CHANGE

San Francisco | April 20-24 | Moscone Center

Finding Shortest Lattice Vectors in the Presence of Gaps

Wei Wei ${ }^{1}$, Mingjie Liu ${ }^{2}$, Xiaoyun Wang ${ }^{3}$
${ }^{1}$ Institute of Information Engineering, Chinese Academy of Sciences, China/ Post-doc Researcher
${ }^{2}$ Research Institute of Telemetry, ${ }^{3}$ Tsinghua University, China
April 23, 2015

Outline

- Motivation
- Revisit SVP Algorithms on Lattices with Gaps
- Search SVP for Some Lattice-based Cryptosystems
- Summary

RSNConference2015

San Francisco | April 20-24 | Moscone Center

Motivation

Shortest Vector Problem

- SVP: NP-Hard
- Given a basis of a lattice, find a nonzero shortest lattice vector.
- uSVP $_{\gamma}$: unique-Shortest Vector Problem
- $\lambda_{2}(L)>\gamma \lambda_{1}(L)$, find a nonzero shortest lattice vector.
- SVP algorithms
- Deterministic: enumeration, Voronoi cell computation based...
- Probabilistic: heuristic \& provable sieve...

Previous Work

- Probabilistic Sieve algorithms:
- Heuristic:

Algorithm	Time	Space
Nguyen, Vidick (2008)	$2^{0.415 n}$	$2^{0.2075 n}$
Wang, et al. (2011)	$2^{0.3836 n}$	$2^{0.2557 n}$
Zhang, et. al. (2013)	$2^{0.3778 n}$	$2^{0.2833 n}$
Becker, et. al. (2013)	$2^{0.3774 n}$	$2^{0.2925 n}$

Previous Work

- Probabilistic Sieve algorithms:
- Provable:

Algorithm	Time	Space	Reference
AKS	$2^{O(n)}$	$2^{O(n)}$	[Ajtai,et al. 2001]
Regev	$2^{16 n}$	$2^{8 n}$	[Regev 2004]
NV	$2^{5.9 n}$	$2^{3 n}$	[Nguyen, Vidick 2008]
ListSieve	$2^{3.199 n}$	$2^{1.325 n}$	[Micciancio, Voulgaris 2009]
ListSieve-Birthday	$2^{2.465 n}$	$2^{1.233 n}$	[Pujol, Stehlé 2009]

Motivation

-What about lattices with gaps?

- Successive minima $\lambda_{2}(L)>\gamma \lambda_{1}(L)$
- Sparse distribution
- Complexity decreases obviously as the increase of gap
- Common in cryptographic instances

RS^^Conference2015

San Francisco | April 20-24 | Moscone Center

SVP Algorithms on Lattices with Gaps

List-Sieve [MV09]

- Creat a set of short vectors by subtractions.
- All previous vectors are used to reduce a new one.
- Random perturbation technique.
- Several lattice vectors might correspond to one perturbed vector.
- A collision happens with a high probability when there are enough sieved vectors.

ListSieve-Birthday[PS09]

- Apply List-Sieve, sample lattice points that fall inside of the corona which consist of the first list.
- Sample small and independent points by reducing random points with respect to the first list.

- A collision occurs with high probability.

Revisit Sieve Algorithms on Lattices with Gaps

- Two cases
- λ_{2}-gap: $\lambda_{2}(L)>\alpha \lambda_{1}(L)$
- λ_{i+1}-gap: $\lambda_{i+1}(L)>\alpha \lambda_{1}(L)$
- Concretely
- Packing density of lattices with gaps
- ListSieve-Birthday

Packing density of lattices with $\lambda_{2}-$ gap

What is the maximum number of lattice points inside a sphere with radius $r_{0} \lambda_{1}$?

- Our result: If $\lambda_{2}(L)>\alpha \lambda_{1}(L)$, then

$$
\left|\mathcal{B}_{n}\left(\mathbf{0}, r_{0} \lambda_{1}\right) \cap L\right| \leq 2^{c_{b} n+o(n)},
$$

where $c_{b}=\log _{2} r_{0}-\log _{2} \alpha+0.401$ and $1 \leq$ $\alpha \leq r_{0}$.

Count the Number of Points

Partition into coronas

Count the Number of Points

Partition into coronas

Count the Number of Points

Partition into coronas

Count the Number of Points

Partition into coronas

Count the Number of Points

Partition into coronas

Count the Number of Points

Partition into coronas

Count the Number of Points

Partition into coronas

Count the Number of Points

Partition into coronas

$$
\begin{aligned}
& A: \forall v \neq u,\|v-u\| \geq \alpha \lambda_{1} \\
& B=\left\{\mathbf{w}: \exists \mathbf{t} \in A, \text { s.t. }\|\mathbf{w}-\mathbf{t}\|<\alpha \lambda_{1}\right\}
\end{aligned}
$$

Estimate |A|, |B|
$|\mathrm{B}| \leq(1+2\lfloor\alpha\rfloor)|\mathrm{A}|$

Estimate $|A|,|B|$

$-|\mathbf{B}| \leq(1+2 \mid \alpha])|\mathbf{A}| \quad|\mathrm{A}| \leq 2^{\left(\log _{2} r_{0}-\log _{2} \alpha+0.401\right) n+\mathrm{o}(n)}$

Estimate |A|, |B|

$-|\mathbf{B}| \leq(1+2 \mid \alpha])|\mathbf{A}| \quad|\mathrm{A}| \leq 2^{\left(\log _{2} r_{0}-\log _{2} \alpha+0.401\right) n+\mathrm{o}(n)}$

Finally, $\left|\mathcal{B}_{n}\left(\mathbf{0}, r_{0} \lambda_{1}\right) \cap L\right| \leq \operatorname{poly}(n) \cdot(|\mathbf{A}|+|\mathbf{B}|) \leq 2^{c_{b} n+o}(n)$

Complexity Analysis of ListSieve-Birthday

- Time: $2^{c_{\text {time }} n+o(n)}$, Space: $2^{c_{\text {space }} n+o(n)}$
- Minimize the time complexity,

$$
c_{t i m e}=0.802+\log _{2}\left(\frac{1}{\sqrt{1-\frac{1}{4 \xi^{2}}}}+\frac{2 \xi}{\alpha \cdot 2^{0.401}\left(1-\frac{1}{4 \xi^{2}}\right)}\right)
$$

When λ_{2}-gap $>1.78, c_{\text {time }}<2, c_{\text {space }}<1$ by selecting $\xi=1.0015$.

$c_{\text {time }} \mathbf{S}$ corresponding to different λ_{2}-gap

α	ξ	r_{0}	$c_{\text {time }}$ gap
1.78	1.0020	4.0409	1.9969
5	1.1768	8.3301	1.4246
8	1.2992	12.3483	1.2585
12	1.4308	17.7075	1.1502
28	1.7952	39.0991	0.9992
100	2.6293	134.8910	0.8859
500	4.4019	664.7420	0.8306

Sieve for SVP with λ_{i+1}-gap

- $\lambda_{i+1}-g a p$
$\lambda_{i+1}(L)>\alpha \lambda_{1}(L), 1 \leq i \leq n-1$
- NTRU lattice
$\lambda_{N+1}-$ gap ([HPS98], heuristic)
- Packing density

$$
\left|\mathcal{B}_{n}\left(\mathbf{0}, r_{0} \lambda_{1}\right) \cap L\right| \leq 2^{\left(\log _{2} r_{0}-\log _{2} \alpha+0.401\right) n+\left(\log _{2} \alpha+0.401\right) i+\mathrm{o}(n)}
$$

Sieve for SVP with λ_{i+1}-gap

$c_{\text {time }}=0.802+\log _{2}\left(\frac{1}{\sqrt{1-\frac{1}{4 \xi^{2}}}}+\frac{2 \xi}{\left(\alpha \cdot 2^{0.401}\right)^{\left(1-\frac{i}{n}\right)}\left(1-\frac{1}{4 \xi^{2}}\right)}\right)$.

α	1.78	5	8	12	28	100	500
$\frac{n}{16}$	1.9225	1.4282	1.2767	1.1744	1.0244	0.9035	0.8393
$\frac{n}{8}$	1.9574	1.4757	1.3231	1.2180	1.0597	0.9261	0.8508
$\frac{n}{4}$	2.0297	1.5805	1.4287	1.3200	1.1473	0.9875	0.8857
$\frac{n}{2}$	2.1848	1.8337	1.7000	1.5968	1.4145	1.2116	1.0455
$\frac{3 n}{4}$	2.3541	2.1513	2.0658	1.9956	1.8587	1.6777	1.4876

Sieve for SVP with λ_{i+1}-gap

$c_{\text {time }}=0.802+\log _{2}\left(\frac{1}{\sqrt{1-\frac{1}{4 \xi^{2}}}}+\frac{2 \xi}{\left(\alpha \cdot 2^{0.401}\right)^{\left(1-\frac{i}{n}\right)}\left(1-\frac{1}{4 \xi^{2}}\right)}\right)$.

α	1.78	5	8	12	28	100	500
$\frac{n}{16}$	1.9225	1.4282	1.2767	1.1744	1.0244	0.9035	0.8393
$\frac{n}{8}$	1.9574	1.4757	1.3231	1.2180	1.0597	0.9261	0.8508
$\frac{n}{4}$	2.0297	1.5805	1.4287	1.3200	1.1473	0.9875	0.8857
$\frac{n}{2}$	2.1848	1.8337	1.7000	1.5968	1.4145	1.2116	1.0455
$\frac{3 n}{4}$	2.3541	2.1513	2.0658	1.9956	1.8587	1.6777	1.4876

RSN゚Conference2015

San Francisco | April 20-24 | Moscone Center

Search SVP for Some Lattice-based Systems

Search SVP for Some Lattice-based Systems

- LWE (Learning with Errors)-based cryptosystem
- A BDD instance in the q-ary lattice

$$
\Lambda_{q}\left(\mathbf{A}^{T}\right)=\left\{\mathbf{y} \in \mathbb{Z}^{m}: \mathbf{y}=\text { As } \bmod q \text { for } s \in \mathbb{Z}_{q}^{n}\right\} .
$$

- [LW11] gave its λ_{2}-gap of the embedding lattice.
- Our result: For the parameter $n=128$ in the scheme[Gentry et. al.'08],
- λ_{2}-gap ≈ 1288.
- Time: $2^{0.8172 m+o(m)}$.
- Space: $2^{0.4086 m+o(m)}$.
- Approximately to $2^{0.802 m+o(m)}\left(2^{0.401 m+o(m)}\right)$.

Search SVP for Some Lattice-based Systems

- GGH encryption cryptosystem [Goldreich, Goldwasser, Halevi'97]
- A BDD-based cryptosystem
- five challenges: $n=200,250,300,350,400$.
- [Nguyen'99] Four of them are solved and it is indicated the excepted λ_{2}-gap> 9.4 .
- Our result: The time complexity of ListSieve-Birthday is $2^{1.212 n+o(n)}$.

Search SVP for Some Lattice-based Systems

- Worst-case/average-case equivalent cryptosystems
- uSVP n^{c} based: [Ajtai, Dwork'97, Regev'04].
- GapSVP ${ }_{n^{c}}$ based: [Regev'09, Peikert'09].

Then can be equivalently based on $\operatorname{uSVP}_{\tilde{o}\left(n^{c}\right)}$ since the reduction from uSVP ${ }_{\gamma}$ to GapSVP ${ }_{\gamma}$.

- Our result: Time complexity is approximately to $2^{0.802 n+o(n)}$.

Search SVP for some lattice-based systems

- NTRU encryption cryptosystem [Hoffstein, Pipher, Silverman'98]
- Adopted to standard of IEEE Std 1363.1 in 2008.
- [HPS98] Heuristically, the NTRU lattice (dimension=2N) has a $\lambda_{N+1^{-}}$ gap approximately $\sqrt{\frac{N q}{4 \pi e\left(d_{f} \cdot d_{g}\right)^{1 / 2}}} \lambda_{1}$.
- For $N=503, q=256, d_{f}=216, d_{g}=72$, the time to solve this SVP of NTRU lattice is $2^{1.8054 n+o(n)}$.

RSNConference2015

San Francisco | April 20-24 | Moscone Center

Summary

Summary

- Study SVP on a lattices possessing gaps
- New upper bounds for the packing density of lattices with λ_{i}-gap.
- Renew the complexity of the ListSieve-Birthday
- Discussions on SVP search for some lattice-based cryptosystems
- LWE-based, GGH, NTRU...
- Cryptographic lattices should avoid large gaps.

Thank you for your attention!

A Simple and Improved Algorithm for Integer Factorization with Implicit Hints

*Koji Nuida ${ }^{1}$, Naoto Itakura ${ }^{2}$, Kaoru Kurosawa ${ }^{2}$
${ }^{1}$ AIST, Japan / JST PRESTO Researcher
${ }^{2}$ Ibaraki University, Japan
April 23,2015

Contents

- Introduction: Integer factoring with implicit hints for LSBs of factors
- Our results
- Algorithm: Better bound, simpler proof
- (Potential) application to "(batch) FHE over integers" etc.
- Details and computer experiments

RSN:Conference2015
San Francisco | April 20-24 | Moscone Center

Introduction

Background: Cryptography and Factoring

- Computational hardness of integer factoring is:
- Necessary (and sometimes sufficient) for security of many cryptosystems
- Including the RSA cryptosystem
- Therefore, important to analyze

Background: Factoring with Hints

- Factoring with explicit hints
- E.g., [Coppersmith 1996], where some bits of the factors are known
- Related to: Side-channel attacks
- Factoring with implicit hints (this work)
- E.g., [May-Ritzenhofen 2009], where only some relations of bits of the factors are known
- Related to: Attacks on implementation with weak randomness

Factoring with Implicit Hints

- Simplest case ([MR09], [Kurosawa-Ueda 2013]): For two integers $N_{1}=p_{1} q_{1}, N_{2}=p_{2} q_{2}$, assume

$\left(t\right.$ LSBs of $\left.p_{1}\right)=\left(t\right.$ LSBS of $\left.p_{2}\right)$

- Or equivalently, $\boldsymbol{p}_{1} \equiv \boldsymbol{p}_{2}\left(\boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{t}}\right)$
- Generalizations (not considered in this work):
- More integers ([MR09], [Sarkar-Maitra 2011], ...)
- MSBs, or combination of LSBs and MSBs ([SM11], ...)

Previous Results

- Assume $N_{1}=p_{1} q_{1}, N_{2}=p_{2} q_{2}$ and $p_{1} \equiv p_{2}\left(\bmod 2^{t}\right)$
- Also assume $q_{1}, q_{2}<2^{\alpha}$ (i.e., q_{1}, q_{2} are α-bit primes)
- Polynomial-time factoring of N_{1}, N_{2}, if
- [MR09] $t \geq 2 \alpha+3$
- [KU13] $t \geq 2 \alpha+1$

RSN:Conference2015
San Francisco | April 20-24 | Moscone Center

Our Result: Summary

Our Result

- Assume $N_{1}=p_{1} q_{1}, N_{2}=p_{2} q_{2}$ and $p_{1} \equiv p_{2}\left(\bmod 2^{t}\right)$
- Also assume $q_{1}, q_{2}<2^{\alpha}$ (i.e., q_{1}, q_{2} are α-bit primes)
- Polynomial-time factoring of N_{1}, N_{2}, if
- [MR09] $t \geq 2 \alpha+3$
- [KU13] $t \geq 2 \alpha+1$

```
Non-constant improvement!
```

- Our result: $\boldsymbol{t}=\mathbf{2 \alpha} \boldsymbol{\alpha} \boldsymbol{O}(\log \kappa)$, where κ is a parameter (e.g., security parameter of a factoring-based cryptosystem)

Advantage: Simplicity and Generality

- Our result (as well as [KU13]) extends to $p_{1} \equiv p_{2}(\bmod T)$ and $q_{1}, q_{2} \leq Q$ for integers T, Q
- Originally $T=2^{t}, Q=2^{\alpha}$
- We do NOT assume that $p_{1}, p_{2}, q_{1}, q_{2}$ are primes
- Only assume that N_{1}, N_{2}, T are mutually coprime (almost automatic)
- Very simple, easy-to-follow proof
- No lattice inequalities (Minkowski bound, Hadamard's inequality, ...)

Related Work

- Factors $p_{1}, p_{2}, q_{1}, q_{2}$ in [SM11] (and some others)
- Prime
- Balanced (i.e., $\left|p_{i}\right|_{2} \approx\left|q_{i}\right|_{2}$)
- In fact, their result requires $\left|p_{i}\right|_{2}$ to be bounded above
- Factors $p_{1}, p_{2}, q_{1}, q_{2}$ in our result
- Not necessarily prime Good
- Unbalanced (i.e., $\left.\left|p_{i}\right|_{2} \gg\left|q_{i}\right|_{2}\right)$
- $\left|p_{i}\right|_{2}$ is bounded below only by the condition $t=2 \alpha-O(\log \kappa)$

(Potential) Applications

- Variants of (batch) "fully homomorphic encryption over integers" with error-free approximate GCD assumptions [Cheon et al. 2013], [N.-Kurosawa, EUROCRYPT 2015]
- Ciphertexts are integers modulo $N=q p_{1} p_{2} \cdots p_{k}$, where $|q|_{2} \gg\left|p_{i}\right|_{2}$
- Apply our result to factors p_{i} and N / p_{i} (unbalanced, non-prime)
- Okamoto-Uchiyama cryptosystem, Takagi's variant of RSA
- $N=p^{r} q, r \geq 2$ (unbalanced, non-prime)

RSNConference2015
San Francisco | April 20-24 | Moscone Center

Our Result: Details

(Integer) Lattice and Basis Reduction

Lattice in 2-dim. plane

Lattice for Our Problem

- $L=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: N_{2} x_{1}-N_{1} x_{2} \equiv 0(\bmod T)\right\}$
$\left(\right.$ recall $\left.N_{1}=p_{1} q_{1}, N_{2}=p_{2} q_{2}, p_{1} \equiv p_{2}(\bmod T)\right)$
- Same as previous work
- L and initial basis $\left(1, N_{2} / N_{1} \bmod T\right),(0, T)$ are publicly known
- Involves secret vector $\vec{q}=\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)$

Find this!

Previous Results

- Outline of [KU13]:
- Find the shortest vector \vec{v} in 2-dim. lattice L by Gaussian reduction
- If ${ }^{*}$) the second shortest basis vector of L is longer than \vec{q}, then $\overrightarrow{\boldsymbol{q}} \propto \vec{v}$, in particular $\vec{q}=\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)= \pm \vec{v}$ (since q_{1}, q_{2} are coprime)
- (*) is guaranteed when $t \geq 2 \alpha+1$ (by Hadamard's inequality)
- And not guaranteed if $t<2 \alpha+1$

Our Idea

- Use not only the shortest vector \vec{v}, but also the second shortest basis vector \vec{u} (both obtained by Gaussian reduction at once)
- $\vec{q}=\left(q_{1}, q_{2}\right)$ can be written as $\vec{q}=a \vec{v}+b \vec{u}, a, b \in \mathbb{Z}$
- If (**) $|\boldsymbol{a}|,|\boldsymbol{b}| \leq \boldsymbol{p o l y}(\boldsymbol{\kappa})$, then a, b (hence $\vec{q})$ are found in time poly (κ)
- $\vec{q}=a \vec{v}+b \vec{u}$ implies $|a|,|b|=\frac{\mid\left(\text { quadratic in } q_{i}, v_{i}, u_{i}\right) \mid}{|\operatorname{det}(\vec{v}, \vec{u})|} \leq$ (const) $\cdot Q^{2} / T$
- Where we used $|\operatorname{det}(\vec{v}, \vec{u})|=\left|\operatorname{det}\left(\left(1, N_{2} / N_{1} \bmod T\right),(0, T)\right)\right|=T$ (property of Gaussian reduction) and $\|\vec{v}\| \leq\|\vec{u}\| \leq\|\vec{q}\| \leq Q$
- The other case $\|\vec{q}\|<\|\vec{u}\|$ is as in the previous work
- Hence ${ }^{(* *)}$ is guaranteed when $Q^{2} / T=\operatorname{poly}(\kappa)($ or $2 \alpha-t=O(\log \kappa))$

Our Proposed Algorithm

1. Compute \vec{v}, \vec{u} from $\left(1, N_{2} / N_{1} \bmod T\right),(0, T)$ by Gaussian reduction
2. Output common factors of N_{i} and v_{j} (or u_{j}), if exists
3. For $A=2,3, \ldots$, do the following
4. For integers a, b satisfying $|a|+|b|=A$, do the following
5. If $\left|a v_{1}+b u_{1}\right|$ is a non-trivial factor of N_{1}, output it

Computer Experiments: Average Time

$>\alpha=250$
$>$ Range of t : $501=2 \alpha+1$ to 475
$>$ Ordinary PC
>100 trials each
100% Success
(cf., in [KU13]:
40\% for $\boldsymbol{t}=500$
0% for $t=499$)

Computer Experiments: \# of Iterations

$>\alpha=250$
$>$ Range of t :
$501=2 \alpha+1$ to 475
\rightarrow Ordinary PC
>100 trials each

Bound by our argument:
$\leq 2^{2 \alpha+2-t}$
$=2^{27} \approx 1.34 \times 10^{8}$ (Probably too loose)

RSNConference2015

San Francisco | April 20-24 | Moscone Center

Summary

Summary and Future Work

- Improvement of a known factoring algorithm with implicit hints
- Better bound, even by a simpler proof
- (Potential) applications; e.g., (batch) FHE over integers
- Future work:
- Sharper analysis of bounds?
- More applications?

Thank you for your attentions!

