Analyzing Permutations for AES-like Ciphers: Understanding ShiftRows

Christof Beierle¹ Philipp Jovanovic² <u>Martin M. Lauridsen³</u> Gregor Leander¹ Christian Rechberger³

¹Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany

²Fakultät für Informatik und Mathematik, Universität Passau, Germany

³DTU Compute, Technical University of Denmark, Denmark

CT-RSA 2015 San Francisco

- 1. Motivation
- 2. Notation and definitions
- 3. Equivalence results
- 4. Experiments
- 5. Conclusion

 AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...

- AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...
- Crucial: Understanding properties of diffusion and resistance to differential/linear attacks

- AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...
- Crucial: Understanding properties of diffusion and resistance to differential/linear attacks
- MixColumns-like step
 - Well understood: Pick sufficiently high branch number

- AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...
- Crucial: Understanding properties of diffusion and resistance to differential/linear attacks
- MixColumns-like step
 - Well understood: Pick sufficiently high branch number
- ShiftRows-like step:
 - Unclear; no structured approach
 - Choice remains ad-hoc

Our goal

Contribute to the understanding of picking **optimal** ShiftRows-like operations for **generalized** AES-like ciphers

Notation and definitions

AES-like cipher

• State of size $M \times N$ of *m*-bit words

Round t equals

 $R_t = \texttt{AddRoundKey}_t \circ \texttt{Permute}_{\pi_t} \circ \texttt{MixColumns}_t \circ \texttt{SubBytes}_t$

Substitutes each state word according to one or more S-boxes

$$S_{i,j}^t: \mathbb{F}_2^m \to \mathbb{F}_2^m.$$

> Allow independent S-boxes for each word $x_{i,j}$ in each round

- Left-multiplies column j in round t by an $M \times M$ matrix M_j^t over $GF(2^m)$
- > Allow independent M_i^t for each column in each round

- Shuffles state words according to a permutation π_t on $\mathbb{Z}_M \times \mathbb{Z}_N$
- Assume independent permutations π_t in each round
- We say π = (π₀,..., π_{T−1}) is a permutation sequence for the *T*-round AES-like cipher

AES-like cipher: AddRoundKey_t

- \blacktriangleright A round key is added to the state using \oplus in each round
- Does not affect the properties we investigate, thus not considered further!

Difference and activity pattern

Difference

A (non-zero) difference is a value $X \in (\mathbb{F}_2^m)^{M \times N} \setminus \{0\}$

Difference and activity pattern

Difference

A (non-zero) difference is a value $X \in (\mathbb{F}_2^m)^{M \times N} \setminus \{0\}$

Activity pattern

For a difference X, let the **activity pattern** \tilde{X} be defined s.t.

$$\tilde{X}_{i,j} = \begin{cases} 1 & X_{i,j} \neq 0 \\ 0 & X_{i,j} = 0 \end{cases}$$

Difference and activity pattern

Difference

A (non-zero) difference is a value $X \in (\mathbb{F}_2^m)^{M \times N} \setminus \{0\}$

Activity pattern

For a difference X, let the **activity pattern** \tilde{X} be defined s.t.

$$ilde{X}_{i,j} = egin{cases} 1 & X_{i,j}
eq 0 \ 0 & X_{i,j} = 0 \end{cases}$$

for example

Trail

For an AES-like cipher, a T-round **trail** is a (T + 1)-tuple of differences

Trail

For an AES-like cipher, a T-round trail is a (T + 1)-tuple of differences

Trail weight

The trail weight of $X = (X^0, \dots, X^T)$ is defined as

$$\sum_{t=0}^{T-1} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \tilde{X}_{i,j}^{t}$$

Differential branch number

For a linear automorphism $\theta : (\mathbb{F}_2^m)^M \to (\mathbb{F}_2^m)^M$, we define the (differential) **branch number** B_θ as the minimum number of non-zero words, in the input- and output differences $(X \oplus Y)$ respectively $(\theta(X) \oplus \theta(Y))$, when taken across all pairs of inputs $X, Y \in \mathbb{F}_2^m$.

Differential branch number

For a linear automorphism $\theta : (\mathbb{F}_2^m)^M \to (\mathbb{F}_2^m)^M$, we define the (differential) **branch number** B_θ as the minimum number of non-zero words, in the input- and output differences $(X \oplus Y)$ respectively $(\theta(X) \oplus \theta(Y))$, when taken across all pairs of inputs $X, Y \in \mathbb{F}_2^m$.

For an AES-like cipher

The **branch number** for an AES-like cipher is B_{θ} if and only if it is the **minimum of the branch numbers** obtained by left multiplication by any M_j^t .

We are interested in determining

 $\max_{\pi} \min_{\text{trail } X} \textbf{weight}(X)$

for a *T*-round AES-like cipher of dimensions $M \times N$.

We are interested in determining

 $\max_{\pi} \min_{\text{trail } X} \textbf{weight}(X)$

for a *T*-round AES-like cipher of dimensions $M \times N$.

In our modeling of the problem, we consider the following as black-box operations $% \left({{{\rm{D}}_{{\rm{D}}}}_{{\rm{D}}}} \right)$

- SubBytes_t
- MixColumns_t, under the requirement of a specific branch number

Tightly guaranteed active S-boxes

Consider an AES-like cipher with branch number B_{θ} . We say that a permutation sequence π **tightly guarantees** k active S-boxes, denoted $\pi \xrightarrow{B_{\theta}} k$, if and only if, when using π for the Permute operation,

- There exists a valid trail of weight k and
- There is no valid trail of positive weight k' < k.

Tightly guaranteed active S-boxes

Consider an AES-like cipher with branch number B_{θ} . We say that a permutation sequence π **tightly guarantees** k active S-boxes, denoted $\pi \xrightarrow{B_{\theta}} k$, if and only if, when using π for the Permute operation,

- There exists a valid trail of weight k and
- There is no valid trail of positive weight k' < k.

Trail-optimality

A permutation sequence π is said to be **trail-optimal** if and only if there exists no $\pi' \neq \pi$ such that $\pi' \xrightarrow{B_{\theta}} k'$ where k' > k

Equivalences for permutation sequences π

The goal

Classify permutation sequences π incurring the same bound on the trail weight

$$\Pi(k) = \left\{ \pi = (\pi_0, \ldots, \pi_{T-1}) \mid \pi \xrightarrow{B_{\theta}} k \right\},\$$

and thus reducing the search space for a brute-force approach

The goal

Classify permutation sequences π **incurring the same bound** on the trail weight

$$\Pi(k) = \left\{ \pi = (\pi_0, \ldots, \pi_{T-1}) \mid \pi \xrightarrow{B_{\theta}} k \right\},\,$$

and thus reducing the search space for a brute-force approach

Equivalence of permutation sequences

Informally, we say that two permutation sequences π, π' are **equivalent**, denoted $\pi \sim \pi'$, if and only if $\pi \xrightarrow{B_{\theta}} k \Leftrightarrow \pi' \xrightarrow{B_{\theta}} k$

Note: stronger notion of equivalence in paper

Any permutation π_t on the words of an $M \times N$ state can be written as

$$\pi_t = \gamma' \circ \phi \circ \gamma,$$

where γ,γ' permute inside each column and ϕ permutes inside each row

(Thanks to John Steinberger for aiding in this proof)

Let π be a permutation sequence for an AES-like cipher and let γ,γ' be arbitrary permutations inside the columns of the state. Then

$$(\pi_0,\ldots,\pi_t,\ldots,\pi_{T-1})\sim(\pi_0,\ldots,\gamma'\circ\pi_t\circ\gamma,\ldots,\pi_{T-1})$$

holds for all $t = 0, \ldots, T - 1$.

Let π be a permutation sequence for an AES-like cipher and let γ,γ' be arbitrary permutations inside the columns of the state. Then

$$(\pi_0,\ldots,\pi_t,\ldots,\pi_{T-1})\sim(\pi_0,\ldots,\gamma'\circ\pi_t\circ\gamma,\ldots,\pi_{T-1})$$

holds for all $t = 0, \ldots, T - 1$.

Theorem

Given **any** permutation sequence π , one can construct π' s.t.

•
$$\pi \sim \pi'$$
 and

 \blacktriangleright The permutations of π' permute only the words within each row

Let π be a permutation sequence for an AES-like cipher and let γ,γ' be arbitrary permutations inside the columns of the state. Then

$$(\pi_0,\ldots,\pi_t,\ldots,\pi_{T-1})\sim(\pi_0,\ldots,\gamma'\circ\pi_t\circ\gamma,\ldots,\pi_{T-1})$$

holds for all $t = 0, \ldots, T - 1$.

Theorem

Given any permutation sequence π , one can construct π' s.t.

 $\blacktriangleright \ \pi \sim \pi' \text{ and }$

 \blacktriangleright The permutations of π' permute only the words within each row

▶ Search space (per round) reduced from $(M \cdot N)!$ to $(N!)^M$

Rotation matrices

In the following, we restrict ourselves to rotation matrices

- ▶ Permute_{π_t} becomes ShiftRows_{σ_t}
- Much nicer for implementations

Rotation matrices

In the following, we restrict ourselves to rotation matrices

- ▶ Permute_{π_t} becomes ShiftRows_{σ_t}
- Much nicer for implementations

Rotation matrix

A rotation matrix for an an AES-like cipher is a $\rho \times M$ matrix σ over \mathbb{Z}_N ,

$$\sigma = \begin{pmatrix} \sigma_{0,0} & \cdots & \sigma_{0,M-1} \\ \sigma_{1,0} & \cdots & \sigma_{1,M-1} \\ \vdots & \ddots & \vdots \\ \sigma_{\rho-1,0} & \cdots & \sigma_{\rho-1,M-1} \end{pmatrix}$$

Rotate row *j* of the state in round *t* by $\sigma_{i,j}$ where $t \equiv i \mod \rho$

Rotation matrices

In the following, we restrict ourselves to rotation matrices

- ▶ Permute_{π_t} becomes ShiftRows_{σ_t}
- Much nicer for implementations

Rotation matrix

A rotation matrix for an an AES-like cipher is a $\rho \times M$ matrix σ over \mathbb{Z}_N ,

$$\sigma = \begin{pmatrix} \sigma_{0,0} & \cdots & \sigma_{0,M-1} \\ \sigma_{1,0} & \cdots & \sigma_{1,M-1} \\ \vdots & \ddots & \vdots \\ \sigma_{\rho-1,0} & \cdots & \sigma_{\rho-1,M-1} \end{pmatrix}$$

Rotate row j of the state in round t by $\sigma_{i,j}$ where $t \equiv i \mod \rho$

▶ Search space (per round) reduced from $(N!)^M$ to N^M

Consider an AES-like cipher of dimension 3×4 with $\rho = 2$ using

$$\sigma = \left(\begin{array}{rrr} 0 & 3 & 1 \\ 1 & 0 & 2 \end{array}\right)$$
Rotation matrices: Example

Consider an AES-like cipher of dimension 3 \times 4 with ρ = 2 using

$$\sigma = \begin{pmatrix} 0 & 3 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

Rotation matrices: Example

Consider an AES-like cipher of dimension 3 \times 4 with ρ = 2 using

$$\sigma = \begin{pmatrix} 0 & 3 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

Equivalences for rotation matrices σ

Lemma: Re-arranging row entries of σ

Let σ be a rotation matrix and let $\vartheta_0, \ldots, \vartheta_{\rho-1}$ denote permutations on each of the ρ rows of σ . Define $\sigma'_t = \vartheta_t(\sigma_t)$ for all t. Then $\sigma \sim \sigma'$.

Lemma: Re-arranging row entries of σ

Let σ be a rotation matrix and let $\vartheta_0, \ldots, \vartheta_{\rho-1}$ denote permutations on each of the ρ rows of σ . Define $\sigma'_t = \vartheta_t(\sigma_t)$ for all t. Then $\sigma \sim \sigma'$.

Lemma: Row-wise constant addition

Let σ be a rotation matrix and let $c_0, \ldots, c_{\rho-1} \in \mathbb{Z}_N$. Define $\sigma'_t = \sigma_t + c_t \mod N$ for all t. Then $\sigma \sim \sigma'$.

Theorem: Equivalences

Let σ be any rotation matrix. Then there exists an equivalent rotation matrix $\sigma', \, {\rm s.t.}$

- 1. Each row σ'_t is ordered lexicographically
- 2. Each $\sigma'_{t,0} = 0$, i.e. 1st element in each row is zero
- 3. $\sigma'_{t,1} \leq N/2$ for all t, i.e. 2nd element in each row is $\leq N/2$

Theorem: Equivalences

Let σ be any rotation matrix. Then there exists an equivalent rotation matrix $\sigma', \, {\rm s.t.}$

- 1. Each row σ'_t is ordered lexicographically
- 2. Each $\sigma'_{t,0} = 0$, i.e. 1st element in each row is zero
- 3. $\sigma'_{t,1} \leq N/2$ for all t, i.e. 2nd element in each row is $\leq N/2$

Normal form

We define the **rotation matrix normal form** to satisfy 1-3, and heuristically also require that

- When N is even, σ' should have at least one odd entry
- The elements in each row σ'_t are **distinct**

► Search space (for full
$$\sigma$$
) reduced to $\left[\frac{N}{2} \cdot {\binom{N/2}{M-2}}\right]^{\rho}$

Experiments

Goal

Determine **optimal rotation matrices** σ for a range of parameters (M, N, T, ρ)

Goal

Determine **optimal rotation matrices** σ for a range of parameters (M, N, T, ρ)

Approach

Given a fixed rotation matrix σ , we

- ▶ Focus on the MDS case, i.e. $B_{\theta} = M + 1$
- ▶ Formulate a MIP problem of determining k s.t. $\sigma \xrightarrow{M+1} k$
- Combine brute-forcing the normal forms with solving the MIP model using CPLEX

Rounds	Rijndael-192	Rijndael-256	PRIMATEs-80	Prøst-256							
5	_	_	54/56	_							
6	42/45	50/55	_	85/90 [†] 96/111 [†] —							
7	46/48	_	—								
8	50/57	_	—								
10	—	85/90	—	_							
12	87/90	105/111	_	_							
	Increased ρ from 1 to 2										

- Many more results in paper
- † Searched only among diffusion-optimal solutions

Conclusion and open problems

What we did

- Took steps to analyze the problem of picking the best permutation for AES-like ciphers
- Focus on rotations as in ShiftRows due to implementation characteristics
- Reduced to normal form and combined with optimization using MIP
- Improve parameters for some existing designs

Conclusion and open problems

What we did

- Took steps to analyze the problem of picking the best permutation for AES-like ciphers
- Focus on rotations as in ShiftRows due to implementation characteristics
- ▶ Reduced to normal form and combined with optimization using MIP
- Improve parameters for some existing designs

Open problems

- Formulating optimization problem with trail-optimal σ as decision variable (bi-level optimization)
- > Analysis w.r.t. combining diffusion-optimality with trail-optimality

Thanks for you attention

Questions?

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

SESSION ID: CRYP-T08

CHANGE

Challenge today's security thinking

RSAC

Improved Attacks on Reduced-Round Camellia-128/192/256

Xiaoyang Dong¹, Leibo Ii¹, Keting Jia² and Xiaoyun Wang^{1,3*}

¹Key Lab of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, China, Ph.D Student ²Department of Computer and Technology, Tsinghua University ³Institute for Advanced Study, Tsinghua University

Outline

- Introduction
 - Description of Camellia
- Key-Dependent Attacks
 - Key-dependent 8-round differentials
 - Key-dependent multiple differential attack for 10-round Camellia-128
- Meet-in-the-Middle Attacks
 - New 7-round property and 12-round attack for Camellia-192
 - New 8-round property and 13-round attack for Camellia-256

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Description of Camellia

#RSAC

Description of Camellia

- In 2000, Proposed by NTT and Mitsubishi.
- Adopted as an international standard ISO/IEC 18033-3, NESSIE block cipher portfolio, as well as an e-Government recommended cipher by CRYPTREC project
- Basic Information
 - Block Size: 128
 - Key Sizes: 128/192/256(denoted as Camellia-128/192/256)
 - Number of Rounds: 18/24/24 for Camellia-128/192/256

Structure: Feistel structure with key-dependent FL layers

Description of Camellia

5

RSAConference2015

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Key-Dependent Attacks

80

Key-dependent truncated differentials

4-Round Truncated Differentials with probability 2⁻⁵⁶

Active S-boxes: $0 \rightarrow 2 \rightarrow 7 \rightarrow 2$									
Case-1	Case-2	Case-3	Case-4						
(00000000, **000000)	(00000000, 0 * *00000)	(00000000, *00 * 0000)	(00000000, 00 * *0000)						
(**000000,00000000)	(0 * *00000, 00000000)	(*00*0000,00000000)	(00 * *0000, 00000000)						
(* * * * * * *0*, * * 000000)	(*****0, 0**00000)	(* * * * * 0 * *, *00 * 0000)	(* * * * 0 * **, 00 * *0000)						
(* * 000000, * * * * * * 0*)	(0 * *00000, * * * * * * * 0)	(*00*0000, *****0**)	(00 * *0000, * * * * 0 * **)						
(00000000, **000000)	(00000000, 0 * *00000)	(00000000, *00 * 0000)	(0000000, 00 * *0000)						

Key-dependent truncated differentials

Key subsets

i	(c_{1}^{i}, c_{2}^{i})	i	(c_{1}^{i}, c_{2}^{i})	i	(c_{1}^{i}, c_{2}^{i})	i	(c_{1}^{i}, c_{2}^{i})	i	$(c_{\gamma}^{i})^{i}$		1 i is	1.	1 1 1		<u>(i i</u>)		
1	01,02	8	02,01	15	04,01	22	08,01	29	10					,	, 1		
2	01, 04	9	02,04	16	04, 02	23	08,02	30	There are 56 such (c_1, c_2) .								
3	01,08	10	02,08	17	04,08	24	08,04	31	10	17							
4	01,10	11	02, 10	18	04, 10	25	08, 10	32	10,08		20,08	46	40,08	53	80,08		
5	01, 20	12	02, 20	19	04, 20	26	08, 20	33	10, 20	40	20, 10	47	40, 10	54	80, 10		
6	01, 40	13	02, 40	20	04, 40	27	08, 40	34	10, 40	41	20, 40	48	40, 20	55	80, 20		
7	01, 80	14	02, 80	21	04, 80	28	08, 80	35	10, 80	42	20, 80	49	40, 80	56	80, 40		

 $KDset_{i}^{1} = \{K | kf_{2L} = (\neg c_{1}^{i} \land *, \neg c_{2}^{i} \land *, *, *), * \in F_{2}^{8}\},\$

 $KDset_{i}^{2} = \{K | kf_{2L} = (*, \neg c_{1}^{i} \land *, \neg c_{2}^{i} \land *, *), * \in F_{2}^{8}\},\$

 $KDset_{i}^{3} = \{K | kf_{2L} = (\neg c_{1}^{i} \land *, *, *, \neg c_{2}^{i} \land *), * \in F_{2}^{8}\},\$

56 pairs of (c₁,c₂);
4 cases differentials.
Produce 224 key
Dependent differentials.

Produce 224 key subsets as well. And denote the other keys as *RK*set

 $et_{\lambda}^{4} = \{K | kf_{2L} = (*, *, \neg c_{1}^{i} \land *, \neg c_{2}^{i} \land *), * \in F_{2}^{8}\}.$

Key-dependent 8-round differentials

- We launch an example attack
- Choose 8-round differentials that
 - **c**₁=0x08,c₂=0x10
 - Cover KDset¹₃₂

Append 2 rounds on the

bottom

Data collection:

> Structure: $L_0 = (\alpha_1, x_1, x_2, \alpha_1, x_3, \alpha_1, x_4, \alpha_1)$ and

 $R_0 = P(\alpha_2, x_5, x_6, \alpha_3, x_7, \alpha_4, x_8, \alpha_5) \oplus (\alpha_6, \alpha_7, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14})$, where x_i are constant, α_j take all values.

- > Encrypt to get 2⁵⁶ ciphertext C, store them indexed by $P^{-1}(C_L)[1,4,6,8]$,
- Construct pairs by choosing C indexed by P⁻¹(C_L)[1,4,6,8] and C' indexed by P⁻¹(C_L)[1,4,6,8]⊕P⁻¹(0x08,0x10,0,0,0,0,0,0)[1,4,6,8].
- > Choose 2^{33} structures, $2^{33+111-32}=2^{112}$ pairs constructed.
- Delete the pairs whose input difference do not belong to ΔINset, and about 2⁹³ pairs left

Key Guessing

- For each pair and each possible ΔR_9 , do
- A. Deduce 64-bit key $kw_3 \oplus k_{10}$
- B. Deduce 32-bit key $kw_4 \oplus k_9 [1,4,6,8]$
- c. Increase the counter of 96-bit subkey " $kw_3 \oplus k_{10}$, $(kw_4 \oplus k_9)[1,4,6,8]$ "
- If the right key recovered, then terminate the attack;
- Else replace the attack by choosing other 8-round differentials.

13

Search the *Rk*set to find the right key.

- 99.99% of Key Space
 - Data: 2⁹¹ CP
 - Time: 2^{104.5} ENC
 - Memory: 2⁹⁶ Bytes
- Full Key Space
 - Data: 2⁹¹ CP
 - Time: 2¹¹³ ENC
 - Memory: 2⁹⁶ Bytes

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Meet-in-the-Middle Attacks

#RSAC

Meet-in-the-Middle Attacks

- Idea borrowed from Dunkelman etc.and Derbez-Selçuk's attacks on AES
 - δ-set
 - Multiset

#RSAC

New 7-round property for Camellia-192

17

- 7-round property
 - R₂[1] is the active byte
 - Multiset of (*P*⁻¹(ΔL₈))[6] only takes about 2¹²⁸ values
 - $\Delta X_4[1] || \Delta Y_4[1] || \Delta Y_5[1,2,3,5,8]$ $|| \Delta X_8[1] || \Delta Y_8[1] || X_7[7] || X_8[6] || kf_1$ where...

Proof of 7-round property

- Obviously, Multiset of $(P^{-1}(\Delta L_8))[6]$ is determinted by 36-byte value
 - $X_4[1]||X_5[1,2,3,5,8]||X_6||kf_1||kf_2||X_7[2,3,5,7,8]||X_8[6]$
- If a pair comforms to the truncated differential, then
 - 18-byte "X₄[1]||X₅[1,2,3,5,8]||X₆||X₇[2,3,5,7,8]" determined by 9-byte "ΔX₄[1]||ΔY₄[1]||ΔY₅[1,2,3,5,8]||ΔX₈[1]||ΔY₈[1]" and 128-bit "kf₁||kf₂"
 - $Pr(\Delta Y_7[4,6,7]=0)=2^{-24}$ and
 - $\Box \Delta Y_7 = P^{-1}(FL^{-1}(P(\Delta Y_5) \oplus \Delta L_3)) \oplus P^{-1}(\Delta L_7)$

Only has 64-bit information for Camellia-192

#RSAC

• So there are 2^{128} values for multiset of $(P^{-1}(\Delta L_8))[6]$

12-round attack for Camellia-192

- Add two round on the top
- Three round on the bottom

12-round attack for Camellia-192

- Precomputation Phase
 - Get 2¹²⁸ possible values for multiset of $(P^{-1}(\Delta L_8))[6]$ stored in \mathcal{H}
- Online Phase
 - Data collection
 - > Structure: each contains 2⁵⁶ plaintexts

 $L0 = (\alpha, \alpha \oplus x_1, \alpha \oplus x_2, x_3, \alpha \oplus x_4, x_5, x_6, \alpha \oplus x_7) \text{ and}$ $R0 = R(R, R, R, R, \alpha \oplus x_2, x_3, \alpha \oplus x_4, x_5, x_6, \alpha \oplus x_7) \text{ and}$

 $R0 = P(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, y_1, y_2, \beta_6)$, where xi(i = 1, ..., 7), y_1, y_2 are constant, $\alpha, \beta j (j = 1, ..., 6)$ take all values.

Choose 2⁵⁷ structure, $2^{57+111-16} = 2^{152}$ pairs satisfy $P^{-1}(\Delta R_{12})[6,7] = 0$

12-round attack for Camellia-192

Key Guessing to find a pair conforming to the truncated differential

- A. For l = 2,3,4,5,6,7,8, guess $k'_{12}[l]$ one by one, paritially decrypt, use $\Delta Y_{11}[l] = P(\Delta L_{12}[l])$ to filter and $2^{152-7\times8} = 2^{96}$ pairs left.
- B. For l = 2,3,5,8, guess $k'_{11}[l]$, paritially decrypt, use $\Delta Y_{11}[l] = P^{-1}(\Delta R_{12})[l] \oplus P^{-1}(\Delta R_{12})[4]$ to filter. Then guess $k_{11}'[1]$ and keep the $\Delta Y_{11}[1] = P^{-1}(\Delta R_{12})[1]$ hold. $2^{96-40} = 2^{56}$ pairs remain.
- c. For l = 1,2,3,5,8, guess $k'_1[l]$, make $\Delta Y_1[1] = P^{-1}(\Delta R_0)[1]$ and $\Delta Y_1[l] = P^{-1}(\Delta R_0)[l] \oplus P^{-1}(\Delta R_0)[4]$ hold. 2¹⁶ pairs remain.

#RSAC

12-round attack for Camellia-192

- Construct δ-set for every remaining pair
 - A. Deduce $X_2[1]||Y_2[1]$ by difference distribution table of s_1
 - B. For pair $(L_0||R_0, L'_0||R'_0)$, corresponding to $(X_2[1], X'2[1])$, change X'2[1] to a different $X''_2[1]$, compute $\Delta Y'_2[1]$, get the difference $\Delta L'_0[1,2,3,5,8]$. Get $L''_0 = L_0 \bigoplus \Delta L'_0$.
 - c. Compute $\Delta Y'_1[1,2,3,5,8]$ by the guessed key $k'_1[1,2,3,5,8]$, obtain $\Delta R'$ othen get $R''_0 = R_0 \bigoplus \Delta R'_0$
 - D. Get δ-set.

- For each δ-set under 144-bit key guesses
 - Compute $Y_{11}[2,3,5,8]$, $P^{-1}(L_{10})[6]$ for every (P, C) pair.
 - Guess $k'_{11}[7]$ to compute $X_{10}[6]$.
 - Guess $k'_{10}[6]$ to compute the multiset of $P^{-1}(\Delta L_8)[6]$
 - Check the multiset belongs to \mathcal{H} or not, the wrong value could pass the check with $Pr = 2^{128} \times 2^{-467.6} = 2^{-339.6}$.

- Full Key Space
 - Data: 2¹¹³ CP
 - Time: 2¹⁸⁰ ENC
 - Memory: 2¹⁵⁸ Bytes

New 8-round property for Camellia-256

- 8-round property
 - *L*₁₂[5] is active
 - Multiset of bytes(P⁻¹(ΔL₄))[1]
 Only take 2²²⁵ values
- Determined by the 225-bit:
 ΔX₁₁[5]||ΔY₁₁[5]||ΔY₁₀[2,3,4,6,7,8]||
 ΔY₉||ΔX₆[1]||ΔY₆[1]||kf₁||kf_{2L}[1]||
 kf_{2R}[1]||kf_{2L}{9}

Proof of 8-round property

• Multiset of $(P^{-1}(\Delta L_8))[6]$ is determinted by 321-bit value

- $X_{11}[5]||X_{10}[2,3,4,6,7,8]||X_9||X_8||X_7||kf_1{9-33,42-64}||kf_{2L}[1]||kf_{2R}[1]||kf_{2L}[9]||X_6[1]|$
- If a pair comforms to the 8-round truncated differential, then
 - 312-bit " $\Delta X_{11}[5] || \Delta X_{10}[2,3,4,6,7,8] || X_9 || X_8 || X_7 || X_6[1] || kf_1 {9-33,42-64} || kf_{2L}[1]" determined by 216-bit "<math>\Delta X_{11}[5] || \Delta Y_{11}[5] || \Delta Y_{10}[2,3,4,6,7,8] || \Delta Y_9 || \Delta X_6[1] || \Delta Y_6[1] || kf_1 || kf_{2L}[1]"$
 - kf2R[1]||kf2L{9} are also needed to compute Multiset of $(P^{-1}(\Delta L_8))$ [6]

- Add 4 rounds on the top
 1 rounds on the bottom
 - 1 rounds on the bottom

Precomputation Phase

- Compute 2^{225} values of multiset store them in hash table \mathcal{H} .
- Online Phase
 - Data collection
 - > Structure: each contains 2³² ciphertexts

$$L_{13} = (\alpha_1, x_1, x_2, x_3, \alpha_2, x_4, x_5, x_6)$$
 and

 $R_{13} = P(\beta_1, y_1, y_2, y_3, \beta_2, y_4, y_5, y_6)$, where $x_i, yi(i = 1, ..., 6)$ are constant, $\alpha_j, \beta_j (j = 1, 2)$ take all values. Decrypt to get the plaintexts.

Choose 2⁸¹ structure to get 2¹⁴⁴ pairs

13-round attack for Camellia-256

Key Guessing to find a pair conforming to the truncated differential

- A. Guess k'_1 , compute $P^{-1}(\Delta L_1)$, eliminate pairs that do not satisy $P^{-1}(\Delta L_1)[6,7] = 0, 2^{144-16} = 2^{128}$ pairs left.
- B. For l = 2,3,4,6,7,8, guess $k'_2[l]$, paritially encrypt, make $\Delta Y_2[l] = P^{-1}(\Delta L_0)[l]$ hold. Then guess $k'_2[1]$ to compute $L_2 \cdot 2^{128-7*8} = 2^{72}$ pairs remain.
- c. For l = 2,3,5,8, guess $k'_3[l]$, make $\Delta Y_3[1] = P^{-1}(\Delta L_1)[l] \oplus P^{-1}(\Delta L_1)[4]$ Then guess $k_3'[1]$ and keep the pairs satisfy $\Delta Y_3[1] = P^{-1}(\Delta L_1)[1]$. 2^{32} pairs left for every 168-bit key guess.

- Key Guessing to find a pair conforming to the truncated differential
 - D. For l = 1,5, guess $k'_{13}[l]$, partially decrypt, make $\Delta Y_{13}[l] = P^{-1}(\Delta L_{13})[l]$ hold. Then guess $kf_{3R}[1]$ to compute $\Delta L_{12}^{*}[1]$ and delete the pairs when $\Delta L_{12}^{*}[1] \neq 0.2^{8}$ pairs remain.
 - E. Compute the value L_3 by guessing k'_3 [4,6,7] and deduce k'_4 [1] for each pair.
- Construct δ -set for each pair, and compute the corresponding multiset to check it whether belongs to \mathcal{H} , and recover the right

- Full Key Space
 - Data: 2¹¹³ CC
 - Time: 2^{232.7} ENC
 - Memory: 2²³¹ Bytes

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

That is all

80

Thank you!