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Motivation

Current status

I AES-like designs are very frequent in practice:
LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ,
PRIMATEs, Prøst, STRIBOB, ...

I Crucial: Understanding properties of diffusion and resistance to
differential/linear attacks

I MixColumns-like step
I Well understood: Pick sufficiently high branch number

I ShiftRows-like step:
I Unclear; no structured approach
I Choice remains ad-hoc
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Motivation

Our goal

Contribute to the understanding of picking optimal ShiftRows-like
operations for generalized AES-like ciphers

4 / 29



Notation and definitions



AES-like cipher

I State of size M × N of m-bit words

...
...

...
...

· · ·

· · ·

· · ·

· · ·

. . .

M

N

I Round t equals

Rt = AddRoundKeyt ◦ Permuteπt ◦ MixColumnst ◦ SubBytest
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AES-like cipher: SubBytest

x SubBytest
S(x)

I Substitutes each state word according to one or more S-boxes

S t
i,j : Fm

2 → Fm
2 .

I Allow independent S-boxes for each word xi,j in each round
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AES-like cipher: MixColumnst

MixColumnst

I Left-multiplies column j in round t by an M ×M matrix M t
j over

GF (2m)

I Allow independent M t
j for each column in each round

8 / 29



AES-like cipher: Permuteπt

Permuteπt

I Shuffles state words according to a permutation πt on ZM × ZN

I Assume independent permutations πt in each round

I We say π = (π0, . . . , πT−1) is a permutation sequence for the
T -round AES-like cipher

Our focus in this work:

optimize the choice of π

9 / 29



AES-like cipher: Permuteπt

Permuteπt

I Shuffles state words according to a permutation πt on ZM × ZN

I Assume independent permutations πt in each round

I We say π = (π0, . . . , πT−1) is a permutation sequence for the
T -round AES-like cipher

Our focus in this work:

optimize the choice of π

9 / 29



AES-like cipher: AddRoundKeyt

x

SubBytest
MixColumnst
Permuteπt

Kt Rt(x)

I A round key is added to the state using ⊕ in each round

I Does not affect the properties we investigate, thus not considered
further!
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Difference and activity pattern

Difference

A (non-zero) difference is a value X ∈ (Fm
2 )M×N\{0}

Activity pattern

For a difference X , let the activity pattern X̃ be defined s.t.

X̃i,j =

{
1 Xi,j 6= 0

0 Xi,j = 0
,

for example

F2 00 24

00 00 CA

X

1 0 1

0 0 1

X̃
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Trails

Trail

For an AES-like cipher, a T -round trail is a (T + 1)-tuple of differences

Trail weight

The trail weight of X = (X 0, . . . ,XT ) is defined as

T−1∑
t=0

M−1∑
i=0

N−1∑
j=0

X̃ t
i,j
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Branch number

Differential branch number

For a linear automorphism θ : (Fm
2 )M → (Fm

2 )M , we define the
(differential) branch number Bθ as the minimum number of non-zero
words, in the input- and output differences (X ⊕ Y ) respectively
(θ(X )⊕ θ(Y )), when taken across all pairs of inputs X ,Y ∈ Fm

2 .

For an AES-like cipher

The branch number for an AES-like cipher is Bθ if and only if it is the
minimum of the branch numbers obtained by left multiplication by
any M t

j .
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Problem modeling

We are interested in determining

max
π

min
trail X

weight(X )

for a T -round AES-like cipher of dimensions M × N.

In our modeling of the problem, we consider the following as black-box
operations

I SubBytest
I MixColumnst , under the requirement of a specific branch number
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Bounds and trail-optimality

Tightly guaranteed active S-boxes

Consider an AES-like cipher with branch number Bθ. We say that a
permutation sequence π tightly guarantees k active S-boxes, denoted

π
Bθ−→ k, if and only if, when using π for the Permute operation,

I There exists a valid trail of weight k and

I There is no valid trail of positive weight k ′ < k .

Trail-optimality

A permutation sequence π is said to be trail-optimal if and only if there

exists no π′ 6= π such that π′
Bθ−→ k ′ where k ′ > k

15 / 29



Bounds and trail-optimality

Tightly guaranteed active S-boxes

Consider an AES-like cipher with branch number Bθ. We say that a
permutation sequence π tightly guarantees k active S-boxes, denoted

π
Bθ−→ k, if and only if, when using π for the Permute operation,

I There exists a valid trail of weight k and

I There is no valid trail of positive weight k ′ < k .

Trail-optimality

A permutation sequence π is said to be trail-optimal if and only if there

exists no π′ 6= π such that π′
Bθ−→ k ′ where k ′ > k

15 / 29



Equivalences for

permutation sequences π



Defining equivalence

The goal

Classify permutation sequences π incurring the same bound on the
trail weight

Π(k) =
{
π = (π0, . . . , πT−1) | π Bθ−→ k

}
,

and thus reducing the search space for a brute-force approach

Equivalence of permutation sequences

Informally, we say that two permutation sequences π, π′ are equivalent,

denoted π ∼ π′, if and only if π
Bθ−→ k ⇔ π′

Bθ−→ k

I Note: stronger notion of equivalence in paper
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Structure of a state permutation

Lemma

Any permutation πt on the words of an M × N state can be written as

πt = γ′ ◦ φ ◦ γ,

where γ, γ′ permute inside each column and φ permutes inside each row

πt =

γ′

◦

φ

◦

γ

(Thanks to John Steinberger for aiding in this proof)
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Reduction to permuting in the rows

Lemma

Let π be a permutation sequence for an AES-like cipher and let γ, γ′ be
arbitrary permutations inside the columns of the state. Then

(π0, . . . , πt , . . . , πT−1) ∼ (π0, . . . , γ
′◦πt◦γ, . . . , πT−1)

holds for all t = 0, . . . ,T − 1.

Theorem

Given any permutation sequence π, one can construct π′ s.t.

I π ∼ π′ and

I The permutations of π′ permute only the words within each row

I Search space (per round) reduced from (M · N)! to (N!)M
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Rotation matrices

In the following, we restrict ourselves to rotation matrices

I Permuteπt becomes ShiftRowsσt

I Much nicer for implementations

Rotation matrix

A rotation matrix for an an AES-like cipher is a ρ×M matrix σ over
ZN ,

σ =


σ0,0 · · · σ0,M−1
σ1,0 · · · σ1,M−1

...
. . .

...
σρ−1,0 · · · σρ−1,M−1


Rotate row j of the state in round t by σi,j where t ≡ i mod ρ

I Search space (per round) reduced from (N!)M to NM
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Rotation matrices: Example

Consider an AES-like cipher of dimension 3× 4 with ρ = 2 using

σ =

(
0 3 1
1 0 2

)

When t is even
ShiftRowsσ0

When t is odd
ShiftRowsσ1
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Equivalences for

rotation matrices σ



Equivalences for rotation matrices

Lemma: Re-arranging row entries of σ

Let σ be a rotation matrix and let ϑ0, . . . , ϑρ−1 denote permutations on
each of the ρ rows of σ. Define σ′t = ϑt(σt) for all t. Then σ ∼ σ′.

Lemma: Row-wise constant addition

Let σ be a rotation matrix and let c0, . . . , cρ−1 ∈ ZN . Define
σ′t = σt + ct mod N for all t. Then σ ∼ σ′.
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Rotation matrix normalized form

Theorem: Equivalences

Let σ be any rotation matrix. Then there exists an equivalent rotation
matrix σ′, s.t.

1. Each row σ′t is ordered lexicographically

2. Each σ′t,0 = 0, i.e. 1st element in each row is zero

3. σ′t,1 ≤ N/2 for all t, i.e. 2nd element in each row is ≤ N/2

Normal form

We define the rotation matrix normal form to satisfy 1-3, and
heuristically also require that

I When N is even, σ′ should have at least one odd entry

I The elements in each row σ′t are distinct

I Search space (for full σ) reduced to
[
N
2 ·
(
N/2
M−2

)]ρ

24 / 29



Rotation matrix normalized form

Theorem: Equivalences

Let σ be any rotation matrix. Then there exists an equivalent rotation
matrix σ′, s.t.

1. Each row σ′t is ordered lexicographically

2. Each σ′t,0 = 0, i.e. 1st element in each row is zero

3. σ′t,1 ≤ N/2 for all t, i.e. 2nd element in each row is ≤ N/2

Normal form

We define the rotation matrix normal form to satisfy 1-3, and
heuristically also require that

I When N is even, σ′ should have at least one odd entry

I The elements in each row σ′t are distinct

I Search space (for full σ) reduced to
[
N
2 ·
(
N/2
M−2

)]ρ
24 / 29



Experiments



Experiments

Goal

Determine optimal rotation matrices σ for a range of parameters
(M,N,T , ρ)

Approach

Given a fixed rotation matrix σ, we

I Focus on the MDS case, i.e. Bθ = M + 1

I Formulate a MIP problem of determining k s.t. σ
M+1−−−→ k

I Combine brute-forcing the normal forms with solving the MIP
model using CPLEX

26 / 29
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Findings

Rounds Rijndael-192 Rijndael-256 PRIMATEs-80 Prøst-256

5 − − 54/56 −
6 42/45 50/55 − 85/90†

7 46/48 − − 96/111†

8 50/57 − − −
10 − 85/90 − −
12 87/90 105/111 − −

Increased ρ from 1 to 2

I Many more results in paper

I † Searched only among diffusion-optimal solutions
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Conclusion and open problems

What we did

I Took steps to analyze the problem of picking the best permutation
for AES-like ciphers

I Focus on rotations as in ShiftRows due to implementation
characteristics

I Reduced to normal form and combined with optimization using MIP

I Improve parameters for some existing designs

Open problems

I Formulating optimization problem with trail-optimal σ as decision
variable (bi-level optimization)

I Analysis w.r.t. combining diffusion-optimality with trail-optimality
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Thanks for you attention

Questions?
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Description of Camellia

 In 2000, Proposed by NTT and Mitsubishi.

 Adopted as an international standard ISO/IEC 18033-3, NESSIE block 
cipher portfolio, as well as an e-Government recommended cipher by 
CRYPTREC project

 Basic Information
 Block Size: 128
 Key Sizes: 128/192/256(denoted as Camellia-128/192/256)
 Number of Rounds: 18/24/24 for Camellia-128/192/256
 Structure: Feistel structure with key-dependent FL layers

4
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Description of Camellia
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Key-dependent truncated differentials

 4-Round Truncated Differentials with probability 2-56

7
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Key-dependent truncated differentials

If we choose Some fixed value, 
like c1=0x40,c2=0x80 

kf2L{2}=0,kf2L{9}=0
correspondingly

1. Choose some value 
for c1,c2

2. Choose a key subset 
correspondingly

3. Output difference 
determined

Output difference can be 
determined with       

Pr=2-40×2-16×2-16 =2-72

Pr=2-40

Pr=2-16

8
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Key subsets

There are 56 such (c1,c2).
56 pairs of (c1,c2);
4 cases differentials.
Produce 224 key
Dependent differentials.

Produce 224 key subsets
as well.

And denote the other keys
as RKset

9
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Key-dependent 8-round differentials

4-round key-
dependent 
truncated 

differential with 
FL/FL-1 layer

Extend 
two rounds

Append
two rounds

About 237 input 
differences compose 

the Δ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

About26 output 
differences compose 

the Δ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

Produce 237+6 8-
round differentials 

with Pr=2-126

10
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Key-dependent attack on10-round Camellia-128 

 We launch an example attack

 Choose 8-round differentials that
 c1=0x08,c2=0x10 
 Cover KDset132

 Append 2 rounds on the 

bottom

11
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Key-dependent attack on10-round Camellia-128 

 Data collection:
 Structure:𝐿𝐿0 = (𝛼𝛼1, 𝑥𝑥1, 𝑥𝑥2, 𝛼𝛼1, 𝑥𝑥3, 𝛼𝛼1, 𝑥𝑥4, 𝛼𝛼1) and
𝑅𝑅0 = 𝑃𝑃(𝛼𝛼2, 𝑥𝑥5, 𝑥𝑥6, 𝛼𝛼3, 𝑥𝑥7, 𝛼𝛼4, 𝑥𝑥8, 𝛼𝛼5)⨁(𝛼𝛼6, 𝛼𝛼7, 𝑥𝑥9, 𝑥𝑥10, 𝑥𝑥11, 𝑥𝑥12, 𝑥𝑥13, 𝑥𝑥14), where 
𝑥𝑥𝑖𝑖 are constant, 𝛼𝛼𝑗𝑗 take all values.
 Encrypt to get 256  ciphertext C, store them indexed by  𝑃𝑃−1 𝐶𝐶𝐿𝐿 1,4,6,8 , 
 Construct pairs by choosing C indexed by 𝑃𝑃−1 𝐶𝐶𝐿𝐿 1,4,6,8 and C’ 

indexed by 𝑃𝑃−1 𝐶𝐶𝐿𝐿 1,4,6,8 ⨁𝑃𝑃−1 0𝑥𝑥𝑥𝑥,0𝑥𝑥𝑥𝑥,0,0,0,0,0,0 1,4,6,8 .
 Choose 233 structures, 233+111-32=2112 pairs constructed.
 Delete the pairs whose input difference do not belong to Δ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, and 

about 293 pairs left

12
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Key-dependent attack on10-round Camellia-128 

 Key Guessing
 For each pair and each possible Δ𝑅𝑅9, do
A. Deduce 64-bit key 𝑘𝑘𝑘𝑘3⨁𝑘𝑘10

B. Deduce 32-bit key 𝑘𝑘𝑘𝑘4⨁𝑘𝑘9[1,4,6,8]
C. Increase the counter of 96-bit subkey “𝑘𝑘𝑘𝑘3⨁𝑘𝑘10, 𝑘𝑘𝑘𝑘4⨁𝑘𝑘9 [1,4,6,8]”

 If the right key recovered, then terminate the attack;

 Else replace the attack by choosing other 8-round differentials.

 Search the Rkset to find the right key.

13
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Key-dependent attack on10-round Camellia-128 

 99.99% of Key Space
 Data: 291 CP
 Time: 2104.5 ENC
 Memory: 296 Bytes

 Full Key Space
 Data: 291 CP
 Time: 2113 ENC
 Memory: 296 Bytes

14



#RSAC
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Meet-in-the-Middle Attacks

 Idea borrowed from Dunkelman etc.and Derbez-Selçuk’s attacks 
on AES
 δ-set
 Multiset

16
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New 7-round property for Camellia-192

 7-round property
 R2[1] is the active byte
 Multiset of (P-1(ΔL8))[6] only 

takes about 2128 values
 ΔX4[1]|| ΔY4[1] || ΔY5[1,2,3,5,8]

|| ΔX8[1] || ΔY8[1] || X7[7] ||X8[6]||kf1
where…

17
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Proof of 7-round property

 Obviously, Multiset of (P-1(ΔL8))[6] is determinted by 36-byte value
 X4[1]||X5[1,2,3,5,8]||X6||kf1||kf2||X7[2,3,5,7,8]||X8[6]

 If a pair comforms to the truncated differential, then 
 18-byte “X4[1]||X5[1,2,3,5,8]||X6||X7[2,3,5,7,8]” determined by 9-byte 

“ΔX4[1]||ΔY4[1]||ΔY5[1,2,3,5,8]||ΔX8[1]||ΔY8[1]” and 128-bit “kf1||kf2”
 Pr(ΔY7[4,6,7]=0)=2-24 and
 ΔY7=P-1(FL-1(P(ΔY5)⨁ΔL3))⨁P-1(ΔL7)

 So there are 2128 values for multiset of (P-1(ΔL8))[6] 

Only has 64-bit information 
for Camellia-192
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12-round attack for Camellia-192

 Add two round on the top

 Three round on the bottom

19
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12-round attack for Camellia-192

 Precomputation Phase
 Get 2128 possible values for multiset of (P-1(ΔL8))[6] stored in ℋ

 Online Phase
 Data collection

 Structure: each contains 256 plaintexts
𝐿𝐿𝐿 = (𝛼𝛼, 𝛼𝛼 ⊕ 𝑥𝑥1, 𝛼𝛼 ⊕ 𝑥𝑥2, 𝑥𝑥3, 𝛼𝛼 ⊕ 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝛼𝛼 ⊕ 𝑥𝑥7) and
𝑅𝑅𝑅 = 𝑃𝑃(𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3, 𝛽𝛽4, 𝛽𝛽5, 𝑦𝑦1, 𝑦𝑦2, 𝛽𝛽6), where 𝑥𝑥𝑥𝑥 𝑖𝑖 = 1, … , 7 , 𝑦𝑦1, 𝑦𝑦2 are constant, 
𝛼𝛼, 𝛽𝛽𝑗𝑗 𝑗𝑗 = 1, … , 6 take all values.
 Choose 257 structure,257+111-16=2152 pairs satisfy 𝑃𝑃−1 Δ𝑅𝑅12 6,7 = 0

20
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12-round attack for Camellia-192

 Key Guessing to find a pair conforming to the truncated differential
A. For 𝑙𝑙 = 2,3,4,5,6,7,8, guess 𝑘𝑘𝑘12 𝑙𝑙 one by one, paritially decrypt, use 

Δ𝑌𝑌11 𝑙𝑙 = 𝑃𝑃(Δ𝐿𝐿12[𝑙𝑙]) to filter and 2152−7×8= 296 pairs left.

B. For 𝑙𝑙 = 2,3,5,8, guess 𝑘𝑘𝑘11 𝑙𝑙 , paritially decrypt, use Δ𝑌𝑌11 𝑙𝑙 =
𝑃𝑃−1 Δ𝑅𝑅12 𝑙𝑙 ⨁𝑃𝑃−1(Δ𝑅𝑅12)[4] to filter. Then guess 𝑘𝑘11

′ 1 and keep the
Δ𝑌𝑌11 1 = 𝑃𝑃−1 Δ𝑅𝑅12 1 hold. 296−40= 256pairs remain.

C. For 𝑙𝑙 = 1,2,3,5,8, guess 𝑘𝑘𝑘1 𝑙𝑙 , make Δ𝑌𝑌1 1 = 𝑃𝑃−1 Δ𝑅𝑅0 1 and 
Δ𝑌𝑌1 𝑙𝑙 = 𝑃𝑃−1 Δ𝑅𝑅0 𝑙𝑙 ⨁𝑃𝑃−1 Δ𝑅𝑅0 4 hold. 216 pairs remain.
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12-round attack for Camellia-192

 Construct δ-set for every remaining pair
A. Deduce 𝑋𝑋2 1 ||𝑌𝑌2[1] by difference distribution table of s1

B. For pair (𝐿𝐿0||𝑅𝑅0, 𝐿𝐿′0||𝑅𝑅′0), corresponding to (𝑋𝑋2 1 , 𝑋𝑋𝑋𝑋[1]), change 
𝑋𝑋𝑋𝑋[1] to a different 𝑋𝑋′′2[1], compute Δ𝑌𝑌′2[1], get the difference 
Δ𝐿𝐿′0 1,2,3,5,8 . Get 𝐿𝐿′′0 = 𝐿𝐿0⨁Δ𝐿𝐿′0.

C. Compute Δ𝑌𝑌′1 1,2,3,5,8 by the guessed key 𝑘𝑘′1[1,2,3,5,8], obtain 
Δ𝑅𝑅𝑅𝑅then get 𝑅𝑅′′0 = 𝑅𝑅0⨁Δ𝑅𝑅′0

D. Get δ-set. 
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12-round attack for Camellia-192

 For each δ-set under 144-bit key guesses
 Compute 𝑌𝑌11[2,3,5,8], 𝑃𝑃−1(𝐿𝐿10)[6] for every (P, C) pair.

 Guess  𝑘𝑘𝑘11 7 to compute 𝑋𝑋10 6 .

 Guess 𝑘𝑘𝑘10 6 to compute the multiset of 𝑃𝑃−1(∆𝐿𝐿8)[6]
 Check the multiset belongs to ℋ or not, the wrong value could pass 

the check with 𝑃𝑃𝑃𝑃 = 2128 × 2−467.6 = 2−339.6.
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12-round attack for Camellia-192

 Full Key Space
 Data: 2113 CP
 Time: 2180 ENC
 Memory: 2158 Bytes
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New 8-round property for Camellia-256

 8-round property
 L12[5] is active
 Multiset of bytes(P-1(ΔL4))[1]                                                              

Only take 2225 values

 Determined by the 225-bit：
ΔX11[5]||ΔY11[5]||ΔY10[2,3,4,6,7,8]||
ΔY9||ΔX6[1]||ΔY6[1]||kf1||kf2L[1]||
kf2R[1]||kf2L{9}

25
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Proof of 8-round property

 Multiset of (P-1(ΔL8))[6] is determinted by 321-bit value
 X11[5]||X10[2,3,4,6,7,8]||X9||X8||X7 ||kf1{9-33,42-64}||kf2L[1]||kf2R[1]||kf2L[9]

||X6[1]

 If a pair comforms to the 8-round truncated differential, then 
 312-bit “ΔX11[5]||ΔX10[2,3,4,6,7,8]||X9||X8||X7||X6[1]||kf1{9-33,42-

64}||kf2L[1]” determined by 216-bit “ΔX11[5]||ΔY11[5]||ΔY10[2,3,4,6,7,8]||
ΔY9||ΔX6[1]||ΔY6[1]||kf1||kf2L[1]”

 kf2R[1]||kf2L{9} are also needed to compute Multiset of (P-1(ΔL8))[6] 

 Totally, 225-bit determines the Multiset of (P-1(ΔL8))[6] 
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13-round attack for Camellia-256

 Add 4 rounds on the top

1 rounds on the bottom
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13-round attack for Camellia-256

 Precomputation Phase
 Compute 2225 values of multiset store them in hash table ℋ.

 Online Phase
 Data collection

 Structure: each contains 232 ciphertexts
𝐿𝐿13 = (𝛼𝛼1, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝛼𝛼2, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6) and
𝑅𝑅13 = 𝑃𝑃(𝛽𝛽1, 𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3, 𝛽𝛽2, 𝑦𝑦4, 𝑦𝑦5, 𝑦𝑦6), where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑦𝑦 𝑖𝑖 = 1, … , 6 are constant, 
𝛼𝛼𝑗𝑗, 𝛽𝛽𝑗𝑗 𝑗𝑗 = 1,2 take all values. Decrypt to get the plaintexts.
 Choose 281 structure to get 2144 pairs
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13-round attack for Camellia-256

 Key Guessing to find a pair conforming to the truncated differential
A. Guess 𝑘𝑘𝑘1 , compute 𝑃𝑃−1 Δ𝐿𝐿1 ,eliminate pairs that do not satisy

𝑃𝑃−1 Δ𝐿𝐿1 6,7 = 0, 2144−16 = 2128 pairs left.

B. For 𝑙𝑙 = 2,3,4,6,7,8, guess 𝑘𝑘𝑘2 𝑙𝑙 , paritially encrypt, make Δ𝑌𝑌2 𝑙𝑙 =
𝑃𝑃−1 Δ𝐿𝐿0 𝑙𝑙 hold. Then guess 𝑘𝑘2

′ 1 to compute 𝐿𝐿2 . 2128−7∗8=
272pairs remain.

C. For 𝑙𝑙 = 2,3,5,8, guess 𝑘𝑘𝑘3 𝑙𝑙 , make Δ𝑌𝑌3 1 = 𝑃𝑃−1 Δ𝐿𝐿1 𝑙𝑙 ⨁𝑃𝑃−1 Δ𝐿𝐿1 4
Then guess 𝑘𝑘3

′ 1 and keep the pairs satisfy Δ𝑌𝑌3 1 = 𝑃𝑃−1 Δ𝐿𝐿1 [1]. 
232pairs left for every 168-bit key guess.
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13-round attack for Camellia-256

 Key Guessing to find a pair conforming to the truncated differential
D. For 𝑙𝑙 = 1,5, guess 𝑘𝑘𝑘13 𝑙𝑙 , partially decrypt, make Δ𝑌𝑌13 𝑙𝑙 =

𝑃𝑃−1 Δ𝐿𝐿13 𝑙𝑙 hold. Then guess 𝑘𝑘𝑘𝑘3𝑅𝑅 1 to compute Δ𝐿𝐿12
∗
[1]and delete 

the pairs when Δ𝐿𝐿12
∗
[1] ≠ 0. 28pairs remain.

E. Compute the value 𝐿𝐿3 by guessing 𝑘𝑘𝑘3 [4,6,7] and deduce 𝑘𝑘′4 1 for 
each pair.

 Construct δ-set for each pair, and compute the corresponding 
multiset to check it whether belongs to ℋ, and recover the right 
key.
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13-round attack for Camellia-256

 Full Key Space
 Data: 2113 CC
 Time: 2232.7 ENC
 Memory: 2231 Bytes
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That is all

Thank you!
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