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Motivation

Current status

>

AES-like designs are very frequent in practice:
LED, mCrypton, PRINCE, ECHO, Grgstl, LANE, PHOTON, PAEQ,
PRIMATEs, Prgst, STRIBOB, ...

Crucial: Understanding properties of diffusion and resistance to
differential /linear attacks
MixColumns-like step

> Well understood: Pick sufficiently high branch number
ShiftRows-like step:

» Unclear; no structured approach
» Choice remains ad-hoc



Motivation

Contribute to the understanding of picking optimal ShiftRows-like
operations for generalized AES-like ciphers
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AES-like cipher

» State of size M x N of m-bit words

N

» Round t equals

R; = AddRoundKey, o Permute,, o MixColumns,; o SubBytes,



AES-like cipher: SubBytes,

SubBytes, St

» Substitutes each state word according to one or more S-boxes
t .
Sij F3 =Ty

» Allow independent S-boxes for each word x; ; in each round



AES-like cipher: MixColumns;

MixColumns;

> Left-multiplies column j in round t by an M x M matrix I\/Ijt over
GF(2™)
» Allow independent th for each column in each round
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AES-like cipher: Permute,,

Permute,,

_

» Shuffles state words according to a permutation 7 on Zpy X Zy
» Assume independent permutations m; in each round

» We say m = (o, ..., m7_1) is a permutation sequence for the
T-round AES-like cipher



AES-like cipher: Permute,,

Permute,,
O 0 0
» Shuffles M X Ly
> Assume Op C C OICE O
> We say for the

T-round -like cipher



AES-like cipher: AddRoundKey,

X

!

SubBytes,
MixColumns;
Permute,,

Kt /‘\ Rt(X)

N

» A round key is added to the state using & in each round

» Does not affect the properties we investigate, thus not considered
further!
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Difference and activity pattern

A (non-zero) difference is a value X € (F5)M>*N\ {0}
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Difference and activity pattern

A (non-zero) difference is a value X € (F5)M>*N\ {0}

Activity pattern

For a difference X, let the activity pattern X be defined s.t.

w={o MZo
) —
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Difference and activity pattern

A (non-zero) difference is a value X € (F5)M>*N\ {0}

for example

Activity pattern
For a difference X, let the activity pattern X be defined s.t.

%, = 1 X,-,ﬂéO’

0 X;i;=0

X X

00 | 00 | CA 0 0
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For an AES-like cipher, a T-round trail is a (T + 1)-tuple of differences
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Trails

For an AES-like cipher, a T-round trail is a (T + 1)-tuple of differences

Trail weight

The trail weight of X = (X°,..., XT) is defined as

T-1

§

-1

Z

-1

t=0 i

Il
o
Il
o

J
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Branch number

Differential branch number

For a linear automorphism 6 : (F7)M — (F5')M, we define the
(differential) branch number By as the minimum number of non-zero
words, in the input- and output differences (X @ Y) respectively
(6(X) @ 6(Y)), when taken across all pairs of inputs X, Y € FJ".
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Branch number

Differential branch number

For a linear automorphism 6 : (F§")M — (F5')M, we define the
(differential) branch number By as the minimum number of non-zero
words, in the input- and output differences (X @ Y) respectively
(6(X) @ 6(Y)), when taken across all pairs of inputs X, Y € FJ".

For an AES-like cipher

The branch number for an AES-like cipher is By if and only if it is the
minimum of the branch numbers obtained by left multiplication by
any M.

13/29



Problem modeling

We are interested in determining
max min weight(X)
7 trail X

for a T-round AES-like cipher of dimensions M x N.
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Problem modeling

We are interested in determining
max min weight(X)
7 trail X

for a T-round AES-like cipher of dimensions M x N.

In our modeling of the problem, we consider the following as black-box
operations

» SubBytes,

» MixColumns;, under the requirement of a specific branch number

14 /29



Bounds and trail-optimality

Tightly guaranteed active S-boxes
Consider an AES-like cipher with branch number By. We say that a
permutation sequence 7 tightly guarantees k active S-boxes, denoted
Bg - - - -
m — k, if and only if, when using 7 for the Permute operation,
» There exists a valid trail of weight k and

» There is no valid trail of positive weight k' < k.
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Bounds and trail-optimality

Tightly guaranteed active S-boxes

Consider an AES-like cipher with branch number By. We say that a
permutation sequence 7 tightly guarantees k active S-boxes, denoted

s ﬁ> k, if and only if, when using 7 for the Permute operation,
» There exists a valid trail of weight k and

» There is no valid trail of positive weight k' < k.

Trail-optimality

A permutation sequence 7 is said to be trail-optimal if and only if there
. B
exists no 7' # 7 such that 7’ =% k’ where k' > k

15/29



Equivalences for
permutation sequences T



Defining equivalence

The goal

Classify permutation sequences 7 incurring the same bound on the
trail weight

M(k) = {wz(wo,...,m_l)mik},

and thus reducing the search space for a brute-force approach
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Defining equivalence

The goal

Classify permutation sequences 7 incurring the same bound on the
trail weight

M(k) = {w:(wo,...,m_l)mik},

and thus reducing the search space for a brute-force approach

Equivalence of permutation sequences

Informally, we say that two permutation sequences 7, 7w’ are equivalent,
. . B B
denoted m ~ 7/, if and only if 71 =% k & 1’ =5 k

> Note: stronger notion of equivalence in paper
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Structure of a state permutation

Lemma

Any permutation 7; on the words of an M x N state can be written as

Te=19"0¢on,
where ~,' permute inside each column and ¢ permutes inside each row

v ¢ Y

Tt = o o

(Thanks to John Steinberger for aiding in this proof)
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Reduction to permuting in the rows

Lemma

Let 7 be a permutation sequence for an AES-like cipher and let v,~" be
arbitrary permutations inside the columns of the state. Then

(7T0,...,7Tt,...,7TT_1) Y (71'0,...,fy'o7rto’y,...,7rr_1)

holds for all t =0,..., T — 1.
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Reduction to permuting in the rows

Lemma

Let 7 be a permutation sequence for an AES-like cipher and let v,~" be
arbitrary permutations inside the columns of the state. Then

(0y -+« s Teyev oy TT—1) ~ (M0y -+ -, Y OMOY, ..o, TT—1)

holds for all t =0,..., T — 1.

Theorem

Given any permutation sequence 7, one can construct 7’ s.t.
» 7~ 7' and

» The permutations of 7’ permute only the words within each row

19/29



Reduction to permuting in the rows

Lemma

Let 7 be a permutation sequence for an AES-like cipher and let v,~" be
arbitrary permutations inside the columns of the state. Then

(0y -+« s Teyev oy TT—1) ~ (M0y -+ -, Y OMOY, ..o, TT—1)

holds for all t =0,..., T — 1.

Theorem

Given any permutation sequence 7, one can construct 7’ s.t.
» 7~ 7' and

» The permutations of 7’ permute only the words within each row

» Search space (per round) reduced from (M - N)! to (N!)M

19/29



Rotation matrices

In the following, we restrict ourselves to rotation matrices
> Permute,, becomes ShiftRows,,

> Much nicer for implementations
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Rotation matrices

In the following, we restrict ourselves to rotation matrices
> Permute,, becomes ShiftRows,,

> Much nicer for implementations

Rotation matrix

A rotation matrix for an an AES-like cipher is a p x M matrix o over

Zy,
000 't OoM-1
010 't O1LM-1
g = .
Op—1,0 " Op—1,M-1

Rotate row j of the state in round t by ¢, ; where t = i mod p
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Rotation matrices

In the following, we restrict ourselves to rotation matrices
> Permute,, becomes ShiftRows,,

> Much nicer for implementations

Rotation matrix

A rotation matrix for an an AES-like cipher is a p x M matrix o over

Zy,
000 't OoM-1
010 't O1LM-1
g = .
Op—1,0 " Op—1,M-1

Rotate row j of the state in round t by ¢, ; where t = i mod p

» Search space (per round) reduced from (N!)M to NM
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Rotation matrices: Example

Consider an AES-like cipher of dimension 3 x 4 with p = 2 using

(031
=\ 102
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Consider an AES-like cipher of dimension 3 x 4 with p = 2 using

(031
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Rotation matrices: Example

Consider an AES-like cipher of dimension 3 x 4 with p = 2 using

(031
=\10 2

ShiftRows,,

When t is even

ShiftRows,,
When t is odd
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Equivalences for
rotation matrices o



Equivalences for rotation matrices

Lemma: Re-arranging row entries of o

Let o be a rotation matrix and let g, ...,9¥,_1 denote permutations on
each of the p rows of . Define o} = ¥+(0;) for all t. Then o ~ o’.
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Equivalences for rotation matrices

Lemma: Re-arranging row entries of o

Let o be a rotation matrix and let g, ...,9¥,_1 denote permutations on
each of the p rows of . Define o; = ¥;(o;) for all t. Then o ~ ¢’.

Lemma: Row-wise constant addition

Let o be a rotation matrix and let ¢, ..., c,—1 € Zp. Define
o, =0r+ ¢ mod N for all t. Then o ~ ¢o.

23/29



Rotation matrix normalized form

Theorem: Equivalences

Let o be any rotation matrix. Then there exists an equivalent rotation
matrix o/, s.t.

1. Each row o7 is ordered lexicographically
2. Each o, =0, i.e. 1°* element in each row is zero

3. 0}, < N/2forall t, ie. 2 element in each row is < N/2
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Rotation matrix normalized form

Theorem: Equivalences

Let o be any rotation matrix. Then there exists an equivalent rotation
matrix o/, s.t.

1. Each row o7 is ordered lexicographically
2. Each o, =0, i.e. 1°* element in each row is zero

3. 0}, < N/2forall t, ie. 2 element in each row is < N/2

Normal form

We define the rotation matrix normal form to satisfy 1-3, and
heuristically also require that

» When N is even, o’ should have at least one odd entry

» The elements in each row o} are distinct

p
» Search space (for full o) reduced to [% . (,C,Ig)}
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Experiments



Experiments

Determine optimal rotation matrices o for a range of parameters
(M,N, T,p)
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Determine optimal rotation matrices o for a range of parameters
(M,N, T,p)

Approach

Given a fixed rotation matrix o, we

» Focus on the MDS case, i.e. By = M +1

» Formulate a MIP problem of determining k s.t. o ML

» Combine brute-forcing the normal forms with solving the MIP
model using CPLEX

26 /29



Rounds Rijndael-192 Rijndael-256 PRIMATEs-80 Prgst-256

5 - - 54/56 -
6 42/45 50/55 - 85/90f
7 46/48 - — 96/111f
8 50/57 - - -
10 - 85/90 - -
12 87/90 105/111 - -

1

Increased p from 1 to 2

» Many more results in paper
» T Searched only among diffusion-optimal solutions
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Conclusion and open problems

What we did

» Took steps to analyze the problem of picking the best permutation
for AES-like ciphers

» Focus on rotations as in ShiftRows due to implementation
characteristics

» Reduced to normal form and combined with optimization using MIP

» Improve parameters for some existing designs
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Conclusion and open problems

What we did

» Took steps to analyze the problem of picking the best permutation
for AES-like ciphers

» Focus on rotations as in ShiftRows due to implementation
characteristics

» Reduced to normal form and combined with optimization using MIP

» Improve parameters for some existing designs

Open problems

» Formulating optimization problem with trail-optimal ¢ as decision
variable (bi-level optimization)

» Analysis w.r.t. combining diffusion-optimality with trail-optimality

28/29



Thanks for you attention

Questions?
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Outline

¢ Introduction
e Description of Camellia

¢ Key-Dependent Attacks
e Key-dependent 8-round differentials
e Key-dependent multiple differential attack for 10-round Camellia-128

¢ Meet-in-the-Middle Attacks
e New 7-round property and 12-round attack for Camellia-192
New 8-round property and 13-round attack for Camellia-256

2 RSAConference?015 +



RSAConference?2015

San Francisco | April 20-24 | Moscone Center

Description of Camellia




#RSAC

Description of Camellia

¢ 1In 2000, Proposed by NTT and Mitsubishi.

¢ Adopted as an international standard ISO/IEC 18033-3, NESSIE block
cipher portfolio, as well as an e-Government recommended cipher by

CRYPTREC project

¢ Basic Information

e Block Size: 128
e Key Sizes: 128/192/256(denoted as Camellia-128/192/256)

e Number of Rounds: 18/24/24 for Camellia-128/192/256
Structure: Feistel structure with key-dependent FL layers

4 RSAConference?015



Description of Camellia
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#RSAC

Key-dependent truncated differentials

¢ 4-Round Truncated Differentials with probability 2-56

Active S-boxes: 0 =2 -7 — 2
Case-1 Case-2 Case-3 Case-4
(00000000, * * 000000) (00000000, 0 * *00000) (00000000, %00 * 0000) | (00000000, 00 * *x0000)
(* * 000000, 00000000) (0 = 00000, 00000000) (+00 * 0000, 00000000) | (00 * *0000, 00000000)
(¢ % * % % * %0x, x x 000000) | (* * * x % % 0, 0 % *00000) |(* * * * 0 * %, 00 x 0000)|(* * * * 0 * xx, 00 * *0000)
(3 % 000000, * * * x x5 0x%) | (0 * *00000, * * s s* % % *x0) | (00 * 0000, * s s % %0 * *)|(00 % %0000, * * s % 0 % %)
(00000000, * * 000000) (00000000, 0 * *00000) (00000000, %00 * 0000) | (00000000, 00 * *x0000)

S—

7 RSAConference?015
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Key-dependent truncated differentials

AL,=(00000000)

AL;~(a1a,000000) X

correspondingly
3. Output difference

EF -

determined

A L=(b1b,b3bsbsbs0bs)

Part-2— If we choose Some fixed value,

like c,=0x40,c,=0x80

kf2L{2}=0,kf2L{9}=0
correspondingly

A Ls=(c,¢,000000)

Output difference can be
determined with
Pr=2-40 X 2-16 %X 2-16 =2-72




#RSAC

Key subsets

(C‘ijca) ’l,. (C;’_,C%) 7: (qu’cg) ’._': (Cni,czg) ’l: (th Al . T 2 PN 4 a~x]] . [7 4

01,02 || 802,01 ||15] 04,01 |22 08, 01 |[29] 1( 56 pairs of (c,,c,);

0104|902 04 |16/ 02,02 |23 08,02 |[30{ 1( There are 56 such (c1,C3)- [] 4 cases differentials.

01,08 [10] 02,08 ||17] 04,08 |[24 08,04 |[31] 1 Produce 224 key
01,10 |[11] 02,10 ||18] 04, 10 |[25] 08, 10 |[32] 10, 08 /40,/084 46/ 40, 08 |[53[ 80, 08

Do
D

01,20 ||12| 02,20 (|19 04,20 08,20 ||33] 10,207[|40| 20,10 | 47 40,10 ||54| 80,10 Dependent differentials.

01,40 ||13| 02,40 |({20| 04,40 |27 08,40 ||34| 10,40 (|41 20,40 | |48/ 40,20 ||55| 80, 20
01,80 ||14| 02,80 ||21| 04,80 ||28 08,80 ||35| 10,80 ||42| 20,80 | |49/ 40,80 ||56| 80,40

[ NN)

| O] O & W[ = =.

[\

KDset; = {K|k fg

L —|cl AN —-62 Nk, %, %) % € F28} Produce 224 key subsets
KDset2 = {K|kfor

2L

JoL

( )
(%, ¢t A *,—ch A x, %), € FS}, aswell.

(_'Cl A %, %, % —'62 A %), % € F28} And denote the other keys
(*, )

3 as RKset
%, %, ¢y A%, s A*),x € F$}.

KDset3 = {K

9 RSAConference?015
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Key-dependent 8-round differentials

e A R=P(h00hs0hc0hs)
A L=(h00h0h0R) & (a1a2000000)

A R =(h00hOROR)

R

About 237 input
differences compose

the AINSEt ., . fwe——r .\ e

[ AL ~(bbb1bsbsb0bg) (I X, - ¥, - 7 A Ry~(a,a>000000)

Produce 237+6 8-
round differentials

X, ¥ Z A Rs=(b1b2b3babsbe)
6 e & 's=(b1b2b3b4bsbs0bg)

with Pr=2-126 : B
=3 ] : <L o £
L‘ o | — :jim

A Rg~(c1c2,000000)

& i

"} AR;~(00000000)

A Ry=(c1¢2000000)

10

Extend

4-round key-
dependent

Append

RSAConference?015 - 9
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Key-dependent attack on10-round Camellia-128

ALy = (h,0,0,h,0,h,0,h) A R=P(11,0,0,h4,0,h6,0,hs)
¢ We launch an example attack | % (a1,20,0,0,00,0)
kw64 %T Bre— kwaes)

¢ Choose 8-round differentials that
o ¢,=0x08,c,=0x10
o Cover KDset's, AT l (AO)JEBSSTOXIO,O,O,O,O,O,O)
> B

i >—%
(0x08,0x10,0,0,0,0,0,0) i i ARy = (*,0,0,%,0,%,0,%)

8-Round differential

4
1]

@ P(*,0,0,*,0,*%,0,%) > A
¢ Append 2 rounds on the F ?
kwaeyy —>D %"*kw‘um;
bOttO m ALjp= ARp=(2,2,2,2,2,2,2,7)
(0x08,0x10,0,0,0,0,0,0)

$ P(*’O,O,*,O’*,Oa*)

i RSAConference?015



SAC

Key-dependent attack on10-round Camellia-128

+ Data collection:
> Structure:L, = (ay, X1, Xy, 01, X3, A, X4, @;) &N

Ry = P(ay, x5, X4, U3, X7, Ay, Xg, A5)D (g, A7, Xg, X1, X11, X 12, X13, X14), WhETE
x; are constant, «a; take all values.

~ Encrypt to get 256 ciphertext C, store them indexed by P~1(C,)[1,4,6,8],

» Construct pairs by choosing C indexed by P~1(C,)[1,4,6,8] and C’
indexed by P~1(C,)[1,4,6,8]®P~1(0x08,0x10,0,0,0,0,0,0)[1,4,6,8].

» Choose 233 structures, 233+111-32=2112 pajrs constructed.

Delete the pairs whose input difference do not belong to AINset, and
about 2°3 pairs left

b RSAConference?015 |
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Key-dependent attack on10-round Camellia-128

+ Key Guessing
¢ For each pair and each possible ARy, do
A.  Deduce 64-bit key kw,Dk,,
B. Deduce 32-bit key kw,®k,[1,4,6,8]
c. Increase the counter of 96-bit subkey “kw.®k,,, (kw,®k,)[1,4,6,8]”

+ If the right key recovered, then terminate the attack;
¢ Else replace the attack by choosing other 8-round differentials.

Search the Rkset to find the right key.

h3 RSAConference?015 - #
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Key-dependent attack on10-round Camellia-128

A R=P(1,0,0,114,0,116,0,/15)

ALo= (h,0,0,h,0.,1,0,h) e
1,082, U,U UL,

¢ 99.99% of Key Space

|
kwieyy —> B kwass)
e Data: 291 CP 1
e Time: 21045 ENC 8-Round differential
e Memory: 2% Bytes
* ) %) * ARs =
ALy =(*,0.0,%,0,%0.%) X (0x08,0x10,0,0,0,0,0,0)

¢ Full Key Space ECC TR T

NEu T >%
e Data: 2°-CP (0x08,0x10,0,0,0,0,0,0) ] 4Ry =(%,0,0,%,0,%,0,%)
_ & P(*,0,0,%,0,%,0,%) =j—.@
o Time: 2113 ENC i %F
Fwasay

kwsga) >D

e Memory: 2% Bytes

ALyp= ARy = (22,2222,

(0x08,0x10,0,0,0,0,0,0)

14 RSAConference?015
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Meet-in-the-Middle Attacks

+ ldea borrowed from Dunkelman etc.and Derbez-Selcuk’s attacks
on AES

e O-Set
e Multiset

16 RSAConference?015
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New 7-round property for Camellia-192
AL, = (00000000) :$ X, s Y, j

¢ 7-round property BBl e e

AL, = (*0000000) foox, , z, &
o R,[1]is the active byte ?_%__ b, , B
AL, =(***0*00%) [ k. = (***0*00%)
o Multiset of (P1(ALg))[6] only L i s
takes about 2128 values i SRR R
4 AX4[1]” AY4[1] ” AY5[1;2;3,5;8] AL, = (277227272) I:_)Ga_?t__i_‘_l fi S
| XTI A | X KB, e o Telgw
where h=Croon)| oyt oz T
[P = S

AL, =(*0000000) éﬁ

AL, =(00000000) [ £,
¥
& (5]

iy RSAConference?015
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Proof of 7-round property

+ Obviously, Multiset of (P-1(ALg))[6] is determinted by 36-byte value
o X,[1]11Xs[1,2,3,5,8][Xel[Kfy||Kf>|[X7[2,3,5,7,8]|[Xg[6]

+ |If a pair comforms to the truncated differential, then

e 18-byte “X,[1]||Xs[1,2,3,5,8]||Xs][X-[2,3,5,7,8]” determined by 9-byte
“AX,[1][|AY ,[1]]]AY[1,2,3,5,8]||AX[1]||AY[1]” and 128-bit “kf,||kf,”

—0)=2-24
o Pr(AY7]4,6,7]=0)=2*"and Only has 64-bit information
o AY,=P1(FLY(P(AY:)DAL,))®P-L(AL-) for Camellia-192

¢ So there are 228 values for multiset of (P-1(ALg))[6]

18 RSAConference?015 3
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12-round attack for Camellia-192

AL, =(jjj0,00,) g X S ¥ P Z, l AR, = P(},/,J50j,00/5)
s @ ('a.O(_)OOQOO)'
¢ Add two round on the top >£ = PO 01001

AL, = (a0000000 @2 X, Y, Zy
¢ Three round on the bottom (20000000) -~ - BN
kw, —£P D—hw,
7-round property
kw“% 1f0 @ kw}
AL.,=(e0000000)EB /é Xio S Lo [ Ze 5

AL, =(ppp0p00p) ;&' X

¥ g uJp 11
AL, = P(p,p,p;,0p,00p;) ﬁlfz b'e Y

@ P(0eeee00e) Helg] el Z, &

ALy, = (rrynnrn) >‘<ARH = P(p,p,p;0p, 0098 =7

19 RSAConference?015
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12-round attack for Camellia-192

¢ Precomputation Phase
¢ Get 21?8 possible values for multiset of (P-1(ALg))[6] stored in H

¢ Online Phase

¢ Data collection
» Structure: each contains 2°° plaintexts
L0 =(a,a D x, a @D x,, x5, D x4, X, X, @ D x,) and

RO = P(B, B4 B3 BwBs YVl Be), Where xi(i = 1, ...,7),y,,y, are constant,
a,Bj(j =1,...,6) take all values.

~ Choose 257 structure,257+111-16=2152 najrs satisfy P~1(AR,)[6,7] = 0
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12-round attack for Camellia-192

¢ Key Guessing to find a pair conforming to the truncated differential

A.

For l = 2,3,4,5,6,7,8, guess k', [l] one by one, paritially decrypt, use
AY ,[1] = P(ALy,[1]) to filter and 2152-7>8= 296 pairs left.

For | = 2,3,5,8, guess k';,[l], paritially decrypt, use AY ;[l] =
P~Y(AR)[1®P~*(AR,)[4] to filter. Then guess k,,' [1] and keep the
AY ,[1] = P71(AR))[1] hold. 27°%%= 25¢pairs remain.

Forl =1, 2 3,5,8, guess k', [l], make AY,[1] = P~1(AR,)[1] and
AY,[[l] = P~1(ARY[l]|®P~ 1(ARO)[4] hold. 218 pairs remain.
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12-round attack for Camellia-192

¢ Construct d-set for every remaining pair
A Deduce X,[1]||Y,[1] by difference distribution table of s,

B. For pair (L,y||R, L'y|IR’,), corresponding to (X,[1], X'2[1]), change
X'2[1] to a different X"',[1], compute AY’,[1], get the difference
AL',[1,2,3,5,8]. Get L', = Ly®AL,.

c. Compute AY',[1,2,3,5,8]by the guessed key k’,[1,2,3,5,8], obtain
AR'Othen get R, = R,®AR’,

D. Get 0-set.
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12-round attack for Camellia-192

¢ For each d-set under 144-bit key guesses
¢+ Compute Y,[2,3,5,8], P~1(L,y)[6] for every (P, C) pair.
Guess k';,[7] to compute X,,[6].

=
¢ Guess k';,[6] to compute the multiset of P~ (ALy)[6]
©

Check the multiset belongs to H or not, the wrong value could pass
the check with Pr = 2128 x 27167.6 = 273396
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12-round attack for Camellia-192

AL, = (j§j0;00) g gl el 4 lARO:P(jljzjs0}'400;;)
o Full Key Space PR H R
. @® P(0aaaa00a)
e Data: 2113 CP AL, =(a0000000) %% Xpe] Lg%
e Time: 2180 ENC s S
e Memory: 21°8 Bytes oty

kw4 ﬂE
AL, =(e0000000)

AL, =(pppOp00p) Jﬁl X
D

AL, = P(p,p,p,0p,00p;) ﬁ;z X y
@ P(0eeeelle) B 28 2] p Z, D
=(rrrrrrrr)>—< =P(p,p,p,0p,00p,)  Be = o=
Al = (AR * @ P(0ceccllc) =~ A .
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New 8-round property for Camellia-256

AL, = (00000000) ks

é X,m Y,,T, %
o S e = 21
¢ 8-round property FHEEEE e e e
e L,,[5]is active i
12 AL=(**%0%00 [~ ARI=("0000000)
o Multiset of bytes(P-1(AL,))[1] S RaanE: puts Sazman ?ﬂ
Only take 2%2° values SRR § e o
. : o a9
e Determined by the 225-hit: I o T gy
AXu[3IIIAY 11 [5]1AY 10[2,3,4,6, 78] a-crem (i g a
Tt HH
AY ol IAXGAINAY LKA oo g e
kuR[l]”kuL{g} AL, = (0000 *000) __g.:_;_i_;nj :_Ti_—____z_’fé;
AL, = (00000000) %z__;_:__@ Y___:{E:_;i___l? ys.
ot TR De e




#RSAC

Proof of 8-round property

+ Multiset of (P1(ALg))[6] is determinted by 321-bit value

o XnlS]lIX10[2,3,4,6,7,8][|Xq|[Xg||X7 [[KT119-33,42-64}||Kfy [1]]|Kfor[1][|Kf, [O]
[1Xe[1]

+ If a pair comforms to the 8-round truncated differential, then

o 312-hit “AXy[5]||AX0[2,3,4,6,7,8]1[Xo|[Xs|[X-|[Xe[1]]|KF,{9-33,42-
64}||kf, [1]” determined by 216-bit “AX,[S]||AY 4 [5][1AY 10[2,3,4,6,7,8]|
AY o [AXG[L]|[AY g[1]]|KFy ||KEp [1]"

o kf2R[1]||kf2L{9} are also needed to compute Multiset of (P-1(ALg))[6]




#RSAC

13-round attack for Camellia-256

AL, = iiyiyi 0000, JQ )] Y, z, iAR0 = (hh,hhhoh hohy)
]

D S P
¢ Add 4 rounds on the top jﬁ><?

Tt =Pe£>f}'>}(;0§eoejego%?)g) T SRR T
1 rounds on the bottom ><%

AL, = (fff 05001 @/r; X S Lipl %
AL

>

AL, = (¢0000000) \,ff X gl Xfp] %
(D>-<qa
kw, —P P—Hw,
8-round property
LLLLLL L
A, & 1
B De—b—
L % =
B W R R A s
wv——® ¥ P
AL, =(2,000a000), ¢ “12y g L 12y p | Ziagy AR, =(00000000), -

A P(q000r2000)><J AR, = (a,0002000)
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13-round attack for Camellia-256

¢ Precomputation Phase
¢ Compute 222° values of multiset store them in hash table .

¢ Online Phase

¢ Data collection
» Structure: each contains 232 ciphertexts
Lyg = (ay, Xy, Xg, X3, 0, X4, X5, X6) AN

Rs=P(BLY0Y2Y3B2Vw Ve V), Where x,, yi(i = 1, ..., 6)are constant,
a;, f;,(j = 1,2) take all values. Decrypt to get the plaintexts.




#RSAC

13-round attack for Camellia-256

¢ Key Guessing to find a pair conforming to the truncated differential

A Guess k'; , compute P~1(AL,),eliminate pairs that do not satisy
P~1(AL)[6,7] = 0, 21%4716 = 2128 pairs |eft.

B. Forl= 2,346,728, guess k', [l], paritially encrypt, make AY,[l] =
P~1(ALy)[l] hold. Then guess k,’ [1] to compute L, . 2128-7*8=
27%pairs remain.

c. Forl=2358,guess ks [l], make AY,[1] = P~ (AL)[l]|®P~(AL,)[4]
Then guess k;' [1] and keep the pairs satisfy AY;[1] = P~1 (AL)[1].
232pairs left for every 168-bit key guess.
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13-round attack for Camellia-256

¢ Key Guessing to find a pair conforming to the truncated differential

p. Forl=1,5, guess k' 5[], partially decrypt, make AY ;;[l] =
P~1(AL.3)[l] hold. Then guess kf,,[1] to compute Ale*[l]and delete
the pairs when Ale*[l] + 0. 28pairs remain.

. Compute the value L; by guessing k'; [4,6,7] and deduce k’,[1] for
each pair.

¢ Construct d-set for each pair, and compute the corresponding
multiset to check it whether belongs to ', and recover the right
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13-round attack for Camellia-256

AL, = iiyiyi 0000, JQ )] Y, z, iAR0 = (hh,hhhoh hohy)
]

D S P
¢ Full Key Space ,ﬁ><?

AL = P(f,/5./01,00f : 2 2 2
°® D ata 2113 CC G(-)fP}(AOJ;ee}eAOOe{) W>S_£
Y,

e Time: 22327 ENC AL, = ({000 f) }é&: X,

e Memory: 2?31 Bytes

>

AL, = (¢0000000) \,ff X gl Xfp] %
(D>-<qa
kw, —P P—Hw,
8-round property
LLLLLL L
A, & 1
B De—b—
L % =
B W R R A s
wv——® ¥ P
AL, =(2,000a000), ¢ “12y g L 12y p | Ziagy AR, =(00000000), -

A P(q000r2000)><J AR, = (a,0002000)
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