short return_0_sucess
jb short return1_fail
jmp short return_0_sucess
fail:
jl short return1_fail

 int detect_time_manipulation()
 {

rdtsc_value1 = get_rdtsc_value();
tick_cout1 = GetTickCount();
Sleep(10000);
rdtsc_value2 = get_rdtsc_value();
tick_cout2 = GetTickCount();

if (rdtsc_value2 - rdtsc_value1 < 50000000)
 return 1;
if (tick_cout2 - tick_cout1 < 50)
 return 1;
return 0;

 }

44

#RSAC

Timing Attack: Stalling Loops

45

#RSAC

Example: Carbanak

 Used to infiltrate banks and

takeover ATMs

 $1B raked in

 Stealth Behaviors

 Hide .exe files

 Unpacking behavior

 Code injection to hide network activity

 Evasion Behaviors

 Altered memory image of process

 Virtual sandbox detection

 Sleep calls

 Forbid Debugging

46

#RSAC

Evading Sandboxes with
Kernel Malware

47

#RSAC

Kernel Malware

 Problematic for many sandboxes

 operates underneath the monitored interface

 behaviors do not show up as system calls

 Critical component used in sophisticated APT attacks

 Equation, Regin, Dark Hotel, Turla/Uroburos

48

#RSAC

Kernel Malware

 Three many steps

1. inject malicious code into kernel

2. make kernel execute malicious code

3. implement malicious functionality

49

#RSAC

Windows API

Kernel Malware

Windows API Windows API

Native System Call Interface

Dropper/Exploit

50

#RSAC

Windows API

Kernel Malware

Windows API Windows API

Native System Call Interface

Rootkit / Driver

51

#RSAC

Windows API

Kernel Malware

Windows API Windows API

Native System Call Interface

Injected

Code

52

#RSAC

Kernel Malware

 Inject code into kernel

 load a driver into the kernel

 problem: newer versions of Windows only load signed drivers

 solution: steal certificate and sign your own driver

 solution: reboot OS into mode where driver checks are disabled

 solution: load vulnerable driver and exploit it

53

#RSAC

Kernel Malware

 Make kernel execute new code

 redirect (change) code pointer to point to malicious code

 system call and interrupt tables are classic targets

 problem: Windows PatchGuard monitors integrity of system-critical

data structures such as SSDT, IDT

 solution: tamper with PatchGuard and disable its functionality

 solution: redirect code pointers that PatchGuard doesn’t monitor

54

#RSAC

Kernel Malware

 Implement malicious functionality

 you are in the kernel, you can do anything you want

 problem: kernel programming is not trivial, and mistakes crash the

system

 solution: inject malicious code into legitimate apps or libraries

 this can be done by changing directly their memory

 alternatively, one can simply change code in libraries or on disk

55

#RSAC

Example: Turla

 Load and exploit vulnerable VirtualBox driver

 Disable check for signed driver loading (g_CiEnabled)

 Load whatever you want

56

#RSAC

Example: Turla

 Tamper with data structures that PatchGuard monitors

 Then, deal with the consequences (blue screen of death)

 PatchGuard invokes KeBugCheckEx

 hook KeBugCheckEx function and simply return

 Updated PatchGuard includes its own copy of KeBugCheckEx

 hook RtlCaptureContext and simply return

57

#RSAC

Example: Turla

 Traditional rootkit behavior

 redirect interesting system calls into single interrupt handler

 dispatch and make desired changes to system call functionality

58

#RSAC

Example: Turla

59

#RSAC

Addressing Evasion

60

#RSAC

What can we do about evasion?

 Visibility is key

 when the sandbox can see more things, it can react to more

threats

61

#RSAC

Visibility Matters

Type Family Driver
Traditional

Sandbox

Traditional Rootkit XCP 32-bit Detected Failed

Traditional Rootkit Zhelatin 32-bit Detected Failed

Traditional Rootkit Srizbi 32-bit Detected Failed

Traditional Rootkit Blakken 32-bit Detected Failed

Traditional Rootkit Agent 32-bit Detected Failed

Traditional Rootkit TDSS 32-bit Detected Failed

APT Dark Hotel 32-bit Detected Failed

APT Mask 32-bit Detected Failed

APT Turla 32-bit Detected Failed

APT Turla 64-bit Detected Failed

62

#RSAC

What can we do about evasion?

 One key evasive technique relies on checking for specific

values in the environment (triggers)

 we can randomize these values, if we know about them

 we can detect (and bypass) triggers automatically

 Another key technique relies on timing out the sandbox

 we can automatically profile code execution and recognize

stalling

63

#RSAC

Bypassing Triggers

 Idea

 explore multiple execution paths of executable under test

 exploration is driven by monitoring how program uses certain inputs

 system should also provide information under which circumstances action is triggered

 Approach

 track “interesting” input when it is read by the program

 whenever a control flow decision is encountered that uses such input, two possible

paths can be followed

 save snapshot of current process and continue along first branch

 later, revert back to stored snapshot and explore alternative branch

64

#RSAC

Bypassing Triggers

 Tracking input

 we already know how to do this (tainting)

 Snapshots

 we know how to find control flow decision points (branches)

 snapshots are generated by saving the content of the process’ virtual address space

 restoring works by overwriting current address space with stored image

 Explore alternative branch

 restore process memory image

 set the tainted operand (register or memory) to a value that reverts branch condition

 let the process continue to run

65

#RSAC

What can we do about evasion?

 Sometimes, it is difficult to get to interesting behaviors

 however, evasion is a strong signal for malicious intent

 when you can see evasion, you can use this against malware

66

#RSAC

Wrapping Up

#RSAC

Apply

 Dynamic analysis is a powerful tool

 consider integrating sandbox capabilities into your defenses

 Dynamic analysis capabilities vary significantly

 understand limitations and evasive threat

 ask your vendor questions about their sandbox, dig deeper

 what file types can the sandbox analyze? what activities can it see?

 how does it handle evasion? how does it deal with malicious kernel code?

 Think about what you want to get out of a sandbox

 detection (black/white) and/or support for forensics (detailed
behaviors)?

68

#RSAC

Conclusions

 Visibility and fidelity are two critical factors when building successful

dynamic analysis systems

 full system emulation is a great point in the design spectrum

 Automated analysis of malicious code faces number of challenges

 evasion is one critical challenge

 Many evasion tricks are possible

 detecting environment

 timing-based attacks

 avoid analysis system by moving into the kernel

69

#RSAC

THANK YOU!

 For more information visit www.lastline.com

or contact us at info@lastline.com.

70

