RSA Conference2015

San Francisco | April 20-24 | Moscone Center

SESSION ID: CRYP-R01

CHANGE

Challenge today's security thinking

Finding Shortest Lattice Vectors in the Presence of Gaps

Wei Wei¹, Mingjie Liu², Xiaoyun Wang³

¹ Institute of Information Engineering, Chinese Academy of Sciences, China/ Post-doc Researcher ² Research Institute of Telemetry, ³Tsinghua University, China April 23, 2015

Outline

Motivation

- Revisit SVP Algorithms on Lattices with Gaps
- Search SVP for Some Lattice-based Cryptosystems
- Summary

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

45 43

Motivation

Shortest Vector Problem

SVP: NP-Hard

- Given a basis of a lattice, find a nonzero shortest lattice vector.
- $uSVP_{\gamma}$: unique-Shortest Vector Problem
 - $\lambda_2(L) > \gamma \lambda_1(L)$, find a nonzero shortest lattice vector.

SVP algorithms

- Deterministic: enumeration, Voronoi cell computation based...
- Probabilistic: heuristic & provable sieve...

Previous Work

- Probabilistic Sieve algorithms:
 - Heuristic:

Algorithm	Time	Space
Nguyen, Vidick (2008)	$2^{0.415n}$	$2^{0.2075n}$
Wang, et al. (2011)	$2^{0.3836n}$	$2^{0.2557n}$
Zhang, et. al. (2013)	$2^{0.3778n}$	$2^{0.2833n}$
Becker, et. al. (2013)	$2^{0.3774n}$	$2^{0.2925n}$

Previous Work

Probabilistic Sieve algorithms:

Provable:

Algorithm	Time	Space	Reference
AKS	$2^{O(n)}$	$2^{O(n)}$	[Ajtai,et al. 2001]
Regev	2 ¹⁶ⁿ	2 ⁸ⁿ	[Regev 2004]
NV	2 ^{5.9n}	2^{3n}	[Nguyen, Vidick 2008]
ListSieve	$2^{3.199n}$	$2^{1.325n}$	[Micciancio, Voulgaris 2009]
ListSieve-Birthday	$2^{2.465n}$	$2^{1.233n}$	[Pujol, Stehlé 2009]

Motivation

- What about lattices with gaps?
 - Successive minima $\lambda_2(L) > \gamma \lambda_1(L)$
 - Sparse distribution
 - Complexity decreases obviously as the increase of gap
 - Common in cryptographic instances

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

SVP Algorithms on Lattices with Gaps

List-Sieve [MV09]

- Creat a set of short vectors by subtractions.
- All previous vectors are used to reduce a new one.
- Random perturbation technique.
- Several lattice vectors might correspond to one perturbed vector.
- A collision happens with a high probability when there are enough sieved vectors.

ListSieve-Birthday[PS09]

- Apply List-Sieve, sample lattice points that fall inside of the corona which consist of the first list.
- Sample small and independent points by reducing random points with respect to the first list.

Revisit Sieve Algorithms on Lattices with Gaps

Two cases

- λ_2 -gap: $\lambda_2(L) > \alpha \lambda_1(L)$
- λ_{i+1} -gap: $\lambda_{i+1}(L) > \alpha \lambda_1(L)$
- Concretely
 - Packing density of lattices with gaps
 - ListSieve-Birthday

Packing density of lattices with λ_2 **-gap**

What is the maximum number of lattice points inside a sphere with radius $r_0\lambda_1$?

• Our result: If $\lambda_2(L) > \alpha \lambda_1(L)$, then $|\mathcal{B}_n(\mathbf{0}, r_0 \lambda_1) \cap L| \le 2^{c_b n + o(n)}$, where $c_b = \log_2 r_0 - \log_2 \alpha + 0.401$ and $1 \le \alpha \le r_0$.

Estimate |A|, |B|

Estimate |A|, |B|

Estimate |A|, |B|

• Finally, $|\mathcal{B}_n(\mathbf{0}, r_0\lambda_1) \cap L| \le \operatorname{poly}(n) \cdot (|\mathbf{A}| + |\mathbf{B}|) \le 2^{c_b n + o(n)}$

Complexity Analysis of ListSieve-Birthday

• Time: $2^{c_{time}n+o(n)}$, Space: $2^{c_{space}n+o(n)}$

Minimize the time complexity,

$$c_{time} = 0.802 + \log_2\left(\frac{1}{\sqrt{1 - \frac{1}{4\xi^2}}} + \frac{2\xi}{\alpha \cdot 2^{0.401} \left(1 - \frac{1}{4\xi^2}\right)}\right)$$

• When λ_2 -gap >1.78, $c_{time} < 2$, $c_{space} < 1$ by selecting $\xi = 1.0015$.

c_{time} s corresponding to different λ_2 -gap

α	ξ	<i>r</i> ₀	C _{time} gap
1.78	1.0020	4.0409	1.9969
5	1.1768	8.3301	1.4246
8	1.2992	12.3483	1.2585
12	1.4308	17.7075	1.1502
28	1.7952	39.0991	0.9992
100	2.6293	134.8910	0.8859
500	4.4019	664.7420	0.8306

Sieve for SVP with λ_{i+1} -gap

• λ_{i+1} -gap

$$\lambda_{i+1}(L) > \alpha \lambda_1(L), 1 \le i \le n-1$$

NTRU lattice

 λ_{N+1} -gap ([HPS98], heuristic)

Packing density

 $|\boldsymbol{\mathcal{B}}_{n}(\boldsymbol{0}, r_{0}\lambda_{1}) \cap L| \leq 2^{(\log_{2} r_{0} - \log_{2} \alpha + 0.401)n + (\log_{2} \alpha + 0.401)i + o(n)}.$

Sieve for SVP with λ_{i+1} -gap

•
$$c_{time} = 0.802 + \log_2\left(\frac{1}{\sqrt{1 - \frac{1}{4\xi^2}}} + \frac{2\xi}{(\alpha \cdot 2^{0.401})^{(1 - \frac{i}{n})}(1 - \frac{1}{4\xi^2})}\right).$$

i i	1.78	5	8	12	28	100	500
$\frac{n}{16}$	1.9225	1.4282	1.2767	1.1744	1.0244	0.9035	0.8393
<u>n</u> 8	1.9574	1.4757	1.3231	1.2180	1.0597	0.9261	0.8508
$\frac{n}{4}$	2.0297	1.5805	1.4287	1.3200	1.1473	0.9875	0.8857
$\frac{n}{2}$	2.1848	1.8337	1.7000	1.5968	1.4145	1.2116	1.0455
$\frac{3n}{4}$	2.3541	2.1513	2.0658	1.9956	1.8587	1.6777	1.4876

Sieve for SVP with λ_{i+1} -gap

•
$$c_{time} = 0.802 + \log_2(\frac{1}{\sqrt{1 - \frac{1}{4\xi^2}}} + \frac{2\xi}{(\alpha \cdot 2^{0.401})^{(1 - \frac{i}{n})}(1 - \frac{1}{4\xi^2})})$$

a i	1.78	5	8	12	28	100	500
$\frac{n}{16}$	1.9225	1.4282	1.2767	1.1744	1.0244	0.9035	0.8393
$\frac{n}{8}$	1.9574	1.4757	1.3231	1.2180	1.0597	0.9261	0.8508
$\frac{n}{4}$	2.0297	1.5805	1.4287	1.3200	1.1473	0.9875	0.8857
<u>n</u> 2	2.1848	1.8337	1.7000	1.5968	1.4145	1.2116	1.0455
$\frac{3n}{4}$	2.3541	2.1513	2.0658	1.9956	1.8587	1.6777	1.4876

Complexity depends on the value and location of gap!

RSAConference2015

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Search SVP for Some Lattice-based Systems

Search SVP for Some Lattice-based Systems

- LWE (Learning with Errors)-based cryptosystem
 - ♦ A BDD instance in the *q*-ary lattice

 $\Lambda_q(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{Z}^m : \mathbf{y} = \mathbf{As} \bmod q \text{ for } s \in \mathbb{Z}_q^n \}.$

- [LW11] gave its λ_2 -gap of the embedding lattice.
- Our result: For the parameter n = 128 in the scheme[Gentry et. al.'08],
 - λ_2 -gap \approx 1288.
 - Time: $2^{0.8172m+o(m)}$.
 - ◆ Space: 2^{0.4086m+o(m)}
 - Approximately to $2^{0.802m+o(m)} (2^{0.401m+o(m)})$.

Search SVP for Some Lattice-based Systems

- GGH encryption cryptosystem [Goldreich, Goldwasser, Halevi'97]
 - A BDD-based cryptosystem
 - ♦ five challenges: n=200, 250, 300, 350, 400.
 - [Nguyen'99] Four of them are solved and it is indicated the excepted λ₂-gap> 9.4.
 - Our result: The time complexity of ListSieve-Birthday is 2^{1.212n+o(n)}.

Search SVP for Some Lattice-based Systems

- Worst-case/average-case equivalent cryptosystems
 - $uSVP_{n^c}$ based: [Ajtai, Dwork'97, Regev'04].
 - GapSVP_{n^c} based: [Regev'09, Peikert'09].
 - Then can be equivalently based on $uSVP_{\tilde{o}(n^c)}$ since the reduction from $uSVP_{\gamma}$ to $GapSVP_{\gamma}$.
 - Our result: Time complexity is approximately to $2^{0.802n+o(n)}$.

Search SVP for some lattice-based systems

- NTRU encryption cryptosystem [Hoffstein, Pipher, Silverman'98]
 - Adopted to standard of IEEE Std 1363.1 in 2008.
 - [HPS98] Heuristically, the NTRU lattice (dimension=2*N*) has a λ_{N+1} -

gap approximately $\sqrt{\frac{Nq}{4\pi e(d_f \cdot d_g)^{1/2}}}\lambda_1$.

• For N = 503, q = 256, $d_f = 216$, $d_g = 72$, the time to solve this SVP of NTRU lattice is $2^{1.8054n+o(n)}$.

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

FEI SISIAN

RSAC

Summary

- Study SVP on a lattices possessing gaps
 - New upper bounds for the packing density of lattices with λ_i -gap.
 - Renew the complexity of the ListSieve-Birthday
- Discussions on SVP search for some lattice-based cryptosystems
 LWE-based, GGH, NTRU...
 - Cryptographic lattices should avoid large gaps.

Thank you for your attention!

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

CHANGE

Challenge today's security thinking

SESSION ID: CRYP-R01

A Simple and Improved Algorithm for Integer Factorization with Implicit Hints

*Koji Nuida¹, Naoto Itakura², Kaoru Kurosawa²

¹ AIST, Japan / JST PRESTO Researcher ² Ibaraki University, Japan April 23, 2015

Contents

- Introduction: Integer factoring with implicit hints for LSBs of factors
- Our results
 - Algorithm: Better bound, simpler proof
 - (Potential) application to "(batch) FHE over integers" etc.
- Details and computer experiments

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

15 83

Introduction

Background: Cryptography and Factoring

- Computational hardness of integer factoring is:
 - Necessary (and sometimes sufficient) for security of many cryptosystems
 - Including the RSA cryptosystem
 - Therefore, important to analyze

Background: Factoring with Hints

Factoring with explicit hints

- E.g., [Coppersmith 1996], where some bits of the factors are known
- Related to: Side-channel attacks
- Factoring with <u>implicit</u> hints (<u>this work</u>)
 - E.g., [May-Ritzenhofen 2009], where only some *relations* of bits of the factors are known
 - Related to: Attacks on implementation with weak randomness

Factoring with Implicit Hints

- Simplest case ([MR09], [Kurosawa-Ueda 2013]): For two integers $N_1 = p_1q_1, N_2 = p_2q_2$, assume
 - (t LSBs of p_1) = (t LSBs of p_2)

Or equivalently,
$$p_1 \equiv p_2 \pmod{2^t}$$

- Generalizations (not considered in this work):
 - More integers ([MR09], [Sarkar-Maitra 2011], …)
 - MSBs, or combination of LSBs and MSBs ([SM11], ...)

Previous Results

- Assume $N_1 = p_1q_1$, $N_2 = p_2q_2$ and $p_1 \equiv p_2 \pmod{2^t}$
- Also <u>assume</u> $q_1, q_2 < 2^{\alpha}$ (i.e., q_1, q_2 are α -bit primes)
- Polynomial-time factoring of N_1, N_2 , if
 - [MR09] $t \ge 2\alpha + 3$
 - [KU13] $t \ge 2\alpha + 1$

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

80

Our Result: Summary

Our Result

- Assume $N_1 = p_1q_1$, $N_2 = p_2q_2$ and $p_1 \equiv p_2 \pmod{2^t}$
- Also <u>assume</u> $q_1, q_2 < 2^{\alpha}$ (i.e., q_1, q_2 are α -bit primes)
- Polynomial-time factoring of N_1, N_2 , if
 - [MR09] $t \ge 2\alpha + 3$
 - [KU13] $t \ge 2\alpha + 1$

Non-constant improvement!

• <u>Our result</u>: $t = 2\alpha - O(\log \kappa)$, where κ is a parameter (e.g., security parameter of a factoring-based cryptosystem)

Advantage: Simplicity and Generality

- Our result (as well as [KU13]) extends to $p_1 \equiv p_2 \pmod{T}$ and $q_1, q_2 \leq Q$ for integers T, Q
 - Originally $T = 2^t$, $Q = 2^{\alpha}$
- We do <u>**NOT</u>** assume that p_1, p_2, q_1, q_2 are primes</u>
 - Only assume that N_1, N_2, T are mutually coprime (almost automatic)

- Very simple, easy-to-follow proof
 - No lattice inequalities (Minkowski bound, Hadamard's inequality, ...)

Related Work

- Factors p_1, p_2, q_1, q_2 in [SM11] (and some others)
 - Prime
 - Balanced (i.e., $|p_i|_2 \approx |q_i|_2$)
 - In fact, their result requires $|p_i|_2$ to be bounded above
 - Factors p_1, p_2, q_1, q_2 in our result
 - Not necessarily prime
 - **Unbalanced** (i.e., $|p_i|_2 \gg |q_i|_2$)

Sometimes good (next slide)

• $|p_i|_2$ is bounded below only by the condition $t = 2\alpha - O(\log \kappa)$

Good

(Potential) Applications

- Variants of (batch) "fully homomorphic encryption over integers" with error-free approximate GCD assumptions [Cheon et al. 2013], [N.-Kurosawa, EUROCRYPT 2015]
 - Ciphertexts are integers modulo $N = qp_1p_2 \cdots p_k$, where $|q|_2 \gg |p_i|_2$
 - Apply our result to factors p_i and N/p_i (unbalanced, non-prime)
- Okamoto-Uchiyama cryptosystem, Takagi's variant of RSA
 - $N = p^r q, r \ge 2$ (unbalanced, non-prime)

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

80

Our Result: Details

(Integer) Lattice and Basis Reduction

Lattice in 2-dim. plane

Lattice for Our Problem

•
$$L = \{(x_1, x_2) \in \mathbb{Z}^2 : N_2 x_1 - N_1 x_2 \equiv 0 \pmod{T}\}$$

(recall $N_1 = p_1q_1, N_2 = p_2q_2, p_1 \equiv p_2 \pmod{T}$)

- Same as previous work
- L and initial basis $(1, N_2/N_1 \mod T), (0, T)$ are publicly known
- Involves secret vector $\vec{q} = (q_1, q_2)$

Find this!

Previous Results

Outline of [KU13]:

- Find the shortest vector \vec{v} in 2-dim. lattice L by Gaussian reduction
- If (*) the second shortest basis vector of *L* is longer than \vec{q} , then $\vec{q} \propto \vec{v}$, in particular $\vec{q} = (q_1, q_2) = \pm \vec{v}$ (since q_1, q_2 are coprime)
- (*) is guaranteed when $t \ge 2\alpha + 1$ (by Hadamard's inequality)
 - And not guaranteed if $t < 2\alpha + 1$

Our Idea

- - $\vec{q} = (q_1, q_2)$ can be written as $\vec{q} = a\vec{v} + b\vec{u}$, $a, b \in \mathbb{Z}$
 - If (**) $|a|, |b| \le poly(\kappa)$, then a, b (hence \vec{q}) are found in time $poly(\kappa)$
 - $\vec{q} = a\vec{v} + b\vec{u}$ implies $|a|, |b| = \frac{|(\text{quadratic in } q_i, v_i, u_i)|}{|\det(\vec{v}, \vec{u})|} \le (\text{const}) \cdot Q^2/T$
 - Where we used $|\det(\vec{v}, \vec{u})| = |\det((1, N_2/N_1 \mod T), (0, T))| = T$ (property of Gaussian reduction) and $||\vec{v}|| \le ||\vec{u}|| \le ||\vec{q}|| \le Q$
 - The other case $||\vec{q}|| < ||\vec{u}||$ is as in the previous work
 - Hence (**) is guaranteed when $Q^2/T = poly(\kappa)$ (or $2\alpha t = O(\log \kappa)$)

Our Proposed Algorithm

- 1. Compute \vec{v}, \vec{u} from $(1, N_2/N_1 \mod T), (0, T)$ by Gaussian reduction
- 2. Output common factors of N_i and v_j (or u_j), if exists
- 3. For A = 2,3, ..., do the following
 - 1. For integers *a*, *b* satisfying |a| + |b| = A, do the following
 - 1. If $|av_1 + bu_1|$ is a non-trivial factor of N_1 , output it

Computer Experiments: Average Time

Computer Experiments: # of Iterations

RSAConference2015

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

FEI SISIAN

RSAC

Summary and Future Work

- Improvement of a known factoring algorithm with implicit hints
 - Better bound, even by a simpler proof
- (Potential) applications; e.g., (batch) FHE over integers
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
- Future work:
 - Sharper analysis of bounds?
 - More applications?

Thank you for your attentions!

....

 $\left(\begin{array}{c} \circ \\ \bullet \end{array}\right)$

 $\left(\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \right)$

(°°)

00

 $\left(\begin{array}{c} \circ \\ \end{array} \right)$

(

(••)

(°°)

00

• • •

00

••

00

• •

0 0

(••)

00

....

••)

00

••