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Static Accumulators

Finite set Accumulator

Witnesses witx certifying membership of x in accX
Efficiently computable ∀ x ∈ X

Intractable to compute ∀ x /∈ X
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A Simple Example - RSA Accumulator

RSA modulus N

Accumulator for X = {x1, . . . , xn}

accX ← gx1· ... ·xi−1·xi ·xi+1· ... ·xn mod N

Witness for xi :

witxi ← gx1· ... ·xi−1·xi+1· ... ·xn mod N

Verify witness:

Check whether (witxi )
xi ≡ accX mod N.

Witness for y /∈ X

Would imply breaking strong RSA

. . . unless factorization of N is known.
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Dynamic and Universal Features

Dynamically add/delete elements

...to/from accumulator accX

Update witnesses accordingly

All updates independent of |X |

Universal features

Demonstrate non-membership

Non-membership witness witx

Efficiently computable ∀ x /∈ accX

Intractable to compute ∀ x ∈ accX
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Motivation

Accumulators widely used in various applications

e.g., credential revocation, malleable signatures, ...

Previous models tailored to specific constructions

Different features

Private/public updatability

Thus, accumulators not usable as black-boxes

Limited exchangeability when used in other constructions

Relations to other primitives hard to study
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Contribution

Unified formal model for

Static/dynamic/universal accumulators

Introduces randomized and bounded accumulators

Introduces indistinguishability

Includes undeniability

First constructions fulfilling new notions

First indistinguishable, dynamic acc

First undeniable, indistinguishable, universal acc

Black-box relations to commitments and ZK-sets

Exhaustive classification of existing schemes (see Paper)
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Algorithms

Static Accumulators - Algorithms

Gen Eval WitCreate Verify

We call accumulators

t-bounded, if an upper bound for the set size exists

randomized, if Eval is probabilistic

Evalr to make used randomness explicit

Dynamic Accumulators additionally provide

Add Delete WitUpdate

David Derler, IAIK, Graz University of Technology
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Algorithms - Universal Accumulators

Static or dynamic accumulator, but in addition

WitCreate and Verify take additional parameter type

Membership (type = 0) vs. non-membership mode
(type = 1)

For dynamic accumulator schemes

The same additionally applies to WitUpdate

David Derler, IAIK, Graz University of Technology
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Security

Correctness

Collision freeness

Undeniability

Indistinguishability
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Security - Collision Freeness

Experiment Expcf
κ (·):

A wins if

wit∗x is membership witness for non-member, or

wit∗x is non-membership witness for member
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Security - Undeniability

Defined for universal accumulators

Experiment Expud
κ (·):

A wins if verification succeeds for both wit∗x and wit∗x
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Undeniability 6⇐⇒ Collision Freeness

We show that

Efficient Acf can be turned into efficient Aud

Other direction does not hold [BLL02]
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Security - Indistinguishability I

So far, no meaningful formalization

Existing formalization allows to prove indistinguishability

for trivially distinguishable accumulators

We provide formalization

not suffering from shortcomings above

David Derler, IAIK, Graz University of Technology
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Security - Indistinguishability II

Experiment Expind
κ (·):

A wins if guess correct
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Security - Indistinguishability III

Ad-hoc solution in literature

Insert a (secret) random value z into acc.

However, weakens collision freeness

Witness for z efficiently computable by definition

Thus, we distinguish

Indistinguishability

Collision freeness weakening (cfw)-indistinguishability

We modify [Ngu05] to provide indistinguishability

First indistinguishable t-bounded dynamic accumulator

David Derler, IAIK, Graz University of Technology
April 21, 201518
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Zero-Knowledge Sets

Commit to a set X
Prove predicates of the form

x ∈ X

x /∈ X

While not revealing anything else about X

Observation

Similar to undeniable indistinguishable accumulators

Algorithms compatible

Security notions similar
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Accumulators from Zero-Knowledge Sets

Security notions
Perfect completeness ≡ correctness

Soundness ≡ undeniability

Zero-knowledge

Simulation-based notion

∃ simulator S, negl. ε, s.t. ∀ PPT distinguishers:
Pr [distinguish sim/real] ≤ ε(κ)

We show that “zero-knowledge =⇒ indistinguishability”

Other direction unclear, sim-based notion seems stronger

First undeniable, unbounded, indistinguishable acc
Nearly ZK sets→ t-bounded

David Derler, IAIK, Graz University of Technology
April 21, 201521
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Commitments

Compute commitment C to message m

Later: provide opening O demonstrating that

C is commitment to m

Security (informal):

Correctness: straight forward

Binding: Intractable to find C, O, O′ such that C opens to
two different messages m 6= m′

Hiding: For C to either m0 or m1. Intractable to decide
whether C opens to m0 or m1

David Derler, IAIK, Graz University of Technology
April 21, 201523
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Commitments from Accumulators I

Use 1-bounded indistinguishable accumulators

C ← acc{m}

O ← (m, r ,witm,aux) such that

acc{m} = Evalr ((∅,pkacc), {m})

Verify(pkacc,acc{m},witm,m) = true

Collision-freeness⇒ Binding

Indistinguishability⇒ Hiding

Observe: cfw-indistinguishability not useful

David Derler, IAIK, Graz University of Technology
April 21, 201524
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Commitments from Accumulators II

Straight forward extension to set-commitments

Use t-bounded accumulators

Opening w.r.t. entire set

Trapdoor commitments

Use skacc as trapdoor

David Derler, IAIK, Graz University of Technology
April 21, 201525
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Conclusion

Unified model for accumulators
Covering all features existing to date

Introduce indistinguishability notion
Provide first indistinguishable dynamic scheme

Show relations to other primitives
Commitments

Zero-knowledge sets

Yields first undeniable, unbounded, indistinguishable,
universal accumulator

Inspiration for new constructions
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April 21, 201526
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Thank you.

david.derler@iaik.tugraz.at

Extended version: http://eprint.iacr.org/2015/087

mailto:david.derler@iaik.tugraz.at?subject=[CT-RSA'15 Accu]
http://eprint.iacr.org/2015/087
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Proof of Knowledge

Alice Bob

Interactive method for one party to prove to another the knowledge of a
secret S.

Classical Instantiations : Schnorr proofs, Sigma Protocols . . .
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Proving that a statement is not satisfied

Alice Bob

Interactive method for one party to prove to another the knowledge of a
secret S that does not belong to a language L.
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Applications
Credentials
Enhanced Authenticated Key Exchange

Additional properties
Non-Interactive
Zero-Knowledge
Implicit
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Zero-Knowledge Proof Systems

Introduced in 1985 by Goldwasser, Micali and Rackoff.

; Reveal nothing other than the validity of assertion being proven

Used in many cryptographic protocols
Anonymous credentials
Anonymous signatures
Online voting
. . .
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Zero-Knowledge Interactive Proof

Alice Bob

interactive method for one party to prove to another that a statement S is
true, without revealing anything other than the veracity of S.

1 Completeness: if S is true, the honest verifier will be convinced of this fact

2 Soundness: if S is false, no cheating prover can convince the honest verifier
that it is true

3 Zero-knowledge: if S is true, no cheating verifier learns anything other than
this fact.
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Non-Interactive Zero-Knowledge Proof

Alice Bob

non-interactive method for one party to prove to another that a statement S
is true, without revealing anything other than the veracity of S.

1 Completeness: S is true ; verifier will be convinced of this fact

2 Soundness: S is false ; no cheating prover can convince the verifier that S
is true

3 Zero-knowledge: S is true ; no cheating verifier learns anything other than
this fact.
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Certification of Public Keys: SPHF [ACP09]

A user can ask for the certification of pk, but if he knows the associated sk only:

With a Smooth Projective Hash Function
L: pk and C = C(sk; r) are associated to the same sk

U sends his pk, and an encryption C of sk;
A generates the certificate Cert for pk, and sends it,
masked by Hash = Hash(hk; (pk,C ));

U computes Hash = ProjHash(hp; (pk,C ), r)), and gets Cert.
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U sends his pk, and an encryption C of sk;
A generates the certificate Cert for pk, and sends it,
masked by Hash = Hash(hk; (pk,C ));

U computes Hash = ProjHash(hp; (pk,C ), r)), and gets Cert.

Implicit proof of knowledge of sk
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Smooth Projective Hash Functions [CS02]

Definition [CS02,GL03]
Let {H} be a family of functions:

X , domain of these functions
L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using
either a secret hashing key hk: H(x) = HashL(hk; x);
or a public projected key hp: H ′(x) = ProjHashL(hp; x ,w)

Public mapping hk 7→ hp = ProjKGL(hk, x)
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SPHF Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w)

w witness that x ∈ L, hp = ProjKGL(hk, x)

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

The latter property requires L to be a hard-partitioned subset of X .
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1 Brief Overview

2 Building blocks

3 Proving that you can not

4 Applications
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Global Idea

π: Proof that W ∈ L
π: Randomizable, Indistinguishability of Proof
π′: Proof that π was computed honestly
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From a very high level

If an adversary forges a proof, this means that both π and π′ are valid
Either π was not computed honestly, and under the Soundness of π′ this
should not happen
Or π was computed honestly but lead to an invalid proof, and under the
Completeness of π this should not happen
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Possible Instantiations

Proof π Proof π′ Interactive Properties
Groth Sahai Groth Sahai No Zero-Knowledge

SPHF SPHF Yes Implicit
Groth Sahai SPHF Depends ZK, Implicit

O. Blazy (XLim) Negative-NIZK CT-RSA 2015 17 / 22



1 Brief Overview

2 Building blocks

3 Proving that you can not

4 Applications
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Anonymous Credentials

Allows user to authenticate while protecting their privacy.

Recent work, build non-interactive credentials for NAND
By combining with ours, it leads to efficient Non-Interactive Credentials
No accumulators are needed
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Language Authenticated Key Exchange

Alice Bob
→ C(MB)

C(MA), hpB ←
→ hpA

HB · H ′
A H ′

B · HA

Same value iff languages are as expected, and users know witnesses.
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Summing up

Proposed a generic framework to prove negative statement *
Gives several instantiation of this framework, allowing some modularity
Works outside pairing environment

Open Problems
Be compatible with post-quantum cryptography
Weaken the requirements, on the building blocks
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