Side Channel Attack on OpenSSL ECDSA

Outline

e Background
— ECDSA
— WNAF scalar multiplication
— The Hidden Number Problem
— The Flush+Reload technique

* Exploiting the side channel
e Recovering the key
e Results

ECDSA

Signer has a private key 1<a<g-1 and a public key
Q=[a]G

. Compute h=Hash(m)
. Randomly select an ephemeral key 1<k<(

1
2
3. Compute (X,Y)=[K]G

4. Take r=x mod g; If r=0 repeat from 2
5

6

. Take s=(h+r-a)-kt mod g; if s=0 repeat from 2
. (r,S) is the signature

Note that k:‘(r.s‘l).a_l_(h_s—l)

q

WNAF Form

To compute [K]G, first write k in wNAF form:

n—1
k=D d2 ford, € {0,41,43, . +2" -1}
i=0

Such that if d#0 then d;,,=...=d,,,,,,=0.

Scalar Multiplication with wNAF form

Precompute {£G, £[3]G,..., £[2%-1]G}

x=0

for 1I=n-1 downto O
X = Double(x)
If (d:£0) then

X = Add(x, [d:]G)

end

end

return x

The Hidden Number Problem [BV96]

We know enough triples t;, u; and z; such that
. <ql2"

12 :‘ati—ui
for an unknown a.

We can find o by reducing HNP to a lattice
problem.

HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

.

0

Or in terms of t; and u;:

‘(r-s_l)-a+(h-s_l) =k

q

HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

o I a
n Zi

Or in terms of t; and u;:

|(r-s_1) - a—(—(h -S_l))

0

<q

q

HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

k—a N o
n Z

Or in terms of t; and u;:

|(r-s_l)-a—(a—(h-s_l))

0

<q

q

HNP and ECDSA [HGSO01,NSO3]

Recall that k:‘(r.s—l).m(h,s_l)
We want |az, _”z‘q <q /2"

q

In terms of K:

(k-a)/2" N

0

Or in terms of t; and u;:

(ol

<q/2"

q

HNP and ECDSA — State of the Art

e Useful information:
— | bits for | known LSBs
— Between I-1 and | bits for | known MSBs
— |/2 bits for arbitrary | consecutive bits

FLUSH+RELOAD [YF14]

A cache-based side-
channel attack technique

FLUSH memory line

Wait a bit

Measure time to RELOAD
line

— fast-> access

— slow-> no access
Repeat

Processor

Memory
12

Outline

Background

— ECDSA

— WNAF scalar multiplication

— The Hidden Number Problem
— The Flush+Reload technique

Exploiting the side channel
Recovering the key
Results

13

Attacking OpenSSL wNAF

e Use FLUSH+RELOAD to recover
the double and add chain of
the wNAF calculation

— Divide time into slots of 1200
cycles (about 0.4us)

— In each slot, probe a memory
line in the code of the Double
and Add functions.

x=0

for 1=n-1 downto 0
X = Double(x)
If (d.#0) then

X = Add(x, [di]G)

end

end

return x

Sample Trace

Raw:

DIT1IDID Errorsoccurin |[IDILIDITIAIALILIDILID]]
IDI1ID]] appro JIDITIDLLIDIITIDIIALALLID

X. 1 symbol

111DID] | 1000 [TIDITIDLLIDITIAIALLTID]I
IDI1ID]] In - IDITIDITIALLIDITID]ITIDID]
11D111ID]. JIDILIDLLIDITIDITIALLIDID
11I1D]11..

Processed:

DDDADDDDADDDDDDADDDDDADDODADDDDDADDDDADDDDADDDDDADDD
DDDDADDDDADDDDADDDDDADDDDADDDDDDDADDDDDDADDDDADDDDAD
DDDADDDDADDDDADDDDDADDDDDALDDADDDDADDDDADDDDADDDDAD
DDDADDDDDDDADDDDDADDDDADDDDDOADDDDADDDDDDADDDDDADDDD
ADDDDDADDDDDADDDDDADDDDDADDDg;zDDADDDDADDDDADDDDADDD
DDADDDDADDDDDDADDDDDADDDDADD DADDDDDDADDDDADD

Sample Trace

We know how to use the revealed LSBs

Processed:
DDDADDDDADDDDDDADDDDDADDDDADDDDDADDDDADDDDADDDDDADDD
DDDDADDDDADDDDADDDDDADDDDADDDDDDDADDDDDDADDDDADDDDAD
DDDADDDDADDDDADDDDDADDDDDADDDDADDDDADDDDADDDDADDDDAD
DDDADDDDDDDADDDDDADDDDADDDDDDADDDDADDDDDDADDDDDADDDD
ADDDDDADDDDDADDDDDADDDDDADDDDXDDDADDDDADDDDADDDDADDD
DDADDDDADDDDDDADDDDDADDDDADDDDDDADDDDDDADDDDADD

Sample Trace

We know how to use the revealed LSBs

But these give an average of 2 bits per observed
signature.

Can we use the information about the MSBs?

Processed:
DDDADDDDADDDDDDADDDDDADDDDADDDDDADDDDADDDDADDDDDADDD
DDDDADDDDADDDDADDDDDADDDDADDDDDDDADDDDDDADDDDADDDDAD
DDDADDDDADDDDADDDDDADDDDDADDDDADDDDADDDDADDDDADDDDAD
DDDADDDDDDDADDDDDADDDDADDDDDDADDDDADDDDDDADDDDDADDDD
ADDDDDADDDDDADDDDDADDDDDADDDDXDDDADDDDADDDDADDDDADDD
DDADDDDADDDDDDADDDDDADDDDADDDDDDADDDDDDADDDDADD

17

Using the MSBs

Assume d.,,,d #0
Before adding [d..]G, X is:

1000..000

[+1

0

x=0

for 1=n-1 downto 0
X = Double(x)
If (d.#0) then

X = Add(x, [di]G)

end

end

return x

Using the MSBs

Assume d.,,,d #0
Before adding [d..]G, X is:

1000..000

1+1 0

After adding [d.]G, for d_>0 it is

And for d <0

100...00
+1 w 0

011..11
+1 w O

x=0

for 1=n-1 downto 0
X = Double(x)
If (d.#0) then

X = Add(x, [di]G)

end

end

return x

Using the MSBs

Assume d..,,,d =0
Before adding [d]G, X is: =0

for i=n-1 downto O

1+1 0 X = Double(x)
After adding [d.]G, for d_>0 it is if (d.0) then
x = Add(x, [a]C)
end
And for d <0 i & end

. |+1 w 0
Either way,
K- 2m+w 100..00

n m+l+1 m+w+1 0

Observation

For many “standard” curves, , the group order is
close to a power of two. That is, g=2"-¢ such that

le|<2P for pkn.
For example for secp256k1

J=FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
EBAAEDCEGAF48A03BBFD25E8CD0364141

Adding or subtracting g to an n bit number is
unlikely to change the MSBs

Using all the Infarmatian

For m>p Recallnthat
k2™ J o q=2"-¢ 1
I”’ 4 n or
e) .] i
(kv2m)-2mm ag=as-a2
" gty Mm=+1+1 0

(k+ 2m+w) Sazaalinnl " -

TR, n-m-I1-1
(k+2"’+"’) gnmil_onl —aq { n+w-I n — .
ae
n+p-m-1-1 0
(ke2m).grmit e -

! n+w-I 0
22

Summary

* FLUSH+RELOAD provides a nearly perfect side
channel

— Probability of error 1/1000 symbols
— 99% of errors are noticed
— 2 out of every 3 observed traces are perfect

e Curve choice allows using almost half of the
information in each perfect trace

Results

Previous results:
e [LN13]: 160-bit key, 100 signatures with 2 known bits
e [BPSY14]: 256-bit key, expected 200 signatures

Our results:
Checes | TMeOl |
10 2.25 0.07
11 4.66 0.25
12 7.68 0.38
13 11.3 0.54
With a very high probability, observing 25

signatures yields more than 13 perfect traces.

Cache storage attacks
CT-RSA 2015

B. B. Brumley

Department of Pervasive Computing
Tampere University of Technology, Finland
billy.brumley AT tut.fi

21 Apr 2015

TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

18

Covert channels
Rainbow Series: Light Pink Book

A communication channel is covert if it is neither
designed nor intended to transfer information at all.

Covert Channel Analysis of Trusted Systems (NCSC-TG-030)

2/18

Covert timing channels

A potential covert channel is a timing channel if its
scenario of use involves a process that ‘“signals
information to another by modulating its own use of
system resources (e.g., CPU time) in such a way that this

manipulation affects the real response time observed by
the second process.”

Covert storage channels

A potential covert channel is a storage channel if its
scenario of use “involves the direct or indirect writing of a
storage location by one process and the direct or indirect
reading of the storage location by another process.”

18

Crypto and side-channel attacks
High level: one party is legit, the other isn't

Timing attacks Storage attacks

> D. Page (DES, 2002)

> D. J. Bernstein (AES, 2005)

C. Percival (RSA, 2005)

Osvik et al. (AES, 2005)

Neve and Seifert (AES, 2006)

> B. B. Brumley and R. Hakala (ECDSA, 2009)
Aciigmez et al. (DSA, 2010)

> B. B. Brumley and N. Tuveri (ECDSA, 2011)
Yarom et al. (ECDSA, 2014)

v

v

v

v

v

5/18

Data caching

0 de30ec 7777
1 096324 7777

F 6leff8 7777

Cache-timing attacks

Time access to own data and infers cache hits / misses to
determine victim state that caused the eviction.

6/18

Cache debugging and HW privilege separation

Invasive cache debug

» Direct reads to cache lines and metadata
» Cache footprint profiling

» HW errata or coherency

Access control
» Cannot allow unchecked direct access to cache lines
(exception)
» x86 protection mode: Ring 0/3
» ARM ft. TrustZone: NS-bit

18

Data caching with HW privilege separation

Note priv 0 can evict priv 1 and vice versa.

idx priv tag data

0 1 de30ec 7777
1 0 096324 7777

F 1 61eff8 7777

18

The covert storage channel (1)

Alice (priv 0) wants to send one nibble (0x2) to Bob (priv 1).

Bob pollutes:

1 de30ec 7777
1 096324 7777
1 cebf84 7777

N = O

F 1 6leff8 7777

18

The covert storage channel (2)

Alice does one read to evict one line (0x2):

1 de30ec 7777
1 096324 7777
0 b7d710 7777

N = O

F 1 61eff8 7777

10/18

The covert storage channel (3)

Bob then:
1. Reads from Line 0. No exception.

2. Reads from Line 1. No exception.

3. Reads from Line 2. Exception — receives 0x2.

1 de30ec 7777
1 096324 7777
0 b7d710 7777

N = O

F 1 6leff8 7777

11/18

From cache storage to clean cache-timing traces

1. Read directly from a cache line. A processor exception
indicates M, otherwise H.

2. If M go back to the first step. This requires another query
because the processor exception most like wipes the cache
state and/or triggers a reset.

3. If H continue with the next line.

Example
HMHHHMHHHHHHMHHH

12/18

A practical architecture (1)
SRC: ARM Security Technology documentation

The content of the caches, with regard to the security
state, is dynamic. Any non-locked down cache line can
be evicted to make space for new data, regardless of its
security state. It is possible for a Secure line load to evict
a Non-secure line, and for a Non-secure line load to evict

a Secure line.

13/18

A practical architecture (2)
SRC: ARM Security Technology documentation

Core Processing Logic

Current status: NSTID

Cache an

T Cache Miss: External Load

T Arbiter
Y TLB
Pagetable
[vaA [nsTD}——>] PA [NS | |Wak K
: : : D R
[vaA [nstD}——[PA_ [NS | % & |pecoder
I _ J HIE
[E
! Level 1 Cache
| PA I NS I—’| Line Data | Data Store R
| . PA I Né |—>| Line Data . | Security
Check

14 /18

A practical architecture (3)
SRC: ARM1156T2-S Technical Reference Manual

The purpose of the data cache Tag RAM operation is to:

» read the data cache Tag RAM contents and write into the
Data Cache Debug Register.

» write into the Data Cache Debug Register and write into the
Data Tag RAM.

To read the Data Tag RAM, write CP15 with:

; Data Tag RAM read operation
MCR p15, 3, <Rd>, c15, c2, 0

Transfer data to the Data Cache Debug Register to the core:

; Read Data Cache Debug Register
MRC p15, 3, <Rd>, c15, c0, O

15/18

AES and side-channels

SRC: Jeff Moser

4x4 j"

)(zc;(k X oxnd

log(x-) log(x) +lo
e(x-\l) 3 $or lo
S-Box (SRD)
5RD[°J j(a))
()= r-ml m)

) Th:nk 60.3

515 end 395 (Jito ool

1¥11 0807 (o
ol 11100 o
oov11110

Qo1 02
000t 0 A
10001} 3
11000 ' | |%
l||000‘ 1

Plamkx} in

Fast Mol
A

X -alX) ‘(a«l)O(a,-l)’:lD 00

'73 base

~-00 O --O

I AES (rib Sheet

and for merorizing

J

Inlﬂﬂl !o-mo\

6"‘“ Rows Kew Sh}

M_-x_(olonru'-
n3 2

I
13
3N n,_
132\ a,
1132) [a

16/18

AES cache storage attack simulation
Borrowed cache-timing attack by Neve and Seifert (2006)

1207{|> B
t

o
~ 100 - % B
[92]
9]
g %
5 80 - } B
c
©
2 }
g 60 -]L}L i
~
o
£
£ 40 % -
©
1S
< 20 %%
0 | | iﬂi[it;':%}%%%‘?éﬁ—’f
0 50 100 150 200 250

Queries

17 /18

Conclusion

» Cache debugging mechanisms and hardware-enforced privilege
separation can create covert channels

» Can potentially put crypto keys at risk

» Compared to cache-timing attacks:

» Each “cache miss” costs an additional query
» But the traces themselves are much more accurate

» For ARM ft. TrustZone, attack would be from Normal World
kernel space to Secure World

» Concrete mitigation: implementation defined instructions
» Thanks! Questions?

18/18

	CRYP-T07-Just-A-Little-Bit-More_Final
	Side Channel Attack on OpenSSL ECDSA
	Outline
	ECDSA
	wNAF Form
	Scalar Multiplication with wNAF form
	The Hidden Number Problem [BV96]
	HNP and ECDSA [HGS01,NS03]
	HNP and ECDSA [HGS01,NS03]
	HNP and ECDSA [HGS01,NS03]
	HNP and ECDSA [HGS01,NS03]
	HNP and ECDSA – State of the Art
	Flush+Reload [YF14]
	Outline
	Attacking OpenSSL wNAF
	Sample Trace
	Sample Trace
	Sample Trace
	Using the MSBs
	Using the MSBs
	Using the MSBs
	Observation
	Using all the Information
	Summary
	Results

	CRYP-T07-Cache-Storage-Attacks_Final

