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Theory
Cryptographic algorithms are often modeled as 

‘black boxes’

E.g. Internal computation is opaque to external adversaries.

Security is proven under various hardness assumptions.
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Motivation 

Many provably secure cryptosystems can be 

broken by side-channel attacks



1. Consider Leakage at design level 
Only security of specific schemes.

How to securely implement any scheme?

Wanted:
2. Leakage resilient Compiler

Transform any circuit to a leakage resilient circuit             
secure in a strong black-box sense.

Two Paradigms to Fight Leakage 
Attacks 
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Goal: 

Reduce the overhead
induced by the 

compiler

In all previous works 
the transformed 

circuit C′ has size at 
least O(k2|C|), where 

k is the security 
parameter. 

Even given leakage, 
execution “looks like” 

black-box access to C(.) 



Our Goal

Build Efficient Leakage Resilient Compilers



• All previous works introduce at least quadratic
overhead. 

Is it possible to construct leakage resilient 
compilers with at most linear overhead?



‘Local’ Bounded Wire-Probing: [ISW03,…]

‘Local’ Only Computation (OC) Leakage/ Split State Model: 
[MR04,…]

‘Global’ Computational Continuous Weak Leakage i.e. AC0

leakage Functions [FRRTV10,…]

Prior Work on General Compilers
Three Leakage Models:  



Our Results

‘Local’ Wire-Probing: O(polylog(k) ·|C|log |C|)  

‘Local’ OC Leakage : O(k log k log log k|C|)  

‘Global’ Computational Continuous Weak Leakage: O(k·|C|log|C|) 

Efficient Compliers: 

Using 
Techniques 
from secure 

MPC 

This talk

Previous Best Overhead: Ω(k4|C|) by [DF12] and Ω(k3|C|) by [GR12]  

Previous Best Overhead: O(k2|C|) by [ISW03]

Previous Best Overhead: O(k2|C|) by [FRRTV10] and O(k3|C|) by [R13] 



Our Result on
Global Computational Weak Leakage

• Informal Theorem : A compiler that makes any 
circuit resilient to computationally weak 
leakages. The compiler increases the circuit size 
by a factor of O(k).

• Global adaptive leakage
• Arbitrary total leakage 

However we must assume something [MR04]:
• Leakage function is computationally weak.
• Simple opaque gates.



The Compiler 

C′
+

-

x

Encoder
Encoder

…
…

Decoder

…
…

…



The Compiler: 
From Wires to Wire Bundles 
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Packed Secret Sharing (PSS)

P1 P2 P3 P4 P5 P6 P7

Standard Secret Sharing :
f

Degree of f denoted by d

• PSS is a central tool in information theoretic 
secure MPC protocols.

s

… Pk



Packed Secret Sharing (PSS)

• PSS is a central tool in information theoretic 
secure MPC protocols.

P1 P2 P3 P4 P5 P6 P7

l=3

Packed Secret Sharing (PSS) : f

*Introduces Permutation gates.

Transform circuit to work
on PSS with O(log|C|)
overhead [DIK10]*

Notation:
Secret sharing of s=(s1,…,sl) is 
denoted by [s]d=(s1,…,sk).

… Pk



• Every wire is encoded with PSS.
• Inputs are encoded; outputs are decoded.
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Each wire w
Wire bundle that carries the 
encoding of w denoted by 
[w]d= (w1,…,wk).



PSS is Secure Against AC0 Leakages 

A function is in AC0 if it can be computed by a 
poly-size O(1) depth Boolean circuit with 
unbounded fan-in AND, OR (and NOT) gates.

• PSS Encoding is AC0 indistinguishable, i.e.
Inner product hard to compute in AC0. 
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From Gates to Gadgets 



• Every gate is replaced by a gadget operating on encoded 
PSS bundles. 
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Gates
Gadgets: built from normal 
gates and opaque gates and 
operate on encodings.



Opaque Gates
[G89,GoldOstr95]…Leak-free processor: oblivious RAM
[MR04], [DP08], [GKR08], [DF12]…Leak-free memory: “only 
computation leaks”, one-time programs
[FRRTV10],… Opaque Gates
[GR12],[R13]… Ciphertext banks 

Opaque Gates: simple gates that sample from a fixed distribution
e.g.: securely draw strings with inner product 0.
 Stateless: No secrets are stored  
 Small and simple
 Computation independent: No inputs, so can be pre-computed
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Goal : c=a+b⇒[a+b]d ←[a]d +[b]d

[0]d← Opaque gate
[a+b]d = [a]d + [b]d+[0]d

OR 
[a-b]d = [a]d - [b]d+[0]d

The Compiler:
Addition & Subtraction Gadgets



The Compiler:
Multiplication Gadgets 

C′
+

-

x

Encoder
Encoder

…
…

Decoder

…
…

…



C′
+

-

x

Encoder
Encoder

…
…

Decoder

…
…

…

The Compiler:
Multiplication Gadgets 



Goal: c = ab ⇒ [ab]d ← [a]d[b]d

[r]d,[r]2d ← Opaque gate
1. [ab]2d = [a]d[b]d

2. [ab +r]2d =[ab]2d +[r]2d

3. (ab+r) ← DecodePSS([ab+r]2d) 
4. [ab+r] d ←EncodePSS (ab+r) 
5. [ab]d = [ab+r]d − [r]d

The Compiler:
Multiplication Gadgets 

Permutation 
gadgets follow

in a similar 
way. 



Compiler: High-Level

• Circuit topology is preserved.

• Every wire is encoded yielding a wire bundle; 
Inputs are encoded; outputs are decoded.

• PSS Encoding is AC0 indistinguishable.

• Every gate is converted into a gadget 
operating on encodings.



Security of the Compiled Circuit 

Prove security via ‘shallow’ Reconstructors per 
gadget (technique introduced in [FRRTV10]).

• Reconstructor: on input the inputs and the 
outputs of a gadget is able to simulate its 
internals in a way that looks indistinguishable 
for leakages from AC0. 



Conclusion

Three efficient circuit compilers ….

 ‘Local’ Wire-Probing
 ‘Local’ OC Leakage
 ‘Global’ Computational weak Leakage

 compile any circuit

Question 
Connection to Obfuscation 



Thank you!
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Introduction Multi-Party Fair Exchange

MFE

Exchange Protocol
Two or more parties exchange their items with the other parties.

Fair Exchange Protocol

The exchange protocol is fair if in the end of
All parties receive their desired items or,
None of them receives any item.
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Where is MFE used?
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Introduction Multi-Party Fair Exchange

MFE Topologies
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Introduction Multi-Party Fair Exchange

Optimistic MFE

/Fairness is not possible without trusted third party (TTP).
/There is a lack of TTP. So the efficiency is important.
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Introduction Definitions

Multi-Party Computation

MPC
A group of parties (P1,P2, ...,Pn) with their private inputs wi desires to
compute a function φ.

This computation is secure when the parties do not learn anything
beyond what is revealed by the output of the computation.
This computation is fair if either all of the parties learn their
corresponding output in the end of computation, or none of them
learns.
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Introduction Definitions

MFE is MPC

Multi-party fair exchange is multi-party computation.
Each party Pi has item fi .
They need the compute the functionality φ where

φ(f1, f2, ..., fn) = (φ1, φ2, ..., φn)
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Introduction Definitions

MFE id MPC

For the complete topology:

φi(f1, ..., fn) = (f1, ..., fi−1, fi+1, ..., fn)

For the ring topology:
if i = 1

φi(f1, ..., fn) = fn

else
φi(f1, ..., fn) = fi−1
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Ideal World for Fair and Secure MPC
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Introduction Definitions

Real World for MPC
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Introduction Definitions

Secure and Fair MPC

≈
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Our New Protocols MFE Protocol
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Our New Protocols MFE Protocol

Overview of MFE protocol

The parties are P1,P2, ...,Pn and each party Pi has item fi . They want
the items of all parties (complete topology).
The TTP and his public key pk is known by all parties.

Phase 1: Setup
Phase 2: Encrypted Item Exchange
Phase 3: Decryption Share Exchange

Handan Kılınç , Alptekin Küpçü Optimally Efficient MFE and Fair SMPC 20 / 48
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Our New Protocols MFE Protocol

Phase 1: Setup Phase

They agree on two timeouts t1 and t2
and know TTP’s public key
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Our New Protocols MFE Protocol

Phase 2: Verifiable Encryption of Items

If any party does not receive verifi-
able encryption, (s)he aborts.
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Our New Protocols MFE Protocol

Phase 2: Decryption Share Encryption

If any party does not receive
verifiable escrow or receive
wrong one(s) before t1, (s)he
does Resolve 1.
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Our New Protocols MFE Protocol

Phase 3: Decryption Share Exchange

If any party does not receive
decryption shares or receive
wrong one(s) before t2,
(s)he does Resolve 2.
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Our New Protocols MFE Protocol

Resolve 1

Parties do not learn any decryption shares here.
They can just complain about other parties to the TTP.
The TTP creates a fresh complaintList for the protocol with
parameters id , t1, t2.
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Our New Protocols MFE Protocol

Resolve 2

The party Pi , who comes for Resolve 2 between t1 and t2, gives
all verifiable escrows that he has already received from the other
parties and his own verifiable escrow to the TTP.
The TTP uses these verifiable escrows to save the decryption
shares required to solve the complaints in the complaintList .

If the complaintList is not empty in the end, Pi comes after t2 for
Resolve 3.
Otherwise, TTP decrypts the verifiable escrow and gives decryption
shares.
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Our New Protocols MFE Protocol

Resolve 3

If the complaintList still has parties, even after t2, the TTP answers
each resolving party saying that the protocol is aborted, which
means nobody is able to learn any item.
If the complaintList is empty, the TTP decrypts any verifiable
escrow that is given to him.
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Our New Protocols Fair and Secure MPC

Outline

1 Introduction
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3 Conclusion
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Our New Protocols Fair and Secure MPC

Making SMPC Fair with MFE

SMPC
Parties are able to compute the following function in a secure way by
using SMPC protocol.

φ(w1, ...,wn) = (φ1(w1, ...,wn), ..., φn(w1, ...,wn))
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Our New Protocols Fair and Secure MPC

Making SMPC Fair with MFE

Fair SMPC
Change input of the each Pi as zi = (wi , xi).
Compute the following functionality with SMPC.

ψi(z1, z2, ..., zn) = (Ei(φi(w1, ...,wn)), {gxj}1≤j≤n)

where
Ei(φi(w1, ...,wn)) = (gri , φihri )

Execute Phase 3 of MFE protocol.
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Why MFE is fair?

Parties do not learn anything without any missing decryption
share.
⇒ All parties depend each other. So even though n − 1 malicious
party exist, they can not exclude an honest party.
If an honest party does not receive verifiable escrow, (s)he does
not continue.
⇒ This obliges malicious party to send his verifiable escrow to the
honest party, otherwise malicious one cannot learn anything.
TTP does not decrypt verifiable escrow and send any decryption
share until it is sure that he has all missing verifiable escrows.
⇒ Resolve protocols preserve fairness.
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Conclusion Security and Fairness

Privacy in MFE and MPC

Privacy
The privacy against the TTP is preserved. He just learns some
decryption shares, but he cannot decrypt the encryption of exchanged
items, since he never gets the encrypted items.
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Conclusion Comparison with Previous Works

Previous works in Complete Topology

Solution Topology Round
Complexity

Number of
Messages

Broad-
cast

Garay &
MacKenzie MPCS Complete O(n2) O(n3) Yes

Baum &
Waidner MPCS Complete O(tn) O(tn2) Yes

Mukhamedov
& Ryan MPCS Complete O(n) O(n3) Yes

Mauw et al. MPCS Complete O(n) O(n2) Yes
Asokan et al. MFE Any O(1) O(n3) Yes

Ours MFE Any O(1) O(n2) No
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Conclusion Comparison with Previous Works

Previous works in Ring Topology

Number
Messages

All or
None

TTP-Party
Dependency TTP Privacy

Bao et al. O(n) No Yes Not Private
González &
Markowitch O(n2) No Yes Not Private

Liu & Hu O(n) No Yes Not Private
Ours O(n2) Yes No Private
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Conclusion Comparison with Previous Works

Previous works in fair SMPC

Technique TTP Number of
Rounds

Proof
Technique

Garay et al. Gradual
Release No O(λ) NFS

Bentov &
Kumaresan Bitcoin Yes Constant NFS

Andrychowicz
et al. Bitcoin Yes Constant NFS

Ours MFE Yes Constant FS
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Conclusion Conclusion

Our Contributions

MFE

� We design a MFE protocol requires only O(n2) messages and
constant number of rounds for n parties.

� Our MFE optimally (in complete topology) guarantees fairness
(for honest parties) even when n − 1 out of n parties are malicious
and colluding.

� We show how to employ our MFE protocol for any exchange
topology, with the performance improving as the topology gets
sparser.

� We formulate MFE as a secure multi-party computation protocol.
We then prove security and fairness via ideal-real world
simulation [9].
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Conclusion Conclusion

Our Contributions

TTP Usage

� The TTP for fairness in our MFE is in the optimistic model The
TTP has a very low workload.

� The TTP does not learn any exchanged item, so privacy against
the TTP is preserved.
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Conclusion Conclusion

Our Contribution

Secure Multi-party Computation
� Our MFE can be employed on top of any SMPC protocol to

obtain a fair SMPC protocol,
� We provide an ideal world definition for fair SMPC, and prove

security and fairness of a SMPC protocol that use our MFE via
simulation.
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Conclusion For Further Reading

Phase 1: Setup Phase

All participants agree on the prime p-order subgroup of Z∗q , where q is
a large prime, and a generator g of this subgroup. Then each Pi does

Phase 1Pi Pj

pick xi pick xj

compute hi = gxi

Ci = Com(hi , ri )

compute hj = gxj

Cj = Com(hj , rj )
Ci−−−−−−−−−−−−→
Cj←−−−−−−−−−−−−
hi−−−−−−−−−−−−→
hj←−−−−−−−−−−−−
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Conclusion For Further Reading

Phase 2

Phase 2Pi Pj

compute h =
∏n

k=0 hk compute h =
∏n

k=0 hk

pick ri

Ei = (ai , bi ) = (gri , fi hri )

pick rj

Ej = (aj , bj ) = (grj , fj hrj )
VEi=V (Ei ,h;∅){(vi ,fi )∈Ritem}
−−−−−−−−−−−−−−−−−−→

VEj=V (Ej ,h;∅){(vj ,fj )∈Ritem}
←−−−−−−−−−−−−−−−−−−

If VE is not received from at least one of the parties
Abort
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Phase 3

Note that ak = grk (First part of the k th item’s encryption).
The relation Rs is logghi = logakaxi

k for each k .

Phase 3Pi Pj

compute {d i
k = axi

k }
n
k=1 compute {d j

k = a
xj
k }

n
k=1

E t
i = Encpk ({d i

k}
n
k=1) E t

j = Encpk ({d
j
k}

n
k=1)

VSi=V (E t
i ,pk ;t1,t2,id,Pi ){(hi ,{d i

k})∈Rs}−−−−−−−−−−−−−−−−−−−−−−−−−→
VSi=V (E t

j ,pk ;t1,t2,id,Pj ){(hj ,{d j
k})∈Rs}

←−−−−−−−−−−−−−−−−−−−−−−−−−
If VS is not received from at least one of the parties before time t1

Resolve 1
{d i

k}j,PK (hi ,{ak}){(hi ,{d i
k})∈Rs}−−−−−−−−−−−−−−−−−−−−−−→

{d j
k},PK (hi ,{ak}){(hi ,{d j

k})∈Rs}
←−−−−−−−−−−−−−−−−−−−−−
If d i

k are not received before t2
Resolve 2
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