
STRONGER SECURITY NOTIONS FOR

DECENTRALIZED TRACEABLE

ATTRIBUTE-BASED SIGNATURES AND MORE

EFFICIENT CONSTRUCTIONS

Essam Ghadafi

University College London
e.ghadafi@ucl.ac.uk

CT-RSA 2015

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . .

OUTLINE

1 BACKGROUND

2 NEW SECURITY MODEL

3 OUR GENERIC CONSTRUCTION

4 INSTANTIATIONS

5 EFFICIENCY COMPARISON

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . .

ATTRIBUTE-BASED SIGNATURES

Attribute-Based Signatures [Maji et al. 2008]:
Users have attributes (“Manager”, “Finance Department”, etc.).

User with attributes A can sign messages w.r.t. policy P if
P(A) = 1.

Verifier only learns that the signature produced by someone with
sufficient attributes to satisfy P.

- Finance Dept.
- Manager

 Sig

Chairman
OR

Manager AND Finance
OR

Supervisor AND Materials

Yes/No

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 1

APPLICATIONS OF ATTRIBUTE-BASED SIGNATURES

Example Applications:

Attribute-Based Messaging:
Recipients are assured the sender satisfies a certain policy.

Leaking Secrets:
• Ring Signatures [RST01] allow a signer to sign a message on

behalf of an ad-hoc group.

ABS allow more expressive predicates for leaking a secret
⇒ The whistle-blower satisfies some policy vs. the

whistle-blower is in the ring.

Many other applications: . . .

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 2

SECURITY OF ATTRIBUTE-BASED SIGNATURES

(Perfect) Privacy (Anonymity):
The signature hides:

1 The identity of the signer.
2 The attributes used in the signing (i.e. how P was satisfied).

Unforgeability:
A signer cannot forge signatures w.r.t. signing policies her
attributes do not satisfy even if she colludes with other signers.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 3

SECURITY OF ATTRIBUTE-BASED SIGNATURES

(Perfect) Privacy (Anonymity):
The signature hides:

1 The identity of the signer.
2 The attributes used in the signing (i.e. how P was satisfied).

Unforgeability:
A signer cannot forge signatures w.r.t. signing policies her
attributes do not satisfy even if she colludes with other signers.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 3

RELATED WORK ON ATTRIBUTE-BASED SIGNATURES

Maji et al. 2008 & 2011.

Shahandashti and Safavi-Naini 2009.

Li et al. 2010.

Okamoto and Takashima 2011 & 2012.

Gagné et al. 2012.

Herranz et al. 2012.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 4

TRACEABLE ATTRIBUTE-BASED SIGNATURES

Additionally provide anonymity revocation mechanism (i.e. an
opener) to enforce accountability.

Traceable Attribute-Based Signatures (TABS) [Escala et al.
2011]:
• A single attribute authority.
• No judge to verify the opener’s decisions.

Decentralized Traceable Attribute-Based Signatures
(DTABS) [El Kaafarani et al. 2014]:
• Multiple attribute authorities. Need not be aware of each other.
• Signers and attribute authorities can join at any time.
• Tracing correctness is publicly verifiable.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 5

TRACEABLE ATTRIBUTE-BASED SIGNATURES

Additionally provide anonymity revocation mechanism (i.e. an
opener) to enforce accountability.

Traceable Attribute-Based Signatures (TABS) [Escala et al.
2011]:
• A single attribute authority.
• No judge to verify the opener’s decisions.

Decentralized Traceable Attribute-Based Signatures
(DTABS) [El Kaafarani et al. 2014]:
• Multiple attribute authorities. Need not be aware of each other.
• Signers and attribute authorities can join at any time.
• Tracing correctness is publicly verifiable.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 5

DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES

Professor at UCL
OR

IACR Member

Tracing Authority

 Sig

Yes/No

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 6

SECURITY OF DTABS

Besides Correctness [El Kaafarani et al. 2014]:

Anonymity: Signatures hide identity of the signer and attributes
used.

Full Unforgeability: Signers cannot sign w.r.t. policies not
satisfied by their individual attributes even if they collude.
Covers non-frameability.

Traceability: The tracing authority can always identify the
signer and prove its decision.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 7

OUR CONTRIBUTION

1 A new stronger security model for DTABS.

2 A new generic construction for DTABS with much more
efficient traceability.

3 More efficient instantiations in the standard model in Type-3
bilinear groups.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 8

SHORTCOMINGS IN EXISTING MODELS

I Non-Frameability:
Issue: Knowledge of the secret key for any attribute allows
framing an honest user⇒In existing models:

• All attribute authorities are trusted not to frame users.
• Attribute keys must be delivered securely to users.

Solution: Assign users a personal key pair⇒Even attribute
authorities cannot frame a user without knowledge of her
personal secret key.

To simplify the definitions, we separate Non-frameability from
Unforgeability.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 9

SHORTCOMINGS IN EXISTING MODELS

I Non-Frameability:
Issue: Knowledge of the secret key for any attribute allows
framing an honest user⇒In existing models:

• All attribute authorities are trusted not to frame users.
• Attribute keys must be delivered securely to users.

Solution: Assign users a personal key pair⇒Even attribute
authorities cannot frame a user without knowledge of her
personal secret key.

To simplify the definitions, we separate Non-frameability from
Unforgeability.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 9

SECURITY OF DTABS

I Non-Frameability: If all users, all attribute authorities and the
tracing authority collude, they cannot frame an honest user.

m, Σ, Р, uid, π

Param, tkAdd User

Add Authority

Add Att. to User

Corrupt User

Corrupt Authority

Reveal U. Key

Reveal A. Key

Reveal Att. Key

Sign

Adversary wins if:
1 uid is honest, Σ is valid and π accepted by Judge.
2 (uid, ·,m,Σ,P) was not obtained from the Sign oracle.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 10

SHORTCOMINGS IN EXISTING MODELS FOR DTABS

I Lack of Tracing Soundness:
Similar to Group Signatures [Sakai et al. 2012], existing models
do not prevent a signature being opened differently.

Example Scenarios:
Claiming authorship of a signature by another (honest) user.
A signature opens to two different users.

Example applications where this is needed:
Signatures used as evidence in court.
Users are rewarded for producing signatures.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 11

SECURITY OF DTABS

I Tracing Soundness: A signature cannot trace to two different
users.

m, Σ, Р, uid
1
,π

1
, uid

2
,π

2

Param, tkAdd User

Add Authority

Add Att. to User

Corrupt User

Corrupt Authority

Reveal U. Key

Reveal A. Key

Reveal Att. Key

Adversary wins if:
1 Σ is valid and πi is a valid proof for user uidi for all i ∈ {1, 2}.
2 uid1 6= uid2.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 12

OUR GENERIC CONSTRUCTION

How our construction differs from [El Kaafarani et al. 2014]:

1 Users have a personal key pair.

2 Dispense with the pseudo-attribute technique (Prove you satisfy
P or have signature w.r.t. some public verification key on the
message and P).

3 Replace the IND-wCCA Tag-based Encryption (used to encrypt
the signer’s identity) with a Robust Non-Interactive
Distributed/Threshold IND-wCCA Tag-Based Encryption.

⇒We do without the expensive zero-knowledge proofs in the
opening.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 13

GENERIC CONSTRUCTION – BUILDING BLOCKS

Tools used:

A NIZK proof system NIZK.

A tagged signature scheme T S: a signature scheme that signs a
tag and a message.

An existentially unforgeable (against weak chosen-message
attack) signature schemeWDS.

An ST-IND-wCCA robust distributed/threshold tag-based
encryption scheme DT BE .

A strongly unforgeable one-time signature scheme OT S.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 14

GENERIC CONSTRUCTION – DETAILS

Setup:
Generate (epk,esk) for DT BE and crs for NIZK.
Choose CR hash functions Ĥ : {0, 1}∗ → TDT BE &
H : {0, 1}∗ →MOT S .
Set tk := esk and param := (crs,epk, Ĥ,H).

User Key Generation:
Generate a key pair (uvk[uid],usk[uid]) forWDS.

Attribute Authority Join:
Generate a key pair(aavkaid,asskaid) for T S .

Attribute Key Generation:
To generate a key skuid,α for attribute α for signer uid, compute
skuid,α ← T S.Sign(asskaid(α),uvk[uid], α).

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 15

GENERIC CONSTRUCTION – DETAILS

Setup:
Generate (epk,esk) for DT BE and crs for NIZK.
Choose CR hash functions Ĥ : {0, 1}∗ → TDT BE &
H : {0, 1}∗ →MOT S .
Set tk := esk and param := (crs,epk, Ĥ,H).

User Key Generation:
Generate a key pair (uvk[uid],usk[uid]) forWDS.

Attribute Authority Join:
Generate a key pair(aavkaid,asskaid) for T S .

Attribute Key Generation:
To generate a key skuid,α for attribute α for signer uid, compute
skuid,α ← T S.Sign(asskaid(α),uvk[uid], α).

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 15

GENERIC CONSTRUCTION – DETAILS

Setup:
Generate (epk,esk) for DT BE and crs for NIZK.
Choose CR hash functions Ĥ : {0, 1}∗ → TDT BE &
H : {0, 1}∗ →MOT S .
Set tk := esk and param := (crs,epk, Ĥ,H).

User Key Generation:
Generate a key pair (uvk[uid],usk[uid]) forWDS.

Attribute Authority Join:
Generate a key pair(aavkaid,asskaid) for T S .

Attribute Key Generation:
To generate a key skuid,α for attribute α for signer uid, compute
skuid,α ← T S.Sign(asskaid(α),uvk[uid], α).

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 15

GENERIC CONSTRUCTION – DETAILS

Setup:
Generate (epk,esk) for DT BE and crs for NIZK.
Choose CR hash functions Ĥ : {0, 1}∗ → TDT BE &
H : {0, 1}∗ →MOT S .
Set tk := esk and param := (crs,epk, Ĥ,H).

User Key Generation:
Generate a key pair (uvk[uid],usk[uid]) forWDS.

Attribute Authority Join:
Generate a key pair(aavkaid,asskaid) for T S .

Attribute Key Generation:
To generate a key skuid,α for attribute α for signer uid, compute
skuid,α ← T S.Sign(asskaid(α),uvk[uid], α).

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 15

GENERIC CONSTRUCTION – DETAILS

Signing: To sign m w.r.t. P:
1 Choose a fresh key pair (otsvk,otssk) for OT S .
2 Cdtbe ← DT BE .Enc(epk, Ĥ(otsvk),uvk[uid]).
3 σ ←WDS.Sign(usk[uid], Ĥ(otsvk)).
4 Produce a proof π of (A, σ, uvk[uid]) that:

1 Cdtbe is formed correctly.
2 σ is valid.
3 Has attributes A s.t. P(A) = 1
⇒ Has a valid tagged signature on (uvk[uid], α) for each α ∈ A.

5 Compute σots ← OT S.Sign(otssk, (H(m,P), π,Cdtbe,otsvk)).

The signature is Σ := (σots, π,Cdtbe,otsvk).

Tracing:
Use esk to produce a decryption share ν of Cdtbe and recover
vkuid.
Return (uid, ν) if it matches any uvk[uid] or (0, ν) otherwise.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 16

GENERIC CONSTRUCTION – DETAILS

Signing: To sign m w.r.t. P:
1 Choose a fresh key pair (otsvk,otssk) for OT S .
2 Cdtbe ← DT BE .Enc(epk, Ĥ(otsvk),uvk[uid]).
3 σ ←WDS.Sign(usk[uid], Ĥ(otsvk)).
4 Produce a proof π of (A, σ, uvk[uid]) that:

1 Cdtbe is formed correctly.
2 σ is valid.
3 Has attributes A s.t. P(A) = 1
⇒ Has a valid tagged signature on (uvk[uid], α) for each α ∈ A.

5 Compute σots ← OT S.Sign(otssk, (H(m,P), π,Cdtbe,otsvk)).

The signature is Σ := (σots, π,Cdtbe,otsvk).

Tracing:
Use esk to produce a decryption share ν of Cdtbe and recover
vkuid.
Return (uid, ν) if it matches any uvk[uid] or (0, ν) otherwise.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 16

GENERIC CONSTRUCTION – SECURITY

Anonymity:
• Zero-Knowledge of NIZK.
• ST-IND-wCCA of DT BE .
• Unforgeability of OT S .
• Collision-Resistance ofH and Ĥ.

Unforgeability:
• Soundness of NIZK.
• Unforgeability of T S and OT S.
• Collision-Resistance ofH and Ĥ.

Non-Frameability:
• Soundness of NIZK.
• Unforgeability ofWDS and OT S.
• Collision-Resistance ofH and Ĥ.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 17

GENERIC CONSTRUCTION – SECURITY

Anonymity:
• Zero-Knowledge of NIZK.
• ST-IND-wCCA of DT BE .
• Unforgeability of OT S .
• Collision-Resistance ofH and Ĥ.

Unforgeability:
• Soundness of NIZK.
• Unforgeability of T S and OT S.
• Collision-Resistance ofH and Ĥ.

Non-Frameability:
• Soundness of NIZK.
• Unforgeability ofWDS and OT S.
• Collision-Resistance ofH and Ĥ.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 17

GENERIC CONSTRUCTION – SECURITY

Anonymity:
• Zero-Knowledge of NIZK.
• ST-IND-wCCA of DT BE .
• Unforgeability of OT S .
• Collision-Resistance ofH and Ĥ.

Unforgeability:
• Soundness of NIZK.
• Unforgeability of T S and OT S.
• Collision-Resistance ofH and Ĥ.

Non-Frameability:
• Soundness of NIZK.
• Unforgeability ofWDS and OT S.
• Collision-Resistance ofH and Ĥ.

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 17

GENERIC CONSTRUCTION – SECURITY

Traceability:
• Soundness of NIZK.
• Unforgeability of T S .

Tracing Soundness:
• Decryption Consistency of DT BE .

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 18

GENERIC CONSTRUCTION – SECURITY

Traceability:
• Soundness of NIZK.
• Unforgeability of T S .

Tracing Soundness:
• Decryption Consistency of DT BE .

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 18

INSTANTIATIONS

NIZK ⇒Groth-Sahai proofs [GS08] secure under SXDH.

T S ⇒The re-randomizable structure-preserving scheme [Abe et
al. 2011] (interactive assumption) or the strongly unforgeable
[Abe et al. 2011] scheme (secure under q-AGHO).

DT BE ⇒[Ghadafi 2014] (secure under XDLIN in G1 or G2).

WDS ⇒The Weak Boneh-Boyen scheme (secure under
q-SDH).

OT S ⇒The full Boneh-Boyen scheme (secure under q-SDH).

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 19

EFFICIENCY COMPARISON

Scheme Signature Size Model Setting
[EHM11] G|P|+β+7 ROM Composite
[EGK14] G34·|P|+28

1 + G32·|P|+32
2 + Zβ+1

p STD Prime
Inst. I G27·|P|+19

1 + G22·|P|+15
2 + Zβ+3

p STD Prime
Inst. II G30·|P|+18

1 + G30·|P|+16
2 + Zβ+3

p STD Prime

TABLE: Signature Size

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 20

EFFICIENCY COMPARISON

Scheme Model Setting Tracing
Size Compute Verify

[EHM11] ROM Composite N/A N/A N/A
[EGK14] STD Prime G3

1 ×G4
2 4EG1 + 6EG2 34P

Inst. I STD Prime G2
2 2EG2 4P

Inst. II STD Prime G2
1 2EG1 4P

TABLE: Tracing

STRONGER SECURITY NOTIONS FOR DECENTRALIZED . . . 21

THE END

Thank you for your attention!
Questions?

DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES

SESSION ID:

#RSAC

Satsuya Ohata1,3, Yutaka Kawai2, Takahiro Matsuda3,
Goichiro Hanaoka3, Kanta Matsuura1

Re-encryption Verifiability:
How to Detect Malicious Activities
of a Proxy in Proxy Re-encryption

CRYP-F01

1. The University of Tokyo, Japan
2. Mitsubishi Electric, Japan

3. National Institute of Advanced Industrial Science and Technology, Japan
(Cryptology ePrint Archive: Report 2015/112)

#RSAC

Our Result

 We introduce a new functionality called “re-encryption verifiability”
in proxy re-encryption (PRE).
- To check whether a proxy works correctly or not

 We show a new CCA security definition of PRE.
- Stronger definition than previous works

 We prove that previous generic construction[HKK+12] of a PRE
satisfies our new stronger security definition.

2

#RSAC

Background and Motivation

3

#RSAC

Proxy Re-encryption (PRE)
Proxy can change the destination of a ciphertext
without decrypting it.

Sender Proxy Receiver A

Receiver BREnc1.

2.
0.

3.

4.

5.

0.

Re-Enc Key

#RSAC

Types of PRE

Single-Hop Multi-Hop

Uni-Directional Bi-Directional

In this work, we consider a Single-hop Uni-directional PRE.

#RSAC

Second-Level and First-Level Ciphertext

Sender Proxy Receiver A

Receiver B
REnc

Second-Level
Ciphertext
(small c)

First-Level
Ciphertext
(capital C)

#RSAC

Problem of Previous Works

Adversary Challenger

Dec1
(pkj, C)

m/⊥/test

If Dec1(skj, C) = {m0,m1},

then return test.

[LV08] Libert et al. “Unidirectional Chosen-Ciphertext Secure Proxy Re-encryption”, (PKC’08).
[HKK+12] Hanaoka et al. “Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption”, (CT-RSA’12).

Can we avoid this Replayable CCA-like security definition?

#RSAC

Why RCCA?
 There exists an inevitable attack in PRE.

pk*
Challenge

Dec1

b {0,1}
c* Enc(pk*,mb)Cj REnc(rk* j, c*)

b’(=b)
However, the adversary might succeed in generating Cj which satisfies
Dec1(skj,Cj)∈{m0,m1} without following the above procedure.

1. 2.3.

4.
5.

8

#RSAC

Verifiability of Re-encryption

 To solve this problem, we introduce a new functionality that
we call “re-encryption verifiability”.

REncVer

(pki,pkj,skj,c,C)

1/0

If C is a re-encrypted ciphertext of c,
this REncVer algorithm outputs 1.
Otherwise, it outputs 0.

 By using this algorithm, the challenger can distinguish whether the
first-level ciphertext which is queried to Dec1 oracle is a re-
encryption of the challenge ciphertext or not.

9

#RSAC

Practical Merit of Re-encryption Verifiability

 A user who receives a first-level ciphertext can detect malicious
activities of a proxy. (We assume the situation in which receiver B
can also get a second-level ciphertext.)

Sender
Proxy

Receiver A

Receiver B

is not a
re-encryption of !

10

#RSAC

Note

 In CT-RSA2013, Isshiki et al. showed new CCA security definitions
of PRE and argued that their definitions are stronger than those of
Hanaoka et al.’s definitions in CT-RSA2012.
However, this is not correct.
- They used the “knowledge of secret key assumption”.
- They showed a counterexample scheme. They argued that their
counterexample scheme is secure under the Hanaoka et al.’s definitions, but
not secure under their definitions. However, this counterexample scheme is
also not secure under the Hanaoka et al.’s definitions.

 These two definitions are incomparable.

11

#RSAC

Verifiable Proxy Re-encryption

#RSAC

Syntax of Verifiable PRE (VPRE)

KG Enc RKG

1k

(pk,sk)

(pk,m)

c

(ski,pkj)

Rki j

REnc

(rki j,ci)

Cj

Dec2Dec1

(skj,C)

m/⊥

(ski,c)

m/⊥

REncVer

(pki,pkj,skj,ci,cj)

1/0 New!!

#RSAC

Security

 We consider three security definitions.

1. CCA security of second-level ciphertexts

2. CCA security of first-level ciphertexts

3. Soundness of Re-encryption Verification
- If REncVer(�,�,�,c,C) outputs 1, C is guaranteed to be a re-encryption of c.

Receiver B

is a
re-encryption of ! 1←REncVer(pkA, pkA, skB, ,)

14

#RSAC

Our Contribution 1

 We prove that a PRE scheme secure under our security definitions
of VPRE is secure under the Hanaoka et al.’s security definitions
of standard PRE.
- That is, our new definitions are stronger than Hanaoka et al.’s definitions.

Secure under
our definitions Automatically

Secure under
the Hanaoka et
al.’s definitions

15

#RSAC

Construction

#RSAC

Our Contribution 2
 We extend Hanaoka et al.'s PRE scheme and prove that it satisfies our

new definitions of VPRE.
- The algorithms other than REncVer is exactly the same as Hanaoka et al.’s
generic construction of a standard PRE scheme.

CCA-Secure PKE

sEUF-CMA
Secure Signature

CCA-secure
Re-splittable

Threshold PKE

CCA-Secure
Verifiable PRE

#RSAC

Preliminaries: Threshold PKE (TPKE)

Example: (2,3)-TPKE

Message

tsk1

tsk2

tsk3

Ciphertext

Secret key shares
Dec. shares

Message

TEnc

TShDec

TCom

18

#RSAC

Preliminaries: Re-splittable TPKE (RS-TPKE)

 In a re-splittable TPKE, a secret key can be split many times under
the same public key. This time, we need (2,2)-RS-TPKE.

Standard TPKE Re-splittable TPKE

(1k,n,t)

(tpk, tsk1,…,tskn, tvk)

(1k,t,n)

(tpk, tsk)

tsk

(tsk1,…,tskn, tvk)

TKG TKG TSplit

(defined by
Hanaoka et al.)

19

#RSAC

Construction(1/3)

Receiver A
Sender

２. Enc
Generate ciphertext

for receiver A.

+ =

１. KG
Generate tpk and
tsk’s of RS-TPKE.

Receiver B

１.KG
Generate pk and

sk of PKE.

３. Dec2
Generate decryption

shares by using a tsk.
+ =
+ =
+ =

20

#RSAC

Construction(2/3)

Receiver A
Sender

Receiver B

Proxy Re-Enc Key

Encrypt for the receiver B.
４. RKG

Guarantee the validity of
by using signature .

５. REnc

Generate a decryption share.

+ =

, ,

Check the validity of

by using a signature .

,=

6. Dec1
Decrypt and check the validity of

and check the validity of using a .

+ = , + = ,
+ = .

21

#RSAC

Construction(3/3)

Receiver B

7. REncVer
Decrypt and obtain

,

etc.

If all decryption shares and
are valid, and if is the same

ciphertext as the input of REncVer algorithm,
then output 1. Otherwise, output 0.

 In our construction, receiver B can recover the second-level
ciphertext. Therefore, the functionality of re-encryption verifiability
can be achieved by checking the equality.

22

#RSAC

Conclusion and Future Work

#RSAC

Conclusion and Future Work

 We introduced a new functionality called “re-encryption verifiability”
in proxy re-encryption (PRE).
- enable to avoid the RCCA-like security definitions
- enable to detect malicious activities of a proxy

 We showed security definitions and a construction.
- stronger definitions than previous works
- generic construction based on re-splittable threshold PKE

 Constructing an efficient concrete construction is a future work.

SESSION ID:

#RSAC

Re-encryption Verifiability:
How to Detect Malicious Activities of a Proxy in Proxy Re-encryption

(Cryptology ePrint Archive: Report 2015/112)

Thank you for your attention!

CRYP-F01

Satsuya Ohata, Yutaka Kawai, Takahiro Matsuda,
Goichiro Hanaoka, Kanta Matsuura

	CRYP-F01-Stronger-Security-Notions-for-Decentralized-Traceable-Attribute-Based-Signatures-and-More-Efficient-Constructions_Final
	CRYP-F01-Re-encryption-Verifiability-How-to-Detect-Malicious-Activities-of-a-Proxy-in-Proxy-Re-encryption_Final
	Re-encryption Verifiability: �How to Detect Malicious Activities of a Proxy in Proxy Re-encryption
	Our Result
	Background and Motivation
	Proxy Re-encryption (PRE)
	Types of PRE
	Second-Level and First-Level Ciphertext
	Problem of Previous Works
	Why RCCA?
	Verifiability of Re-encryption
	Practical Merit of Re-encryption Verifiability
	Note
	Verifiable Proxy Re-encryption
	Syntax of Verifiable PRE (VPRE)
	Security
	Our Contribution 1
	Construction
	Our Contribution 2
	Preliminaries: Threshold PKE (TPKE)
	Preliminaries: Re-splittable TPKE (RS-TPKE)
	Construction(1/3)
	Construction(2/3)
	Construction(3/3)
	Conclusion and Future Work
	Conclusion and Future Work
	Thank you for your attention!

