Implementing GCM on ARMvS8

Conrado P.L. Gouvéa Julio Lopez

&
kryptus =Y

UNICAMP

KRYPTUS Information Security Solutions ~ University of Campinas

CT-RSA 2015

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Introduction
[]

Cryptography Performance Matters

sections = @he wuglﬁngtnn 1]051 Sign In Subscribe

The Switch

Newest Androids will join iPhones in
offering default encryption, blocking police

(o [+] =] Al

Get the The Switchboard Newsletter
ig Ti =
By Craig Timberg 4 3 Tomow @epbbers Free daily updates delivered just for you.

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Introduction
[]

Conrado P.

Cryptography Performance Matters

-\ANDROID RevEWS PHONES TABLETS APPS DEVICES Df

Android 5.0 encryption brings
storage performance issues

© November 21,
2014

W Tweet (35| |2+ Companihar |29 5 submit

A Internal NAND - Random Read

4 4KB Random Reads in MB/s - Higher is Better

Google Nexus 6 (Encryption Off) _ 16.64
Google Nexus 5 (Lollipop) ,_ 12.66
Google Nexus 5 *_ 10.06

Google Nexus 6

0.1 2 456789 11 1 15 17
Implementing GCM on ARMv8

Introduction
[]

Cryptography Performance Matters

DEALS FORUM PHONES TABLETS APPS MORE.

CURRENTLY HOT: HTCOne M9 Samsung Galaxy S6 Galaxy S6Edge LG G4 Nexuse Wallpaper Podcast ﬁ

How to give your Nexus 6 a huge speed boost by disabling
device encryption

Nov 20th 2014 by Jeff Mcintire “ 13 u 57 éHE)
. Android Forums

Conrado P. L. Gouvéa, Julio L6 Implementing GCM on ARMv8

Introduction
[]

Cryptography Performance Matters

f ¥ 3 o

30.

NEW ARTICLES

TRENDING NOW
The loneliest roast: Justin Bieber does public penance on Comedy Central

THE VERGE |

. wemisenue LONGFORM . VIDEO . REVIEWS . TECH . SCIENCE

L
A

ENTERTAINMENT . DESIGN . BUSINESS . US &WORLD . FORUMS Q
PREVIDUS STORY NEXT STORY

The Ellen Pao trial is spilling Silicon Valley secrets Ferguson police showed patterns of racial bias for years,
says Justice...

m
COMMENTS

Android Lollipop won't use default disk
encryption due to performance issues

By Russell Brandom on March 3

21pm S Email W @russellbrandom

Conrado P. L. Gouvéa, Julio L6 Implementing GCM

Introduction
0000000

This Work

m Efficient software implementation of GCM over AES for
ARMv8

m Resistance to timing attacks

m Authenticated Encryption

m Combine encryption and authentication in a single scheme,
preventing mistakes

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Introduction
[e] Jlelelelele}

ARM Architecture
f"_- o [* I T

{®800 e | |

: a ' ai - 2 Lo edged|
a0 : o
(ORAS o :

gt

m Used by 95% of smartphones
m ARMv7: 32-bit, SIMD instruction set (NEON)
m ARMvS: 32-bit mode (AArch32), 64-bit mode (AArché4)

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Introduction
[e]e] lelelele}

Galois/Counter Mode (GCM)

m McGrew and Viega, 2005

m Authenticated Encryption
m Input: nonce, plaintext, additional data

m Output: ciphertext, authentication tag
m UsedinTLS, IPSec, SSH, NIST SP 800-38D
m Works with any 128-bit block cipher; used mostly with AES

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Introduction
[ee]e] lelele}

Galois/Counter Mode (GCM)

m Uses CTR mode for encryption and defines the GHASH
function for authentication

m GHASH uses binary field multiplication over [F512s

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Introduction
0000800

GCM Bit Order

a(z) =1
80 00 00 00 VO VO VO VO VO VO VO VO VO B VO 0O

m Can't shift words — breaks the bit order

m Workarounds:
m Reverse bits in each byte, carry out computations, reverse
again at the end

m (Gueron and Kounavis 2010) Reverse the bytes in the vector,
compute using “reverse modular reduction”, reverse again at
theend

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Introduction
0000080

ARM Binary Polynomial Multiplication Support

Lor[as]as[au] o[ap[o[aq] [o [(g, |
A e
[ar-br[ag [a5 bs[ay-bufay byay byl ey byJay - by] | by |

VMULL.P8(A, B) PMULL(4, B)
‘ y | ‘ N [L |

[o

| bl | | bl\l b |
ay- by | l a- by |

VMULL.P64(A, B) PMULL2(4, B)

m ARMv8
m ARMv7

m AArch32: vMULL.P64
® VMULL.P8
m AArché4: PMULL, PMULL2

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

ARM AES Support

1: aese.16b t0, koo

2: aesmc.16b to, to
3: aese.léb te, kel m Advanced Encryption Standard
4. aesmc.16b te, te m AESinstructions in ARMv8 (both
5: aese.16b t@, ko2 AArch32 and AArché64)
6: aesmc.16b t0, to m AESE (AddRoundKey, SubBytes,
ShiftRows)
7. aese.l6b to, ke3
m AESMC (MixColumns)
8: aesmc.16b to, to
B AESD, AESIMC (Decryption)
9: aese.l6b to, ko4

10: aesmc.16b to, to
11: ...

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Implementation
[]

Software Implementation

m High-speed — fast AES and binary field multiplication

m Secure — timing-resistant

m No loop bounds, branches nor table lookups depending on
secret data

m Explore the use of hardware support (AES and binary
polynomial multiplication)
m Field multiplication in Fy12s
m Binary polynomial multiplication (128 x 128-bit — 256-bit)

m Reduction modulo f(z) = z128 + 77 + 22 + z + 1 (256-bit
— 128-bit)

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Implementation
[Jele}

Binary Polynomial Multiplication

m Old approach, without hardware support: precomputed
tables (Lopez-Dahab multiplication)

m ARMv7 (Camara, Gouvéa, Lopez 2013)
® VMULL.P8

m 64 x 64-bit multiplier using eight VMULL . P8 invocations

m 128 x 128-bit multiplier using three invocations (Karatsuba)

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Implementation
(o] le}

Binary Polynomial Multiplication: ARMv8 AArch32

1: vmull.p64 req, al, bl

2: vmull.p64 rlq, ah, bh

3: veor th, bl, bh . ..
o m 64 x 64-bit multiplier:

4. veor tl, al, ah VMULL .P64

5: vmull.p64 tq, th, tl m 128 x 128-bit multiplier

6: veor tq, roq using three invocations

(Karatsuba)

7: veor tqg, rilq

8: veor roh, tl

9: veor rll, th

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Implementation
ooe

Binary Polynomial Multiplication: ARMv8 AArché4

1. pmull r@.1q, a.1d, b.1d
2: pmull2 rl.1q, a.2d, b.2d
m 64 x 64-bit multiplier:
3: ext.16b t0, b, b, #8 P
PMULL, PMULL2
4: pmull t1.1q, a.1d, to0.1d . ..
P a m 128 x 128-bit multiplier
5: pmull2 te.1q, a.2d, te.2d using four invocations
6: eor.16b to, to, tl m Karatsuba not used since
7: ext.16b t1, z, t0, #8 addressing the upper 64
bits is not directly
8: eor.16b ro, ro, ti supported
9: ext.16b t1, te, z, #8
10: eor.16b ri1, ri, ti1

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Implementation
[]

GCM Bit Reflection

m ARMv7, ARMv8 AArch32
m Nodirect support for reversing bits of each byte

m We use the reflected reduction trick (Gueron and Kounavis
2010)

m Inversion of bytes in 16-byte vector: VREV64. 8, VSWP

m ARMv8 AArché64
B RBIT reverses bits of each byte in byte vector

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Implementation
L]

Modular Reduction

m Classic approach: shift and xors (Polyakov 2014)
m Multiplier approach: reduction by f(z) = z128 + r(z) can be
carried out with multiplication by r(z)
m ARMv7
B VMULL.P8 awkward to use, worse performance

m ARMvS8
® VMULL.P64, PMULL

m Lazy reduction (Gueron 2010)
mY;=[(X H) o X - Hz) @ (X - H3) @ (X3 - H4)] mod f(z)

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Implementation
[]
AES

m ARMv7
m Noinstruction support

m Timing-resistant bitsliced implementation from Bernstein
and Schwabe

m ARMvS
m Instruction support
m Two-block interleaving to avoid hazards
m Expanded AES key entirely kept in NEON registers

m Key schedule requires S-box lookups
B AESE can be used (reverting ShiftRows, zero AddRoundKey)

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Benchmark
m 10000-byte message inside loop with 256 iterations
m SUPERCOP not yet used — no support for iOS and Android

m Three implementations: .P8 (with bitsliced AES), .P64 and
PMULL

m Five devices:

Device Architecture Core GHz
PandaBoard ARMv7 Cortex-A9 1.0
Arndale ARMv7 Cortex-A15 1.7
Galaxy Note4 ARMv8 AArch32 Cortex-A53/A57 1.3/1.9
iPhone 5s ARMvS8 Apple A7 1.3
iPad Air 2 ARMvS Apple A8X 1.5

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

0
MO
I}
s e
x O

(&}
(@]
c
(q]
=
| -
()
Yy—
| -
(O]
o
(a'd
T
G
9p]
Ll
<

9.80

O RIS
OIIRXXLLZT
D [RRRRREEE

P stototototetotototototote!

22.30

22.00

25

n o © O
<« <«

1AQ/s3PAD

201

Implementing GCM on ARMv8

N
o}
Q
0
=
2
3>
=
<
@
>
=
(s}
(V]
i
o
o
o
©
&
c
(s}
O

Results
[e]e] Te}

GHASH Performance

12
10.70

10+ 9.60
8.30 8.10

6.00

Cycles/byte
o

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

Results
[e]ele]]

GCM Performance

3513280 3250

23.40

Cycles/byte
B N
S & o

[S)]

Implementing GCM on ARMv8

Conrado P. L. Gouvéa, Julio Lépez

Conclusion

Conclusion

m Efficient and secure GCM implementation for ARM devices

m New ARMvVS8 64-bit binary polynomial multiplier coupled
with AES instructions: 8-10 times faster

m Natural timing-resistance, no branches nor table lookups
required over secret data

m Future work on ARMv8: extend to larger binary fields, apply
to elliptic curve cryptography

m Code available, MIT License:

https://github.com/conradoplg/authenc

Conrado P. L. Gouvéa, Julio Lépez Implementing GCM on ARMv8

https://github.com/conradoplg/authenc

Higher-Order Masking in Practice: A Vector
Implementation of Masked AES for ARM
NEON

Junwei Wang, Praveen Kumar Vadnala,

Johann Grof3schédl, Qiuliang Xu

Shandong University, University of Luxemborg
CT-RSA 2015, April 21 - 24,2015

Outline

Introduction
Differential Power Analysis
Masking Countermeasures

High-Order DPA Attacks

Background
Advanced Encryption Standard
High-Order Masking

Rivain-Prouff Countermeasure

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Outline

Introduction
Differential Power Analysis
Masking Countermeasures

High-Order DPA Attacks

IntrOdUCtion Side-Channel Attacks

1/21

Workstation Oscilloscope

Cryptographic device

IntrOdUCtion Side-Channel Attacks

1/21

Workstation Oscilloscope

Control

Y

Cryptographic device

IntrOdUCtion Side-Channel Attacks

1/21

Workstation Oscilloscope

Control

Y

010101010101
N -

Cryptographic device

IntrOdUCtion Side-Channel Attacks

1/21

Workstation Oscilloscope

Control

010101010101
N -

Cryptographic device

IntrOdUCtion Side-Channel Attacks

1/21

Workstation Oscilloscope

Control

Measured traces

Cryptographic device

IntrOdUCtion Differential Power Analysis (DPA) [KJJ99]

2/21

Group by some known Average frace

or predicted data

Tino Colock poriode)

I n’rrod uction Masking Countermeasures

3/21

e Suppose X is a sensitive intermediate variable in a block cipher.

I n’rrod uction Masking Countermeasures

3/21

e Suppose X is a sensitive intermediate variable in a block cipher.

e Generate a random T, and process T and masked value
x'=x®r

separately instead of x.

I n’rrod uction Masking Countermeasures

3/21

e Suppose X is a sensitive intermediate variable in a block cipher.

e Generate a random T, and process T and masked value
x'=x®r

separately instead of x.
e T is random

= x’ is random
= Power consumption of 1 or x’ alone does not leak any information on
X.

IntrOdUCtion High-Order DPA Attacks

4/21

e Second-order attacks
» Two intermediate variables are probed.

E EE lLI!IllLlIL‘M

ey

i 13_.@,,% LR

\I

joint leakage

» More power traces and more complicated statistical techniques
required but still practical.

IntrOdUCtion High-Order DPA Attacks

4/21

e Second-order attacks
» Two intermediate variables are probed.

* LM ALLLAL LI

Wi

joint leakage

» More power traces and more complicated statistical techniques
required but still practical.
e High-order attacks

» order is the number of probed intermediate values.
» The complexity grows exponentially as the order increases.

Outline

Background
Advanced Encryption Standard
High-Order Masking

Rivain-Prouff Countermeasure

BCICkg rou nd Advanced Encryption Standard (AES)

5/21

e Published by National Institute of Standards and Technology (NIST) in
2001

e Substitution-permutation network based block cipher

e 128-bit (4*4 bytes) state block with three different key lengths

BCICkg rou nd Advanced Encryption Standard (AES)

5/21

Published by National Institute of Standards and Technology (NIST) in
2001

Substitution-permutation network based block cipher

128-bit (4*4 bytes) state block with three different key lengths

10 rounds are performed on the state block for 128-bit keys, each
round contains:

BCICkg rou nd Advanced Encryption Standard (AES)

5/21

Published by National Institute of Standards and Technology (NIST) in
2001

Substitution-permutation network based block cipher

128-bit (4*4 bytes) state block with three different key lengths

10 rounds are performed on the state block for 128-bit keys, each
round contains:

> AddRoundKey

hddRoundKe

>

BCICkg rou nd Advanced Encryption Standard (AES)

5/21

Published by National Institute of Standards and Technology (NIST) in
2001

Substitution-permutation network based block cipher

128-bit (4*4 bytes) state block with three different key lengths
10 rounds are performed on the state block for 128-bit keys, each
round contains:

> AddRoundKey
» ShiftRows

aO,O aO,l a0,2 a0,3 aO,O aO,l a0,2 a0,3
a1,0 al,l a1,2 a1,3 al,l a1,2 a1,3 al,O
a2,0 a2,1 a2,2 a2,3 a2,2 a2,3 aZ,O a2,1
a3,0 a3,1 a3,2 a3,3 a3,3 a3,0 a3,1 a3,2

BCICkg rou nd Advanced Encryption Standard (AES)

5/21

Published by National Institute of Standards and Technology (NIST) in
2001

Substitution-permutation network based block cipher

128-bit (4*4 bytes) state block with three different key lengths
10 rounds are performed on the state block for 128-bit keys, each
round contains:

> AddRoundKey

> ShiftRows

> MixColumns

®c(x)

0,2 0,2| 70,3
Mi |

aZ,Z 32,2 b2,3

3,2 33,2 b3,3

;

BCICkg rou nd Advanced Encryption Standard (AES)

5/21

Published by National Institute of Standards and Technology (NIST) in
2001

Substitution-permutation network based block cipher

128-bit (4*4 bytes) state block with three different key lengths

10 rounds are performed on the state block for 128-bit keys, each
round confains:

AddRoundKey

ShiftRows

MixColumns

SubBytes, also known as S-box, non-linear transformation

vV vy VvVvyy

a0,0 aO,l a0,2 a0,3 b0,0 bO,l b0,2 b0,3

1,01 1,1 71,2 1,3 1,0 “1,1| 71,2
>
aZ,O a2,] a2,2 2,3 bZ,O bZ,] bZ 2

1+ %
a3,0 a3,1 a3,2 Q3,3 b3,0 y 2

= =

S-box: a multiplicative inversion over Fos
followed by an affine transformation.
Inversion: typically implemented via table

look-up, but in our case: x ! = x

BCICkg rou nd High-Order Masking

6/21

e Intermediate value x is split into . shares: x = x1 & - - - & x,, and
these shares are manipulated separately.

BCICkg rou nd High-Order Masking

6/21

e Intermediate value x is split into . shares: x = x1 & - - - & x,, and
these shares are manipulated separately.
e Any subset of at most n — 1 shares is independent of x

= Any joint leakage of at most . — 1 shares leaks nothing about x
= Resistant against (n. — 1)-th order DPA attacks.

BCICkg rou nd High-Order Masking

6/21

e Intermediate value x is split into . shares: x = x1 & - - - & x,, and
these shares are manipulated separately.
e Any subset of at most n — 1 shares is independent of x

= Any joint leakage of at most . — 1 shares leaks nothing about x
= Resistant against (n. — 1)-th order DPA attacks.

e High-order masking countermeasures are practically sufficient for a
certain order.

BCICkg rou nd High-Order Masking

6/21

Intermediate value x is split info 1. shares: x =x1 & - - - & x, and
these shares are manipulated separately.
Any subset of at most n — 1 shares is independent of x

= Any joint leakage of at most . — 1 shares leaks nothing about x
= Resistant against (n. — 1)-th order DPA attacks.

High-order masking countermeasures are practically sufficient for a
certain order.

Masking linear operation f(-) f(x) = f(x1) @ - -+ & f(xn).

BCICkg rou nd High-Order Masking

6/21

e Intermediate value x is split into . shares: x = x1 & - - - & x,, and
these shares are manipulated separately.
e Any subset of at most n — 1 shares is independent of x
= Any joint leakage of at most . — 1 shares leaks nothing about x
= Resistant against (n. — 1)-th order DPA attacks.
e High-order masking countermeasures are practically sufficient for a
certain order.
e Masking linear operation f(-) f(x) = f(x1) ® - -+ & f(xn).
e Masking S-Boxes 2

BCICkg rou nd High-Order Masking

6/21

e Intermediate value x is split into . shares: x =x; & - - - & x;,, and
these shares are manipulated separately.
e Any subset of at most n — 1 shares is independent of x
= Any joint leakage of at most . — 1 shares leaks nothing about x
= Resistant against (n — 1)-th order DPA attacks.
e High-order masking countermeasures are practically sufficient for a
certain order.
e Masking linear operation f(-) f(x) = f(x1) & -+ & f(xn).
e Masking S-Boxes 2 Not easy!!!

Bac kg rou nd Existing Solutions

7/21

Ishai-Sahai-Wagner Scheme [ISW03]

» Describe how to transform a boolean circuit info a new circuit resistant
against any t probes.

Rivain-Prouff countermeasure [RP10]

» Secure the inversion of S-box through exponentiation.

» Secure the inversion of S-box over composite field [KHL11].
Carlet et al. countermeasure (FSE12)

» Extend [RP10] to arbitrary S-box

2k—1

S(x) = Z o xt
i=0

over Fok.

e Coron countermeasure (EUROCRYPT14)

» Generalize the classic randomized table countermeasure.

BCICkg rou nd Rivain-Prouff Countermeasure [1]

8/21

AES inversion (power function) x s x2%*

e Secure exponentiation (inversion) consists of several secure
multiplications and squarings.

BCICkg rou nd Rivain-Prouff Countermeasure [1]

8/21

AES inversion (power function) x s x2%*

e Secure exponentiation (inversion) consists of several secure
multiplications and squarings.

e Secure squaring is easy.

BCICkg rou nd Rivain-Prouff Countermeasure [1]

8/21

AES inversion (power function) x s x2%*

e Secure exponentiation (inversion) consists of several secure
multiplications and squarings.
e Secure squaring is easy.

e Secure multiplication z = xy is extended from [ISW03], i.e.,
recomputing

@Zi = (@M) (@w) = @ XiYj
i=1 i=1 i=1 1<i,j<n

as

Dizi = D (xiyi ® D (xiy; @ iji))
= & <®j>irivi> ©xiyYi ® D;; (15,1 B x1y;5) @iji))
(1)

BCIC kg rou nd Rivain-Prouff Countermeasure [2]

9/21

SecExp254 - masked exponentiation in Fys with 1 shares [RP10]

Input: shares x; satisfying x; & --- & xp = x
Output: shares y; satisfyingy; & -+ S yn = x
1 (zi)i = (3

254

BCIC kg rou nd Rivain-Prouff Countermeasure [2]

9/21

SecExp254 - masked exponentiation in Fys with 1 shares [RP10]

Input: shares x; satisfying x; & --- & xp = x
Output: shares y; satisfyingy; & -+ S yn = x
1 (z)i = (x)i > P zi =X
2: RefreshMasks((z;):)
3: (yi)i « SecMult((zi)1, (xi)i) > @i yi =X

254

BCIC kg rou nd Rivain-Prouff Countermeasure [2]

9/21

SecExp254 - masked exponentiation in Fys with 1 shares [RP10]

Input: shares x; satisfying x; & --- & xp = x

Output: shares Y satisfying y; @ - - @ yn, = x4
1 (zy)i (X%)i > @i Zi = x?
2: RefreshMasks((z;):)
3: (Yi)i = SecMult((zi)1, (xi)1) > P yi =x°
4 (wi)i < (YD > @ wi = x'2
5: RefreshMasks((w;)1)
6: (Yi)i + SecMult((yi)i, (Wi)i) > @ yi =x1P

BCIC kg rou nd Rivain-Prouff Countermeasure [2]

9/21

SecExp254 - masked exponentiation in Fys with 1 shares [RP10]

Input: shares x; satisfying x; & --- & xp = x

Output: shares Y satisfying y; @ - - @ yn, = x4

1: (Zi)i — (X%)i > @i Zi = x?
2: RefreshMasks((z;):)

3: (Yi)i = SecMult((zi)1, (xi)1) > P yi =x°
4 (wi)i « (Y} > @ wi = x'2
5: RefreshMasks((w;)1)

6: (Yi)i = SecMult((yi)i, (Wi)i) > @ yi =x1°
7 (yi)i + (yi®) > P yi = x**0

Background

Rivain-Prouff Countermeasure [2]
9/21

SecExp254 - masked exponentiation in Fys with 1 shares [RP10]

Input: shares x; satisfying x; & --- & xp = x

Output: shares y; satisfyingy; & -+ S yn = x

® N~ 7

(zi)i < (x32)i
RefreshMasks((z;)1)

(Yi)i < SecMult((z)3, (x¢)1)
(wi)i < (Y
RefreshMasks((w;)1)

(yi)i < SecMult((yi)i, (Wi)i)
(yi)i + (yi®);

(Yi)i < SecMult((yi)i, (Wi)i)

254

> @Dy =%
> P; wi = x12

> Dy yi =11
> @iyi — x240
> @iyi — 252

BCIC kg rou nd Rivain-Prouff Countermeasure [2]

9/21

SecExp254 - masked exponentiation in Fys with 1 shares [RP10]

Input: shares x; satisfying x; & --- & xp = x

Output: shares Y satisfying y; @ - - @ yn, = x4

1 (zi)i + (X34 > P zi =x2
2: RefreshMasks((z1)1)

3: (Yi)i < SecMult((zi)1, (xi)) > P yi =x°
4 (wi)i + (uh)s > @ wi = x1?
5: RefreshMasks((w;)1)

6 (yi)i SeCMU“((yt)i, (wii) > Py =xP°
7 (g + (y); o @yt = x20
8: (1) (—SeCMUh(()1 (Wi)i) D@iyi = x252
9: (yi)i < SecMult((yi)i, (zi)1) > @D; yi = x254

BCICI(g rOund A Flaw in RP Countermeasure (FSE13)

10/21

(zi)i + (x2);

RefreshMasks ((zi)i)

(Yi)i < SecMult((xi)i, (zi)1)
(wi)i < (yHi

RefreshMasks ((w;i)i)

(Yi)i < SecMult((yi)i, (wi)i)

O 00 N UV & WN P

BCICkg rOunCI A Flaw in RP Countermeasure (FSE13)

10/21
(wi)i = (l)-

Wili < (Yij i
RefreshMasks ((w;i)i)
(yi)i « SecMult((yi)i, (Wi)i)

IS

O o N O un

BCICkg rOunCI A Flaw in RP Countermeasure (FSE13)

10/21

1. (Zi)i < (X%)i
2. RefreshMasks((zi)i)

7 167,
8. (yi)i < SecMult((yi)i, (Wi)i)
9. (yi)i + SeaMult((yi)i, (zi)1)

BC]CI(g rOUHCI A Flaw in RP Countermeasure (FSE13)

10/21

(zi)i + (x2);

RefreshMasks ((zi)i)

(Yi)i < SecMult((xi)i, (zi)1)
(wi)i < (yHi

RefreshMasks ((w;i)i)

(Yi)i < SecMult((yi)i, (wi)i)

O 00 N UV & WN P

e Vulnerable to
([n/2] + 1)-th order
attacks due to the
integration with
RefreshMasks.

BC]CI(g rOUHCI A Flaw in RP Countermeasure (FSE13)

10/21

(z1)i + (X%()E . e Solution: secure the multiplication:
RefreshMask i)i k
(G0): - Seamae((x)s, (20)1) R(x) =x - g(x), where g(x) = »*".
(wi)i < (yHi

RefreshMasks ((w;i)i)

(Yi)i < SecMult((yi)i, (wi)i)

O 00 N UV & WN P

e Vulnerable to
([n/2] + 1)-th order
attacks due to the
integration with
RefreshMasks.

Background

A Flaw in RP Countermeasure (FSE13)
10/21

©W o ~NOU A WN PR
) .
) .

1

e Vulnerable to
([n/2] + 1)-th order
attacks due to the
integration with
RefreshMasks.

e Solution: secure the multiplication:
h(x) = x - g(x), where g(x) = x2".

Background

A Flaw in RP Countermeasure (FSE13)
10/21

O 00 N UVl & WN P
-
-

e Vulnerable to
([n/2] + 1)-th order
attacks due to the
integration with
RefreshMasks.

e Solution: secure the multiplication:
h(x) = x - g(x), where g(x) = x2".
e Suppose
f(xi,%5) = xi - g0%5) %5 - g(xi)

Background

A Flaw in RP Countermeasure (FSE13)
10/21

O 00 N UVl & WN P
-
-

e Vulnerable to
([n/2] + 1)-th order
attacks due to the
integration with
RefreshMasks.

e Solution: secure the multiplication:
h(x) = x - g(x), where g(x) = x2".
e Suppose
f(xi,%5) = xi - g0%5) %5 - g(xi)
e By the property of f(-, -) that
f(xi, x5) = f(xi, 1) @ f(xi, % & 1)

BC]CI(g rOUHCI A Flaw in RP Countermeasure (FSE13)

10/21
1o (zi)i + (33 e Solution: secure the multiplication:
2. e K
3. (Y < Sech((x)e, (z)1) (x) = x - g(x), where gx) = x*".
4. (wi)i + (Uhs e Suppose
5. LAY
6. (yi)i « SecH((yi)i, (Wi)i) f(xi,%5) = xq - g(x5) © x5 - glxi)
7. (yi)i + (yi%) ..
5 (1) < seomie((yi)i (wp),) @ By the property of f(:, -] that
9. (yi)i Secult((yi)i, (21):) f(xi,%5) = f(xi, 1) © f(xi, % D)

e Equation 1 equals to
e Vulnerable to

(|n/2] + 1)h order Bizi= O ((Boiris) @xivi @
attacks due fo Lhe Byt (14 @ F(x0,%7)))
integration wit
= i i1 Tij) D xiyi ®
RefreshMasks. ® ((EB] ']) Y
Dji (Tj,i @ flxi,7j;)

O (xi,x; & 71,)))

ifyi = g(x4).

Outline

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Implementation ARM NEON

11/21

e ARM is a family of embedded processors

> Low-cost, high-performance and energy-efficient
» Applications: smartphones, tablets, digital camera, efc.

Implementation ARM NEON

11/21

e ARM is a family of embedded processors

> Low-cost, high-performance and energy-efficient
» Applications: smartphones, tablets, digital camera, efc.

e NEON is an advanced SIMD extension on modern ARM processors

SIMD CppU

one 32-bit register acts as four 8-bit registers
Ref + [9] =218]
Rz
R3

RAM

8-bit numbers

mput |+ [9 [2 | 8 |
vesult| 3 [27 [o [>24 |

Operation Count:
tload, 1 multiply, and 1 save

Implementation ARM NEON

11/21

e ARM is a family of embedded processors
> Low-cost, high-performance and energy-efficient
» Applications: smartphones, tablets, digital camera, efc.
e NEON is an advanced SIMD extension on modern ARM processors

> Accelerate multimedia and signal processing

Implementation ARM NEON

11/21

e ARM is a family of embedded processors
> Low-cost, high-performance and energy-efficient
» Applications: smartphones, tablets, digital camera, efc.
e NEON is an advanced SIMD extension on modern ARM processors

> Accelerate multimedia and signal processing
» Registers: thirty-two 64-bit registers (can also be viewed as sixteen
128-bit register)

Implementation ARM NEON

11/21

e ARM is a family of embedded processors

> Low-cost, high-performance and energy-efficient
» Applications: smartphones, tablets, digital camera, efc.

e NEON is an advanced SIMD extension on modern ARM processors

> Accelerate multimedia and signal processing

» Registers: thirty-two 64-bit registers (can also be viewed as sixteen
128-bit register)

» Data Type: 8-, 16-, 32- and é4-bit (signed/unsigned) integers and 8-
and 16-bit polynomial

Implementation ARM NEON

11/21

e ARM is a family of embedded processors

>

>

Low-cost, high-performance and energy-efficient
Applications: smartphones, tablets, digital camera, efc.

e NEON is an advanced SIMD extension on modern ARM processors

>

>

Accelerate multimedia and signal processing

Registers: thirty-two 64-bit registers (can also be viewed as sixteen
128-bit register)

Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-
and 16-bit polynomial

Arithmetic operations, boolean operations and others

Implementation ARM NEON

11/21

e ARM is a family of embedded processors

>

>

Low-cost, high-performance and energy-efficient
Applications: smartphones, tablets, digital camera, efc.

e NEON is an advanced SIMD extension on modern ARM processors

>

>

Accelerate multimedia and signal processing
Registers: thirty-two 64-bit registers (can also be viewed as sixteen
128-bit register)
Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-
and 16-bit polynomial
Arithmetic operations, boolean operations and others
Featured instruction:
> VMULL.P8
> VTBL.8

Implementation

Performance Analysis

12/21
Operations Field Multiplication Random Bits XOR Momeory
SecSqur n 0 0 2n
SecPow4 2n 0 0 2n
SecPowl6 in 0 0 2n
SecMult n? Mm?>—mn)/2 2n%?2—-n) 2n+0(1)
SecH M?>—n)(m+2)+n n?—n 7m®>—n)/2 3n+0(1)
SecExp254’ In? +2n 3(n?—n) 11(n%?—n) 4n+0(1)

Table: Complexity of masked algorithms for S-box with 1 shares, where m is the

number of field multiplication in h(-).

Implementation

Performance Analysis

12/21
Operations Field Multiplication Random Bits XOR Momeory
SecSqur n 0 0 2n
SecPow4 2n 0 0 2n
SecPowl6 in 0 0 2n
SecMult n? Mm?>—mn)/2 2n%?2—-n) 2n+0(1)
SecH M?>—n)(m+2)+n n?—n 7m®>—n)/2 3n+0(1)
SecExp254’ In? +2n 3(n?—n) 11(n%?—n) 4n+0(1)

Table: Complexity of masked algorithms for S-box with 1 shares, where m is the

number of field multiplication in h(-).

e Performance-critical parts:
> Field Multiplication
» Random bits generation

Implemenfaﬁon Barrett Reduction

13/21

e Designed to optimize the modular reduction r = a mod n, where a,
n are integers and a < n2.

Implemenfaﬁon Barrett Reduction

13/21

e Designed to optimize the modular reduction r = a mod n, where a,
n are integers and a < n2.
e Adapted to polynomials [Dhe03]
» Suppose U(x), Q(x), N(x) and Z(x) are polynomial over F4, and
U(x) = Q(xIN(x]) + Z(x)
» |A(x)/B(x)] stands for the quotient of A(x)/B(x), ignoring the
reminder
> Quotient evaluation

where p = deg(N(x)), p > deg(U(x)/xP)
» The reminder Z(x) = U(x) — Q(x)N(x).

|mp|ementc1’rion Field Muliplication in Fys

14/21

Input: polynomials A(x), B(x) and N(x) in Fys, where N(x) =x% +x* + x* + x +1
Output: polynomial Z(x) = A(x) - B(x) mod N(x)
Pre-computation:

1: p + deg(N(x)) >p =38
2 x+2x(p—1) > o =14
IP>a—0p >B =6

4 R(x) « |0y bR(X) =x®+x2+xifp =6

|mp|ementc1’rion Field Muliplication in Fys

14/21

Input: polynomials A(x), B(x) and N(x) in Fys, where N(x) =x% +x* + x* + x +1
Output: polynomial Z(x) = A(x) - B(x) mod N(x)

Pre-computation:

1: p + deg(N(x)) >p =38
2 x+2x(p—1) > o =14
IP>a—0p >B =6
4 R(x) « |0y bR(x)=x6+x2+xifB =6
Multiplication with Barreft modular reduction:

1: U(x) + A(x) - B(x) > deg(U(x)) < 14
2: T(x) + [55] > deg(T(x)) < 6
3: S(x) «+ T(x) - R(x) >deg(S(x)) <B+6
4 Q) |53 > deg(Q(x)) < 6
5 V(x) < Q(x) - N(x) >deg(V(x)) < 14
6: Z(x) <+ U(x) + V(x)

|mp|emen|'0f|0n Vector Implementation of Field Multiplication
15/21
fmult: /*uint8x16_t fmult(uint8x1l6_t a, uint8xl6_t b)*/

I m p | ementation Vector Implementation of Field Multiplication
15/21
fmult: /*uint8x16_t fmult(uint8x1l6_t a, uint8xl6_t b)*/

Implementation

Vector Implementation of Field Multiplication
15/21

fmult:
VMULL.P8 Q2,D1,D3
VMULL.P8 Q1,D0,D2
VMOVN.Il6 D@,Q1
VMOVN.I16 D1,Q2

1. Ux) = ACxX) * B(X)

I m p | ementa ﬁ on Vector Implementation of Field Multiplication

fmult:

VMULL.
VMULL.
VMOVN.
VMOVN.

VSHRN
VSHRN

15/21

P8 (Q2,D1,D3 1. U(x) = ACX) * B(x)
P8 Q1,D0,D2

116 DO,Q1

116 D1,Q2

.U16 D2,Q1,#+8 2. TGO = U /7 x8

.U16 D3,02,#+8

Im plementaﬁon Vector Implementation of Field Multiplication

15/21

fmult:
VMULL.P8 Q2,D1,D3 1. UxX) = ACx) * B(x)
VMULL.P8 Q1,D0,D2
VMOVN.Il6 D@,Q1
VMOVN.I16 D1,Q2

VSHRN.U16 D2,Q1,#+8 2. T(x) = UX) / x8
VSHRN.U16 D3,Q2,#+8

VMOV.U8 D7,#+70 3. S(x) = T(x) * R(X)
VMULL.P8 Q2,D2,D7 4. Q(x) = S(x) / x°

VSHRN.U16 D2,Q2,#+6
VMULL.P8 Q2,D3,D7
VSHRN.U16 D3,Q2,#+6

Im plementaﬁon Vector Implementation of Field Multiplication

15/21

fmult:
VMULL.P8 Q2,D1,D3 1. UxX) = ACx) * B(x)
VMULL.P8 Q1,D0,D2
VMOVN.Il6 D@,Q1
VMOVN.I16 D1,Q2

VSHRN.U16 D2,Q1,#+8 2. T(x) = UX) / x8
VSHRN.U16 D3,Q2,#+8

VMOV.U8 D7,#+70 3. S(x) = T(x) * R(X)
VMULL.P8 Q2,D2,D7 4. Q(x) = S(x) / x°

VSHRN.U16 D2,Q2,#+6

VMULL.P8 Q2,D3,D7

VSHRN.U16 D3,Q2,#+6

VMOV.U8 D2,#@x1B 5. V(x) = Q(x) * N(x)
VMULL.P8 Q1,0Q2,Q1

I m p | emen l-qh OoN Vector Implementation of Secure Field Multiplication

16/21
void sec_fmult(Cuint8x16_t c[], void sec_h(uint8x16_t y[],
uint8x16_t a[], uint8x16_t b[], uint8x16_t x[], uint8x16_t gx[],
int n) { uint8x16_t (g_call)(uint8x16_t),int n) {
int i, j; :
uint8x16_t s, t; for ()

for €. {
for (i =0; 1 < n; i++) .
c[i] = fmult(Ca[i]l, b[iD);

t = g_call(rol);

for (i =0; 1 < n; i++) £ = fmult(x[i1, £);

for (j = i+l; j < n; j+) { rl = veorq_u8(roo, t);
s = rand_uint8x16Q); t = fmult(rol, gx[il);
c[i] = veorqg_u8(c[i], s); rl = veorq_u8(rl, t);
t = fmultCa[il, b[iD); s = veorq_u8(x[j], rol);

. t = g_call(s);

s = veor‘q_u8§s, t)., b = fUltOa[i], ©):
t = fmultCaljl, bLil); rl = veorq_u8(t, ril);
s = veorq_u8(s, t); t = fmult(gx[il, s;
c[3j]1 = veorq_u8(c[jl, sJ; rl = veorq_u8(t, ri);

} y[3] = veorq_u8(y[j], ri);

1 }

Implemenfqﬁon Improved Implementation Based on [KHL11]

17/21
e [KHL11]is vulnerable to the same attack on [RP10]
e We propose a new secure inversion algorithm
Seclnv4 - masked exponentiation in Fos with 1 shares
Input: shares x; satisfying x; & --- & xp = x
Output: shares y; satisfying y; @ - - © yn, = x**
- (wi)i = () > D wi =%
2: (zi)i ¢ SecH((xi)i, (wi)i) > @i zi =%°
3 (zi)i + (2} > Pz =x"
4 (yi)i < SecMult((zi)1, (wi)i) > @iy =xM

Outline

Results and Comparison

Results

Performance Metrics

18/21
Peformance Metrics #instructions
Field Multiplication 15
Random Bits Generation - xorshift96 15
XOR 1
Secure AddRoundKey n
Secure ShiffRows 4n
Secure MixColumns 13n
Secure Affine Transformation 18n
Secure Exp254 191n? — 26n

Table: The number of instructions required by vector implementation of each

function, where 1 is the number of shares

Com Pa rison Penalty Factor

19/21
160 - 150 4
140
120 - 3
100

Speedup Factor

Penalty Factor
5 & 8

N
o

unmasked 1 2 3 4 5 6 7
—2—PF (Section 3) —*—PF (Section 4) Speedup Factor

Figure: Penalty factor (PF) of our implementation ([RP10]) in Section 3 and
improved implementation (based on [KHL11]) in Section 4; Speedup factor of
improved implementation in Section 4 compared to implementation in Section 3.

Comparison Related Work
20/21

Method Platform First-order ~ Second-order Third-order ~ Fourth-order
CHES'10 [RP10] 8-bit 8051 65 132 235
CHES’'11 [KHL11] 8-bit AVR - 22 39 -
Coron [Cor14] 1.86 GHz Intel 439 1205 2411 4003
Ours (Section 3) 32-bit ARM 9 19 32 60
Ours (Section 4) 32-bit ARM 4 8 13 31

Table: Penalty factor in different implementations

Outline

Conclusion

Conclusion

21/21

e The performance-critical parts are field multiplication and random
bits generation.

Conclusion

21/21

e The performance-critical parts are field multiplication and random
bits generation.

e We utilize vmul1.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

Conclusion

21/21

e The performance-critical parts are field multiplication and random
bits generation.

e We utilize vmul1.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

e We further improve our performance by using composite field
GF(28) £ GF((2%)?).

Conclusion

21/21

The performance-critical parts are field multiplication and random
bits generation.

We utilize vmull.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

We further improve our performance by using composite field
GF(28) £ GF((2%)?).

Our implementations achieve a not bad penalty factor, hence, they

are deployable in practice.

formance-criti ltiplication and

generation.

utilize vmu1 Tha nk YOU ! ction to OPfj

d multiplico 1s.
P

further imp >mposite fie
B GF((2
plementations ac! penalty factor,
able in practice.

formance-criti ltiplication and
generation.

utilize vmu1 ction to opf

Question®

d multiplico 1s. j

further imp >mposite fie
B GF((2
plementations ac! penalty factor,
able in practice.

	CRYP-W01-Implementing-GCM-on-ARMv8_Final
	CRYP-W01-Higher-Order-Masking-in-Practice-A-Vector-Implementation-of-Masked-AES-for-ARM-NEON_Final
	Introduction
	Differential Power Analysis
	Masking Countermeasures
	High-Order DPA Attacks

	Background
	Advanced Encryption Standard
	High-Order Masking
	Rivain-Prouff Countermeasure

	Implementation
	ARM NEON
	Performance Analysis
	Implementation of Secure Field Multiplication

	Results and Comparison
	Conclusion

