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Shortest Vector Problem

 SVP: NP-Hard
 Given a basis of a lattice, find a nonzero shortest lattice vector.

 uSVP𝜸𝜸: unique-Shortest Vector Problem

 𝝀𝝀𝟐𝟐 𝑳𝑳 > 𝜸𝜸𝝀𝝀𝟏𝟏 𝑳𝑳 , find a nonzero shortest lattice vector.

 SVP algorithms
 Deterministic: enumeration, Voronoi cell computation based…
 Probabilistic: heuristic & provable sieve…
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Previous Work

 Probabilistic Sieve algorithms: 
 Heuristic:
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Previous Work

 Probabilistic Sieve algorithms: 
 Provable:
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Motivation

 What about lattices with gaps?
 Successive minima λ2 𝐿𝐿 > 𝛾𝛾λ1 𝐿𝐿
 Sparse distribution
 Complexity decreases obviously 

as the increase of gap
 Common in cryptographic instances
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List-Sieve [MV09]

 Creat a set of short vectors by subtractions.

 All previous vectors are used to reduce a new one.

 Random perturbation technique.

 Several lattice vectors might correspond to one perturbed vector.

 A collision happens with a high probability when there are enough 
sieved vectors.
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ListSieve-Birthday[PS09] 

 Apply List-Sieve, sample lattice points that 
fall inside of the corona which consist of 
the first list.

 Sample small and independent points by 
reducing random points with respect to 
the first list.

 A collision occurs with high probability.
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Revisit Sieve Algorithms on Lattices with Gaps

 Two cases 

 λ2-gap: λ2 𝐿𝐿 > 𝛼𝛼λ1 𝐿𝐿

 λ𝑖𝑖+1-gap: λ𝑖𝑖+1 𝐿𝐿 > 𝛼𝛼λ1 𝐿𝐿

 Concretely 
 Packing density of lattices with gaps
 ListSieve-Birthday
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Packing density of lattices with λ2-gap

What is the maximum number of lattice 
points inside a sphere with radius 𝑟𝑟0λ1?

 Our result: If λ2 𝐿𝐿 > 𝛼𝛼λ1 𝐿𝐿 , then
|ℬ𝑛𝑛 𝟎𝟎, 𝑟𝑟0λ1 ∩ 𝐿𝐿| ≤ 2𝑐𝑐𝑏𝑏𝑛𝑛+o 𝑛𝑛 ,

where 𝑐𝑐𝑏𝑏 = log2 𝑟𝑟0 − log2 𝛼𝛼 + 0.401 and 1 ≤
𝛼𝛼 ≤ 𝑟𝑟0.
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Count the Number of Points
Partition into coronas
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Count the Number of Points
Partition into coronas
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Count the Number of Points
Partition into coronas
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Count the Number of Points
Partition into coronas

17



#RSAC

Count the Number of Points
Partition into coronas
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Count the Number of Points
Partition into coronas
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Count the Number of Points
Partition into coronas

A: ∀ v ≠ u, ∥ v−u ∥≥ 𝛼𝛼𝜆𝜆1
B= {w: ∃ t ∈ A, s.t. ∥ w−t ∥< 𝛼𝛼𝜆𝜆1}
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Estimate |A|, |B|

 |B| ≤ (1 + 2⌊𝛼𝛼⌋)|A|

21



#RSAC

Estimate |A|, |B|

 |A| ≤ 2(log2 𝑟𝑟0− log2 𝛼𝛼+0.401)𝑛𝑛+o 𝑛𝑛 |B| ≤ (1 + 2⌊𝛼𝛼⌋)|A|
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Estimate |A|, |B|

 Finally, |ℬ𝑛𝑛 𝟎𝟎, 𝑟𝑟0λ1 ∩ 𝐿𝐿| ≤ poly(𝑛𝑛) � (|A| + |B|) ≤ 2𝑐𝑐𝑏𝑏𝑛𝑛+o 𝑛𝑛

 |A| ≤ 2(log2 𝑟𝑟0− log2 𝛼𝛼+0.401)𝑛𝑛+o 𝑛𝑛 |B| ≤ (1 + 2⌊𝛼𝛼⌋)|A|
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Complexity Analysis of ListSieve-Birthday

 Time: 2𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛+o 𝑛𝑛 , Space: 2𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛+o 𝑛𝑛

 Minimize the time complexity,

𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.802 + log2(
1

1 − 1
4𝜉𝜉2

+
2𝜉𝜉

𝛼𝛼 � 20.401 (1 − 1
4𝜉𝜉2)

).

 When λ2-gap >1.78, 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 2, 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 1 by selecting 𝜉𝜉 = 1.0015.
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𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡s corresponding to different λ2-gap
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Sieve for SVP with λ𝒊𝒊+𝟏𝟏-gap

 𝝀𝝀𝒊𝒊+𝟏𝟏-gap

λ𝑖𝑖+1 𝐿𝐿 > 𝛼𝛼λ1 𝐿𝐿 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1
 NTRU lattice

λ𝑁𝑁+1-gap ([HPS98], heuristic)

 Packing density 
|𝓑𝓑𝑛𝑛 𝟎𝟎, 𝑟𝑟0λ1 ∩ 𝐿𝐿| ≤ 2 log2 𝑟𝑟0− log2 𝛼𝛼+0.401 𝑛𝑛+ log2 𝛼𝛼+0.401 𝑖𝑖+o 𝑛𝑛 .
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Sieve for SVP with λ𝒊𝒊+𝟏𝟏-gap

 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.802 + log2( 1

1− 1
4𝜉𝜉2

+ 2𝜉𝜉

(𝛼𝛼�20.401)(1− 𝑖𝑖𝑛𝑛)(1− 1
4𝜉𝜉2

)
).
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Sieve for SVP with λ𝒊𝒊+𝟏𝟏-gap

 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.802 + log2( 1

1− 1
4𝜉𝜉2

+ 2𝜉𝜉

(𝛼𝛼�20.401)(1− 𝑖𝑖𝑛𝑛)(1− 1
4𝜉𝜉2

)
).

Complexity 
depends on the 

value and location
of gap!
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Search SVP for Some Lattice-based Systems

 LWE (Learning with Errors)-based cryptosystem
 A BDD instance in the 𝑞𝑞-ary lattice 

Λ𝑞𝑞 𝐀𝐀𝑇𝑇 = {𝐲𝐲 ∈ ℤ𝑚𝑚: 𝐲𝐲 = 𝐀𝐀𝐀𝐀 mod 𝑞𝑞 for 𝑠𝑠 ∈ ℤ𝑞𝑞𝑛𝑛}.

 [LW11] gave its λ2-gap of the embedding lattice.
 Our result: For the  parameter 𝑛𝑛 = 128 in the scheme[Gentry et. al.’08],

 𝝀𝝀𝟐𝟐-gap≈ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.
 Time: 20.8172𝑚𝑚+o 𝑚𝑚 .    
 Space: 20.4086𝑚𝑚+o 𝑚𝑚 .
 Approximately to 20.802𝑚𝑚+o 𝑚𝑚 (20.401𝑚𝑚+o 𝑚𝑚 ).
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Search SVP for Some Lattice-based Systems

 GGH encryption cryptosystem [Goldreich, Goldwasser, Halevi'97]
 A BDD-based cryptosystem
 five challenges: 𝑛𝑛=200, 250, 300, 350, 400.
 [Nguyen’99] Four of them are solved and it is indicated the excepted

𝝀𝝀𝟐𝟐-gap> 𝟗𝟗.𝟒𝟒.
 Our result: The time complexity of ListSieve-Birthday is 21.212𝑛𝑛+o 𝑛𝑛 .
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Search SVP for Some Lattice-based Systems

 Worst-case/average-case equivalent cryptosystems
 uSVP𝑛𝑛𝑐𝑐 based: [Ajtai, Dwork'97, Regev'04].
 GapSVP𝑛𝑛𝑐𝑐 based: [Regev'09, Peikert'09]. 

Then can be equivalently based on uSVP �𝑂𝑂(𝑛𝑛𝑐𝑐) since the reduction 

from uSVP𝛾𝛾 to GapSVP𝛾𝛾.

 Our result: Time complexity is approximately to 20.802𝑛𝑛+o 𝑛𝑛 .
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Search SVP for some lattice-based systems

 NTRU encryption cryptosystem [Hoffstein, Pipher, Silverman'98]
 Adopted to standard of IEEE Std 1363.1 in 2008.
 [HPS98] Heuristically, the NTRU lattice (dimension=2𝑁𝑁) has a λ𝑁𝑁+1-

gap approximately 𝑁𝑁𝑁𝑁
4𝜋𝜋𝑒𝑒(𝑑𝑑𝑓𝑓�𝑑𝑑𝑔𝑔)1/2 λ1 .

 For 𝑁𝑁 = 503, 𝑞𝑞 = 256,𝑑𝑑𝑓𝑓 = 216, 𝑑𝑑𝑔𝑔= 72, the time to solve this SVP of 
NTRU lattice is 21.8054𝑛𝑛+o 𝑛𝑛 .
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 Study SVP on a lattices possessing gaps
 New upper bounds for the packing density of lattices with λ𝑖𝑖-gap.
 Renew the complexity of the ListSieve-Birthday

 Discussions on SVP search for some lattice-based cryptosystems
 LWE-based, GGH, NTRU…
 Cryptographic lattices should avoid large gaps.

Summary
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Thank you for your attention!
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Background: Cryptography and Factoring

 Computational hardness of integer factoring is:
 Necessary (and sometimes sufficient) for security of many 

cryptosystems
 Including the RSA cryptosystem

 Therefore, important to analyze
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Background: Factoring with Hints

 Factoring with explicit hints
 E.g., [Coppersmith 1996], where some bits of the factors are known
 Related to: Side-channel attacks

 Factoring with implicit hints (this work)
 E.g., [May-Ritzenhofen 2009], where only some relations of bits of the 

factors are known
 Related to: Attacks on implementation with weak randomness
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Factoring with Implicit Hints

 Simplest case ([MR09], [Kurosawa-Ueda 2013]):
For two integers 𝑁𝑁1 = 𝑝𝑝1𝑞𝑞1,𝑁𝑁2 = 𝑝𝑝2𝑞𝑞2, assume

(𝒕𝒕 LSBs of 𝒑𝒑𝟏𝟏) = (𝒕𝒕 LSBs of 𝒑𝒑𝟐𝟐)
 Or equivalently, 𝒑𝒑𝟏𝟏 ≡ 𝒑𝒑𝟐𝟐 (𝒎𝒎𝒎𝒎𝒎𝒎 𝟐𝟐𝒕𝒕)

 Generalizations (not considered in this work):
 More integers ([MR09], [Sarkar-Maitra 2011], …)
 MSBs, or combination of LSBs and MSBs ([SM11], …)

6



#RSAC

Previous Results

 Assume 𝑁𝑁1 = 𝑝𝑝1𝑞𝑞1,𝑁𝑁2 = 𝑝𝑝2𝑞𝑞2 and 𝒑𝒑𝟏𝟏 ≡ 𝒑𝒑𝟐𝟐 (𝒎𝒎𝒎𝒎𝒎𝒎 𝟐𝟐𝒕𝒕)

 Also assume 𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐 < 𝟐𝟐𝜶𝜶 (i.e., 𝑞𝑞1,𝑞𝑞2 are 𝛼𝛼-bit primes)

 Polynomial-time factoring of 𝑁𝑁1,𝑁𝑁2, if
 [MR09] 𝑡𝑡 ≥ 2𝛼𝛼 + 3
 [KU13] 𝑡𝑡 ≥ 2𝛼𝛼 + 1

7
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Our Result

 Assume 𝑁𝑁1 = 𝑝𝑝1𝑞𝑞1,𝑁𝑁2 = 𝑝𝑝2𝑞𝑞2 and 𝒑𝒑𝟏𝟏 ≡ 𝒑𝒑𝟐𝟐 (𝒎𝒎𝒎𝒎𝒎𝒎 𝟐𝟐𝒕𝒕)

 Also assume 𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐 < 𝟐𝟐𝜶𝜶 (i.e., 𝑞𝑞1,𝑞𝑞2 are 𝛼𝛼-bit primes)

 Polynomial-time factoring of 𝑁𝑁1,𝑁𝑁2, if
 [MR09] 𝑡𝑡 ≥ 2𝛼𝛼 + 3
 [KU13] 𝑡𝑡 ≥ 2𝛼𝛼 + 1
 Our result: 𝒕𝒕 = 𝟐𝟐𝜶𝜶 − 𝜪𝜪(𝐥𝐥𝐥𝐥𝐥𝐥 𝜿𝜿), where 𝜅𝜅 is a parameter (e.g., security 

parameter of a factoring-based cryptosystem)

Non-constant 
improvement!
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Advantage: Simplicity and Generality

 Our result (as well as [KU13]) extends to 𝑝𝑝1 ≡ 𝑝𝑝2 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑻𝑻) and 
𝑞𝑞1,𝑞𝑞2 ≤ 𝑸𝑸 for integers 𝑇𝑇,𝑄𝑄
 Originally 𝑇𝑇 = 2𝑡𝑡 , 𝑄𝑄 = 2𝛼𝛼

 We do NOT assume that 𝑝𝑝1,𝑝𝑝2,𝑞𝑞1,𝑞𝑞2 are primes
 Only assume that 𝑁𝑁1,𝑁𝑁2,𝑇𝑇 are mutually coprime (almost automatic)

 Very simple, easy-to-follow proof
 No lattice inequalities (Minkowski bound, Hadamard’s inequality, …)
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Related Work

 Factors 𝑝𝑝1,𝑝𝑝2, 𝑞𝑞1,𝑞𝑞2 in [SM11] (and some others)
 Prime
 Balanced (i.e., |𝑝𝑝𝑖𝑖|2 ≈ |𝑞𝑞𝑖𝑖|2)

 In fact, their result requires |𝑝𝑝𝑖𝑖|2 to be bounded above

 Factors 𝑝𝑝1,𝑝𝑝2, 𝑞𝑞1,𝑞𝑞2 in our result
 Not necessarily prime
 Unbalanced (i.e., |𝑝𝑝𝑖𝑖|2 ≫ |𝑞𝑞𝑖𝑖|2)

 |𝑝𝑝𝑖𝑖|2 is bounded below only by the condition 𝑡𝑡 = 2𝛼𝛼 − 𝛰𝛰(log𝜅𝜅)

Good
Sometimes good (next slide)
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(Potential) Applications

 Variants of (batch) “fully homomorphic encryption over integers” 
with error-free approximate GCD assumptions [Cheon et al. 2013], 
[N.-Kurosawa, EUROCRYPT 2015]
 Ciphertexts are integers modulo 𝑁𝑁 = 𝑞𝑞𝑝𝑝1𝑝𝑝2 ⋯𝑝𝑝𝑘𝑘, where |𝑞𝑞|2 ≫ |𝑝𝑝𝑖𝑖|2
 Apply our result to factors 𝑝𝑝𝑖𝑖 and 𝑵𝑵/𝒑𝒑𝒊𝒊 (unbalanced, non-prime)

 Okamoto-Uchiyama cryptosystem, Takagi’s variant of RSA
 𝑁𝑁 = 𝒑𝒑𝒓𝒓𝑞𝑞, 𝑟𝑟 ≥ 2 (unbalanced, non-prime)

12
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(Integer) Lattice and Basis Reduction

 Lattice in 2-dim. plane

Bad (long) basis Good (shortest) basis

Lattice
reduction

14
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Lattice for Our Problem

 𝐿𝐿 = 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ2 ∶ 𝑁𝑁2𝑥𝑥1 − 𝑁𝑁1𝑥𝑥2 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇

(recall 𝑁𝑁1 = 𝑝𝑝1𝑞𝑞1,𝑁𝑁2 = 𝑝𝑝2𝑞𝑞2,𝑝𝑝1 ≡ 𝑝𝑝2 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇) )
 Same as previous work
 𝐿𝐿 and initial basis (1,𝑁𝑁2/𝑁𝑁1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇), (0,𝑇𝑇) are publicly known
 Involves secret vector 𝒒𝒒 = (𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐)

Find this!

15
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Previous Results

 Outline of [KU13]:
 Find the shortest vector 𝑣⃗𝑣 in 2-dim. lattice 𝐿𝐿 by Gaussian reduction
 If (*) the second shortest basis vector of 𝑳𝑳 is longer than 𝒒𝒒, then 

𝒒𝒒 ∝ 𝑣⃗𝑣, in particular 𝒒𝒒 = 𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐 = ±𝒗𝒗 (since 𝑞𝑞1, 𝑞𝑞2 are coprime)
 (*) is guaranteed when 𝑡𝑡 ≥ 2𝛼𝛼 + 1 (by Hadamard’s inequality)

 And not guaranteed if 𝑡𝑡 < 2𝛼𝛼 + 1

16
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Our Idea

 Use not only the shortest vector 𝑣⃗𝑣, but also the second shortest 
basis vector 𝒖𝒖 (both obtained by Gaussian reduction at once)
 𝑞⃗𝑞 = 𝑞𝑞1, 𝑞𝑞2 can be written as 𝑞⃗𝑞 = 𝑎𝑎𝑣⃗𝑣 + 𝑏𝑏𝑢𝑢, 𝑎𝑎, 𝑏𝑏 ∈ ℤ
 If (**) 𝒂𝒂 , 𝒃𝒃 ≤ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝜿𝜿), then 𝑎𝑎, 𝑏𝑏 (hence 𝑞⃗𝑞) are found in time 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜅𝜅)

 𝑞⃗𝑞 = 𝑎𝑎𝑣⃗𝑣 + 𝑏𝑏𝑢𝑢 implies |𝑎𝑎|, |𝑏𝑏| = (quadratic in 𝑞𝑞𝑖𝑖,𝑣𝑣𝑖𝑖,𝑢𝑢𝑖𝑖)
det 𝑣𝑣,𝑢𝑢

≤ (const) � 𝑄𝑄2/𝑇𝑇

 Where we used |det(𝑣⃗𝑣,𝑢𝑢)| = |det( 1,𝑁𝑁2/𝑁𝑁1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇 , 0,𝑇𝑇 )| = 𝑇𝑇
(property of Gaussian reduction) and | 𝑣⃗𝑣 | ≤ | 𝑢𝑢 | ≤ | 𝑞⃗𝑞 | ≤ 𝑄𝑄
 The other case 𝑞⃗𝑞 < | 𝑢𝑢 | is as in the previous work

 Hence (**) is guaranteed when 𝑄𝑄2/𝑇𝑇 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜅𝜅) (or 2𝛼𝛼 − 𝑡𝑡 = 𝑂𝑂(log 𝜅𝜅))
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Our Proposed Algorithm

1. Compute 𝑣⃗𝑣,𝑢𝑢 from 1,𝑁𝑁2/𝑁𝑁1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇 , 0,𝑇𝑇 by Gaussian reduction

2. Output common factors of 𝑁𝑁𝑖𝑖 and 𝑣𝑣𝑗𝑗 (or 𝑢𝑢𝑗𝑗), if exists

3. For 𝐴𝐴 = 2,3, …, do the following
1. For integers 𝑎𝑎, 𝑏𝑏 satisfying 𝑎𝑎 + 𝑏𝑏 = 𝐴𝐴, do the following

1. If |𝑎𝑎𝑣𝑣1 + 𝑏𝑏𝑢𝑢1| is a non-trivial factor of 𝑁𝑁1, output it

18
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Computer Experiments: Average Time
 𝛼𝛼 = 250
 Range of 𝑡𝑡:

501 = 2𝛼𝛼 + 1 to 475
 Ordinary PC
 100 trials each

For 𝒕𝒕 = 𝟒𝟒𝟒𝟒𝟒𝟒:
≈ 221 sec.
(≈ 4 min.)

100% Success

(cf., in [KU13]:
40% for 𝒕𝒕 = 𝟓𝟓𝟓𝟓𝟓𝟓
0% for 𝒕𝒕 = 𝟒𝟒𝟒𝟒𝟒𝟒)
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Computer Experiments: # of Iterations
 𝛼𝛼 = 250
 Range of 𝑡𝑡:

501 = 2𝛼𝛼 + 1 to 475
 Ordinary PC
 100 trials each

For 𝒕𝒕 = 𝟒𝟒𝟒𝟒𝟒𝟒:
≈ 40,000

Bound by our argument:
≤ 𝟐𝟐𝟐𝟐𝜶𝜶+𝟐𝟐−𝒕𝒕
= 𝟐𝟐𝟐𝟐𝟐𝟐 ≈ 𝟏𝟏.𝟑𝟑𝟑𝟑 × 𝟏𝟏𝟏𝟏𝟖𝟖
(Probably too loose)
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Summary
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Summary and Future Work

 Improvement of a known factoring algorithm with implicit hints
 Better bound, even by a simpler proof

 (Potential) applications; e.g., (batch) FHE over integers

 Future work:
 Sharper analysis of bounds?
 More applications?

Thank you
for your attentions!
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