Side Channel Attack on OpenSSL ECDSA
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ECDSA

Signer has a private key 1<a<g-1 and a public key
Q=[a]G

. Compute h=Hash(m)
. Randomly select an ephemeral key 1<k<(

1
2
3. Compute (X,Y)=[K]G

4. Take r=x mod g; If r=0 repeat from 2
5

6

. Take s=(h+r-a)-kt mod g; if s=0 repeat from 2
. (r,S) is the signature

Note that k:‘(r.s‘l).a_l_(h_s—l)

q



WNAF Form

To compute [K]G, first write k in wNAF form:

n—1
k=D d2 ford, € {0,41,43, . +2" -1}
i=0

Such that if d#0 then d;,,=...=d,,,,,,=0.



Scalar Multiplication with wNAF form

Precompute {£G, £[3]G,..., £[2%-1]G}

x=0

for 1I=n-1 downto O
X = Double(x)
If (d:£0) then

X = Add(x, [d:]G)

end

end

return x



The Hidden Number Problem [BV96]

We know enough triples t;, u; and z; such that
. <ql2"

12 :‘ati—ui
for an unknown a.

We can find o by reducing HNP to a lattice
problem.



HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

.

0

Or in terms of t; and u;:

‘(r-s_l)-a+(h-s_l) =k

q



HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

o I a
n Zi

Or in terms of t; and u;:

|(r-s_1) - a—(—(h -S_l))

0

<q
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HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

k—a N o
n Z

Or in terms of t; and u;:

|(r-s_l)-a—(a—(h-s_l))

0

<q

q



HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

(k-a)/2" N

0

Or in terms of t; and u;:

(ol

<q/2"

q



HNP and ECDSA — State of the Art

e Useful information:
— | bits for | known LSBs
— Between I-1 and | bits for | known MSBs
— |/2 bits for arbitrary | consecutive bits



FLUSH+RELOAD [YF14]

A cache-based side-
channel attack technique

FLUSH memory line

Wait a bit

Measure time to RELOAD
line

— fast-> access

— slow-> no access
Repeat

Processor

Memory
12
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Attacking OpenSSL wNAF

e Use FLUSH+RELOAD to recover
the double and add chain of
the wNAF calculation

— Divide time into slots of 1200
cycles (about 0.4us)

— In each slot, probe a memory
line in the code of the Double
and Add functions.

x=0

for 1=n-1 downto 0
X = Double(x)
If (d.#0) then

X = Add(x, [di]G)

end

end

return x



Sample Trace

Raw:

DIT1IDID  Errorsoccurin |[IDILIDITIAIALILIDILID]]
IDI1ID] ] appro JIDITIDLLIDIITIDIIALALLID

X. 1 symbol

111DID] | 1000 [TIDITIDLLIDITIAIALLTID]I
IDI1ID] ] In - IDITIDITIALLIDITID]ITIDID]
11D111ID]. JIDILIDLLIDITIDITIALLIDID
11I1D]11..

Processed:

DDDADDDDADDDDDDADDDDDADDODADDDDDADDDDADDDDADDDDDADDD
DDDDADDDDADDDDADDDDDADDDDADDDDDDDADDDDDDADDDDADDDDAD
DDDADDDDADDDDADDDDDADDDDDALDDADDDDADDDDADDDDADDDDAD
DDDADDDDDDDADDDDDADDDDADDDDDOADDDDADDDDDDADDDDDADDDD
ADDDDDADDDDDADDDDDADDDDDADDDg;zDDADDDDADDDDADDDDADDD
DDADDDDADDDDDDADDDDDADDDDADD DADDDDDDADDDDADD



Sample Trace

We know how to use the revealed LSBs

Processed:
DDDADDDDADDDDDDADDDDDADDDDADDDDDADDDDADDDDADDDDDADDD
DDDDADDDDADDDDADDDDDADDDDADDDDDDDADDDDDDADDDDADDDDAD
DDDADDDDADDDDADDDDDADDDDDADDDDADDDDADDDDADDDDADDDDAD
DDDADDDDDDDADDDDDADDDDADDDDDDADDDDADDDDDDADDDDDADDDD
ADDDDDADDDDDADDDDDADDDDDADDDDXDDDADDDDADDDDADDDDADDD
DDADDDDADDDDDDADDDDDADDDDADDDDDDADDDDDDADDDDADD



Sample Trace

We know how to use the revealed LSBs

But these give an average of 2 bits per observed
signature.

Can we use the information about the MSBs?

Processed:
DDDADDDDADDDDDDADDDDDADDDDADDDDDADDDDADDDDADDDDDADDD
DDDDADDDDADDDDADDDDDADDDDADDDDDDDADDDDDDADDDDADDDDAD
DDDADDDDADDDDADDDDDADDDDDADDDDADDDDADDDDADDDDADDDDAD
DDDADDDDDDDADDDDDADDDDADDDDDDADDDDADDDDDDADDDDDADDDD
ADDDDDADDDDDADDDDDADDDDDADDDDXDDDADDDDADDDDADDDDADDD
DDADDDDADDDDDDADDDDDADDDDADDDDDDADDDDDDADDDDADD
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Using the MSBs

Assume d.,,,d #0
Before adding [d..]G, X is:

1000..000

[+1

0

x=0

for 1=n-1 downto 0
X = Double(x)
If (d.#0) then

X = Add(x, [di]G)

end

end

return x



Using the MSBs

Assume d.,,,d #0
Before adding [d..]G, X is:

1000..000

1+1 0

After adding [d.]G, for d_>0 it is

And for d <0

100...00
+1 w 0

011..11
+1 w O

x=0

for 1=n-1 downto 0
X = Double(x)
If (d.#0) then

X = Add(x, [di]G)

end

end

return x



Using the MSBs

Assume d..,,,d =0
Before adding [d ]G, X is: =0

for i=n-1 downto O

1+1 0 X = Double(x)
After adding [d.]G, for d_>0 it is if (d.0) then
x = Add(x, [a]C)
end
And for d <0 i & end

. |+1 w 0
Either way,
K- 2m+w 100..00

n m+l+1  m+w+1 0



Observation

For many “standard” curves, , the group order is
close to a power of two. That is, g=2"-¢ such that

le|<2P for pkn.
For example for secp256k1

J=FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
EBAAEDCEGAF48A03BBFD25E8CD0364141

Adding or subtracting g to an n bit number is
unlikely to change the MSBs



Using all the Infarmatian

For m>p Recallnthat
k2™ J o q=2"-¢ 1
I”’ 4 n or
e ) . ] i
(kv2m)-2mm ag=as-a2
" gty Mm=+1+1 0

(k+ 2m+w) Sazaalinnl " -

TR, n-m-I1-1
(k+2"’+"’) gnmil_onl —aq { n+w-I n — .
ae
n+p-m-1-1 0
(ke2m).grmit e -

! n+w-I 0
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Summary

* FLUSH+RELOAD provides a nearly perfect side
channel

— Probability of error 1/1000 symbols
— 99% of errors are noticed
— 2 out of every 3 observed traces are perfect

e Curve choice allows using almost half of the
information in each perfect trace



Results

Previous results:
e [LN13]: 160-bit key, 100 signatures with 2 known bits
e [BPSY14]: 256-bit key, expected 200 signatures

Our results:
Checes | TMeOl |
10 2.25 0.07
11 4.66 0.25
12 7.68 0.38
13 11.3 0.54
With a very high probability, observing 25

signatures yields more than 13 perfect traces.



Cache storage attacks
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Covert channels
Rainbow Series: Light Pink Book

A communication channel is covert if it is neither
designed nor intended to transfer information at all.

Covert Channel Analysis of Trusted Systems (NCSC-TG-030)
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Covert timing channels

A potential covert channel is a timing channel if its
scenario of use involves a process that ‘“signals
information to another by modulating its own use of
system resources (e.g., CPU time) in such a way that this

manipulation affects the real response time observed by
the second process.”



Covert storage channels

A potential covert channel is a storage channel if its
scenario of use “involves the direct or indirect writing of a
storage location by one process and the direct or indirect
reading of the storage location by another process.”

18



Crypto and side-channel attacks
High level: one party is legit, the other isn't

Timing attacks Storage attacks

> D. Page (DES, 2002)

> D. J. Bernstein (AES, 2005)

C. Percival (RSA, 2005)

Osvik et al. (AES, 2005)

Neve and Seifert (AES, 2006)

> B. B. Brumley and R. Hakala (ECDSA, 2009)
Aciigmez et al. (DSA, 2010)

> B. B. Brumley and N. Tuveri (ECDSA, 2011)
Yarom et al. (ECDSA, 2014)
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v

v

v

v
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Data caching

0 de30ec 7777
1 096324 7777

F 6leff8 7777

Cache-timing attacks

Time access to own data and infers cache hits / misses to
determine victim state that caused the eviction.
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Cache debugging and HW privilege separation

Invasive cache debug

» Direct reads to cache lines and metadata
» Cache footprint profiling

» HW errata or coherency

Access control
» Cannot allow unchecked direct access to cache lines
(exception)
» x86 protection mode: Ring 0/3
» ARM ft. TrustZone: NS-bit

18



Data caching with HW privilege separation

Note priv 0 can evict priv 1 and vice versa.

idx priv  tag data

0 1 de30ec 7777
1 0 096324 7777

F 1 61eff8 7777

18



The covert storage channel (1)

Alice (priv 0) wants to send one nibble (0x2) to Bob (priv 1).

Bob pollutes:

1 de30ec 7777
1 096324 7777
1 cebf84 7777

N = O

F 1 6leff8 7777

18



The covert storage channel (2)

Alice does one read to evict one line (0x2):

1 de30ec 7777
1 096324 7777
0 b7d710 7777

N = O

F 1 61eff8 7777
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The covert storage channel (3)

Bob then:
1. Reads from Line 0. No exception.

2. Reads from Line 1. No exception.

3. Reads from Line 2. Exception — receives 0x2.

1 de30ec 7777
1 096324 7777
0 b7d710 7777

N = O

F 1 6leff8 7777

11/18



From cache storage to clean cache-timing traces

1. Read directly from a cache line. A processor exception
indicates M, otherwise H.

2. If M go back to the first step. This requires another query
because the processor exception most like wipes the cache
state and/or triggers a reset.

3. If H continue with the next line.

Example
HMHHHMHHHHHHMHHH
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A practical architecture (1)
SRC: ARM Security Technology documentation

The content of the caches, with regard to the security
state, is dynamic. Any non-locked down cache line can
be evicted to make space for new data, regardless of its
security state. It is possible for a Secure line load to evict
a Non-secure line, and for a Non-secure line load to evict

a Secure line.
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A practical architecture (2)
SRC: ARM Security Technology documentation

Core Processing Logic

Current status: NSTID

Cache an

T Cache Miss: External Load

T Arbiter
Y TLB
Pagetable
[ vaA [nsTD}——>] PA [ NS | |Wak K
: : : D R
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I _ J HIE
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| PA I NS I—’| Line Data | Data Store R
| . PA I Né |—>| Line Data . | Security
Check
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A practical architecture (3)
SRC: ARM1156T2-S Technical Reference Manual

The purpose of the data cache Tag RAM operation is to:

» read the data cache Tag RAM contents and write into the
Data Cache Debug Register.

» write into the Data Cache Debug Register and write into the
Data Tag RAM.

To read the Data Tag RAM, write CP15 with:

; Data Tag RAM read operation
MCR p15, 3, <Rd>, c15, c2, 0

Transfer data to the Data Cache Debug Register to the core:

; Read Data Cache Debug Register
MRC p15, 3, <Rd>, c15, c0, O
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AES and side-channels

SRC: Jeff Moser
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AES cache storage attack simulation
Borrowed cache-timing attack by Neve and Seifert (2006)
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Conclusion

» Cache debugging mechanisms and hardware-enforced privilege
separation can create covert channels

» Can potentially put crypto keys at risk

» Compared to cache-timing attacks:

» Each “cache miss” costs an additional query
» But the traces themselves are much more accurate

» For ARM ft. TrustZone, attack would be from Normal World
kernel space to Secure World

» Concrete mitigation: implementation defined instructions
» Thanks! Questions?
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