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Motivation 

• Cryptographic constructions based on lower-
level primitives are often analyzed by 
modeling the primitive as an ideal object 

– Sometimes, impossible to construct based on 
standard assumptions 

– Here: hash functions from block ciphers 

• When instantiated, the primitive may have 
“defects” and be far from ideal 



Motivating example 

• Related-key attacks on block ciphers  

– Several such attacks on block ciphers are known 

– Does not contradict pseudorandomness 

• Such attacks have been used to attack 
primitives based on (ideal) ciphers 

– Collision attack on the hash function used in 
Microsoft Xbox due to related-key attack on TEA 

– Attack on the RMAC message authentication code 



This work 

• We define a “defective” ideal cipher model 
incorporating linear related-key attacks 

– Goal: better understand real-world security of 
constructions analyzed in the (traditional) ideal-
cipher model 

• We analyze the classical Preneel-Govaerts-
Vandewalle (PGV) constructions of hash 
functions from block ciphers in our model 



• A (block-cipher-based) compression function 
𝑓: {0,1}𝑛 × {0,1}𝑛 → {0,1}𝑛 is a function that 
has oracle access to a block cipher 𝐸: {0,1}𝑛 ×
{0,1}𝑛 → {0,1}𝑛 

– For example, the Davies-Meyer compression 
function is defined as : DM ℎ, 𝑚 = 𝐸𝑚 ℎ ⊕ ℎ 

 

Background: Compression functions 



Iterated hash of compression function 

ℎ0 

𝑚ℓ 

• Let 𝑓: {0,1}𝑛 × {0,1}𝑛 → {0,1}𝑛 be a (block-
cipher-based) compression function and let 
ℎ0 ∈ {0,1}𝑛 be an arbitrary fixed constant. 

• The Merkle-Damgard iterated hash 𝐻 of the 
compression function 𝑓 is defined as 
𝐻𝑓 𝑚1, … , 𝑚ℓ = ℎℓ where 
ℎ𝑖 = 𝑓𝐸(ℎ 𝑖−1 , 𝑚𝑖) 

𝑚1 𝑚2 



Hash functions and their security 

• Collision resistance of block-cipher-based hash function 𝐻 
– Computationally unbounded adversary 𝐴 given oracle access to 

𝐸 and 𝐸−1 
– Adversary must make explicit and bounded number of queries 

to the oracle(s) 
– Aims to find a collision in 𝐻𝐸, i.e., messages 𝑀 ≠ 𝑀′ such that 

𝐻𝐸 𝑀 = 𝐻𝐸 𝑀′  
– Security defined as the probability that 𝐴 finds a collision where 

the probability is (also) taken over the choice of 𝐸. 

• (Merkle-Damgard) Theorem : The hash function is collision-
resistant if the underlying compression function is collision-
resistant 
– Possible for hash function to be collision-resistant even if 

compression function is not 



Results 

• None of the PGV compression functions are 
collision-resistant in our “defective” ideal 
cipher model 

• However, four of the PGV hash functions are 
collision-resistant in our model 

– In contrast to 20 collision-resistant PGV hash 
functions in the ideal-cipher model 



Interpreting our results 

• Our results do not imply anything about 
security of a specific instantiation 

• But all else being equal, our results suggest 
using hash-function constructions robust to 
related-key weaknesses in the underlying 
cipher 



Related work 

• Analysis of PGV functions in the ideal-cipher 
model [BRS02,BRSS10] 

• Reducibility of block-cipher-based 
compression functions [BFFS13] 

• “Weakened” random oracle models 
– Hash functions [Liskov06],Digital signature 

schemes [NIT08], Encryption schemes [KNTX10] 

• Hash functions from weak compression 
functions [Lucks05] 

 



Ideal cipher 

• An ideal cipher is an oracle 

 𝐸: {0,1}𝑛 × {0,1}𝑛 → {0,1}𝑛 

  

 where for each 𝑘 ∈ {0,1}𝑛 , the function 
 𝐸𝑘 ⋅ = 𝐸 𝑘,⋅ is chosen uniformly from the 

 set of permutations on {0,1}𝑛. 

 x 



• Ideal except for the fact that the block cipher has 
related-key weakness 
– I.e., the block cipher returns related outputs on 

related keys/inputs. 

• For a fixed key-shift Δ𝑘 ≠ 0𝑛 and fixed input-shift 
and output-shift Δ𝑥, Δ𝑦 ∈ {0,1}𝑛:  
 

  𝐸 𝑘⊕Δk 𝑥 ⊕ Δ𝑥 ⊕ Δ𝑦 ≔ 𝐸𝑘(𝑥) 

 
– We exclude Δ𝑘 = 0𝑛 because in that case 𝐸 is not 

even pseudorandom. 

Our model: Weakened ideal cipher 



Definition : Weakened ideal cipher 

• Let Δ𝑘 ∈ {0,1}𝑛\{0𝑛} and Δ𝑥,Δ𝑦 ∈ {0,1}𝑛. 

• Let Κ ⊂ {0,1}𝑛 be such that Κ, Κ ⊕ Δ𝑘  partitions {0,1}n 

• A (𝛥𝑘, 𝛥𝑥, 𝛥𝑦)-ideal cipher is an oracle 
𝐸: {0,1}𝑛 × {0,1}𝑛 → {0,1}𝑛  

– where for each 𝑘 ∈ 𝐾, the function 𝐸 𝑘,⋅  is 
uniform from the set of permutations on {0,1}𝑛 

– and for 𝑘 ∉ Κ, we define 
𝐸𝑘 𝑥 = 𝐸 𝑘⊕Δk 𝑥 ⊕ Δ𝑥 ⊕ Δ𝑦 



Hash functions and their security 

• Collision resistance of a hash function 
instantiated with a (Δ𝑘, Δ𝑥, Δ𝑦)-ideal cipher 

– Collision resistance definition as before but for 
block cipher 𝐸 which is a (Δ𝑘, Δ𝑥, Δ𝑦)-ideal cipher 

• Collision resistance of a hash function 
instantiated with a weakened ideal cipher 

– Collision resistant if: collision resistant with a 
(Δ𝑘, Δ𝑥, Δ𝑦)-ideal cipher for all values of 
Δ𝑘 ∈ {0,1}𝑛\{0𝑛} and Δ𝑥, Δ𝑦 ∈ {0,1}𝑛. 



PGV constructions [Crypto ‘93] 

• Defined 64 compression function 
constructions 𝑓𝑖:  {0,1}𝑛 × {0,1}𝑛 →  {0,1}𝑛 
for 𝑖 ∈ {1, … , 64} 

• MD-iterated hash of the compression 
functions give hash functions 𝐻𝑖 



• Definition : DM ℎ, 𝑚 = 𝐸𝑚 ℎ ⊕ ℎ 

 

 

 

 

• Davies-Meyer compression function proven 
collision-resistant in the ideal-cipher model 

• Notice that the key to the block cipher 𝐸 is an 
input block 

Example: Davies-Meyer construction 



Collisions in Davies-Meyer 

• Fix arbitrary Δ𝑘 and Δ𝑥, Δ𝑦 = 0n 

• Then, for 𝑀 = 𝑚 and 𝑀′ = 𝑚 ⊕ Δ𝑘, we have 
DM ℎ, 𝑚 = 𝐸𝑚 ℎ ⊕ ℎ = 𝐸 𝑚⊕Δ𝑘 ℎ ⊕ ℎ = 

DM(h, 𝑚 ⊕ Δ𝑘) = 𝐷𝑀(ℎ, 𝑀′) 

• Attack produces a collision in the Davies-
Meyer hash function as well since 

– 𝐻𝐸 𝑚1, … , 𝑚ℓ = 𝐻𝐸(𝑚1, … , 𝑚ℓ ⊕ Δ𝑘) 



Matyas-Meyer-Oseas (MMO) 
construction 

• Definition : MMO ℎ, 𝑚 = 𝐸ℎ 𝑚 ⊕ 𝑚 

• Role of the chaining variable ℎ and message 𝑚 
switched from Davies-Meyer 

– In particular, the key to the block cipher 𝐸 does 
not depend on the input 

• MMO compression function proven collision-
resistant in the ideal-cipher model 



Our result on MMO 

• In our weakened ideal-cipher model, the hash 
function is collision resistant (but the 
compression function is not) 

– Recall that the compression function is collision-
resistant in the ideal-cipher model 



Collision resistance of MMO 

ℎ 𝑖−1  𝑘 
𝑥 

𝑦 

𝑚𝑖 

ℎ𝑖 𝑘′ 
𝑥′ 

𝑦′ ℎ 𝑖+1  

𝑚 𝑖+1  

• Define directed graph 𝐺 = 𝑉𝐺 , 𝐸𝐺  

– Vertex set 𝑉𝐺 =  {0,1}𝑛 × {0,1}𝑛 × {0,1}𝑛 

• (𝑥, 𝑘, 𝑦) denotes input, key and output of block cipher 

• If vertex (𝑥, 𝑘, 𝑦) corresponds to round 𝑖 of MMO, then 
𝑘 = ℎ 𝑖−1 , 𝑥 = 𝑚𝑖 and  ℎ𝑖 = 𝐸 ℎ 𝑖−1

𝑚𝑖 ⊕ 𝑚𝑖 =

𝐸𝑘 𝑥 ⊕ 𝑥 = 𝑦 ⊕ 𝑥 

• If vertex (𝑥′, 𝑘′, 𝑦′) corresponds to round 𝑖 + 1 of 
MMO, then 𝑘′ = ℎ𝑖  

– Arc 𝑥, 𝑘, 𝑦 → (𝑥′, 𝑘′, 𝑦′) in 𝐸𝐺  iff 𝑘′ = 𝑦 ⊕ 𝑥 



Collision resistance of MMO 

• Adversary 𝐴 has access to 𝐸, 𝐸−1oracles where 𝐸 
is a (Δ𝑘, Δ𝑥, Δ𝑦)-ideal cipher 

• When 𝐴 queries 𝐸 on (𝑘, 𝑥), oracle returns 𝑦 in 
the form of the triple (𝑥, 𝑘, 𝑦) 
– 𝑦 chosen uniformly at random from the set of range 

points that have not been defined yet 

– The oracle also returns (𝑥 ⊕ Δ𝑥, 𝑘 ⊕ Δ𝑘, 𝑦 ⊕ Δ𝑦) 
(since 𝐴 learns this by definition of (Δ𝑘, Δ𝑥, Δ𝑦)-ideal 
cipher) 

• 𝐴’s queries to 𝐸−1 are handled similarly 



Collision resistance of MMO 

• As 𝐴 interacts with the oracle, color the 
vertices of the graph 𝐺 as follows: 

• When 𝐴 asks an 𝐸-query, for each vertex 
returned, 

– If 𝑘 = ℎ0, vertex (𝑥, 𝑘, 𝑦) is colored red 

– Otherwise, vertex (𝑥, 𝑘, 𝑦) is colored black 



Collision resistance of MMO 

• A vertex of 𝐺 is colored if it gets colored red or black. 

• A path 𝑃 in 𝐺 is colored if all of its vertices are colored. 

• Vertices (𝑥, 𝑘, 𝑦) and (𝑥′, 𝑘′, 𝑦′) collide if 𝑦′ ⊕ 𝑥′ =
𝑦 ⊕ 𝑥. 

• Distinct paths 𝑃 and 𝑃′ are said to collide if 
– All of their vertices are colored 

– Begin with red vertices 

– End with colliding vertices 

• If 𝐴 outputs two colliding messages, then there are 
necessarily two colliding paths. 

𝑘 
𝑥 

𝑦 



𝑥1, 𝑘1, 𝑦1 𝑥𝑎 , 𝑘𝑎 , 𝑦𝑎  

𝑥′1, 𝑘′1, 𝑦′1 

𝑥𝑏
′ , 𝑘𝑏

′ , 𝑦𝑏
′  

Collision resistance of MMO:Proof 

• Lemma : If 𝐴 outputs two colliding messages, then 
there are necessarily two colliding paths. 
 
 
 

• Suppose 𝐴 outputs colliding messages 𝑀 = 𝑚1 … 𝑚𝑎 
and 𝑀′ = 𝑚1

′ … 𝑚𝑏
′  such that 𝐻𝐸 𝑀 = 𝐻𝐸(𝑀′) 

• Let 𝑃 = 𝑥1, 𝑘1, 𝑦1 → ⋯ → (𝑥𝑎, 𝑘𝑎, 𝑦𝑎) where for 
each 𝑖 ∈ [𝑎], 𝑥𝑖 = 𝑚𝑖 , 𝑘𝑖 = ℎ 𝑖−1 , 𝑦𝑖 = 𝐸 𝑘𝑖

(𝑥𝑖) and 
ℎ𝑖 = 𝑦𝑖 ⊕ 𝑥𝑖. Define 𝑃′ similarly. Then 𝑃 and 𝑃′ are 
colliding paths. 

 



Collision resistance of MMO: Proof 

• If colliding paths are 
formed when the 
adversary asks query 𝑖 
(and not before), then 

– A mid vertex got colored 

 

 

 

 



Collision resistance of MMO: Proof 

• If colliding paths are 
formed when the 
adversary asks query 𝑖 
(and not before), then 

– A mid vertex got colored 

 

𝑣𝑖 



Collision resistance of MMO: Proof 

• If colliding paths are 
formed when the 
adversary asks query 𝑖 
(and not before), then 

– A mid vertex got colored 
or, 

– A start vertex got 
colored 

 

 

 



Collision resistance of MMO: Proof 

• If colliding paths are 
formed when the 
adversary asks query 𝑖 
(and not before), then 

– A mid vertex got colored 
or, 

– A start vertex got 
colored 

 

𝑣𝑖 



Collision resistance of MMO: Proof 

• If colliding paths are 
formed when the 
adversary asks query 𝑖 
(and not before), then 

– A mid vertex got colored 
or, 

– A start vertex got 
colored or, 

– An end vertex got 
colored 

 

 



Collision resistance of MMO: Proof 

• If colliding paths are 
formed when the 
adversary asks query 𝑖 
(and not before), then 

– A mid vertex got colored 
or, 

– A start vertex got 
colored or, 

– An end vertex got 
colored 

 

𝑣𝑖 



Collision resistance of MMO: Proof 

• If colliding paths are 
formed when the 
adversary asks query 𝑖 
(and not before), then 
– A mid vertex got colored 

or, 

– A start vertex got colored 
or, 

– An end vertex got colored 
or, 

– A vertex colliding with itself 
got colored 

 

 

𝑣𝑖 



𝑣𝑖 𝑣𝑗  𝑣𝑟 

• If colliding paths are formed when the adversary asks query 𝑖 (and 
not before) and a mid vertex 𝑣𝑖  got colored 

• Then, there exists vertices 𝑣𝑟 and 𝑣𝑗 which got colored in queries 𝑟 
and 𝑗 such that there exists 
– Arc from 𝑣𝑟  to 𝑣𝑖 and 

– Arc from 𝑣𝑖 to 𝑣𝑗 i.e. 𝑘𝑗 = 𝑦𝑖 ⊕ 𝑥𝑖 

 
 

• Since either the 𝑥𝑖  value or 𝑦𝑖  value was chosen at random from a 
set of size at least 2𝑛 − (𝑖 − 1) and there are 2 𝑖 − 1  possible 
options for 𝑣𝑗,  
– Prob(Arc from 𝑣𝑖 to 𝑣𝑗) ≤ 2 𝑖 − 1 / 2𝑛 − 𝑖 − 1  

• There are 2 vertices returned for every query and it could so 
happen that both of these fall on a colliding path. In total, we get 
– Prob(a mid vertex gets colored) ≤ {4 𝑖 − 1 + 2}/{2𝑛 − (𝑖 − 1)} 

 

Collision resistance of MMO: Proof 



Collision resistance of MMO: Proof 

𝑥1, 𝑘1, 𝑦1 𝑥𝑎, 𝑘𝑎, 𝑦𝑎  

𝑥′1, 𝑘′1, 𝑦′1 

𝑥𝑏
′ , 𝑘𝑏

′ , 𝑦𝑏
′  

• If colliding paths are formed when the 
adversary asks query 𝑖 (and not before), then 

 

 

 

 

• Analyzing all other cases similarly, we get 
– Prob(Colliding Paths) ≤ 14𝑞(𝑞 + 1)/2𝑛, where 𝑞 

is the total number of queries made by 𝐴. 



Conclusion 

• Introduced a weakened ideal-cipher model 

– Meant to incorporate the possibility of related-key 
attacks (but no other structural weaknesses) 

– May be useful for analyzing other primitives as well 

• Analyzed the PGV constructions in this model 

• Proved that four PGV hash functions are collision-
resistant up to the birthday bound in our model 

• More results on inversion resistance and collision 
resistance of the rest of the hash functions 



Thank you 
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Motivation: Beyond-birthday-bound

 Birthday Barrier: the 2n/2 - level. 
 Best Known Bounds for Some MAC Modes:

 CMAC: O(qσ/2n)
 PMAC: O(q2ρ/2n)

 Acceptable in Most Cases, but...



#RSAC

Motivation Cont'd

 Problems:
 Short 64-bit cipher is still widely deployed (financial institutions).
 Hard to replace these ciphers (compatibility).

 Objective of this work:
 Go beyond the Birthday Barrier.
 Relatively Simple Modifications on an Existing Scheme (e.g. PMAC).
 Avoid too much cost on efficiency and key setup.



#RSACPrior Work: PMAC with Parity (PMACwP) 
[Yasuda'12]

 Achieve a New Bound: 
O(q2/2n + qρσ/22n)

 Shortcomings:
 4 independent keys needed.
 1.5 slowdown.



#RSAC

PMACwP: More Details about its Analysis

 Suffice to analyze the collision 
probability for the input to P4.

≠M'[2m]

≠M[2m-1]+M'[2m]

inner[P1, P2, P3](M)
= inner[P1, P2, P3](M') ?

 The m2/22n term is the "source" of 
the beyond-birthday bound.

 Two key ingredients in the 
derivation to this term:
 Independence among the Pi's.
 At least two different blocks.

 Will generalize, improve both.



#RSAC

Generalization from 2 Differences to Multiple Ones

 M[1], M[2] -> M[1], M[2], M[1] + M[2] in matrix form:

















1
1
0

1
0
1

 What about a larger matrix?

 Desired Property: As many different output blocks as possible.

 Exactly the property of an MDS code.



#RSAC

Generalization from 2 Differences to Multiple Ones

 Improve the bound to 
O(q2/2n+qσρd-1/2dn)

 But even more keys are 
needed...

M[1]||M[2]||...||M[l]

G

L1
L2 ... Lm

P1 P2 Pm



#RSAC

Reduce the Number of Keys

 In the analysis, only 
interested in the collision 
of the final input.

 Possible to replace the 
many independent 
ciphers with a single one. 

 Of course, a new proof 
becomes necessary... 



#RSAC

Key Step in Our New Analysis

 L1, L2, ... , Lm are randomly 
chosen.

 M, M' are fixed, with some 
difference in the first unit. 

 Suppose every input to P1
has been computed, except 
the red ones.

M'[1]||M'[2]||...||M'[l]
M[1]||M[2]||...||M[l]

G

L1
L2 ... Lm

P1 P1 P1

X1 X2 XmX'1 X'2 X'm  Bad event in interest: 
All the red X's collide    
with some previous 
inputs.



#RSAC

Key Step in Our Analysis, cont'd

 The MDS property excludes the trivial collision: X1 = X'1. 
 If we fix the index of collided inputs, the event can be described by 

a matrix equation. 
A∙L = B

An m-row matrix, 
each row encoding a 
collision and 
containing at most two 
non-zero entries.

The column 
vector: [L1, 
L2, ..., Lm]T

The difference 
vector, depending 
only on M and M', 
hence a fixed 
vector.

The probability that this equation holds 
depends on the rank of A. 



#RSAC

Key Step in Our Analysis, cont'd

 In general, the rank of A is unknown.
 However, among the m subkeys, at least half of them collide with 

subkeys of larger or equal indexes. 
 Hence, if we focus only on such subkeys, we have a submatrix of A 

that is in row echelon form, therefore full-rank. 
 The halving of A degrades the bound from O(q2/2n+qσρd-1/2dn) to 

O(q2/2n+qσρ(d-1)/2/2(d+1)/2).
 But, we've reduced the key number from m+1 to 2 only!



#RSAC

Summary

 We've generalized Yasuda's PMACwP by introducing an MDS 
matrix into its preprocessing stage. 

 Based on the basic generalization, we further reduced the number 
of keys to 2, at the cost of a degradation of provable security. 

 Theoretically, our scheme can achieve a rate arbitrarily close to 1, 
a security level arbitrarily close to 2n, by choosing large enough 
MDS matrices. 

 Surprisingly, the above can be done by 2 independent keys only. 



#RSAC

Candidate Topics for Future Work

 Reduce the number of keys even further: 2 to 1?

 Go beyond "birthday-barrier" for query numbers, q, as well.

 Analysis of Online Security. 
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