Analyzing Permutations for AES-like Ciphers: Understanding ShiftRows

Christof Beierle ${ }^{1} \quad$ Philipp Jovanovic ${ }^{2} \quad$ Martin M. Lauridsen ${ }^{3}$ Gregor Leander ${ }^{1}$ Christian Rechberger ${ }^{3}$
${ }^{1}$ Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
${ }^{2}$ Fakultät für Informatik und Mathematik, Universität Passau, Germany
${ }^{3}$ DTU Compute, Technical University of Denmark, Denmark

CT-RSA 2015
San Francisco

Outline

1. Motivation
2. Notation and definitions
3. Equivalence results
4. Experiments
5. Conclusion

Motivation

Current status

- AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...

Motivation

Current status

- AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...
- Crucial: Understanding properties of diffusion and resistance to differential/linear attacks

Motivation

Current status

- AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...
- Crucial: Understanding properties of diffusion and resistance to differential/linear attacks
- MixColumns-like step
- Well understood: Pick sufficiently high branch number

Motivation

Current status

- AES-like designs are very frequent in practice: LED, mCrypton, PRINCE, ECHO, Grøstl, LANE, PHOTON, PAEQ, PRIMATEs, Prøst, STRIBOB, ...
- Crucial: Understanding properties of diffusion and resistance to differential/linear attacks
- MixColumns-like step
- Well understood: Pick sufficiently high branch number
- ShiftRows-like step:
- Unclear; no structured approach
- Choice remains ad-hoc

Motivation

Our goal

Contribute to the understanding of picking optimal ShiftRows-like operations for generalized AES-like ciphers

Notation and definitions

AES-like cipher

- State of size $M \times N$ of m-bit words

- Round t equals

$$
R_{t}=\text { AddRoundKey }_{t} \circ \text { Permute }_{\pi_{t}} \circ \text { MixColumns }_{t} \circ \text { SubBytes }_{t}
$$

AES-like cipher: SubBytes ${ }_{t}$

- Substitutes each state word according to one or more S-boxes

$$
S_{i, j}^{t}: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}
$$

- Allow independent S-boxes for each word $x_{i, j}$ in each round

AES-like cipher: MixColumns ${ }_{t}$

- Left-multiplies column j in round t by an $M \times M$ matrix M_{j}^{t} over GF(2^{m})
- Allow independent M_{j}^{t} for each column in each round

AES-like cipher: Permute $\pi_{\pi_{t}}$

- Shuffles state words according to a permutation π_{t} on $\mathbb{Z}_{M} \times \mathbb{Z}_{N}$
- Assume independent permutations π_{t} in each round
- We say $\pi=\left(\pi_{0}, \ldots, \pi_{T-1}\right)$ is a permutation sequence for the T-round AES-like cipher

AES-like cipher: Permute $\pi_{\pi_{t}}$

- Shuffles
- Assume optimize the choice of π
$Z_{M} \times \mathbb{Z}_{N}$
- We say
T-round AES-like cipher

AES-like cipher: AddRoundKey ${ }_{t}$

- A round key is added to the state using \oplus in each round
- Does not affect the properties we investigate, thus not considered further!

Difference and activity pattern

Difference

A (non-zero) difference is a value $X \in\left(\mathbb{F}_{2}^{m}\right)^{M \times N} \backslash\{0\}$

Difference and activity pattern

Difference

A (non-zero) difference is a value $X \in\left(\mathbb{F}_{2}^{m}\right)^{M \times N} \backslash\{0\}$

Activity pattern

For a difference X, let the activity pattern \tilde{X} be defined s.t.

$$
\tilde{X}_{i, j}= \begin{cases}1 & X_{i, j} \neq 0 \\ 0 & X_{i, j}=0\end{cases}
$$

Difference and activity pattern

Difference

A (non-zero) difference is a value $X \in\left(\mathbb{F}_{2}^{m}\right)^{M \times N} \backslash\{0\}$

Activity pattern

For a difference X, let the activity pattern \tilde{X} be defined s.t.

$$
\tilde{X}_{i, j}= \begin{cases}1 & X_{i, j} \neq 0 \\ 0 & X_{i, j}=0\end{cases}
$$

for example

X		
00 00 CA F2 00 24		

\tilde{X}		
0	0	1
1	0	1

Trails

Trail

For an AES-like cipher, a T-round trail is a $(T+1)$-tuple of differences

Trails

Trail

For an AES-like cipher, a T-round trail is a $(T+1)$-tuple of differences
Trail weight
The trail weight of $X=\left(X^{0}, \ldots, X^{T}\right)$ is defined as

$$
\sum_{t=0}^{T-1} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \tilde{X}_{i, j}^{t}
$$

Branch number

Differential branch number

For a linear automorphism $\theta:\left(\mathbb{F}_{2}^{m}\right)^{M} \rightarrow\left(\mathbb{F}_{2}^{m}\right)^{M}$, we define the (differential) branch number B_{θ} as the minimum number of non-zero words, in the input- and output differences $(X \oplus Y)$ respectively $(\theta(X) \oplus \theta(Y))$, when taken across all pairs of inputs $X, Y \in \mathbb{F}_{2}^{m}$.

Branch number

Differential branch number

For a linear automorphism $\theta:\left(\mathbb{F}_{2}^{m}\right)^{M} \rightarrow\left(\mathbb{F}_{2}^{m}\right)^{M}$, we define the (differential) branch number B_{θ} as the minimum number of non-zero words, in the input- and output differences $(X \oplus Y)$ respectively $(\theta(X) \oplus \theta(Y))$, when taken across all pairs of inputs $X, Y \in \mathbb{F}_{2}^{m}$.

For an AES-like cipher

The branch number for an AES-like cipher is B_{θ} if and only if it is the minimum of the branch numbers obtained by left multiplication by any M_{j}^{t}.

Problem modeling

We are interested in determining

$$
\max _{\pi} \min _{\text {trail } X} \text { weight }(X)
$$

for a T-round AES-like cipher of dimensions $M \times N$.

Problem modeling

We are interested in determining

$$
\max _{\pi} \min _{\text {trail } X} \text { weight }(X)
$$

for a T-round AES-like cipher of dimensions $M \times N$.

In our modeling of the problem, we consider the following as black-box operations

- SubBytes $_{t}$
- MixColumns ${ }_{t}$, under the requirement of a specific branch number

Bounds and trail-optimality

Tightly guaranteed active S-boxes

Consider an AES-like cipher with branch number B_{θ}. We say that a permutation sequence π tightly guarantees k active S-boxes, denoted $\pi \xrightarrow{B_{\theta}} k$, if and only if, when using π for the Permute operation,

- There exists a valid trail of weight k and
- There is no valid trail of positive weight $k^{\prime}<k$.

Bounds and trail-optimality

Tightly guaranteed active S-boxes

Consider an AES-like cipher with branch number B_{θ}. We say that a permutation sequence π tightly guarantees k active S-boxes, denoted $\pi \xrightarrow{B_{\theta}} k$, if and only if, when using π for the Permute operation,

- There exists a valid trail of weight k and
- There is no valid trail of positive weight $k^{\prime}<k$.

Trail-optimality

A permutation sequence π is said to be trail-optimal if and only if there exists no $\pi^{\prime} \neq \pi$ such that $\pi^{\prime} \xrightarrow{B_{\theta}} k^{\prime}$ where $k^{\prime}>k$

Equivalences for

 permutation sequences π
Defining equivalence

The goal
Classify permutation sequences π incurring the same bound on the trail weight

$$
\Pi(k)=\left\{\pi=\left(\pi_{0}, \ldots, \pi_{T-1}\right) \mid \pi \xrightarrow{B_{\theta}} k\right\},
$$

and thus reducing the search space for a brute-force approach

Defining equivalence

The goal

Classify permutation sequences π incurring the same bound on the trail weight

$$
\Pi(k)=\left\{\pi=\left(\pi_{0}, \ldots, \pi_{T-1}\right) \mid \pi \xrightarrow{B_{\theta}} k\right\},
$$

and thus reducing the search space for a brute-force approach

Equivalence of permutation sequences

Informally, we say that two permutation sequences π, π^{\prime} are equivalent, denoted $\pi \sim \pi^{\prime}$, if and only if $\pi \xrightarrow{B_{\theta}} k \Leftrightarrow \pi^{\prime} \xrightarrow{B_{\theta}} k$

- Note: stronger notion of equivalence in paper

Structure of a state permutation

Lemma

Any permutation π_{t} on the words of an $M \times N$ state can be written as

$$
\pi_{t}=\gamma^{\prime} \circ \phi \circ \gamma,
$$

where γ, γ^{\prime} permute inside each column and ϕ permutes inside each row

(Thanks to John Steinberger for aiding in this proof)

Reduction to permuting in the rows

Lemma

Let π be a permutation sequence for an AES-like cipher and let γ, γ^{\prime} be arbitrary permutations inside the columns of the state. Then

$$
\left(\pi_{0}, \ldots, \pi_{t}, \ldots, \pi_{T-1}\right) \sim\left(\pi_{0}, \ldots, \gamma^{\prime} \circ \pi_{t} \circ \gamma, \ldots, \pi_{T-1}\right)
$$

holds for all $t=0, \ldots, T-1$.

Reduction to permuting in the rows

Lemma

Let π be a permutation sequence for an AES-like cipher and let γ, γ^{\prime} be arbitrary permutations inside the columns of the state. Then

$$
\left(\pi_{0}, \ldots, \pi_{t}, \ldots, \pi_{T-1}\right) \sim\left(\pi_{0}, \ldots, \gamma^{\prime} \circ \pi_{t} \circ \gamma, \ldots, \pi_{T-1}\right)
$$

holds for all $t=0, \ldots, T-1$.

Theorem

Given any permutation sequence π, one can construct π^{\prime} s.t.

- $\pi \sim \pi^{\prime}$ and
- The permutations of π^{\prime} permute only the words within each row

Reduction to permuting in the rows

Lemma

Let π be a permutation sequence for an AES-like cipher and let γ, γ^{\prime} be arbitrary permutations inside the columns of the state. Then

$$
\left(\pi_{0}, \ldots, \pi_{t}, \ldots, \pi_{T-1}\right) \sim\left(\pi_{0}, \ldots, \gamma^{\prime} \circ \pi_{t} \circ \gamma, \ldots, \pi_{T-1}\right)
$$

holds for all $t=0, \ldots, T-1$.

Theorem

Given any permutation sequence π, one can construct π^{\prime} s.t.

- $\pi \sim \pi^{\prime}$ and
- The permutations of π^{\prime} permute only the words within each row
- Search space (per round) reduced from $(M \cdot N)$! to $(N!)^{M}$

Rotation matrices

In the following, we restrict ourselves to rotation matrices

- Permute $\pi_{\pi_{t}}$ becomes ShiftRows $\sigma_{\sigma_{t}}$
- Much nicer for implementations

Rotation matrices

In the following, we restrict ourselves to rotation matrices

- Permute π_{t} becomes ShiftRows σ_{t}
- Much nicer for implementations

Rotation matrix

A rotation matrix for an an AES-like cipher is a $\rho \times M$ matrix σ over \mathbb{Z}_{N},

$$
\sigma=\left(\begin{array}{ccc}
\sigma_{0,0} & \cdots & \sigma_{0, M-1} \\
\sigma_{1,0} & \cdots & \sigma_{1, M-1} \\
\vdots & \ddots & \vdots \\
\sigma_{\rho-1,0} & \cdots & \sigma_{\rho-1, M-1}
\end{array}\right)
$$

Rotate row j of the state in round t by $\sigma_{i, j}$ where $t \equiv i \bmod \rho$

Rotation matrices

In the following, we restrict ourselves to rotation matrices

- Permute π_{t} becomes ShiftRows σ_{t}
- Much nicer for implementations

Rotation matrix

A rotation matrix for an an AES-like cipher is a $\rho \times M$ matrix σ over \mathbb{Z}_{N},

$$
\sigma=\left(\begin{array}{ccc}
\sigma_{0,0} & \cdots & \sigma_{0, M-1} \\
\sigma_{1,0} & \cdots & \sigma_{1, M-1} \\
\vdots & \ddots & \vdots \\
\sigma_{\rho-1,0} & \cdots & \sigma_{\rho-1, M-1}
\end{array}\right)
$$

Rotate row j of the state in round t by $\sigma_{i, j}$ where $t \equiv i \bmod \rho$

- Search space (per round) reduced from $(N!)^{M}$ to N^{M}

Rotation matrices: Example

Consider an AES-like cipher of dimension 3×4 with $\rho=2$ using

$$
\sigma=\left(\begin{array}{lll}
0 & 3 & 1 \\
1 & 0 & 2
\end{array}\right)
$$

Rotation matrices: Example

Consider an AES-like cipher of dimension 3×4 with $\rho=2$ using

$$
\sigma=\left(\begin{array}{lll}
0 & 3 & 1 \\
1 & 0 & 2
\end{array}\right)
$$

When t is even

Rotation matrices: Example

Consider an AES-like cipher of dimension 3×4 with $\rho=2$ using

$$
\sigma=\left(\begin{array}{lll}
0 & 3 & 1 \\
1 & 0 & 2
\end{array}\right)
$$

When t is even

When t is odd

Equivalences for rotation matrices σ

Equivalences for rotation matrices

Lemma: Re-arranging row entries of σ
Let σ be a rotation matrix and let $\vartheta_{0}, \ldots, \vartheta_{\rho-1}$ denote permutations on each of the ρ rows of σ. Define $\sigma_{t}^{\prime}=\vartheta_{t}\left(\sigma_{t}\right)$ for all t. Then $\sigma \sim \sigma^{\prime}$.

Equivalences for rotation matrices

Lemma: Re-arranging row entries of σ
Let σ be a rotation matrix and let $\vartheta_{0}, \ldots, \vartheta_{\rho-1}$ denote permutations on each of the ρ rows of σ. Define $\sigma_{t}^{\prime}=\vartheta_{t}\left(\sigma_{t}\right)$ for all t. Then $\sigma \sim \sigma^{\prime}$.

Lemma: Row-wise constant addition

Let σ be a rotation matrix and let $c_{0}, \ldots, c_{\rho-1} \in \mathbb{Z}_{N}$. Define $\sigma_{t}^{\prime}=\sigma_{t}+c_{t} \bmod N$ for all t. Then $\sigma \sim \sigma^{\prime}$.

Rotation matrix normalized form

Theorem: Equivalences

Let σ be any rotation matrix. Then there exists an equivalent rotation matrix σ^{\prime}, s.t.

1. Each row σ_{t}^{\prime} is ordered lexicographically
2. Each $\sigma_{t, 0}^{\prime}=0$, i.e. $1^{\text {st }}$ element in each row is zero
3. $\sigma_{t, 1}^{\prime} \leq N / 2$ for all t, i.e. $2^{\text {nd }}$ element in each row is $\leq N / 2$

Rotation matrix normalized form

Theorem: Equivalences

Let σ be any rotation matrix. Then there exists an equivalent rotation matrix σ^{\prime}, s.t.

1. Each row σ_{t}^{\prime} is ordered lexicographically
2. Each $\sigma_{t, 0}^{\prime}=0$, i.e. $1^{\text {st }}$ element in each row is zero
3. $\sigma_{t, 1}^{\prime} \leq N / 2$ for all t, i.e. $2^{\text {nd }}$ element in each row is $\leq N / 2$

Normal form

We define the rotation matrix normal form to satisfy 1-3, and heuristically also require that

- When N is even, σ^{\prime} should have at least one odd entry
- The elements in each row σ_{t}^{\prime} are distinct
- Search space (for full σ) reduced to $\left[\frac{N}{2} \cdot\binom{N / 2}{M-2}\right]^{\rho}$

Experiments

Experiments

Goal

Determine optimal rotation matrices σ for a range of parameters (M, N, T, ρ)

Experiments

Goal

Determine optimal rotation matrices σ for a range of parameters (M, N, T, ρ)

Approach

Given a fixed rotation matrix σ, we

- Focus on the MDS case, i.e. $B_{\theta}=M+1$
- Formulate a MIP problem of determining k s.t. $\sigma \xrightarrow{M+1} k$
- Combine brute-forcing the normal forms with solving the MIP model using CPLEX

Findings

Rounds	Rijndael-192	Rijndael-256	PRIMATEs-80	Prøst-256	
5	-	-	$54 / 56$	-	
6	$42 / 45$	$50 / 55$	-	$85 / 90^{\dagger}$	
7	$46 / 48$	-	-	$96 / 111^{\dagger}$	
8	$50 / 57$	-	-	-	
10	-	$85 / 90$	-	-	
12	$87 / 90$	$105 / 111$	-	-	
4.					
Increased ρ from 1 to 2					

- Many more results in paper
- † Searched only among diffusion-optimal solutions

Conclusion and open problems

What we did

- Took steps to analyze the problem of picking the best permutation for AES-like ciphers
- Focus on rotations as in ShiftRows due to implementation characteristics
- Reduced to normal form and combined with optimization using MIP
- Improve parameters for some existing designs

Conclusion and open problems

What we did

- Took steps to analyze the problem of picking the best permutation for AES-like ciphers
- Focus on rotations as in ShiftRows due to implementation characteristics
- Reduced to normal form and combined with optimization using MIP
- Improve parameters for some existing designs

Open problems

- Formulating optimization problem with trail-optimal σ as decision variable (bi-level optimization)
- Analysis w.r.t. combining diffusion-optimality with trail-optimality

Thanks for you attention

Questions?

CHANGE

San Francisco | April 20-24 | Moscone Center

Improved Attacks on ReducedRound Camellia-128/192/256

Xiaoyang Dong ${ }^{1}$, Leibo Ii^{1}, Keting Jia ${ }^{2}$ and Xiaoyun Wang ${ }^{1,3 *}$

${ }^{1}$ Key Lab of Cryptologic Technology and Information Security, Ministry of Education,Shandong University, China, Ph.D Student
${ }^{2}$ Department of Computer and Technology, Tsinghua University
${ }^{3}$ Institute for Advanced Study, Tsinghua University

Outline

- Introduction
- Description of Camellia
- Key-Dependent Attacks
- Key-dependent 8-round differentials
- Key-dependent multiple differential attack for 10-round Camellia-128
- Meet-in-the-Middle Attacks
- New 7-round property and 12-round attack for Camellia-192

New 8 -round property and 13 -round attack for Camellia-256

RSNConference2015
San Francisco | April 20-24 | Moscone Center

Description of Camellia

Description of Camellia

- In 2000, Proposed by NTT and Mitsubishi.
- Adopted as an international standard ISO/IEC 18033-3, NESSIE block cipher portfolio, as well as an e-Government recommended cipher by CRYPTREC project
- Basic Information
- Block Size: 128
- Key Sizes: 128/192/256(denoted as Camellia-128/192/256)
- Number of Rounds: 18/24/24 for Camellia-128/192/256 Structure: Feistel structure with key-dependent FL layers

Description of Camellia

RSN:Conference2015
San Francisco | April 20-24 | Moscone Center

Key-Dependent Attacks

Key-dependent truncated differentials

4-Round Truncated Differentials with probability 2-56

Active S-boxes: $0 \rightarrow 2 \rightarrow 7 \rightarrow 2$			
Case-1	Case-2	Case-3	Case-4
$(00000000, * * 000000)$	$(00000000,0 * * 00000)$	$(00000000, * 00 * 0000)$	$(00000000,00 * * 0000)$
$(* * 000000,00000000)$	$(0 * * 00000,00000000)$	$(* 00 * 0000,00000000)$	$(00 * * 0000,00000000)$
$(* * * * * * * 0 *, * * 000000)$	$(* * * * * * 0,0 * * 00000)$	$(* * * * * 0 * *, * 00 * 0000)$	$(* * * * 0 * * *, 00 * * 0000)$
$(* * 000000, * * * * * * 0 *)$	$(0 * * 00000, * * * * * * * 0)$	$(* 00 * 0000, * * * * * 0 * *)$	$(00 * * 0000, * * * * 0 * * *)$
$(00000000, * * 000000)$	$(00000000,0 * * 00000)$	$(00000000, * 00 * 0000)$	$(00000000,00 * * 0000)$

Key-dependent truncated differentials

Key subsets

	(c_{1}^{i}	i		i						here are 56 such ($\mathrm{c}_{1}, \mathrm{c}_{2}$).					
	01, 02	8	02,01	15	04,01	22	08, 01	29							
2	01,0	9	02,04	16	04,02	23	08, 02	30							
3	01,08	10	02,08	17	04,08	24	08, 04	31	10						
	01, 10	11	02, 10	18	04, 10	25	08, 10	32	10,			46	40, 08	53	80,08
	01, 20	12	02, 20	19	04, 20	26	08, 20	33	10,20	40	20,10	47	40, 10	54	80,10
	01, 40	13	02,40	20	04,40	27	08, 40	34	10,40	41	20,40	48	40,20	55	80,20
	01, 80	14	02,80	21	04, 80	8	08, 80		10,80	42	20,80		40, 80	56	80,

K Dset ${ }_{i}^{1}=\left\{K \mid k f_{2 L}=\left(\neg c_{1}^{i} \wedge *, \neg c_{2}^{i} \wedge *, *, *\right), * \in F_{2}^{8}\right\}$, $K D s e t_{i}^{2}=\left\{K \mid k f_{2 L}=\left(*, \neg c_{1}^{i} \wedge *, \neg c_{2}^{i} \wedge *, *\right), * \in F_{2}^{8}\right\}$, $K D s e t_{i}^{3}=\left\{K \mid k f_{2 L}=\left(\neg c_{1}^{i} \wedge *, *, *, \neg c_{2}^{i} \wedge *\right), * \in F_{2}^{8}\right\}$, $D_{\operatorname{sect}}^{4}=\left\{K \mid k f_{2 L}=\left(*, *, \neg c_{1}^{i} \wedge *, \neg c_{2}^{i} \wedge *\right), * \in F_{2}^{8}\right\}$.

56 pairs of (c_{1}, c_{2}); 4 cases differentials. Produce 224 key Dependent differentials.

Produce 224 key subsets as well.
And denote the other keys as RKset

Key-dependent 8-round differentials

Key-dependent attack on10-round Camellia-128

- We launch an example attack
- Choose 8-round differentials that
- $\mathrm{C}_{1}=0 \times 08, \mathrm{c}_{2}=0 \times 10$

ㅁ Cover KDset ${ }_{32}$

- Append 2 rounds on the bottom

Key-dependent attack on10-round Camellia-128

- Data collection:
$>$ Structure: $L_{0}=\left(\alpha_{1}, x_{1}, x_{2}, \alpha_{1}, x_{3}, \alpha_{1}, x_{4}, \alpha_{1}\right)$ and
$R_{0}=P\left(\alpha_{2}, x_{5}, x_{6}, \alpha_{3}, x_{7}, \alpha_{4}, x_{8}, \alpha_{5}\right) \oplus\left(\alpha_{6}, \alpha_{7}, x_{9}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}\right)$, where
x_{i} are constant, α_{j} take all values.
$>$ Encrypt to get 2^{56} ciphertext C, store them indexed by $P^{-1}\left(C_{L}\right)[1,4,6,8]$,
> Construct pairs by choosing C indexed by $P^{-1}\left(C_{L}\right)[1,4,6,8]$ and C^{\prime} indexed by $P^{-1}\left(C_{L}\right)[1,4,6,8] \oplus P^{-1}(0 x 08,0 \times 10,0,0,0,0,0,0)[1,4,6,8]$.
> Choose 2^{33} structures, $2^{33+111-32}=2^{112}$ pairs constructed.
> Delete the pairs whose input difference do not belong to $\Delta I N s e t$, and about $2{ }^{93}$ pairs left

Key-dependent attack on10-round Camellia-128

- Key Guessing
- For each pair and each possible ΔR_{9}, do
A. Deduce 64-bit key $k w_{3} \oplus k_{10}$
B. Deduce 32-bit key $k w_{4} \oplus k_{9}[1,4,6,8]$
C. Increase the counter of 96 -bit subkey " $k w_{3} \oplus k_{10}$, $\left(k w_{4} \oplus k_{9}\right)[1,4,6,8]$ "
- If the right key recovered, then terminate the attack;
- Else replace the attack by choosing other 8-round differentials.
search the Rkset to find the right key.

Key-dependent attack on10-round Camellia-128

99.99\% of Key Space

- Data: $2^{91} \mathrm{CP}$
- Time: $2^{104.5}$ ENC
- Memory: 2^{96} Bytes

Full Key Space

- Data: $2^{91} \mathrm{CP}$
- Time: 2^{113} ENC

Memory: 2^{96} Bytes

RSNConference2015
San Francisco | April 20-24 | Moscone Center

Meet-in-the-Middle Attacks

Meet-in-the-Middle Attacks

- Idea borrowed from Dunkelman etc.and Derbez-Selçuk's attacks on AES
- δ-set
- Multiset

New 7-round property for Camellia-192

7-round property

- $\mathrm{R}_{2}[1]$ is the active byte
- Multiset of $\left(P^{-1}\left(\Delta L_{8}\right)\right)[6]$ only takes about 2^{128} values
- $\Delta X_{4}[1]\left\|\Delta Y_{4}[1]\right\| \Delta Y_{5}[1,2,3,5,8]$ || $\Delta X_{8}[1]\left\|\Delta Y_{8}[1]\right\| X_{7}[7]\left\|X_{8}[6]\right\| k f_{1}$ where...

Proof of 7-round property

- Obviously, Multiset of $\left(P^{-1}\left(\Delta L_{8}\right)\right)[6]$ is determinted by 36 -byte value
- $\mathrm{X}_{4}[1]\left\|\mathrm{X}_{5}[1,2,3,5,8]\right\| \mathrm{X}_{6}\left\|\mathrm{kf}_{1}\right\| \mathrm{Kf}_{2}\left\|\mathrm{X}_{7}[2,3,5,7,8]\right\| \mathrm{X}_{8}[6]$
- If a pair comforms to the truncated differential, then
- 18-byte " $\mathrm{X}_{4}[1]| | \mathrm{X}_{5}[1,2,3,5,8]| | \mathrm{X}_{6}| | \mathrm{X}_{7}[2,3,5,7,8]$ " determined by 9 -byte " $\Delta \mathrm{X}_{4}[1]| | \Delta \mathrm{Y}_{4}[1]| | \Delta \mathrm{Y}_{5}[1,2,3,5,8]| | \Delta \mathrm{X}_{8}[1]| | \Delta \mathrm{Y}_{8}[1]$ " and 128 -bit "kf $\left|\mid k f_{2}\right.$ "
- $\operatorname{Pr}\left(\Delta Y_{7}[4,6,7]=0\right)=2^{-24}$ and

ㅁ $\Delta Y_{7}=\mathrm{P}^{-1}\left(\mathrm{FL}^{-1}\left(\mathrm{P}\left(\Delta \mathrm{Y}_{5}\right) \oplus \Delta \mathrm{L}_{3}\right)\right) \oplus \mathrm{P}^{-1}\left(\Delta \mathrm{~L}_{7}\right)$
Only has 64-bit information for Camellia-192

So there are 2^{128} values for multiset of $\left(P^{-1}\left(\Delta L_{8}\right)\right)[6]$

12-round attack for Camellia-192

- Add two round on the top

- Three round on the bottom
$\Delta L_{1}=(a 0000000)$

$$
\Delta L_{12}=\left(r_{1} r_{2} r_{3} r_{4} r_{5} r_{6} r_{7} r_{8}\right)
$$

12-round attack for Camellia-192

- Precomputation Phase
- Get 2^{128} possible values for multiset of $\left(P^{-1}\left(\Delta L_{8}\right)\right)[6]$ stored in \mathcal{H}
- Online Phase
- Data collection
> Structure: each contains ${ }^{256}$ plaintexts
$L 0=\left(\alpha, \alpha \oplus x_{1}, \alpha \oplus x_{2}, x_{3}, \alpha \oplus x_{4}, x_{5}, x_{6}, \alpha \oplus x_{7}\right)$ and
$R 0=P\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, y_{1}, y_{2}, \beta_{6}\right)$, where $x i(i=1, \ldots, 7), y_{1}, y_{2}$ are constant, $\alpha, \beta j(j=1, \ldots, 6)$ take all values.

Choose 2^{57} structure, $2^{57+111-16}=2^{152}$ pairs satisfy $P^{-1}\left(\Delta R_{12}\right)[6,7]=0$

12-round attack for Camellia-192

- Key Guessing to find a pair conforming to the truncated differential
A. For $l=2,3,4,5,6,7,8$, guess $k_{12}^{\prime}[l]$ one by one, paritially decrypt, use $\Delta Y_{11}[l]=P\left(\Delta L_{12}[l]\right)$ to filter and $2^{152-7 \times 8}=2^{96}$ pairs left.
B. For $l=2,3,5,8$, guess $k_{11}^{\prime}[l]$, paritially decrypt, use $\Delta Y_{11}[l]=$ $P^{-1}\left(\Delta R_{12}\right)[l] \oplus P^{-1}\left(\Delta R_{12}\right)[4]$ to filter. Then guess $k_{11}^{\prime}[1]$ and keep the $\Delta Y_{11}[1]=P^{-1}\left(\Delta R_{12}\right)[1]$ hold. $2^{96-40}=2^{56}$ pairs remain.
c. For $l=1,2,3,5,8$, guess $k_{1}^{\prime}[l]$, make $\Delta Y_{1}[1]=P^{-1}\left(\Delta R_{0}\right)[1]$ and $\Delta Y_{1}[l]=P^{-1}\left(\Delta R_{0}\right)[l] \oplus P^{-1}\left(\Delta R_{0}\right)[4]$ hold. 2^{16} pairs remain.

12-round attack for Camellia-192

- Construct δ-set for every remaining pair
A. Deduce $X_{2}[1]| | Y_{2}[1]$ by difference distribution table of s_{1}
B. For pair $\left(L_{0}\left\|R_{0}, L_{0}^{\prime}\right\| R_{0}^{\prime}\right)$, corresponding to ($\left.X_{2}[1], X^{\prime} 2[1]\right)$, change $X^{\prime} 2$ [1] to a different $X^{\prime \prime}{ }_{2}[1]$, compute $\Delta Y^{\prime}{ }_{2}$ [1], get the difference $\Delta L_{0}^{\prime}[1,2,3,5,8]$. Get $L^{\prime \prime}{ }_{0}=L_{0} \oplus \Delta L_{0}^{\prime}$.
c. Compute $\Delta Y^{\prime}{ }_{1}[1,2,3,5,8]$ by the guessed key $k^{\prime}{ }_{1}[1,2,3,5,8]$, obtain $\Delta R^{\prime} 0$ then get $R^{\prime \prime}{ }_{0}=R_{0} \oplus \Delta R_{0}^{\prime}$
D. Get δ-set.

12-round attack for Camellia-192

- For each δ-set under 144-bit key guesses
- Compute $Y_{11}[2,3,5,8], P^{-1}\left(L_{10}\right)[6]$ for every (P, C) pair.
- Guess $k_{11}^{\prime}[7]$ to compute $X_{10}[6]$.
- Guess $k_{10}^{\prime}[6]$ to compute the multiset of $P^{-1}\left(\Delta L_{8}\right)[6]$
- Check the multiset belongs to \mathcal{H} or not, the wrong value could pass the check with $\operatorname{Pr}=2^{128} \times 2^{-467.6}=2^{-339.6}$.

12-round attack for Camellia-192

Full Key Space

- Data: $2^{113} \mathrm{CP}$
- Time: 2^{180} ENC
- Memory: 2^{158} Bytes

New 8-round property for Camellia-256

-8-round property

- $L_{12}[5]$ is active
- Multiset of bytes $\left(P^{-1}\left(\Delta L_{4}\right)\right)[1]$ Only take 2^{225} values
- Determined by the 225-bit:
$\Delta X_{11}[5]| | \Delta Y_{11}[5]| | \Delta Y_{10}[2,3,4,6,7,8]| |$
$\Delta Y_{9}\left\|\Delta X_{6}[1]\right\| \Delta Y_{6}[1]| | k f_{1}\left\|k f_{2 L}[1]\right\|$
$k f_{2 R}[1]| | k f_{2 L}\{9\}$

Proof of 8-round property

- Multiset of $\left(P^{-1}\left(\Delta L_{8}\right)\right)[6]$ is determinted by 321-bit value
- $\mathrm{X}_{11}[5]\left\|\mathrm{X}_{10}[2,3,4,6,7,8]| | \mathrm{X}_{9}\right\| \mathrm{X}_{8} \| \mathrm{X}_{7}| | k f_{1}\{9-33,42-64\}| | \mathrm{kf}_{2}[1]| | \mathrm{kf}_{2 \mathrm{R}}[1]| | \mathrm{kf} \mathrm{f}_{2}[9]$ ||X X_{6} [1]
- If a pair comforms to the 8-round truncated differential, then
- 312-bit " $\Delta \mathrm{X}_{11}[5]| | \Delta \mathrm{X}_{10}[2,3,4,6,7,8]| | \mathrm{X}_{9}| | \mathrm{X}_{8}| | \mathrm{X}_{7} \| \mathrm{X}_{6}[1]| | k f_{1}\{9-33,42$ $64\}\left|\mid k f_{2 L}[1]\right.$ " determined by 216 -bit " $\left.\Delta \mathrm{X}_{11}[5]\right|\left|\Delta \mathrm{Y}_{11}[5]\right|\left|\Delta \mathrm{Y}_{10}[2,3,4,6,7,8]\right| \mid$ $\Delta Y_{g}\left\|\Delta X_{6}[1]\right\| \Delta Y_{6}[1]\left\|\left|k f_{1} \|\right| k f_{2}[1] "\right.$
- $\mathrm{kf2R}[1]\left|\mid \mathrm{kf} 2 \mathrm{~L}\{9\}\right.$ are also needed to compute Multiset of $\left(P^{-1}\left(\Delta L_{8}\right)\right)[6]$

13-round attack for Camellia-256

- Add 4 rounds on the top

1 rounds on the bottom

$$
\begin{gathered}
\Delta L_{1}= \\
P\left(f_{1} f_{2} f_{3} 0 f_{4} 00 f_{5}\right) \\
\oplus P(0 e e e e 00 e)
\end{gathered} \stackrel{k_{2}^{\prime}}{\oplus} \stackrel{X_{2}}{\oplus}, \mathrm{~S} \stackrel{Y_{2}}{\square} \stackrel{\mathrm{P}}{ }
$$

$$
\begin{aligned}
& \Delta L_{2}=(\text { fff } 0 f 00 f) \stackrel{l^{\prime}}{\oplus}{ }_{-}^{X_{3}}=\mathrm{S} \xrightarrow{Y_{3}} \rightarrow \mathrm{P} \\
& \Delta L_{3}=(e 0000000)
\end{aligned}
$$

13-round attack for Camellia-256

- Precomputation Phase
- Compute 2^{225} values of multiset store them in hash table \mathcal{H}.
- Online Phase
- Data collection
> Structure: each contains 2^{32} ciphertexts
$L_{13}=\left(\alpha_{1}, x_{1}, x_{2}, x_{3}, \alpha_{2}, x_{4}, x_{5}, x_{6}\right)$ and
$R_{13}=P\left(\beta_{1}, y_{1}, y_{2}, y_{3}, \beta_{2}, y_{4}, y_{5}, y_{6}\right)$, where $x_{i}, y i(i=1, \ldots, 6)$ are constant, $\alpha_{j}, \beta_{j}(j=1,2)$ take all values. Decrypt to get the plaintexts.

Choose 2^{81} structure to get 2^{144} pairs

13-round attack for Camellia-256

- Key Guessing to find a pair conforming to the truncated differential
A. Guess k_{1}^{\prime}, compute $P^{-1}\left(\Delta L_{1}\right)$, eliminate pairs that do not satisy $P^{-1}\left(\Delta L_{1}\right)[6,7]=0,2^{144-16}=2^{128}$ pairs left.
B. For $l=2,3,4,6,7,8$, guess $k_{2}^{\prime}[l]$, paritially encrypt, make $\Delta Y_{2}[l]=$ $P^{-1}\left(\Delta L_{0}\right)[l]$ hold. Then guess $k_{2}^{\prime}[1]$ to compute $L_{2} \cdot 2^{128-7 * 8}=$ 2^{72} pairs remain.
c. For $l=2,3,5,8$, guess $k_{3}^{\prime}[l]$, make $\Delta Y_{3}[1]=P^{-1}\left(\Delta L_{1}\right)[l] \oplus P^{-1}\left(\Delta L_{1}\right)[4]$ Then guess $k_{3}{ }^{\prime}$ [1] and keep the pairs satisfy $\Delta Y_{3}[1]=P^{-1}\left(\Delta L_{1}\right)[1]$. 2^{32} pairs left for every 168 -bit key guess.

13-round attack for Camellia-256

- Key Guessing to find a pair conforming to the truncated differential
D. For $l=1,5$, guess $k_{13}^{\prime}[l]$, partially decrypt, make $\Delta Y_{13}[l]=$ $P^{-1}\left(\Delta L_{13}\right)[l]$ hold. Then guess $k f_{3 R}[1]$ to compute $\Delta L_{12}{ }^{*}$ [1] and delete the pairs when $\Delta L_{12}{ }^{*}[1] \neq 0.2^{8}$ pairs remain.
E. Compute the value L_{3} by guessing $k_{3}^{\prime}[4,6,7]$ and deduce $k_{4}^{\prime}[1]$ for each pair.
- Construct δ-set for each pair, and compute the corresponding multiset to check it whether belongs to \mathcal{H}, and recover the right

13-round attack for Camellia-256

Full Key Space

- Data: $2^{113} \mathrm{CC}$
- Time: $2^{232.7}$ ENC
- Memory: 2^{231} Bytes

$$
\Delta L_{3}=(e 0000000)
$$

RSN:Conference2015
San Francisco | April 20-24 | Moscone Center

That is all
Thank you!

