Implementation	Conclusion

Implementing GCM on ARMv8

Conrado P. L. Gouvêa Julio López

UNICAMP

KRYPTUS Information Security Solutions

University of Campinas

CT-RSA 2015

Cryptography Performance Matters

Sections \equiv	The Washington Post	Search Q	Sign In	Subscribe

The Switch

Newest Androids will join iPhones in offering default encryption, blocking police

By Craig Timberg September 18, 2014 💟 🍞 Follow @craigtimberg

A 🖨 🗣 134

Get the The Switchboard Newsletter

Free daily updates delivered just for you.

occoccoccoccoccoccoccoccoccoccoccoccocc	Implementation Results 0000000 0000	Conclusior
	Cryptography Performance Matters	
	COMMUNITY REVIEWS PHONES TABLETS APPS DEVICES DE	
	Android 5.0 encryption brings storage performance issues	
	Ø November 21, 2014	
	Itike 244 Tweet 35 8+ Compartilhar 29 5 + wubmit	
	Internal NAND - Random Read 4KB Random Reads in MB/s - Higher is Better	
	Google Nexus 6 (Encryption Off) - 16.64	
	Google Nexus 5 (Lollipop) - 12.66	
	Google Nexus 5 - 10.06	
	Google Nexus 6 - 6.18	
	0 1 2 3 4 5 6 7 8 9 11 13 15 17	o (o .

Conrado P. L. Gouvêa, Julio López

Implementing GCM on ARMv8

Cryptography Performance Matters

How to give your Nexus 6 a huge speed boost by disabling device encryption

Nov 20th 2014 by Jeff McIntire

Cryptography Performance Matters

By Russell Brandom on March 3, 2015 03:21 pm 🛛 Email 🎔 @russellbrandom

Introduction			Conclusion
000000	000000	0000	i

This Work

- Efficient software implementation of GCM over AES for ARMv8
- Resistance to timing attacks
- Authenticated Encryption
 - Combine encryption and authentication in a single scheme, preventing mistakes

Implementation

Results 0000

ARM Architecture

- Used by 95% of smartphones
- ARMv7: 32-bit, SIMD instruction set (NEON)
- ARMv8: 32-bit mode (AArch32), 64-bit mode (AArch64)

Galois/Counter Mode (GCM)

- McGrew and Viega, 2005
- Authenticated Encryption
 - Input: nonce, plaintext, additional data
 - Output: ciphertext, authentication tag
- Used in TLS, IPSec, SSH, NIST SP 800-38D
- Works with any 128-bit block cipher; used mostly with AES

Galois/Counter Mode (GCM)

- Uses CTR mode for encryption and defines the GHASH function for authentication
- GHASH uses binary field multiplication over $\mathbb{F}_{2^{128}}$

GCM Bit Order

- Can't shift words breaks the bit order
- Workarounds:
 - Reverse bits in each byte, carry out computations, reverse again at the end
 - (Gueron and Kounavis 2010) Reverse the bytes in the vector, compute using "reverse modular reduction", reverse again at the end

Conrado P. L. Gouvêa, Julio López

ARM AES Support

- 1: aese.16b t0, k00
- 2: aesmc.16b t0, t0
- 3: aese.16b t0, k01
- 4: aesmc.16b t0, t0
- 5: aese.16b t0, k02
- 6: aesmc.16b t0, t0
- 7: aese.16b t0, k03
- 8: aesmc.16b t0, t0
- 9: aese.16b t0, k04
- 10: aesmc.16b t0, t0
- 11: ...

- Advanced Encryption Standard
- AES instructions in ARMv8 (both AArch32 and AArch64)
- AESE (AddRoundKey, SubBytes, ShiftRows)
- AESMC (MixColumns)
- AESD, AESIMC (Decryption)

Software Implementation

- High-speed fast AES and binary field multiplication
- Secure timing-resistant
 - No loop bounds, branches nor table lookups depending on secret data
- Explore the use of hardware support (AES and binary polynomial multiplication)
- Field multiplication in $\mathbb{F}_{2^{128}}$
 - Binary polynomial multiplication (128 imes 128-bit o 256-bit)
 - Reduction modulo f(z) = $z^{128} + z^7 + z^2 + z + 1$ (256-bit \rightarrow 128-bit)

Binary Polynomial Multiplication

- Old approach, without hardware support: precomputed tables (López-Dahab multiplication)
- ARMv7 (Câmara, Gouvêa, López 2013)
 - VMULL.P8
 - 64×64 -bit multiplier using eight VMULL.P8 invocations
 - 128 × 128-bit multiplier using three invocations (Karatsuba)

Binary Polynomial Multiplication: ARMv8 AArch32

- 1: vmull.p64 r0q, al, bl
- 2: vmull.p64 r1q, ah, bh
- 3: veor th, bl, bh
- 4: veor tl, al, ah
- 5: vmull.p64 tq, th, tl
- 6: veor tq, r0q
- 7: veor tq, r1q
- 8: veor r0h, tl
- 9: veor r11, th

- 64 × 64-bit multiplier: VMULL.P64
- 128 × 128-bit multiplier using three invocations (Karatsuba)

Binary Polynomial Multiplication: ARMv8 AArch64

- 1: pmull r0.1q, a.1d, b.1d
- 2: pmull2 r1.1q, a.2d, b.2d
- 3: ext.16b t0, b, b, #8
- 4: pmull t1.1q, a.1d, t0.1d
- 5: pmull2 t0.1q, a.2d, t0.2d
- 6: eor.16b t0, t0, t1
- 7: ext.16b t1, z, t0, #8
- 8: eor.16b r0, r0, t1
- 9: ext.16b t1, t0, z, #8
- 10: eor.16b r1, r1, t1

- 64 × 64-bit multiplier: PMULL, PMULL2
- 128 × 128-bit multiplier using four invocations
- Karatsuba not used since addressing the upper 64 bits is not directly supported

GCM Bit Reflection

ARMv7, ARMv8 AArch32

- No direct support for reversing bits of each byte
- We use the reflected reduction trick (Gueron and Kounavis 2010)
- Inversion of bytes in 16-byte vector: VREV64.8, VSWP
- ARMv8 AArch64
 - RBIT reverses bits of each byte in byte vector

Modular Reduction

- Classic approach: shift and xors (Polyakov 2014)
- Multiplier approach: reduction by f(z) = z¹²⁸ + r(z) can be carried out with multiplication by r(z)
- ARMv7
 - VMULL.P8 awkward to use, worse performance
- ARMv8
 - VMULL.P64, PMULL

■ Lazy reduction (Gueron 2010) ■ $Y_i = [(X_i \cdot H) \oplus (X_{i-1} \cdot H^2) \oplus (X_{i-2} \cdot H^3) \oplus (X_{i-3} \cdot H^4)] \mod f(z)$

Implementation	Conclusion
000000	

AES

ARMv7

- No instruction support
- Timing-resistant bitsliced implementation from Bernstein and Schwabe
- ARMv8
 - Instruction support
 - Two-block interleaving to avoid hazards
 - Expanded AES key entirely kept in NEON registers
 - Key schedule requires S-box lookups
 - AESE can be used (reverting ShiftRows, zero AddRoundKey)

Benchmark

- 10000-byte message inside loop with 256 iterations
- SUPERCOP not yet used no support for iOS and Android
- Three implementations: .P8 (with bitsliced AES), .P64 and PMULL

Five devices:

Device	Architecture	Core	GHz
PandaBoard	ARMv7	Cortex-A9	1.0
Arndale	ARMv7	Cortex-A15	1.7
Galaxy Note 4	ARMv8 AArch32	Cortex-A53/A57	1.3/1.9
iPhone 5s	ARMv8	Apple A7	1.3
iPad Air 2	ARMv8	Apple A8X	1.5

AES-CTR Performance

GHASH Performance

GCM Performance

Conclusion

- Efficient and secure GCM implementation for ARM devices
- New ARMv8 64-bit binary polynomial multiplier coupled with AES instructions: 8–10 times faster
- Natural timing-resistance, no branches nor table lookups required over secret data
- Future work on ARMv8: extend to larger binary fields, apply to elliptic curve cryptography
- Code available, MIT License:

https://github.com/conradoplg/authenc

Higher-Order Masking in Practice: A Vector Implementation of Masked AES for ARM NEON

Junwei Wang, Praveen Kumar Vadnala,

Johann Großschädl, Qiuliang Xu

Shandong University, University of Luxemborg CT-RSA 2015, April 21 - 24, 2015

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON Performance Analysis Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON Performance Analysis Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Side-Channel Attacks

1/21

Workstation

Oscilloscope

Introduction Differential Power Analysis (DPA) [KJJ99]

2/21

Masking Countermeasures

• Suppose x is a sensitive intermediate variable in a block cipher.

Masking Countermeasures

- Suppose x is a sensitive intermediate variable in a block cipher.
- Generate a random r, and process r and masked value

$$x' = x \oplus r$$

separately instead of x.

Masking Countermeasures

- Suppose x is a sensitive intermediate variable in a block cipher.
- Generate a random r, and process r and masked value

$$x' = x \oplus r$$

separately instead of x.

- r is random
 - $\Rightarrow x'$ is random
 - \Rightarrow Power consumption of r or x' alone does not leak any information on x.
Introduction

High-Order DPA Attacks

- Second-order attacks
 - Two intermediate variables are probed.

 More power traces and more complicated statistical techniques required but still practical.

Introduction

High-Order DPA Attacks

- Second-order attacks
 - Two intermediate variables are probed.

- More power traces and more complicated statistical techniques required but still practical.
- High-order attacks
 - order is the number of probed intermediate values.
 - The complexity grows exponentially as the order increases.

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON Performance Analysis Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Background Advanced Encryption Standard (AES)

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths

Background Advanced Encryption Standard (AES) 5/21 _____

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains.

Background Advanced Encryption Standard (AES) 5/21

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains.
 - AddRoundKey

Advanced Encryption Standard (AES)

Background Advanced Encryption Standard (AES)

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains:
 - AddRoundKey
 - ShiftRows

Background Advanced Encryption Standard (AES)

• Published by National Institute of Standards and Technology (NIST) in

Background Advanced Encryption Standard (AES) _____

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains.
 - AddRoundKey
 - ShiftRows
 - MixColumns

Background Advanced Encryption Standard (AES)

Background Advanced Encryption Standard (AES)

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains:
 - AddRoundKey
 - ShiftRows
 - MixColumns
 - SubBytes, also known as S-box, non-linear transformation

Advanced Encryption Standard (AES)

- AddRoundKey
- S-box: a multiplicative inversion over \mathbb{F}_{2^8}
- followed by an affine transformation. Inversion: typically implemented via table look-up, but in our case: $x^{-1} = x^{254}$.

 Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ xn and these shares are manipulated separately.

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ xn and these shares are manipulated separately.
- Any subset of at most n-1 shares is independent of x
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ x_n and these shares are manipulated separately.
- Any subset of at most n-1 shares is independent of x
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ x_n and these shares are manipulated separately.
- Any subset of at most n-1 shares is independent of x
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about χ
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.
- Masking linear operation $f(\cdot) f(x) = f(x_1) \oplus \cdots \oplus f(x_n)$.

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ xn and these shares are manipulated separately.
- Any subset of at most n-1 shares is independent of x
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.
- Masking linear operation $f(\cdot) f(x) = f(x_1) \oplus \cdots \oplus f(x_n)$.
- Masking S-Boxes ?

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ xn and these shares are manipulated separately.
- Any subset of at most n-1 shares is independent of x
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.
- Masking linear operation $f(\cdot) f(x) = f(x_1) \oplus \cdots \oplus f(x_n)$.
- Masking S-Boxes ? Not easy!!!

Existing Solutions

7/21

- Ishai-Sahai-Wagner Scheme [ISW03]
 - Describe how to transform a boolean circuit into a new circuit resistant against any t probes.
- Rivain-Prouff countermeasure [RP10]
 - Secure the inversion of S-box through exponentiation.
 - Secure the inversion of S-box over composite field [KHL11].
- Carlet et al. countermeasure (FSE12)
 - Extend [RP10] to arbitrary S-box

$$S(x) = \sum_{i=0}^{2^k-1} \alpha_i x^i$$

over $\mathbb{F}_{2^k}.$

- Coron countermeasure (EUROCRYPT14)
 - Generalize the classic randomized table countermeasure.

Rivain-Prouff Countermeasure [1]

8/21 _____

AES inversion (power function) $x\mapsto x^{254}$

• Secure exponentiation (inversion) consists of several secure multiplications and squarings.

Rivain-Prouff Countermeasure [1]

AES inversion (power function) $x\mapsto x^{254}$

- Secure exponentiation (inversion) consists of several secure multiplications and squarings.
- Secure squaring is easy.

Rivain-Prouff Countermeasure [1]

8/21

AES inversion (power function) $x\mapsto x^{254}$

- Secure exponentiation (inversion) consists of several secure multiplications and squarings.
- Secure squaring is easy.
- Secure multiplication z = xy is extended from [ISW03], i.e., recomputing

$$\bigoplus_{i=1}^{n} z_{i} = \left(\bigoplus_{i=1}^{n} x_{i}\right) \left(\bigoplus_{i=1}^{n} y_{i}\right) = \bigoplus_{1 \leqslant i, j \leqslant n} x_{i} y_{j}$$

as

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$ Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$ 1: $(z_i)_i \leftarrow (x_i^2)_i$

9/21

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$ Output: shares y_1 satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$

- 1: $(z_i)_i \leftarrow (x_i^2)_i$ $\triangleright \bigoplus_i z_i = x^2$
- 2: RefreshMasks $((z_i)_i)$
- 3: $(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$

 $\triangleright \bigoplus_i u_i = x^3$

9/21

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

9/21

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$ Output: shares y_1 satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$ 1: $(z_i)_i \leftarrow (\chi_i^2)_i$ $\triangleright \bigoplus_i z_i = \chi^2$ 2: RefreshMasks $((z_i)_i)$ 3: $(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$ $\triangleright \bigoplus_i y_i = x^3$ $\triangleright \bigoplus_i w_i = x^{12}$ 4: $(w_i)_i \leftarrow (y_i^4)_i$ 5: RefreshMasks $((w_i)_i)$ $\triangleright \bigoplus_i y_i = x^{15}$ 6: $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)$ 7: $(y_i)_i \leftarrow (y_i^{16})_i$ $\triangleright \bigoplus_i y_i = x^{240}$ $\triangleright \bigoplus_i y_i = x^{252}$ 8: $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$

9/21

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$ Output: shares y_1 satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$ 1: $(z_i)_i \leftarrow (\chi_i^2)_i$ $\triangleright \bigoplus_i z_i = x^2$ 2: RefreshMasks $((z_i)_i)$ 3: $(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$ $\triangleright \bigoplus_i y_i = x^3$ $\triangleright \bigoplus_i w_i = x^{12}$ 4: $(w_i)_i \leftarrow (u_i^4)_i$ 5: RefreshMasks $((w_i)_i)$ 6: $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)$ $\triangleright \bigoplus_i y_i = x^{15}$ 7: $(\mathbf{y}_i)_i \leftarrow (\mathbf{y}_i^{16})_i$ $\triangleright \bigoplus_i y_i = x^{240}$ $\triangleright \bigoplus_i y_i = x^{252}$ 8: $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$ $\triangleright \bigoplus_i y_i = x^{254}$ 9: $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i)$

A Flaw in RP Countermeasure (FSE13)

10/21

 $\begin{array}{ll} 1. & (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ 2. & \text{RefreshMasks}((z_{i})_{i}) \\ 3. & (y_{i})_{i} \leftarrow \text{SecMult}((x_{i})_{i}, (z_{i})_{i}) \\ 4. & (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ 5. & \text{RefreshMasks}((w_{i})_{i}) \\ 6. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 7. & (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ 8. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 9. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (z_{i})_{i}) \\ \end{array}$

A Flaw in RP Countermeasure (FSE13)

- 1. $(z_i)_i \leftarrow (x_i^2)_i$
- 2. RefreshMasks $((z_i)_i)$
- 3. $(y_i)_i \leftarrow \text{SecMult}((x_i)_i, (z_i)_i)$
- 4. $(w_i)_i \leftarrow (y_i^4)_i$
- 5. RefreshMasks $((w_i)_i)$
- 6. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)$
- 7. $(y_i)_i \leftarrow (y_i^{16})_i$
- 8. $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$
- 9. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i)$

A Flaw in RP Countermeasure (FSE13)

- $\begin{array}{ll} 1. & (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ 2. & \text{RefreshMasks}((z_{i})_{i}) \\ 3. & (y_{i})_{i} \leftarrow \text{SecMult}((x_{i})_{i}, (z_{i})_{i}) \\ 4. & (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ 5. & \text{RefreshMasks}((w_{i})_{i}) \\ 6. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 7. & (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ 8. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \end{array}$
- 9. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i)$

A Flaw in RP Countermeasure (FSE13)

 $\begin{array}{ll} 1. & (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ 2. & \text{RefreshMasks}((z_{i})_{i}) \\ 3. & (y_{i})_{i} \leftarrow \text{SecMult}((x_{i})_{i}, (z_{i})_{i}) \\ 4. & (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ 5. & \text{RefreshMasks}((w_{i})_{i}) \\ 6. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 7. & (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ 8. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 9. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (z_{i})_{i}) \\ \end{array}$

 Vulnerable to ([n/2] + 1)-th order attacks due to the integration with RefreshMasks.

A Flaw in RP Countermeasure (FSE13)

10/21

- $\begin{array}{ll} 1. & (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ 2. & \text{RefreshMasks}((z_{i})_{i}) \\ 3. & (y_{i})_{i} \leftarrow \text{SecMult}((x_{i})_{i}, (z_{i})_{i}) \\ 4. & (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ 5. & \text{RefreshMasks}((w_{i})_{i}) \\ 6. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 7. & (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ 8. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 9. & (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (z_{i})_{i}) \end{array}$
 - Vulnerable to ([n/2] + 1)-th order attacks due to the integration with RefreshMasks.

• Solution: secure the multiplication: $h(x) = x \cdot g(x), \text{ where } g(x) = x^{2^k}.$

A Flaw in RP Countermeasure (FSE13)

10/21

- $\begin{array}{ll} 1. & (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ 2. & \mbox{RefreshMasks}((z_{i})_{i}) \\ 3. & (y_{i})_{i} \leftarrow \mbox{SecH}(x_{i})_{i}, (z_{i})_{i}) \\ 4. & (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ 5. & \mbox{RefreshMasks}((w_{i})_{i}) \\ 6. & (y_{i})_{i} \leftarrow \mbox{SecH}(y_{i})_{i}, (w_{i})_{i}) \\ 7. & (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ 8. & (y_{i})_{i} \leftarrow \mbox{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ 9. & (y_{i})_{i} \leftarrow \mbox{SecMult}((y_{i})_{i}, (z_{i})_{i}) \\ \end{array}$
 - Vulnerable to ([n/2] + 1)-th order attacks due to the integration with RefreshMasks.

• Solution: secure the multiplication: $h(x) = x \cdot g(x), \text{ where } g(x) = x^{2^k}.$

A Flaw in RP Countermeasure (FSE13)

10/21

- 1. $(z_i)_i \leftarrow (x_i^2)_i$
- 2. RefreshMasks $((z_i)_i)$
- 3. $(y_i)_i \leftarrow \text{SecH}((x_i)_i, (z_i)_i)$
- 4. $(w_i)_i \leftarrow (y_i^4)_i$
- 5. RefreshMasks $((w_i)_i)$

6.
$$(y_i)_i \leftarrow \text{SecH}((y_i)_i, (w_i)_i)$$

- 7. $(y_i)_i \leftarrow (y_i^{16})_i$
- 8. $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$
- 9. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i)$
 - Vulnerable to ([n/2] + 1)-th order attacks due to the integration with RefreshMasks.

- Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2^{k}}$.
- Suppose $f(x_i,x_j) = x_i \cdot g(x_j) \oplus x_j \cdot g(x_i)$
Background

A Flaw in RP Countermeasure (FSE13)

10/21

- 1. $(z_i)_i \leftarrow (x_i^2)_i$
- 2. RefreshMasks $((z_i)_i)$
- 3. $(y_i)_i \leftarrow \text{SecH}((x_i)_i, (z_i)_i)$
- 4. $(w_i)_i \leftarrow (y_i^4)_i$
- 5. RefreshMasks $((w_i)_i)$
- 6. $(y_i)_i \leftarrow \text{SecH}((y_i)_i, (w_i)_i)$
- 7. $(y_i)_i \leftarrow (y_i^{16})_i$
- 8. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)$
- 9. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i)$
 - Vulnerable to ([n/2] + 1)-th order attacks due to the integration with RefreshMasks.

- Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2^k}$.
- Suppose $f(x_i,x_j) = x_i \cdot g(x_j) \oplus x_j \cdot g(x_i)$
- By the property of $f(\cdot, \cdot)$ that $f(x_i, x_j) = f(x_i, r) \oplus f(x_i, x_j \oplus r)$

Background

A Flaw in RP Countermeasure (FSE13)

10/21

- 1. $(z_i)_i \leftarrow (x_i^2)_i$
- 2. RefreshMasks $((z_i)_i)$

3.
$$(y_i)_i \leftarrow \text{SecH}((x_i)_i, (z_i)_i)$$

- 4. $(w_i)_i \leftarrow (y_i^4)_i$
- 5. RefreshMasks $((w_i)_i)$

6.
$$(y_i)_i \leftarrow \text{SecH}((y_i)_i, (w_i)_i)$$

- 7. $(y_i)_i \leftarrow (y_i^{16})_i$
- 8. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)$
- 9. $(y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i)$
 - Vulnerable to ([n/2] + 1)-th order attacks due to the integration with RefreshMasks.

- Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2^k}$.
- Suppose $f(x_i,x_j) = x_i \cdot g(x_j) \oplus x_j \cdot g(x_i)$
- By the property of $f(\cdot, \cdot)$ that $f(x_i, x_j) = f(x_i, r) \oplus f(x_i, x_j \oplus r)$
- Equation 1 equals to

$$\begin{split} \bigoplus_{i} z_{i} &= \quad \bigoplus_{i} \left(\left(\bigoplus_{j > i} \mathbf{r}_{i,j} \right) \oplus x_{i} y_{i} \oplus \right. \\ & \oplus_{j < i} \left(\mathbf{r}_{j,i} \oplus \mathbf{f}(x_{i}, x_{j}) \right) \right) \\ &= \quad \bigoplus_{i} \left(\left(\bigoplus_{j > i} \mathbf{r}_{i,j} \right) \oplus x_{i} y_{i} \oplus \right. \\ & \oplus_{j < i} \left(\mathbf{r}_{j,i} \oplus \mathbf{f}(x_{i}, \mathbf{r}'_{j,i}) \\ & \oplus \mathbf{f}(x_{i}, x_{j} \oplus \mathbf{r}'_{j,i}) \right) \right), \end{split}$$

$$if y_i = g(x_i).$$

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON Performance Analysis Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficient
 - Applications: smartphones, tablets, digital camera, etc.

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficient
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors

Figure: SIMD Example

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficient
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficient
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficient
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)
 - Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8and 16-bit polynomial

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficient
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)
 - Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8and 16-bit polynomial
 - Arithmetic operations, boolean operations and others

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficient
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)
 - Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8and 16-bit polynomial
 - Arithmetic operations, boolean operations and others
 - Featured instruction:
 - VMULL.P8
 - VTBL.8

_____ 12/21 _____

Operations	Field Multiplication	Random Bits	XOR	Momeory
SecSqur	n	0	0	2n
SecPow4	2n	0	0	2n
SecPow16	4n	0	0	2n
SecMult	n²	$(n^2 - n)/2$	$2(n^2 - n)$	2n + O(1)
SecH	$(n^2 - n)(m + 2) + n$	$n^2 - n$	$7(n^2 - n)/2$	3n + O(1)
SecExp254'	$9n^2 + 2n$	$3(n^2 - n)$	$11(n^2 - n)$	4n + O(1)

Table: Complexity of masked algorithms for S-box with n shares, where m is the number of field multiplication in $h(\cdot).$

_____ 12/21 _____

Operations	Field Multiplication	Random Bits	XOR	Momeory
SecSqur	n	0	0	2n
SecPow4	2n	0	0	2n
SecPow16	4n	0	0	2n
SecMult	n ²	$(n^2 - n)/2$	$2(n^2 - n)$	2n + O(1)
SecH	$(n^2 - n)(m + 2) + n$	$n^2 - n$	$7(n^2 - n)/2$	3n + O(1)
SecExp254'	$9n^2 + 2n$	$3(n^2 - n)$	$11(n^2 - n)$	4n + O(1)

Table: Complexity of masked algorithms for S-box with n shares, where m is the number of field multiplication in $h(\cdot)$.

- Performance-critical parts:
 - Field Multiplication
 - Random bits generation

Barrett Reduction

13/21 _____

• Designed to optimize the modular reduction $r = a \mod n$, where a, n are integers and $a < n^2$.

Barrett Reduction

13/21

- Designed to optimize the modular reduction $r = a \mod n$, where a, n are integers and $a < n^2$.
- Adapted to polynomials [Dhe03]
 - ▶ Suppose U(x), Q(x), N(x) and Z(x) are polynomial over \mathbb{F}_q , and U(x) = Q(x)N(x) + Z(x)
 - ▶ $\lfloor A(x)/B(x) \rfloor$ stands for the quotient of A(x)/B(x), ignoring the reminder
 - Quotient evaluation

$$Q(x) = \left\lfloor \frac{U(x)}{N(x)} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{U(x)}{x^{p}} \right\rfloor \left\lfloor \frac{x^{p+\beta}}{N(x)} \right\rfloor}{x^{\beta}} \right\rfloor = \left\lfloor \frac{T(x)R(x)}{x^{\beta}} \right\rfloor,$$

where $p = deg(N(x)), \, \beta \geqslant deg(U(x)/x^p)$

• The reminder Z(x) = U(x) - Q(x)N(x).

Field Multiplication in \mathbb{F}_{2^8}

_____ 14/21 _____

Input: polynomials A(x), B(x) and N(x) in \mathbb{F}_{2^8} , where $N(x) = x^8 + x^4 + x^3 + x + 1$ Output: polynomial $Z(x) = A(x) \cdot B(x) \mod N(x)$ Pre-computation:

1: $p \leftarrow deg(N(x))$ $\triangleright p = 8$ 2: $\alpha \leftarrow 2 * (p-1)$ $\triangleright \alpha = 14$ 3: $\beta \ge \alpha - p$ $\triangleright \beta \ge 6$ 4: $R(x) \leftarrow \lfloor \frac{x^{p+\beta}}{N(x)} \rfloor$ $\triangleright R(x) = x^6 + x^2 + x \text{ if } \beta = 6$

Field Multiplication in \mathbb{F}_{2^8}

14/21 _____

Input: polynomials A(x), B(x) and N(x) in \mathbb{F}_{2^8} , where $N(x) = x^8 + x^4 + x^3 + x + 1$ Output: polynomial $Z(x) = A(x) \cdot B(x) \mod N(x)$ Pre-computation:

Multiplication with Barrett modular reduction:

1:
$$\begin{array}{l} U(x) \leftarrow A(x) \cdot B(x) \\ 2: T(x) \leftarrow \lfloor \frac{U(x)}{x^{p}} \rfloor \\ 3: S(x) \leftarrow T(x) \cdot R(x) \\ 4: Q(x) \leftarrow \lfloor \frac{S(x)}{x^{\beta}} \rfloor \\ 5: V(x) \leftarrow Q(x) \cdot N(x) \\ 6: Z(x) \leftarrow U(x) + V(x) \end{array}$$

Implementation Vector Implementation of Field Multiplication

_____ 15/21 _____

fmult: /*uint8x16_t fmult(uint8x16_t a, uint8x16_t b)*/

- VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2
- VMOVN.I16 D0,Q1
- VMOVN.I16 D1,Q2

VSHRN.U16 D2,Q1,#+8 VSHRN.U16 D3,Q2,#+8

VMULL.P8 Q2,D1,D3 1. U(x) = A(x) * B(x)

2.
$$T(x) = U(x) / x^8$$

Implementation Vector Implementation of Field Multiplication

fmult:

- VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2 VMOVN.I16 D0,01
- VMOVN.I16 D1,02
- VSHRN.U16 D2,Q1,#+8 VSHRN.U16 D3,Q2,#+8

VMOV.U8	D7,#+70
VMULL.P8	Q2,D2,D7
VSHRN.U16	D2,Q2,#+6
VMULL.P8	Q2,D3,D7
VSHRN.U16	D3,02,#+6

1.
$$U(x) = A(x) * B(x)$$

2.
$$T(x) = U(x) / x^8$$

3.
$$S(x) = T(x) * R(x)$$

4. $Q(x) = S(x) / x^{6}$

Vector Implementation of Field Multiplication

fmult:

VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2 VMOVN.I16 D0,01 VMOVN.I16 D1,02 VSHRN.U16 D2,01,#+8 VSHRN.U16 D3,02,#+8 VMOV.U8 D7,#+70 VMULL.P8 02,D2,D7 VSHRN.U16 D2,Q2,#+6 VMULL.P8 Q2,D3,D7 VSHRN.U16 D3,Q2,#+6 VMOV.U8 D2,#0x1B VMULL.P8 Q1,Q2,Q1

1.
$$U(x) = A(x) * B(x)$$

- 2. $T(x) = U(x) / x^8$
- 3. S(x) = T(x) * R(x)4. $Q(x) = S(x) / x^{6}$

5.
$$V(x) = Q(x) * N(x)$$

Vector Implementation of Field Multiplication

fmult:

VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2 VMOVN.I16 D0,01 VMOVN.I16 D1,02 VSHRN.U16 D2,01,#+8 VSHRN.U16 D3,Q2,#+8 VMOV.U8 D7,#+70 VMULL.P8 02,D2,D7 VSHRN.U16 D2,Q2,#+6 VMULL.P8 Q2,D3,D7 VSHRN.U16 D3,Q2,#+6 VMOV.U8 D2,#0x1B VMULL.P8 01,02,01 VEOR Q0,Q1,Q0 BX LR

1.
$$U(x) = A(x) * B(x)$$

2.
$$T(x) = U(x) / x^{\delta}$$

3.
$$S(x) = T(x) * R(x)$$

4. $Q(x) = S(x) / x^{6}$

5.
$$V(x) = Q(x) * N(x)$$

6.
$$Z(x) = U(x) + V(x)$$

Implementation Vector Implementation of Secure Field Multiplication

16/21 _____

```
void sec_fmult(uint8x16_t c[],
uint8x16_t a[], uint8x16_t b[],
int n) {
 int i, j;
  uint8x16_t s, t;
  for (i = 0; i < n; i++)</pre>
    c[i] = fmult(a[i], b[i]);
  for (i = 0; i < n; i++)</pre>
    for (j = i+1; j < n; j++) {</pre>
       s = rand uint8x16():
       c[i] = veorq_u8(c[i], s);
       t = fmult(a[i], b[j]);
       s = veorq_u8(s, t);
       t = fmult(a[j], b[i]);
       s = veorq_u8(s, t);
       c[j] = veorq_u8(c[j], s);
    }
```

```
void sec_h(uint8x16_t y[],
uint8x16_t x[], uint8x16_t gx[],
uint8x16_t (q_call)(uint8x16_t), int n) {
  for (...)
    for (...) {
      t = g_call(r01);
      t = fmult(x[i], t);
      r1 = veorq_u8(r00, t);
      t = fmult(r01, qx[i]);
      r1 = veorq_u8(r1, t);
      s = veora u8(x[i], r01);
      t = q_call(s);
      t = fmult(x[i], t);
      r1 = veora_u8(t, r1);
      t = fmult(qx[i], s);
       r1 = veorq_u8(t, r1);
      y[j] = veora_u8(y[j], r1);
    }
```

- [KHL11] is vulnerable to the same attack on [RP10]
- We propose a new secure inversion algorithm

SecInv4 - masked exponentiation in \mathbb{F}_{2^4} with n shares

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$ Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{14}$ 1: $(w_i)_i \leftarrow (x_i^2)_i$ 2: $(z_i)_i \leftarrow \text{SecH}((x_i)_i, (w_i)_i)$ 3: $(z_i)_i \leftarrow (z_i^4)_i$ 4: $(y_i)_i \leftarrow \text{SecMult}((z_i)_i, (w_i)_i)$

 $\triangleright \bigoplus_{i} w_{i} = x^{2}$ $\triangleright \bigoplus_{i} z_{i} = x^{3}$ $\triangleright \bigoplus_{i} z_{i} = x^{12}$ $\triangleright \bigoplus_{i} y_{i} = x^{14}$

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON Performance Analysis Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Results

Performance Metrics

_____ 18/21 _____

Peformance Metrics	#instructions
Field Multiplication	15
Random Bits Generation - xorshift96	15
XOR	1
Secure AddRoundKey	n
Secure ShiftRows	4n
Secure MixColumns	13n
Secure Affine Transformation	18n
Secure Exp254	191n ² — 26n

Table: The number of instructions required by vector implementation of each function, where n is the number of shares

Comparison

Penalty Factor

Figure: Penalty factor (PF) of our implementation ([RP10]) in Section 3 and improved implementation (based on [KHL11]) in Section 4; Speedup factor of improved implementation in Section 4 compared to implementation in Section 3.

Comparison

Fourth-order
-
-
4003
60
31

Table: Penalty factor in different implementations

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON Performance Analysis Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

• The performance-critical parts are field multiplication and random bits generation.

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.p8 instruction and Barrett Reduction to optimize field multiplication, which only takes 15 instructions.

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.p8 instruction and Barrett Reduction to optimize field multiplication, which only takes 15 instructions.
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2).$

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.p8 instruction and Barrett Reduction to optimize field multiplication, which only takes 15 instructions.
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2).$
- Our implementations achieve a not bad penalty factor, hence, they are deployable in practice.

Conclusion

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.p Thank You Peduction to optimize field multiplication, Thank You Puctions.
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2)$.
- Our implementations achieve a not bad penalty factor, hence, they are deployable in practice.

Conclusion

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.ps Question? Reduction to optimize field multiplication, Question?
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2)$.
- Our implementations achieve a not bad penalty factor, hence, they are deployable in practice.