
.
Introduction

.
Implementation

. . . .
Results Conclusion

Implementing GCMonARMv8

Conrado P. L. Gouvêa Julio López

KRYPTUS Information Security Solutions University of Campinas

CT-RSA 2015

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 1/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Cryptography PerformanceMatters

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 2/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Cryptography PerformanceMatters

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 2/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Cryptography PerformanceMatters

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 2/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Cryptography PerformanceMatters

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 2/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

ThisWork

Efficient software implementation of GCMover AES for
ARMv8

Resistance to timing attacks

Authenticated Encryption
Combine encryption and authentication in a single scheme,
preventingmistakes

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 3/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

ARMArchitecture

Used by 95% of smartphones

ARMv7: 32-bit, SIMD instruction set (NEON)

ARMv8: 32-bit mode (AArch32), 64-bit mode (AArch64)

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 4/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Galois/CounterMode (GCM)

McGrew and Viega, 2005

Authenticated Encryption
Input: nonce, plaintext, additional data

Output: ciphertext, authentication tag

Used in TLS, IPSec, SSH, NIST SP 800-38D

Works with any 128-bit block cipher; usedmostly with AES

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 5/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Galois/CounterMode (GCM)

M1

J

EK

C1

incJ inc . . .

. . .Y

EK

S0

·H

Mm

J

EK

Cm

·H

L

T·H

S0

Uses CTRmode for encryption and defines the GHASH
function for authentication

GHASH uses binary fieldmultiplication over F2128

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 6/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

GCMBit Order

a(z) = 1
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Can’t shift words— breaks the bit order

Workarounds:
Reverse bits in each byte, carry out computations, reverse
again at the end

(Gueron and Kounavis 2010) Reverse the bytes in the vector,
compute using “reversemodular reduction”, reverse again at
the end

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 7/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

ARMBinary PolynomialMultiplication Support

ARMv7
VMULL.P8

ARMv8
AArch32: VMULL.P64

AArch64: PMULL, PMULL2

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 8/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

ARMAES Support

1: aese.16b t0, k00

2: aesmc.16b t0, t0

3: aese.16b t0, k01

4: aesmc.16b t0, t0

5: aese.16b t0, k02

6: aesmc.16b t0, t0

7: aese.16b t0, k03

8: aesmc.16b t0, t0

9: aese.16b t0, k04

10: aesmc.16b t0, t0

11: . . .

Advanced Encryption Standard

AES instructions in ARMv8 (both
AArch32 and AArch64)

AESE (AddRoundKey, SubBytes,
ShiftRows)

AESMC (MixColumns)

AESD, AESIMC (Decryption)

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 9/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Software Implementation

High-speed— fast AES and binary fieldmultiplication

Secure— timing-resistant
No loop bounds, branches nor table lookups depending on
secret data

Explore the use of hardware support (AES and binary
polynomial multiplication)

Field multiplication in F2128
Binary polynomial multiplication (128× 128-bit→ 256-bit)

Reductionmodulo f(z) = z128 + z7 + z2 + z + 1 (256-bit
→ 128-bit)

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 10/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Binary PolynomialMultiplication

Old approach, without hardware support: precomputed
tables (López-Dahabmultiplication)

ARMv7 (Câmara, Gouvêa, López 2013)
VMULL.P8

64× 64-bit multiplier using eight VMULL.P8 invocations

128× 128-bit multiplier using three invocations (Karatsuba)

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 11/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Binary PolynomialMultiplication: ARMv8 AArch32

1: vmull.p64 r0q, al, bl

2: vmull.p64 r1q, ah, bh

3: veor th, bl, bh

4: veor tl, al, ah

5: vmull.p64 tq, th, tl

6: veor tq, r0q

7: veor tq, r1q

8: veor r0h, tl

9: veor r1l, th

64× 64-bit multiplier:
VMULL.P64

128× 128-bit multiplier
using three invocations
(Karatsuba)

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 12/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Binary PolynomialMultiplication: ARMv8 AArch64

1: pmull r0.1q, a.1d, b.1d

2: pmull2 r1.1q, a.2d, b.2d

3: ext.16b t0, b, b, #8

4: pmull t1.1q, a.1d, t0.1d

5: pmull2 t0.1q, a.2d, t0.2d

6: eor.16b t0, t0, t1

7: ext.16b t1, z, t0, #8

8: eor.16b r0, r0, t1

9: ext.16b t1, t0, z, #8

10: eor.16b r1, r1, t1

64× 64-bit multiplier:
PMULL, PMULL2

128× 128-bit multiplier
using four invocations

Karatsuba not used since
addressing the upper 64
bits is not directly
supported

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 13/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

GCMBit Reflection

ARMv7, ARMv8AArch32
No direct support for reversing bits of each byte

We use the reflected reduction trick (Gueron and Kounavis
2010)

Inversion of bytes in 16-byte vector: VREV64.8, VSWP

ARMv8AArch64
RBIT reverses bits of each byte in byte vector

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 14/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Modular Reduction

Classic approach: shift and xors (Polyakov 2014)

Multiplier approach: reduction by f(z) = z128 + r(z) can be
carried out withmultiplication by r(z)

ARMv7
VMULL.P8 awkward to use, worse performance

ARMv8
VMULL.P64, PMULL

Lazy reduction (Gueron 2010)
Yi = [(Xi ·H)⊕ (Xi–1 ·H2)⊕ (Xi–2 ·H3)⊕ (Xi–3 ·H4)] mod f(z)

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 15/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

AES

ARMv7
No instruction support

Timing-resistant bitsliced implementation fromBernstein
and Schwabe

ARMv8
Instruction support

Two-block interleaving to avoid hazards

Expanded AES key entirely kept in NEON registers

Key schedule requires S-box lookups
AESE can be used (reverting ShiftRows, zero AddRoundKey)

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 16/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Benchmark
10000-bytemessage inside loopwith 256 iterations

SUPERCOP not yet used— no support for iOS and Android

Three implementations: .P8 (with bitsliced AES), .P64 and
PMULL

Five devices:

Device Architecture Core GHz

PandaBoard ARMv7 Cortex-A9 1.0
Arndale ARMv7 Cortex-A15 1.7
Galaxy Note 4 ARMv8AArch32 Cortex-A53/A57 1.3/1.9
iPhone 5s ARMv8 Apple A7 1.3
iPad Air 2 ARMv8 Apple A8X 1.5

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 17/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

AES-CTR Performance

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 18/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

GHASHPerformance

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 19/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

GCMPerformance

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 20/21

.
Introduction

.
Implementation

. . . .
Results Conclusion

Conclusion

Efficient and secure GCM implementation for ARMdevices

NewARMv8 64-bit binary polynomial multiplier coupled
with AES instructions: 8–10 times faster

Natural timing-resistance, no branches nor table lookups
required over secret data

Future work on ARMv8: extend to larger binary fields, apply
to elliptic curve cryptography

Code available, MIT License:

https://github.com/conradoplg/authenc

Conrado P. L. Gouvêa, Julio López Implementing GCMonARMv8 21/21

https://github.com/conradoplg/authenc

Higher-Order Masking in Practice: A Vector
Implementation of Masked AES for ARM

NEON

Junwei Wang, Praveen Kumar Vadnala,

Johann Großschädl, Qiuliang Xu

Shandong University, University of Luxemborg

CT-RSA 2015, April 21 - 24, 2015

Outline

Introduction
Differential Power Analysis
Masking Countermeasures
High-Order DPA Attacks

Background
Advanced Encryption Standard
High-Order Masking
Rivain-Prouff Countermeasure

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Outline

Introduction
Differential Power Analysis
Masking Countermeasures
High-Order DPA Attacks

Background
Advanced Encryption Standard
High-Order Masking
Rivain-Prouff Countermeasure

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Introduction Side-Channel Attacks
1/21

Cryptographic device

Workstation Oscilloscope

Introduction Side-Channel Attacks
1/21

Cryptographic device

Workstation Oscilloscope

Control

Control

Introduction Side-Channel Attacks
1/21

Cryptographic device

Workstation Oscilloscope

Control

Control

Outputs

Introduction Side-Channel Attacks
1/21

Cryptographic device

Workstation Oscilloscope

Control

Control

Outputs
Lea

ke
d i

nfo
rm

ati
on

Introduction Side-Channel Attacks
1/21

Cryptographic device

Workstation Oscilloscope

Control

Outputs
Lea

ke
d i

nfo
rm

ati
on

Control

Measured traces

Introduction Differential Power Analysis (DPA) [KJJ99]
2/21

000

111

Group by some known
or predicted data

Average trace

Differential trace

Introduction Masking Countermeasures
3/21

• Suppose x is a sensitive intermediate variable in a block cipher.

• Generate a random r, and process r and masked value

x ′ = x⊕ r

separately instead of x.
• r is random
⇒ x ′ is random
⇒ Power consumption of r or x ′ alone does not leak any information on

x.

Introduction Masking Countermeasures
3/21

• Suppose x is a sensitive intermediate variable in a block cipher.

• Generate a random r, and process r and masked value

x ′ = x⊕ r

separately instead of x.

• r is random
⇒ x ′ is random
⇒ Power consumption of r or x ′ alone does not leak any information on

x.

Introduction Masking Countermeasures
3/21

• Suppose x is a sensitive intermediate variable in a block cipher.

• Generate a random r, and process r and masked value

x ′ = x⊕ r

separately instead of x.
• r is random
⇒ x ′ is random
⇒ Power consumption of r or x ′ alone does not leak any information on

x.

Introduction High-Order DPA Attacks
4/21

• Second-order attacks
! Two intermediate variables are probed.

r x ′

joint leakage

! More power traces and more complicated statistical techniques
required but still practical.

• High-order attacks
! order is the number of probed intermediate values.
! The complexity grows exponentially as the order increases.

Introduction High-Order DPA Attacks
4/21

• Second-order attacks
! Two intermediate variables are probed.

r x ′

joint leakage

! More power traces and more complicated statistical techniques
required but still practical.

• High-order attacks
! order is the number of probed intermediate values.
! The complexity grows exponentially as the order increases.

Outline

Introduction
Differential Power Analysis
Masking Countermeasures
High-Order DPA Attacks

Background
Advanced Encryption Standard
High-Order Masking
Rivain-Prouff Countermeasure

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths

• 10 rounds are performed on the state block for 128-bit keys, each
round contains:

! AddRoundKey
! ShiftRows
! MixColumns
! SubBytes, also known as S-box, non-linear transformation

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:

! AddRoundKey
! ShiftRows
! MixColumns
! SubBytes, also known as S-box, non-linear transformation

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey

! ShiftRows
! MixColumns
! SubBytes, also known as S-box, non-linear transformation

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey

! ShiftRows
! MixColumns
! SubBytes, also known as S-box, non-linear transformation

2,1

1,21,1

a a a a

aaaa

a a a a

aaaa

0,0 0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

k k k k

kkkk

k k2,1
k

k k

kkk

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

b
2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

AddRoundKey

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey
! ShiftRows

! MixColumns
! SubBytes, also known as S-box, non-linear transformation

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey
! ShiftRows

! MixColumns
! SubBytes, also known as S-box, non-linear transformation

ShiftRows
a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

No
change

Shift 1

Shift 2

Shift 3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,1 1,2 1,3 1,0

0,0 0,1 0,2 0,3

2,0 2,1 2,2 2,3 2,0 2,12,2 2,3

3,0 3,1 3,2 3,3 3,0 3,1 3,23,3

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey
! ShiftRows
! MixColumns

! SubBytes, also known as S-box, non-linear transformation

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey
! ShiftRows
! MixColumns

! SubBytes, also known as S-box, non-linear transformation

1,2

a a a

aa1,1aa

a 2,1a a a

aaa

0,0

a0,1
0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1 3,2 3,3 b

1,2

b b b

bbb

b 2,1b b b

bb

0,0

b0,1
0,2 0,3

1,0
b1,1

1,3

2,0 2,2 2,3

3,0 b3,1 3,2 3,3

MixColumns

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey
! ShiftRows
! MixColumns
! SubBytes, also known as S-box, non-linear transformation

Background Advanced Encryption Standard (AES)
5/21

• Published by National Institute of Standards and Technology (NIST) in
2001

• Substitution-permutation network based block cipher

• 128-bit (4*4 bytes) state block with three different key lengths
• 10 rounds are performed on the state block for 128-bit keys, each

round contains:
! AddRoundKey
! ShiftRows
! MixColumns
! SubBytes, also known as S-box, non-linear transformation

1,2

a a a

aa1,1aa

a 2,1a a a

aaa

0,0 a0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1 3,2 3,3 b
2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

SubBytes

S

S-box: a multiplicative inversion over F28

followed by an affine transformation.
Inversion: typically implemented via table
look-up, but in our case: x−1 = x254.

Background High-Order Masking
6/21

• Intermediate value x is split into n shares: x = x1 ⊕ · · ·⊕ xn and
these shares are manipulated separately.

• Any subset of at most n− 1 shares is independent of x
⇒ Any joint leakage of at most n− 1 shares leaks nothing about x
⇒ Resistant against (n− 1)-th order DPA attacks.

• High-order masking countermeasures are practically sufficient for a
certain order.

• Masking linear operation f(·) f(x) = f(x1)⊕ · · ·⊕ f(xn).

• Masking S-Boxes ?

Background High-Order Masking
6/21

• Intermediate value x is split into n shares: x = x1 ⊕ · · ·⊕ xn and
these shares are manipulated separately.

• Any subset of at most n− 1 shares is independent of x
⇒ Any joint leakage of at most n− 1 shares leaks nothing about x
⇒ Resistant against (n− 1)-th order DPA attacks.

• High-order masking countermeasures are practically sufficient for a
certain order.

• Masking linear operation f(·) f(x) = f(x1)⊕ · · ·⊕ f(xn).

• Masking S-Boxes ?

Background High-Order Masking
6/21

• Intermediate value x is split into n shares: x = x1 ⊕ · · ·⊕ xn and
these shares are manipulated separately.

• Any subset of at most n− 1 shares is independent of x
⇒ Any joint leakage of at most n− 1 shares leaks nothing about x
⇒ Resistant against (n− 1)-th order DPA attacks.

• High-order masking countermeasures are practically sufficient for a
certain order.

• Masking linear operation f(·) f(x) = f(x1)⊕ · · ·⊕ f(xn).

• Masking S-Boxes ?

Background High-Order Masking
6/21

• Intermediate value x is split into n shares: x = x1 ⊕ · · ·⊕ xn and
these shares are manipulated separately.

• Any subset of at most n− 1 shares is independent of x
⇒ Any joint leakage of at most n− 1 shares leaks nothing about x
⇒ Resistant against (n− 1)-th order DPA attacks.

• High-order masking countermeasures are practically sufficient for a
certain order.

• Masking linear operation f(·) f(x) = f(x1)⊕ · · ·⊕ f(xn).

• Masking S-Boxes ?

Background High-Order Masking
6/21

• Intermediate value x is split into n shares: x = x1 ⊕ · · ·⊕ xn and
these shares are manipulated separately.

• Any subset of at most n− 1 shares is independent of x
⇒ Any joint leakage of at most n− 1 shares leaks nothing about x
⇒ Resistant against (n− 1)-th order DPA attacks.

• High-order masking countermeasures are practically sufficient for a
certain order.

• Masking linear operation f(·) f(x) = f(x1)⊕ · · ·⊕ f(xn).

• Masking S-Boxes ?

Background High-Order Masking
6/21

• Intermediate value x is split into n shares: x = x1 ⊕ · · ·⊕ xn and
these shares are manipulated separately.

• Any subset of at most n− 1 shares is independent of x
⇒ Any joint leakage of at most n− 1 shares leaks nothing about x
⇒ Resistant against (n− 1)-th order DPA attacks.

• High-order masking countermeasures are practically sufficient for a
certain order.

• Masking linear operation f(·) f(x) = f(x1)⊕ · · ·⊕ f(xn).

• Masking S-Boxes ? Not easy!!!

Background Existing Solutions
7/21

• Ishai-Sahai-Wagner Scheme [ISW03]
! Describe how to transform a boolean circuit into a new circuit resistant

against any t probes.

• Rivain-Prouff countermeasure [RP10]
! Secure the inversion of S-box through exponentiation.
! Secure the inversion of S-box over composite field [KHL11].

• Carlet et al. countermeasure (FSE12)
! Extend [RP10] to arbitrary S-box

S(x) =
2k−1∑

i=0

αix
i

over F2k .

• Coron countermeasure (EUROCRYPT14)
! Generalize the classic randomized table countermeasure.

Background Rivain-Prouff Countermeasure [1]
8/21

AES inversion (power function) x #→ x254

• Secure exponentiation (inversion) consists of several secure
multiplications and squarings.

• Secure squaring is easy.
• Secure multiplication z = xy is extended from [ISW03], i.e.,

recomputing

n⊕

i=1

zi =

(
n⊕

i=1

xi

)(
n⊕

i=1

yi

)

=
⊕

1"i,j"n

xiyj

as
⊕

i zi =
⊕

i

(
xiyi ⊕

⊕
j<i (xiyj ⊕ xjyi)

)

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i ((rj,i ⊕ xiyj)⊕ xjyi)

)
.

(1)

Background Rivain-Prouff Countermeasure [1]
8/21

AES inversion (power function) x #→ x254

• Secure exponentiation (inversion) consists of several secure
multiplications and squarings.

• Secure squaring is easy.

• Secure multiplication z = xy is extended from [ISW03], i.e.,
recomputing

n⊕

i=1

zi =

(
n⊕

i=1

xi

)(
n⊕

i=1

yi

)

=
⊕

1"i,j"n

xiyj

as
⊕

i zi =
⊕

i

(
xiyi ⊕

⊕
j<i (xiyj ⊕ xjyi)

)

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i ((rj,i ⊕ xiyj)⊕ xjyi)

)
.

(1)

Background Rivain-Prouff Countermeasure [1]
8/21

AES inversion (power function) x #→ x254

• Secure exponentiation (inversion) consists of several secure
multiplications and squarings.

• Secure squaring is easy.
• Secure multiplication z = xy is extended from [ISW03], i.e.,

recomputing

n⊕

i=1

zi =

(
n⊕

i=1

xi

)(
n⊕

i=1

yi

)

=
⊕

1"i,j"n

xiyj

as
⊕

i zi =
⊕

i

(
xiyi ⊕

⊕
j<i (xiyj ⊕ xjyi)

)

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i ((rj,i ⊕ xiyj)⊕ xjyi)

)
.

(1)

Background Rivain-Prouff Countermeasure [2]
9/21

SecExp254 - masked exponentiation in F28 with n shares [RP10]

Input: shares xi satisfying x1 ⊕ · · ·⊕ xn = x
Output: shares yi satisfying y1 ⊕ · · ·⊕ yn = x254

1: (zi)i ← (x2i)i

◃
⊕

i zi = x2

2: RefreshMasks((zi)i)
3: (yi)i ← SecMult((zi)i, (xi)i) ◃

⊕
i yi = x3

4: (wi)i ← (y4
i)i ◃

⊕
iwi = x12

5: RefreshMasks((wi)i)
6: (yi)i ← SecMult((yi)i, (wi)i) ◃

⊕
i yi = x15

7: (yi)i ← (y16
i)i ◃

⊕
i yi = x240

8: (yi)i ← SecMult((yi)i, (wi)i) ◃
⊕

i yi = x252

9: (yi)i ← SecMult((yi)i, (zi)i) ◃
⊕

i yi = x254

Background Rivain-Prouff Countermeasure [2]
9/21

SecExp254 - masked exponentiation in F28 with n shares [RP10]

Input: shares xi satisfying x1 ⊕ · · ·⊕ xn = x
Output: shares yi satisfying y1 ⊕ · · ·⊕ yn = x254

1: (zi)i ← (x2i)i ◃
⊕

i zi = x2

2: RefreshMasks((zi)i)
3: (yi)i ← SecMult((zi)i, (xi)i) ◃

⊕
i yi = x3

4: (wi)i ← (y4
i)i ◃

⊕
iwi = x12

5: RefreshMasks((wi)i)
6: (yi)i ← SecMult((yi)i, (wi)i) ◃

⊕
i yi = x15

7: (yi)i ← (y16
i)i ◃

⊕
i yi = x240

8: (yi)i ← SecMult((yi)i, (wi)i) ◃
⊕

i yi = x252

9: (yi)i ← SecMult((yi)i, (zi)i) ◃
⊕

i yi = x254

Background Rivain-Prouff Countermeasure [2]
9/21

SecExp254 - masked exponentiation in F28 with n shares [RP10]

Input: shares xi satisfying x1 ⊕ · · ·⊕ xn = x
Output: shares yi satisfying y1 ⊕ · · ·⊕ yn = x254

1: (zi)i ← (x2i)i ◃
⊕

i zi = x2

2: RefreshMasks((zi)i)
3: (yi)i ← SecMult((zi)i, (xi)i) ◃

⊕
i yi = x3

4: (wi)i ← (y4
i)i ◃

⊕
iwi = x12

5: RefreshMasks((wi)i)
6: (yi)i ← SecMult((yi)i, (wi)i) ◃

⊕
i yi = x15

7: (yi)i ← (y16
i)i ◃

⊕
i yi = x240

8: (yi)i ← SecMult((yi)i, (wi)i) ◃
⊕

i yi = x252

9: (yi)i ← SecMult((yi)i, (zi)i) ◃
⊕

i yi = x254

Background Rivain-Prouff Countermeasure [2]
9/21

SecExp254 - masked exponentiation in F28 with n shares [RP10]

Input: shares xi satisfying x1 ⊕ · · ·⊕ xn = x
Output: shares yi satisfying y1 ⊕ · · ·⊕ yn = x254

1: (zi)i ← (x2i)i ◃
⊕

i zi = x2

2: RefreshMasks((zi)i)
3: (yi)i ← SecMult((zi)i, (xi)i) ◃

⊕
i yi = x3

4: (wi)i ← (y4
i)i ◃

⊕
iwi = x12

5: RefreshMasks((wi)i)
6: (yi)i ← SecMult((yi)i, (wi)i) ◃

⊕
i yi = x15

7: (yi)i ← (y16
i)i ◃

⊕
i yi = x240

8: (yi)i ← SecMult((yi)i, (wi)i) ◃
⊕

i yi = x252

9: (yi)i ← SecMult((yi)i, (zi)i) ◃
⊕

i yi = x254

Background Rivain-Prouff Countermeasure [2]
9/21

SecExp254 - masked exponentiation in F28 with n shares [RP10]

Input: shares xi satisfying x1 ⊕ · · ·⊕ xn = x
Output: shares yi satisfying y1 ⊕ · · ·⊕ yn = x254

1: (zi)i ← (x2i)i ◃
⊕

i zi = x2

2: RefreshMasks((zi)i)
3: (yi)i ← SecMult((zi)i, (xi)i) ◃

⊕
i yi = x3

4: (wi)i ← (y4
i)i ◃

⊕
iwi = x12

5: RefreshMasks((wi)i)
6: (yi)i ← SecMult((yi)i, (wi)i) ◃

⊕
i yi = x15

7: (yi)i ← (y16
i)i ◃

⊕
i yi = x240

8: (yi)i ← SecMult((yi)i, (wi)i) ◃
⊕

i yi = x252

9: (yi)i ← SecMult((yi)i, (zi)i) ◃
⊕

i yi = x254

Background Rivain-Prouff Countermeasure [2]
9/21

SecExp254 - masked exponentiation in F28 with n shares [RP10]

Input: shares xi satisfying x1 ⊕ · · ·⊕ xn = x
Output: shares yi satisfying y1 ⊕ · · ·⊕ yn = x254

1: (zi)i ← (x2i)i ◃
⊕

i zi = x2

2: RefreshMasks((zi)i)
3: (yi)i ← SecMult((zi)i, (xi)i) ◃

⊕
i yi = x3

4: (wi)i ← (y4
i)i ◃

⊕
iwi = x12

5: RefreshMasks((wi)i)
6: (yi)i ← SecMult((yi)i, (wi)i) ◃

⊕
i yi = x15

7: (yi)i ← (y16
i)i ◃

⊕
i yi = x240

8: (yi)i ← SecMult((yi)i, (wi)i) ◃
⊕

i yi = x252

9: (yi)i ← SecMult((yi)i, (zi)i) ◃
⊕

i yi = x254

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecMult((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecMult((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecMult((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecMult((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecMult((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecMult((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecMult((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecMult((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecMult((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecMult((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecH((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecH((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecH((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecH((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecH((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecH((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Background A Flaw in RP Countermeasure (FSE13)
10/21

1. (zi)i← (x2
i)i

2. RefreshMasks((zi)i)
3. (yi)i← SecH((xi)i, (zi)i)
4. (wi)i← (y4

i)i
5. RefreshMasks((wi)i)
6. (yi)i← SecH((yi)i, (wi)i)
7. (yi)i← (y16

i)i
8. (yi)i← SecMult((yi)i, (wi)i)
9. (yi)i← SecMult((yi)i, (zi)i)

• Vulnerable to
(⌊n/2⌋+ 1)-th order
attacks due to the
integration with
RefreshMasks.

• Solution: secure the multiplication:
h(x) = x · g(x), where g(x) = x2

k .

• Suppose
f(xi, xj) = xi · g(xj)⊕ xj · g(xi)

• By the property of f(·, ·) that
f(xi, xj) = f(xi, r)⊕ f(xi, xj ⊕ r)

• Equation 1 equals to

⊕
i zi =

⊕
i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi,xj)

))

=
⊕

i

((⊕
j>i ri,j

)
⊕ xiyi ⊕

⊕
j<i

(
rj,i ⊕ f(xi, r

′
j,i)

⊕f(xi,xj ⊕ r ′j,i)
))

,

if yi = g(xi).

Outline

Introduction
Differential Power Analysis
Masking Countermeasures
High-Order DPA Attacks

Background
Advanced Encryption Standard
High-Order Masking
Rivain-Prouff Countermeasure

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors

! Accelerate multimedia and signal processing
! Registers: thirty-two 64-bit registers (can also be viewed as sixteen

128-bit register)
! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-

and 16-bit polynomial
! Arithmetic operations, boolean operations and others
! Featured instruction:

! VMULL.P8
! VTBL.8

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors

! Accelerate multimedia and signal processing
! Registers: thirty-two 64-bit registers (can also be viewed as sixteen

128-bit register)
! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-

and 16-bit polynomial
! Arithmetic operations, boolean operations and others
! Featured instruction:

! VMULL.P8
! VTBL.8

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors

! Accelerate multimedia and signal processing
! Registers: thirty-two 64-bit registers (can also be viewed as sixteen

128-bit register)
! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-

and 16-bit polynomial
! Arithmetic operations, boolean operations and others
! Featured instruction:

! VMULL.P8
! VTBL.8

Figure: SIMD Example

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors
! Accelerate multimedia and signal processing

! Registers: thirty-two 64-bit registers (can also be viewed as sixteen
128-bit register)

! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-
and 16-bit polynomial

! Arithmetic operations, boolean operations and others
! Featured instruction:

! VMULL.P8
! VTBL.8

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors
! Accelerate multimedia and signal processing
! Registers: thirty-two 64-bit registers (can also be viewed as sixteen

128-bit register)

! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-
and 16-bit polynomial

! Arithmetic operations, boolean operations and others
! Featured instruction:

! VMULL.P8
! VTBL.8

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors
! Accelerate multimedia and signal processing
! Registers: thirty-two 64-bit registers (can also be viewed as sixteen

128-bit register)
! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-

and 16-bit polynomial

! Arithmetic operations, boolean operations and others
! Featured instruction:

! VMULL.P8
! VTBL.8

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors
! Accelerate multimedia and signal processing
! Registers: thirty-two 64-bit registers (can also be viewed as sixteen

128-bit register)
! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-

and 16-bit polynomial
! Arithmetic operations, boolean operations and others

! Featured instruction:
! VMULL.P8
! VTBL.8

Implementation ARM NEON
11/21

• ARM is a family of embedded processors
! Low-cost, high-performance and energy-efficient
! Applications: smartphones, tablets, digital camera, etc.

• NEON is an advanced SIMD extension on modern ARM processors
! Accelerate multimedia and signal processing
! Registers: thirty-two 64-bit registers (can also be viewed as sixteen

128-bit register)
! Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8-

and 16-bit polynomial
! Arithmetic operations, boolean operations and others
! Featured instruction:

! VMULL.P8
! VTBL.8

Implementation Performance Analysis
12/21

Operations Field Multiplication Random Bits XOR Momeory

SecSqur n 0 0 2n
SecPow4 2n 0 0 2n
SecPow16 4n 0 0 2n
SecMult n2 (n2 − n)/2 2(n2 − n) 2n+ O(1)
SecH (n2 − n)(m+ 2) + n n2 − n 7(n2 − n)/2 3n+ O(1)
SecExp254’ 9n2 + 2n 3(n2 − n) 11(n2 − n) 4n+ O(1)

Table: Complexity of masked algorithms for S-box with n shares, where m is the
number of field multiplication in h(·).

• Performance-critical parts:
! Field Multiplication
! Random bits generation

Implementation Performance Analysis
12/21

Operations Field Multiplication Random Bits XOR Momeory

SecSqur n 0 0 2n
SecPow4 2n 0 0 2n
SecPow16 4n 0 0 2n
SecMult n2 (n2 − n)/2 2(n2 − n) 2n+ O(1)
SecH (n2 − n)(m+ 2) + n n2 − n 7(n2 − n)/2 3n+ O(1)
SecExp254’ 9n2 + 2n 3(n2 − n) 11(n2 − n) 4n+ O(1)

Table: Complexity of masked algorithms for S-box with n shares, where m is the
number of field multiplication in h(·).

• Performance-critical parts:
! Field Multiplication
! Random bits generation

Implementation Barrett Reduction
13/21

• Designed to optimize the modular reduction r = a mod n, where a,
n are integers and a < n2.

• Adapted to polynomials [Dhe03]
! Suppose U(x), Q(x), N(x) and Z(x) are polynomial over Fq, and

U(x) = Q(x)N(x) + Z(x)
! ⌊A(x)/B(x)⌋ stands for the quotient of A(x)/B(x), ignoring the

reminder
! Quotient evaluation

Q(x) =

⌊
U(x)

N(x)

⌋
=

⎢⎢⎢⎣

⌊
U(x)
xp

⌋ ⌊
xp+β

N(x)

⌋

xβ

⎥⎥⎥⎦ =

⌊
T(x)R(x)

xβ

⌋
,

where p = deg(N(x)), β ! deg(U(x)/xp)
! The reminder Z(x) = U(x)−Q(x)N(x).

Implementation Barrett Reduction
13/21

• Designed to optimize the modular reduction r = a mod n, where a,
n are integers and a < n2.

• Adapted to polynomials [Dhe03]
! Suppose U(x), Q(x), N(x) and Z(x) are polynomial over Fq, and

U(x) = Q(x)N(x) + Z(x)
! ⌊A(x)/B(x)⌋ stands for the quotient of A(x)/B(x), ignoring the

reminder
! Quotient evaluation

Q(x) =

⌊
U(x)

N(x)

⌋
=

⎢⎢⎢⎣

⌊
U(x)
xp

⌋ ⌊
xp+β

N(x)

⌋

xβ

⎥⎥⎥⎦ =

⌊
T(x)R(x)

xβ

⌋
,

where p = deg(N(x)), β ! deg(U(x)/xp)
! The reminder Z(x) = U(x)−Q(x)N(x).

Implementation Field Multiplication in F28

14/21

Input: polynomials A(x), B(x) and N(x) in F28 , where N(x) = x8 + x4 + x3 + x+ 1
Output: polynomial Z(x) = A(x) · B(x) mod N(x)
Pre-computation:
1: p← deg(N(x)) ◃ p = 8
2: α← 2 ∗ (p− 1) ◃ α = 14
3: β ! α− p ◃ β ! 6
4: R(x)← ⌊xp+β

N(x) ⌋ ◃ R(x) = x6 + x2 + x if β = 6

Multiplication with Barrett modular reduction:
1: U(x)← A(x) · B(x) ◃ deg(U(x)) " 14

2: T(x)← ⌊U(x)
xp ⌋ ◃ deg(T(x)) " 6

3: S(x)← T(x) · R(x) ◃ deg(S(x)) " β+ 6

4: Q(x)← ⌊S(x)xβ ⌋ ◃ deg(Q(x)) " 6
5: V(x)← Q(x) ·N(x) ◃ deg(V(x)) " 14
6: Z(x)← U(x) + V(x)

Implementation Field Multiplication in F28

14/21

Input: polynomials A(x), B(x) and N(x) in F28 , where N(x) = x8 + x4 + x3 + x+ 1
Output: polynomial Z(x) = A(x) · B(x) mod N(x)
Pre-computation:
1: p← deg(N(x)) ◃ p = 8
2: α← 2 ∗ (p− 1) ◃ α = 14
3: β ! α− p ◃ β ! 6
4: R(x)← ⌊xp+β

N(x) ⌋ ◃ R(x) = x6 + x2 + x if β = 6

Multiplication with Barrett modular reduction:
1: U(x)← A(x) · B(x) ◃ deg(U(x)) " 14

2: T(x)← ⌊U(x)
xp ⌋ ◃ deg(T(x)) " 6

3: S(x)← T(x) · R(x) ◃ deg(S(x)) " β+ 6

4: Q(x)← ⌊S(x)xβ ⌋ ◃ deg(Q(x)) " 6
5: V(x)← Q(x) ·N(x) ◃ deg(V(x)) " 14
6: Z(x)← U(x) + V(x)

Implementation Vector Implementation of Field Multiplication
15/21

fmult: /*uint8x16_t fmult(uint8x16_t a, uint8x16_t b)*/

Implementation Vector Implementation of Field Multiplication
15/21

fmult: /*uint8x16_t fmult(uint8x16_t a, uint8x16_t b)*/
VMULL.P8 Q2,D1,D3 1. U(x) = A(x) * B(x)
VMULL.P8 Q1,D0,D2
VMOVN.I16 D0,Q1
VMOVN.I16 D1,Q2

Implementation Vector Implementation of Field Multiplication
15/21

fmult:
VMULL.P8 Q2,D1,D3 1. U(x) = A(x) * B(x)
VMULL.P8 Q1,D0,D2
VMOVN.I16 D0,Q1
VMOVN.I16 D1,Q2
VSHRN.U16 D2,Q1,#+8 2. T(x) = U(x) / x8

VSHRN.U16 D3,Q2,#+8

Implementation Vector Implementation of Field Multiplication
15/21

fmult:
VMULL.P8 Q2,D1,D3 1. U(x) = A(x) * B(x)
VMULL.P8 Q1,D0,D2
VMOVN.I16 D0,Q1
VMOVN.I16 D1,Q2
VSHRN.U16 D2,Q1,#+8 2. T(x) = U(x) / x8

VSHRN.U16 D3,Q2,#+8
VMOV.U8 D7,#+70 3. S(x) = T(x) * R(x)
VMULL.P8 Q2,D2,D7 4. Q(x) = S(x) / x6

VSHRN.U16 D2,Q2,#+6
VMULL.P8 Q2,D3,D7
VSHRN.U16 D3,Q2,#+6

Implementation Vector Implementation of Field Multiplication
15/21

fmult:
VMULL.P8 Q2,D1,D3 1. U(x) = A(x) * B(x)
VMULL.P8 Q1,D0,D2
VMOVN.I16 D0,Q1
VMOVN.I16 D1,Q2
VSHRN.U16 D2,Q1,#+8 2. T(x) = U(x) / x8

VSHRN.U16 D3,Q2,#+8
VMOV.U8 D7,#+70 3. S(x) = T(x) * R(x)
VMULL.P8 Q2,D2,D7 4. Q(x) = S(x) / x6

VSHRN.U16 D2,Q2,#+6
VMULL.P8 Q2,D3,D7
VSHRN.U16 D3,Q2,#+6
VMOV.U8 D2,#0x1B 5. V(x) = Q(x) * N(x)
VMULL.P8 Q1,Q2,Q1

Implementation Vector Implementation of Field Multiplication
15/21

fmult:
VMULL.P8 Q2,D1,D3 1. U(x) = A(x) * B(x)
VMULL.P8 Q1,D0,D2
VMOVN.I16 D0,Q1
VMOVN.I16 D1,Q2
VSHRN.U16 D2,Q1,#+8 2. T(x) = U(x) / x8

VSHRN.U16 D3,Q2,#+8
VMOV.U8 D7,#+70 3. S(x) = T(x) * R(x)
VMULL.P8 Q2,D2,D7 4. Q(x) = S(x) / x6

VSHRN.U16 D2,Q2,#+6
VMULL.P8 Q2,D3,D7
VSHRN.U16 D3,Q2,#+6
VMOV.U8 D2,#0x1B 5. V(x) = Q(x) * N(x)
VMULL.P8 Q1,Q2,Q1
VEOR Q0,Q1,Q0 6. Z(x) = U(x) + V(x)
BX LR

Implementation Vector Implementation of Secure Field Multiplication

16/21

void sec_fmult(uint8x16_t c[],
uint8x16_t a[], uint8x16_t b[],
int n) {

int i, j;
uint8x16_t s, t;

for (i = 0; i < n; i++)
c[i] = fmult(a[i], b[i]);

for (i = 0; i < n; i++)
for (j = i+1; j < n; j++) {

s = rand_uint8x16();
c[i] = veorq_u8(c[i], s);
t = fmult(a[i], b[j]);
s = veorq_u8(s, t);
t = fmult(a[j], b[i]);
s = veorq_u8(s, t);
c[j] = veorq_u8(c[j], s);

}
}

void sec_h(uint8x16_t y[],
uint8x16_t x[], uint8x16_t gx[],
uint8x16_t (g_call)(uint8x16_t),int n) {

...
for (…)

for (…) {
...

t = g_call(r01);
t = fmult(x[i], t);
r1 = veorq_u8(r00, t);
t = fmult(r01, gx[i]);
r1 = veorq_u8(r1, t);
s = veorq_u8(x[j], r01);
t = g_call(s);
t = fmult(x[i], t);
r1 = veorq_u8(t, r1);
t = fmult(gx[i], s);
r1 = veorq_u8(t, r1);
y[j] = veorq_u8(y[j], r1);

}
}

Implementation Improved Implementation Based on [KHL11]

17/21

• [KHL11] is vulnerable to the same attack on [RP10]

• We propose a new secure inversion algorithm

SecInv4 - masked exponentiation in F24 with n shares

Input: shares xi satisfying x1 ⊕ · · ·⊕ xn = x
Output: shares yi satisfying y1 ⊕ · · ·⊕ yn = x14

1: (wi)i ← (x2i)i ◃
⊕

iwi = x2

2: (zi)i ← SecH((xi)i, (wi)i) ◃
⊕

i zi = x3

3: (zi)i ← (z4i)i ◃
⊕

i zi = x12

4: (yi)i ← SecMult((zi)i, (wi)i) ◃
⊕

i yi = x14

Outline

Introduction
Differential Power Analysis
Masking Countermeasures
High-Order DPA Attacks

Background
Advanced Encryption Standard
High-Order Masking
Rivain-Prouff Countermeasure

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Results Performance Metrics
18/21

Peformance Metrics #instructions

Field Multiplication 15
Random Bits Generation - xorshift96 15
XOR 1

Secure AddRoundKey n
Secure ShiftRows 4n
Secure MixColumns 13n
Secure Affine Transformation 18n
Secure Exp254 191n2 − 26n

Table: The number of instructions required by vector implementation of each
function, where n is the number of shares

Comparison Penalty Factor
19/21

2
9

18.4

32.5

61.2

83.6

114

150

1
4.3

8
13

30.6

41.8

54.3

68.2

2 2.1
2.3

2.5

2

2
2.1

2.2

0

1

2

3

4

0

20

40

60

80

100

120

140

160

unmasked 1 2 3 4 5 6 7

Sp
ee

du
p

Fa
ct

or

Pe
na

lty
 F

ac
to

r

PF (Section 3) PF (Section 4) Speedup Factor

Figure: Penalty factor (PF) of our implementation ([RP10]) in Section 3 and
improved implementation (based on [KHL11]) in Section 4; Speedup factor of
improved implementation in Section 4 compared to implementation in Section 3.

Comparison Related Work
20/21

Method Platform First-order Second-order Third-order Fourth-order

CHES’10 [RP10] 8-bit 8051 65 132 235 -
CHES’11 [KHL11] 8-bit AVR - 22 39 -
Coron [Cor14] 1.86 GHz Intel 439 1205 2411 4003
Ours (Section 3) 32-bit ARM 9 19 32 60
Ours (Section 4) 32-bit ARM 4 8 13 31

Table: Penalty factor in different implementations

Outline

Introduction
Differential Power Analysis
Masking Countermeasures
High-Order DPA Attacks

Background
Advanced Encryption Standard
High-Order Masking
Rivain-Prouff Countermeasure

Implementation
ARM NEON
Performance Analysis
Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Conclusion
21/21

• The performance-critical parts are field multiplication and random
bits generation.

• We utilize vmull.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

• We further improve our performance by using composite field
GF(28) # GF((24)2).

• Our implementations achieve a not bad penalty factor, hence, they
are deployable in practice.

Conclusion
21/21

• The performance-critical parts are field multiplication and random
bits generation.

• We utilize vmull.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

• We further improve our performance by using composite field
GF(28) # GF((24)2).

• Our implementations achieve a not bad penalty factor, hence, they
are deployable in practice.

Conclusion
21/21

• The performance-critical parts are field multiplication and random
bits generation.

• We utilize vmull.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

• We further improve our performance by using composite field
GF(28) # GF((24)2).

• Our implementations achieve a not bad penalty factor, hence, they
are deployable in practice.

Conclusion
21/21

• The performance-critical parts are field multiplication and random
bits generation.

• We utilize vmull.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

• We further improve our performance by using composite field
GF(28) # GF((24)2).

• Our implementations achieve a not bad penalty factor, hence, they
are deployable in practice.

Conclusion
21/21

• The performance-critical parts are field multiplication and random
bits generation.

• We utilize vmull.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

• We further improve our performance by using composite field
GF(28) # GF((24)2).

• Our implementations achieve a not bad penalty factor, hence, they
are deployable in practice.

Thank You!

Conclusion
21/21

• The performance-critical parts are field multiplication and random
bits generation.

• We utilize vmull.p8 instruction and Barrett Reduction to optimize
field multiplication, which only takes 15 instructions.

• We further improve our performance by using composite field
GF(28) # GF((24)2).

• Our implementations achieve a not bad penalty factor, hence, they
are deployable in practice.

Question?

	CRYP-W01-Implementing-GCM-on-ARMv8_Final
	CRYP-W01-Higher-Order-Masking-in-Practice-A-Vector-Implementation-of-Masked-AES-for-ARM-NEON_Final
	Introduction
	Differential Power Analysis
	Masking Countermeasures
	High-Order DPA Attacks

	Background
	Advanced Encryption Standard
	High-Order Masking
	Rivain-Prouff Countermeasure

	Implementation
	ARM NEON
	Performance Analysis
	Implementation of Secure Field Multiplication

	Results and Comparison
	Conclusion

