
SESSION ID: 

#RSAC 

Christopher Kruegel 

Evasive Malware  

Exposed and Deconstructed 

Chief Scientist 

Lastline, Inc. 

CRWD-T08 



#RSAC 

Who am I? 

 Co-founder and Chief Scientist at Lastline, Inc. 

 Lastline offers protection against zero-day threats and advanced 
malware 

 effort to commercialize our research 

 

 Professor in Computer Science at UC Santa Barbara (on leave) 

 many systems security papers in academic conferences 

 started malware research in about 2004 

 built and released practical systems (Anubis, Wepawet, …) 

2 



#RSAC 

What are we talking about? 

 

 What is evasion and why should I care? 

 Evasion as a significant threat to automated malware analysis 

 detect analysis environment 

 avoid being seen by automated analysis 

 Improvements to analysis systems 

 automate defenses against classes of evasion approaches 

 

 
3 



#RSAC 

Evasive Malware 

4 



#RSAC 

Evasive Malware 

 Attackers have always tried to escape or avoid detection 

 as we build new defenses, attackers try to bypass them 

 result is the arms race in computer security 

 

 Evasion has been used by malware authors for decades 

 initially, evasion was targeting anti-virus (AV) solutions 

 AV systems relied heavily on signatures and static analysis 

 

5 



#RSAC 

Evading Static Analysis 

 Make (relevant) code unavailable 

 packing / encrypting 

 delay inclusion of code (run-time code loading or generation) 

 Exploit differences in the parsing capabilities 

 parsing of executable (the target is the OS) 

 parsing of document (the target is, for example, Office application) 

 Make operations dependent on values known only at run-time 

 table lookups based on user-provided input  

 

6 



#RSAC 

Evading Static Analysis 

7 

64% of AV scanners 
fail to identify “1%  
hardest to detect” 
malware after 1 yr. 



#RSAC 

Evading Static Analysis 

8 



#RSAC 

Dynamic Malware Analysis 

9 



#RSAC 

 Also known as malware analysis sandbox 

 

 Implemented as instrumented execution environment 

 run program and observe its activity 

 make determination whether code is malicious or not 

 

 Sandboxes are great! 

 can handle zero day threats (signature-less defense) 

 automate tasks done by human analysts and reverse engineers 

 

 

Dynamic Malware Analysis 

10 



#RSAC 

Dynamic Malware Analysis 

 Recently emerged as a new silver bullet in security 

11 



#RSAC 

Dynamic Malware Analysis 

Protected company 

Internet 

Network appliance 

APT 

12 



#RSAC 

Dynamic Malware Analysis 

Protected company 

Internet 

Network appliance 

APT 

13 



#RSAC 

Dynamic Malware Analysis 

Protected company 

Internet 

Network appliance 

APT 

14 



#RSAC 

Dynamic Malware Analysis 

Protected company 

Internet 

Network appliance 

APT 

15 



#RSAC 

Not All Sandboxes Are Equal 

16 

“It is easy to build a sandbox, 
  it is hard to build an effective sandbox!” 
 

Lawrence Orans 
“The Executive's Guide to Cyberthreats”  
(Gartner Symposium, October 2013)  
 



#RSAC 

Sandbox Designs 

Windows API Windows API 

Hardware 

Software 

Native System Call Interface 

User mode 

Kernel mode 

17 



#RSAC 

Sandbox Designs 

Hook API functions 

- monitor interactions 

with OS 

- easy to implement 

- needs process 

modifications 

- no kernel visibility 

  

 

Windows API Windows API 

Native System Call Interface 

18 



#RSAC 

Sandbox Designs 

Hook system calls 

- monitor interactions 

with OS 

- easy to implement 

- minimal kernel 

visibility 

  

 

Windows API Windows API 

Native System Call Interface 

19 



#RSAC 

Sandbox Designs 

Full system emulation 

- monitor interactions 

with OS and all 

instructions 

- full kernel visibility 

- implementation is 

more difficult 

  

 

Windows API Windows API 

Native System Call Interface 

20 



#RSAC 

VM Approach versus CPU Emulation 

21 



#RSAC 

Visibility Does Matter 

 See more types of behavior 

 which connection is used to leak sensitive data 

 allows automated detection of C&C channels 

 how does the malware process inputs from C&C channels 

 enumeration of C&C commands (and malware functionality) 

 insights into keyloggers (often passive in sandbox) 

 take memory snapshots after decryption for forensic analysis 

 

 Combat evasion 

 see everything and adapt to attacker’s threats 

 detect triggers 

 bypass stalling code 

 

22 



#RSAC 

Evading Sandboxes 



#RSAC 

Evading Dynamic Analysis 

 

 Malware authors don’t sleep 

 they got the news that sandboxes are all the rage now 

 since the code is executed, malware authors have options 

 Evasion 

 develop code that exhibits no malicious behavior in sandbox, 

but that infects the intended target 

 can be achieved in various ways 

 
24 



#RSAC 

Evasion Going Mainstream 

25 



#RSAC 

Evasion Going Mainstream 

26 

2X growth last year 



#RSAC 

Evasion Going Mainstream 

2X growth last year 

27 

+ many more behaviors per sample 



#RSAC 

Evading Dynamic Analysis 

 Malware can detect runtime or analysis environment 

 differences between virtualized and bare metal environment 

 checks based on system (CPU) features 

 checks based on operating system artifacts (files, processes, …) 

 Malware can exploit limited context 

 Malware can avoid being analyzed 

 tricks in making code run that analysis system does not see 

 wait until someone does something 

 time out analysis before any interesting behaviors are revealed 

 simple sleeps, but more sophisticated implementations possible 

 move code into kernel space (rootkits) 

 

 

28 

Environmental 
Awareness 

Timing-based 
Evasion 



#RSAC 

Detect Analysis Environment 

 Check Windows Product ID 

   HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductID 

 Check for specific user name, process names, hard disk names 

   HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\DISK\ENUM 

 Check for unexpected loaded DLLs or Mutex names 

 Check for color of background pixel 

 Check of presence of 3-button mouse, keyboard layout, … 

 WMI queries 

29 



#RSAC 

Detect Analysis Environment 

30 



#RSAC 

Detect Analysis Environment 

31 



#RSAC 

Detect Analysis Environment 

 Current usage of both physical and virtual memory 
 GlobalMemoryStatus 

 CPU properties 
 NtOpenKey (Hardware\Description\System\CentralProcessor\0) 

 Check for hard drive properties 
 DeviceIoControl (IOCTL_STORAGE_QUERY_PROPERTY) 

 DeviceIoControl (IIOCTL_DISK_GET_LENGTH_INFO 

 Device name 
 SetupDiGetDeviceRegistryProperty (SPDRP_FRIENDLYNAME) 

 Check for number of processors 
 GetSystemInfo 

32 



#RSAC 

Detect Analysis Environment 

33 



#RSAC 

Exploit Limited Context 

 In certain cases, malware is targeted for specific organization 

 malware doesn’t need to detect analysis environment 

 instead, only run on very specific, intended target 

 

 This idea has become more popular in APT attacks 

 attacker can leverage much of previously discussed techniques 

 additional information could come from local network environment 

34 



#RSAC 

Avoid Monitoring 

 Open window and wait for user to click 

 or, as discovered by our competitor, click multiple times ;-) 

 

 Only do bad things after system reboots 

 system could catch the fact that malware tried to make itself 
persistent 

 

 Bypass in-process hooks (e.g., of library functions) 

 

 

 

 

 

35 



#RSAC 

Avoid Monitoring 

Bypass in-process hooks (e.g., of library functions) 

 

jump to second 

instruction of library 

function 

36 



#RSAC 

Avoid Monitoring 

  Sleep for a while (analysis systems have time-outs) 

 typically, a few minutes will do 

 

 Anti-sleep-acceleration 

 some sandboxes skip long sleeps, but malware authors have figured 

that out … 

 

 “Sleep” in a smarter way (stalling code) 

 

37 



#RSAC 

The Simple Sleep Attack 

  

push  20000000h 

call   Sleep 
Sleep(x) -  sleeps x milliseconds  

38 



#RSAC 

Sandbox Controls Time APIs 

 Sleep (NtDelayExecution) 

 SetTimer (NtSetTimer) 

 NtWaitforSingleObject (NtWaitFor*) 

 WaitForMultipleObjects (NtWaitFor*) 

 

39 



#RSAC 

Avoid Monitoring 

Anti-sleep-acceleration 

 introduce a race condition that involves sleeping 

 

  Sample creates two threads 

1. sleep() +  NtTerminateProcess() 

2. decrypts and runs payload 

 

  Another variation 

1. sleep() + DeleteFileW(<name>.bat) 

2. start <name>.bat file 

40 



#RSAC 

Timing Attack: Race Condition 

push edi ;hTemplateFile 

push edi ;dwFlagsAndAttributes 

push 3   ;dwCreattionDesposition 

push edi ;lpSecurityAttributes 

push 1   ;dwShareMode 

push 80000000h ;dwDesiredAccess 

push ebx ;lpFileName 

call CreateFileA 

cmp eax, 0FFFFFFFFh 

jz fail 

lea eax, [ebp + NumberOfBytesRead] 

push edi  lpOverlapped 

push ecx ; plNuberOfBytesRead 

push esi ; nNumberOfBytesToRead 

push [ebp + DecryptExecutePayload] 

push eax 

call ReadFile 

cmp [ebp + NumberOfBytesRead], edi 

jbe fail 

; Decrypts and execute an encypted code,  

: which creates a new thread for a payload function 

call [ebp + DecryptExecutePayload] 

push 0x493e0 

call Sleep 

fail: 

push edi 

call ExitProcess 

                 

 

CreateFile 

 

ReadFile 

 

CreateThread 

 

Sleep (5000 * 60) 

 

 

 

 

 

ExitProcess 

DecryptExecutePayload 

 Thread 2 

 Thread 1 

41 



#RSAC 

Avoid Monitoring 

Anti-sleep-acceleration 

 explicitly check for time that has passed 

 sometimes using and comparing multiple time sources 

 

42 



#RSAC 

Timing Attack: Sleep and TSC 

      rdtsc  
      mov   [ebp+RDTSC1_EAX], eax 
      mov  [ebp+RDTSC1_EDX], edx 
      push  20000h 
      call  Sleep 
      rdtsc 
      sub  edx, [ebp+RDTSC1_EDX] 
      cmp  edx, 0 
      jg short return_success 
      sub  eax, [ebp+RDTSC1_EAX] 
      cmp  eax, 20000h 
      jge short return success 
      mov  eax, 1 
      retn  
return success: 
      mov  eax, 0 
      retn 

   int detect_time_manipulation() 
   { 

rdtsc_value1 = get_rdtsc_value(); 
Sleep (0x20000);  
rdtsc_value2 = get_rdtsc_value(); 
 
if (rdtsc_value2 - rdtsc_value1 >= 0x20000) 
    return 0; 
return 1; 

   } 

43 



#RSAC 

Timing Attack: Sleep, TSC and Ticks 

rdtsc 
mov     [esp+RDTSC1_EAX], eax 
mov     [esp+RDTSC1_EDX], edx 
call      GetTickCount 
mov     ebx, eax ; EBX contains Tick Counter 1  
push    10000 
call       Sleep 
rdtsc 
; Calculate RDTSC difference 
sub       eax, [esp+RDTSC1_EAX] 
sbb       edx, [esp+RDTSC1_EDX] 
mov      [esp+RDTSC_DIFF_EAX], eax 
mov      [esp+RDTSC_DIFF_EDX], edx 
call       GetTickCount 
; Calculate GetTickCount difference 
mov      ecx, eax 
sub       ecx, ebx        
cmp      [esp+RDTSC_DIFF_EDX], 0 
jnz        short fail 
cmp      [esp+RDTSC_DIFF_EAX], 50000000 
jb          short return1_fail 
jmp       short return_0_sucess 
jb      short return1_fail 
jmp     short return_0_sucess 
fail:                                  
jl      short return1_fail 

   int detect_time_manipulation() 
   { 

rdtsc_value1 = get_rdtsc_value(); 
tick_cout1 = GetTickCount(); 
Sleep(10000); 
rdtsc_value2 = get_rdtsc_value(); 
tick_cout2 = GetTickCount(); 
 
if (rdtsc_value2 - rdtsc_value1 < 50000000) 
    return 1; 
if (tick_cout2 - tick_cout1 < 50) 
    return 1; 
return 0; 

   } 

44 



#RSAC 

Timing Attack: Stalling Loops 

45 



#RSAC 

Example: Carbanak 

 Used to infiltrate banks and 

takeover ATMs 

 $1B raked in 

 

 Stealth Behaviors 

 Hide .exe files 

 Unpacking behavior 

 Code injection to hide network activity 

 Evasion Behaviors 

 Altered memory image of process 

 Virtual sandbox detection 

 Sleep calls 

 Forbid Debugging 

 
46 



#RSAC 

Evading Sandboxes with 
Kernel Malware 

47 



#RSAC 

Kernel Malware 

 Problematic for many sandboxes 

 operates underneath the monitored interface 

 behaviors do not show up as system calls 

 

 Critical component used in sophisticated APT attacks 

 Equation, Regin, Dark Hotel, Turla/Uroburos 

 

48 



#RSAC 

Kernel Malware 

 Three many steps 

1. inject malicious code into kernel 

2. make kernel execute malicious code 

3. implement malicious functionality 

49 



#RSAC 

Windows API 

Kernel Malware 

Windows API Windows API 

Native System Call Interface 

Dropper/Exploit 

50 



#RSAC 

Windows API 

Kernel Malware 

Windows API Windows API 

Native System Call Interface 

Rootkit / Driver 

51 



#RSAC 

Windows API 

Kernel Malware 

Windows API Windows API 

Native System Call Interface 

Injected 

Code 

52 



#RSAC 

Kernel Malware 

 Inject code into kernel 

 load a driver into the kernel 

 problem: newer versions of Windows only load signed drivers 

 solution: steal certificate and sign your own driver 

 solution: reboot OS into mode where driver checks are disabled 

 solution: load vulnerable driver and exploit it   

 

53 



#RSAC 

Kernel Malware 

 Make kernel execute new code 

 redirect (change) code pointer to point to malicious code 

 system call and interrupt tables are classic targets 

 problem: Windows PatchGuard monitors integrity of system-critical 

data structures such as SSDT, IDT 

 solution: tamper with PatchGuard and disable its functionality 

 solution: redirect code pointers that PatchGuard doesn’t monitor 

 

54 



#RSAC 

Kernel Malware 

 Implement malicious functionality 

 you are in the kernel, you can do anything you want 

 problem: kernel programming is not trivial, and mistakes crash the 

system 

 solution: inject malicious code into legitimate apps or libraries  

 this can be done by changing directly their memory 

 alternatively, one can simply change code in libraries or on disk 

55 



#RSAC 

Example: Turla 

 Load and exploit vulnerable VirtualBox driver 

 Disable check for signed driver loading (g_CiEnabled) 

 Load whatever you want 

56 



#RSAC 

Example: Turla 

 Tamper with data structures that PatchGuard monitors 

 Then, deal with the consequences (blue screen of death) 

 

  PatchGuard invokes KeBugCheckEx 

 hook KeBugCheckEx function and simply return 

 Updated PatchGuard includes its own copy of KeBugCheckEx 

 hook RtlCaptureContext and simply return 

57 



#RSAC 

Example: Turla 

 Traditional rootkit behavior 

 redirect interesting system calls into single interrupt handler 

 dispatch and make desired changes to system call functionality 

58 



#RSAC 

Example: Turla 

59 



#RSAC 

Addressing Evasion 

60 



#RSAC 

What can we do about evasion? 

 Visibility is key 

 when the sandbox can see more things, it can react to more 

threats 

 

61 



#RSAC 

Visibility Matters 

Type Family Driver 
Traditional  

Sandbox 

Traditional Rootkit XCP 32-bit Detected Failed 

Traditional Rootkit Zhelatin 32-bit Detected Failed 

Traditional Rootkit Srizbi 32-bit Detected Failed 

Traditional Rootkit Blakken 32-bit Detected Failed 

Traditional Rootkit Agent 32-bit Detected Failed 

Traditional Rootkit TDSS 32-bit Detected Failed 

APT Dark Hotel 32-bit Detected Failed 

APT Mask 32-bit Detected Failed 

APT Turla 32-bit Detected Failed 

APT Turla 64-bit Detected Failed 

62 



#RSAC 

What can we do about evasion? 

 One key evasive technique relies on checking for specific 

values in the environment (triggers) 

 we can randomize these values, if we know about them 

 we can detect (and bypass) triggers automatically 

 

 Another key technique relies on timing out the sandbox 

 we can automatically profile code execution and recognize 

stalling 

63 



#RSAC 

Bypassing Triggers 

 Idea 

 explore multiple execution paths of executable under test 

 exploration is driven by monitoring how program uses certain inputs 

 system should also provide information under which circumstances action is triggered 

 Approach 

 track “interesting” input when it is read by the program 

 whenever a control flow decision is encountered that uses such input, two possible 

paths can be followed 

 save snapshot of current process and continue along first branch 

 later, revert back to stored snapshot and explore alternative branch 

64 



#RSAC 

Bypassing Triggers 

 Tracking input 

 we already know how to do this (tainting) 

 Snapshots 

 we know how to find control flow decision points (branches) 

 snapshots are generated by saving the content of the process’ virtual address space 

 restoring works by overwriting current address space with stored image 

 Explore alternative branch 

 restore process memory image 

 set the tainted operand (register or memory) to a value that reverts branch condition 

 let the process continue to run 

65 



#RSAC 

What can we do about evasion? 

 Sometimes, it is difficult to get to interesting behaviors 

 however, evasion is a strong signal for malicious intent 

 when you can see evasion, you can use this against malware 

66 



#RSAC 

Wrapping Up 



#RSAC 

Apply 

 Dynamic analysis is a powerful tool 

 consider integrating sandbox capabilities into your defenses 

 Dynamic analysis capabilities vary significantly 

 understand limitations and evasive threat 

 ask your vendor questions about their sandbox, dig deeper 

 what file types can the sandbox analyze? what activities can it see?  

 how does it handle evasion? how does it deal with malicious kernel code? 

 Think about what you want to get out of a sandbox 

 detection (black/white) and/or support for forensics (detailed 
behaviors)? 

 

 

68 



#RSAC 

Conclusions 

 Visibility and fidelity are two critical factors when building successful 

dynamic analysis systems 

 full system emulation is a great point in the design spectrum 

 Automated analysis of malicious code faces number of challenges 

 evasion is one critical challenge 

 Many evasion tricks are possible 

 detecting environment 

 timing-based attacks 

 avoid analysis system by moving into the kernel 

69 



#RSAC 

THANK YOU! 

 For more information visit www.lastline.com 

or contact us at info@lastline.com. 

70 


