
Exploiting Collisions in Addition
Chain-based Exponentiation
Algorithms Using a Single Trace

Neil Hanley, HeeSeok Kim and Michael Tunstall

Exploiting Collisions in Addition Chain-based Exponentiation
Algorithms Using a Single Trace

3 ©2015 Rambus Cryptography Research Division

Collision Attacks

• Referred to in the literature as:
◦ Bigmac attack (Walter 2002)
◦ Horizontal-Vertical attacks
◦ Correlation-collision attack

• Class of attacks looking for intermediate values that are the same at
two points in an algorithm
◦ Identical operand(s) for operations
◦ Result of one operation being used as the input to another operation

• We describe versions of these attacks applied to a single trace
◦ Applicable to blinded/ephemeral exponents

4 ©2015 Rambus Cryptography Research Division

 We note that 𝑅𝑅0 in round 𝑖𝑖 …

5 ©2015 Rambus Cryptography Research Division

 We note that 𝑅𝑅0 in round 𝑖𝑖, will be the same as the first operand of
the first operation in round 𝑖𝑖 + 1.

6 ©2015 Rambus Cryptography Research Division

Implementing an Attack

• We considered a single trace, taken during a 192-bit scalar
multiplication
◦ Unknown (blinded) message
◦ Single ephemeral exponent
◦ Corresponding to an implementation of ECDSA

• First platform ARM7TDMI
◦ Clocked at 7.37 MHz
◦ Assembly implementation of basic operations

• Second platform SASEBO-G
◦ Clocked at 24 MHz
◦ Implementation in VHDL

7 ©2015 Rambus Cryptography Research Division

Sample Trace – ARM7TDMI

8 ©2015 Rambus Cryptography Research Division

Sample Trace – SASEBO-G

9 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

Attacking Joye's Add-Only Algorithm
• Break a trace into subtraces corresponding to individual operations

𝑂𝑂1,𝑂𝑂2,𝑂𝑂3, … ,𝑂𝑂𝑚𝑚
• Generate a mean subtrace and subtract it from each subtrace.

𝑂𝑂′1,𝑂𝑂′2,𝑂𝑂′3, … ,𝑂𝑂′𝑚𝑚
• We denote each these 𝑤𝑤-point subtraces as

𝐴𝐴 = 𝑎𝑎1,1 …𝑎𝑎1,𝑢𝑢,𝑎𝑎2,1 …𝑎𝑎2,𝑢𝑢, … ,𝑎𝑎𝑚𝑚,1 …𝑎𝑎𝑚𝑚,𝑢𝑢

where: 𝑂𝑂𝑂𝑖𝑖 = 𝑎𝑎𝑖𝑖,1 …𝑎𝑎𝑖𝑖,𝑢𝑢 − �𝑎𝑎1 … �𝑎𝑎𝑢𝑢 = �𝑎𝑎𝑖𝑖
• Generate a trace of correlation coefficients of the same size as the

subtraces, assuming that the collision occurs in every round.
𝐶𝐶 = 𝜌𝜌 �𝑎𝑎2, �𝑎𝑎4, … , �𝑎𝑎𝑚𝑚−2 , �𝑎𝑎3, �𝑎𝑎5, … , �𝑎𝑎𝑚𝑚−1

10 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

Attacking Joye's Add-Only Algorithm

• There will be correlation indicating points that bear information

• Many points will have spurious correlation
◦ Counters etc.

• To prevent this we randomly sort the set of subtraces and generate
a second correlation trace

𝐶𝐶′ = 𝜌𝜌 �𝑎𝑎2, �𝑎𝑎4, … , �𝑎𝑎𝑚𝑚−2 , �𝑎𝑎3, �𝑎𝑎5, … , �𝑎𝑎𝑚𝑚−1

• Subtract one correlation trace from the other point-by-point

11 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

Example Correlation Trace

12 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

Attacking Joye's Add-Only Algorithm

• We note the index of points that appear to correlate when the two
operands are the same (at least some of the time)

• Extract the relevant points from each subtrace and use these points
to determine whether there is any correlation for each pair of
subtraces that could indicate a collision.

𝐷𝐷 = 𝑑𝑑1 …𝑑𝑑𝑛𝑛−1 = 𝜌𝜌 �𝑎𝑎′2, �𝑎𝑎′3 ,𝜌𝜌 �𝑎𝑎′4, �𝑎𝑎′5 , … ,𝜌𝜌(�𝑎𝑎′𝑚𝑚−2, �𝑎𝑎′𝑚𝑚−1

• Generates a correlation coefficient for each bit that we split into
hypotheses by comparing them to the mean correlation.

13 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

 Again, we note that 𝑅𝑅0 in round 𝑖𝑖 …

14 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

 Again, we note that 𝑅𝑅0 in round 𝑖𝑖, will be the same as the first
operand of the first operation in round 𝑖𝑖 + 1, if round 𝑖𝑖 contains a
dummy operation.

 However, addition and doubling are different operations

15 ©2015 Rambus Cryptography Research Division

Attacking Coron's Double and Add Always
 We construct a matrix of correlation coefficients comparing all

combinations of field multiplications

 We correlate traces assuming there is always a dummy operation

 As previously, we are looking at the correlation of traces taken
during two consecutive operations

𝐶𝐶 = 𝜌𝜌 �𝑎𝑎2, �𝑎𝑎4, … , �𝑎𝑎𝑚𝑚−2 , �𝑎𝑎3, �𝑎𝑎5, … , �𝑎𝑎𝑚𝑚−1

 However, an addition and doubling operation are typically
different operations.

 If, for example, an addition has h, and a doubling operation has f
field multiplications.

16 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

Sample Trace – SASEBO-G

 We extract each subtraces corresponding to each individual field
multiplication.

17 ©2015 Rambus Cryptography Research Division

Attacking Coron's Double and Add Always

̅𝑐𝑐1,1 ̅𝑐𝑐1,2 ⋯ ̅𝑐𝑐1,ℎ
̅𝑐𝑐2,1 ̅𝑐𝑐2,2 ⋯ ̅𝑐𝑐2,ℎ
⋮ ⋮ ⋱ ⋮
̅𝑐𝑐𝑓𝑓,1 ̅𝑐𝑐𝑓𝑓,2 ⋯ ̅𝑐𝑐𝑓𝑓,ℎ

• Where each ̅𝑐𝑐𝑖𝑖,𝑗𝑗, for 1 ≤ 𝑖𝑖 ≤ 𝑓𝑓 and 1 ≤ 𝑗𝑗 ≤ ℎ, is a 𝑢𝑢-point trace
representing a field multiplication.

18 ©2015 Rambus Cryptography Research Division

Attacking Coron's Double and Add Always

• Construct a matrix assuming a dummy operation always occurs,
and another where the random operations are compared

• The difference indicating what combination of points can detect a
collision

• Applied to subtraces from individual loops giving correlation
coefficients that can be use to determine bits of the scalar as
previously

𝐷𝐷 = 𝑑𝑑1 …𝑑𝑑𝑛𝑛−1 = 𝜌𝜌 �𝑎𝑎′2, �𝑎𝑎′3 ,𝜌𝜌 �𝑎𝑎′4, �𝑎𝑎′5 , … ,𝜌𝜌(�𝑎𝑎′𝑚𝑚−2, �𝑎𝑎′𝑚𝑚−1

19 ©2015 Rambus Cryptography Research Division

 We note that 𝑅𝑅¬𝑘𝑘𝑖𝑖 in round 𝑖𝑖 …

20 ©2015 Rambus Cryptography Research Division

 We note that 𝑅𝑅¬𝑘𝑘𝑖𝑖 in round 𝑖𝑖 is used as an input to the second
operation in round 𝑖𝑖 + 1, if 𝑘𝑘𝑖𝑖 ≠ 𝑘𝑘𝑖𝑖+1.

21 ©2015 Rambus Cryptography Research Division

 Likewise, 𝑅𝑅𝑘𝑘𝑖𝑖 in round 𝑖𝑖 is used as an input to the second operation in
round 𝑖𝑖 + 1, if 𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑖𝑖+1.

22 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

Attacking the Montgomery Ladder

• Attack proceeds in the same manner as before

• However, we are comparing the output of one operation with the
input of another

• Given sets of subtraces we compare all the points in one trace with
all the points in the other.

• That is, if we assume that a trace taken during the computation of:
◦ A doubling operation comprises 𝑢𝑢𝑑𝑑 points, and
◦ An addition comprises 𝑢𝑢𝑎𝑎 points.

23 ©2015 Rambus Cryptography Research Division

Attacking the Montgomery Ladder

̅𝑐𝑐1,1 ̅𝑐𝑐1,2 ⋯ ̅𝑐𝑐1,𝑢𝑢𝑎𝑎
̅𝑐𝑐2,1 ̅𝑐𝑐2,2 ⋯ ̅𝑐𝑐2,𝑢𝑢𝑎𝑎
⋮ ⋮ ⋱ ⋮
̅𝑐𝑐𝑢𝑢𝑑𝑑,1 ̅𝑐𝑐𝑢𝑢𝑑𝑑,2 ⋯ ̅𝑐𝑐𝑢𝑢𝑑𝑑,𝑢𝑢𝑎𝑎

• Where each ̅𝑐𝑐𝑖𝑖,𝑗𝑗 is the 𝑖𝑖-th point from a doubling operation, for
1 ≤ 𝑖𝑖 ≤ 𝑢𝑢𝑑𝑑, and 𝑗𝑗-th point from an addition, for 1 ≤ 𝑗𝑗 ≤ 𝑢𝑢𝑎𝑎.

24 ©2015 Rambus Cryptography Research Division CONFIDENTIAL

Attacking the Montgomery Ladder

• Construct a matrix assuming a dummy operation always occurs,
and another where the random operations are compared

• The difference indicating what combination of points can detect a
collision

• Applied to subtraces from individual loops giving correlation
coefficients that can be use to determine bits of the scalar as
previously

𝐷𝐷 = 𝑑𝑑1 …𝑑𝑑𝑛𝑛−1 = 𝜌𝜌 �𝑎𝑎′2, �𝑎𝑎′4 ,𝜌𝜌 �𝑎𝑎′4, �𝑎𝑎′6 , … ,𝜌𝜌(�𝑎𝑎′𝑚𝑚−2, �𝑎𝑎′𝑚𝑚
• Repeat for the second observation and take the strongest result.

25 ©2015 Rambus Cryptography Research Division

Success Rates for 192-bit Scalar Multiplication

• We define a practical attack as one with time complexity less than
254 (Biryukov et al. 2010)

• A trivial attack is, arbitrarily, set to 240 as requiring modest resources
• Complexity can be derived from algorithms defined by Stinson (2002)

26 ©2015 Rambus Cryptography Research Division

Conclusion

• We demonstrate that collision attacks are a threat using a single
trace.
◦ Applicable to blinded or ephemeral exponents.

• Given that one can, potentially, observe the use or reuse of
variables all algorithms can be attacked.

• However, significant leakage is required for the attack to succeed.
• One can readily test whether an implementation is vulnerable
• Attacks can be prevented by adding noise

◦ Randomization of redundant representations
◦ Algorithms some random ordering

27 ©2015 Rambus Cryptography Research Division

Example a 4-ary Exponentiation

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Cold Boot Attacks in the Discrete Logarithm
Setting

B. Poettering 1 & D. L. Sibborn 2

1Ruhr University of Bochum

2Royal Holloway, University of London

April, 2015

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Cold Boot Attacks

Usenix 2008 - Halderman et al. noted that DRAMs retain
their contents for a while after power is lost.
Bits in memory can be extracted, but they will have errors.
0 bits will always flip with very low probability (<1%), but 1
bits will flip with much higher probability which increases
with time.
For example

Original memory: 11000101101101001 . . .
Noisy memory: 11100001100100001 . . .

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Cold Boot Attacks

Why is this a problem?
Secrets may be stored in memory.

Important Question
Given a noisy key obtained from a cold boot attack, how can we

recover the original key?

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Previous Approaches

This question has been addressed many times before.
Most cold boot attacks consider the reconstruction of RSA
private keys.
There are attacks against symmetric schemes such as
DES and AES.
There is only one paper that discusses cold boot attacks in
the discrete logarithm setting.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Cold Boot Attacks for Discrete Logarithm Keys

Cold boot attacks usually exploit redundancy in the private
key’s in-memory representation.
E.g. in practice RSA private keys contain the parameters
(p,q,d ,dp,dq,q−1

p) instead of just d .
For previous DL cold boot attacks, the authors assumed
there was no redundancy in the key.
If we have redundancy, the previous attacks can be
improved.

Important Question
Are there any discrete logarithm implementations that contain

redundant information about the private key?

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Non-Adjacent Forms (NAFs)

The simplest NAF re-encodes a scalar x ∈ {0,1}` as a
string x ′ ∈ {0,1,−1}`+1.
Binary expansion: 7 = 22 + 21 + 20 = 1112.
Alternatively 7 = 23–20, so NAF(1112) = 1 0 0 − 1.
The NAF is designed to reduce the number of additions.
For elliptic curves, subtractions are as efficient as
additions.
A modified version of this NAF is used for OpenSSL elliptic
curve implementations (called "windowed NAF").
The NAF is more efficient than the standard
double-and-add algorithm.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Comb-Based Methods

Comb methods are designed to reduce the number of
multiplications.
They require some pre-computation that depends on a
fixed base point.
Basic combs are a re-ordering of the bits.
PolarSSL employs a modified comb technique.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

The Attack Model

Neither OpenSSL nor PolarSSL explicitly states that the
original private key should be discarded.
Hence, both the original key and its re-encoding (NAF or
comb) will be contained in memory, at least for some time.
We assume an adversary has mounted a cold boot attack
and obtains noisy versions of the key and its re-encoding.
We assume the adversary knows α and β, where bits
degrade according to the following channel:

1

0

1

0
1− α

α

1− β
β
�
�
�
�
�
��@

@
@
@
@
@R-

-

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

The Reconstruction Technique

The (textbook) NAF is constructed by starting from the
least significant bits.
i.e., for the simplest NAF, the least t signed digits only rely
on knowledge of the least t + 1 bits of the bit string.
For example, take the integer 7:

partial bit string : partial NAF
1 1 → 1 0 0 − 1

1 1 1 → 0 0 0 − 1
0 1 1 1 → 0 0 0 − 1

0 0 1 1 1 → 1 0 0 − 1

Comb encodings have a similar property.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

The Reconstruction Technique

Our reconstruction procedure will consider partial solutions
for the private key (across a small section of bits).
For each candidate we can compute a partial re-encoding
(NAF/comb).
We compare these candidate solutions (and their
re-encodings) against the noisy information.
We keep a (possibly large) list of candidates for which the
‘correlation’ is ‘good’. Candidates with bad correlation are
discarded.
We then consider candidate solutions across a new
section of bits, and repeat the procedure.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

The Reconstruction Technique (Example for NAFs)

Suppose we consider 2 bits at a time. We begin like this:

candidate, x partial-NAF(x) Correlation
0 0 0 bad
0 1 1 bad
1 0 0 bad
1 1 -1 good

The second stage would then look like this:

candidate, x partial-NAF(x) Correlation
0 0 1 1 1 0 -1 bad
0 1 1 1 0 0 -1 good
1 0 1 1 1 0 -1 bad
1 1 1 1 0 0 -1 good

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

The Reconstruction Technique

This process would repeat until the candidate solutions are
all of equal size to the private key.
We can then compare each remaining candidate solution
against the public key Q = aP.
If xP = Q for any candidate x , the algorithm outputs x as
the private key. Otherwise the algorithm fails.
A similar technique applies to our comb reconstruction
procedure.
Note, our actual OpenSSL reconstruction differs slightly
from the description given here (please see the paper!).

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

How Do We Measure Correlation?

How is the correlation measured? However you like!
We could use Hamming distance, Maximum-Likelihood, . . .
We could measure the correlation of all bits, or only the
newly-added bits, . . .
BUT, we chose to use a multinomial test because it
provides us with a neat theoretical analysis of success.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Multinomial Distributions

Multinomial distributions are a generalisation of binomial
distributions.

Multinomial distributions have k mutually exclusive events.

Each of the k events has probability pi , and
∑k

i=1 pi = 1.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Multinomial Distributions

Consider a bowl of sweets from which we sample at
random (with replacement):

Suppose we have four colours, with P(red) = 0.4,
P(blue) = 0.3, P(yellow) = 0.2, P(green) = 0.1.
If we pick 10 sweets randomly, what is the probability of
picking:

5 red, 2 blue, 2 yellow, 1 green?

The multinomial distribution can tell us the probability of
any combination of colours.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Multinomial Test

Suppose we pick 10 sweets at random and obtain:
0 red, 10 blue, 0 yellow, 0 green.

Can we be confident that the sweets were chosen from the
previous bowl?

Maybe the sweets were chosen from another bowl.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Multinomial Test

The multinomial test is a way of deciding whether a set of
observed values is consistent with a particular probability
vector (for a specified confidence interval).
i.e., if we observe 4 red, 3 blue, 2 yellow, 1 green, is it likely
that:

P(red) = 0.4, P(blue) = 0.3, P(yellow) = 0.2,
P(green) = 0.1?
These probabilities seem plausible.

However, if we observe 0 red, 10 blue, 0 yellow, 0 green, is
it likely that:

P(red) = 0.4, P(blue) = 0.3, P(yellow) = 0.2,
P(green) = 0.1?
These probabilities seem highly unlikely!

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Multinomial Test

How does this help us?
Recall that our algorithm measures the ‘correlation’
between our candidate key and the noisy bits.
Recall that in a cold boot attack the bits will degrade
according to the following channel:

1

0

1

0
1− α

α

1− β
β
�
�
�
�
�
��@

@
@
@
@
@R-

-

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Multinomial Test

Hence, there are four possible bit-pairs.
These are: 0→ 0, 0→ 1, 1→ 0 and 1→ 1.
These four pairs can be viewed as the colours red, blue,
green and yellow of the previous example.
If we let pb denote the probability of a b-bit appearing in
the original key (together with the re-encoding), then:

P(0→ 0) = p0(1− α),
P(0→ 1) = p0α,
P(1→ 0) = p1β,
P(1→ 1) = p1(1− β).

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Multinomial Test

For each candidate solution, we perform a multinomial test.
If the candidate’s degradation is consistent with the
probability vector (p0(1− α),p0α,p1β,p1(1− β)), it is kept.
Otherwise, the algorithm discards the candidate.
The user can specify his own confidence interval for the
multinomial test.
This allows the user to recover the private key with an
arbitrary success (with a trade-off between running-time).
N.B. This test also works in the RSA setting (and others!).

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Experiments

We will shortly see some of our experimental results.

For each experiment we degraded 100 keys (each of
length 160 bits).

We then used our algorithm to attempt to recover the
original keys.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

OpenSSL (NAF) Experiments

For these experiments we set α = 0.001. (N.B. There are
several extra parameters to the algorithm that are not
displayed here.)

β 0.1 0.15 0.2 0.25 0.3
Predicted Success 0.15 0.15 0.02 0.01 0.01

Success 0.17 0.2 0.07 0.06 0.04

1

0

1

0
1− α

α

1− β
β
�
�
�
�
�
��@

@
@
@
@
@R-

-

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

PolarSSL (comb) Experiments

For these experiments we set α = 0.001. (N.B. There are
several extra parameters to the algorithm that are not
displayed here.)

β 0.01 0.03 0.06 0.08 0.1
Predicted Success 0.73 0.17 0.04 0.01 0.01

Success 0.81 0.6 0.55 0.37 0.08

1

0

1

0
1− α

α

1− β
β
�
�
�
�
�
��@

@
@
@
@
@R-

-

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Predicted Success vs Actual Success

There is sometimes a big discrepancy between the
predicted success and the observed success!
The predicted success is based on the chi-squared
distribution.
The distribution of the multinomial test converges to the
chi-squared distribution.
For small sample sizes, the convergence is poor.
Due to the manner of convergence, the chi-squared test
provides a lower bound on the multinomial success.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Conclusions

We have proposed practical key-recovery algorithms
against OpenSSL and PolarSSL elliptic curve
implementations.

Our algorithms allow keys to be recovered with a
user-chosen success rate (at the expense of running-time).

The statistical test we use can be implemented with other
key-recovery algorithms in other settings, such as RSA.

Our paper provides the first exposition of the PolarSSL
encoding in the cryptographic literature.

B. Poettering & D. L. Sibborn Cold boot attacks for DL

	CRYP-F02-Exploiting-Collisions-in-Addition-Chain-based-Exponentiation-Algorithms-Using-a-Single-Trace_Final
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Implementing an Attack
	Sample Trace – ARM7TDMI
	Sample Trace – SASEBO-G
	Attacking Joye's Add-Only Algorithm
	Attacking Joye's Add-Only Algorithm
	Example Correlation Trace
	Attacking Joye's Add-Only Algorithm
	Slide Number 13
	Slide Number 14
	Attacking Coron's Double and Add Always
	Sample Trace – SASEBO-G
	Attacking Coron's Double and Add Always
	Attacking Coron's Double and Add Always
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Attacking the Montgomery Ladder
	Attacking the Montgomery Ladder
	Attacking the Montgomery Ladder
	Success Rates for 192-bit Scalar Multiplication
	Conclusion
	Example a 4-ary Exponentiation

	CRYP-F02-Cold-Boot-Attacks-in-the-Discrete-Logarithm-Setting_Final

