RSA Conference2015

San Francisco | April 20-24 | Moscone Center

SESSION ID: DSP-R01

CHANGE

Challenge today's security thinking

Seven Grades of Perfect Forward Secrecy

Oleg Gryb

Sr. Manager, Security Engineering Samsung SSIC

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

RSA

PFS - Definitions

Classical PFS Definition

"Long-term secret keying material does not compromise the secrecy of the exchanged keys from earlier run"

W. Diffie, P. Oorchot, M.Wiener: <u>Authentication and Authenticated Key</u> <u>Exchanges</u>, 1992

http://people.scs.carleton.ca/~paulv/papers/sts-final.pdf

Session and Long-term Keys

Session Keys:

One time symmetric key used to encrypt all messages

in a session.

• Similar to a one time use password (OTP).

Long-term Keys:

- Live longer than a session. It can actually live years.
- Can be used to derive Session Key.
- Idealistically stored in an HSM appliance, but it varies.

RSAConference2015

San Francisco | April 20-24 | Moscone Center

BARMAR HI AS AS AS AT AREA Barrio Crassin Crassion C

RSA

PFS – What it protects against

Why PFS is important

Exploit, if PFS is not implemented

RSAConference2015

RS^AConference2015

San Francisco | April 20-24 | Moscone Center

Bush Herrissan Martine Art Courte States in States and

RSA

Steeprint onderen orde

TLS Handshakes

SSL Handshake without PFS

Session key is generated from Premaster, random numbers 'a' and 'b'.

Premaster is encrypted with long-term server's key

If long-term key is compromized,session key is compromized too.

RSAConference2015

PFS with traditional Diffie-Hellman

SrvKeyExchange will contain additional DHparams:

p – big prime

g – its primitive root: \forall a coprime p∃k : g^k≡a(mod p) Ys=g^a mod p – <u>this is server's public key</u>

ClientKeyExchange will contain ClientDiffieHellmanPublic instead of RSA Premaster Secret: Yc=g^b mod p <u>– this is client's public key</u>

Where 'a' and 'b' random numbers picked up by Server and Client independently

Shared Secret = g^(ab) mod p = Ys^b mod p = Yc^a mod p

W. Diffie, M. Hellman: <u>"New Direction in Cryptography"</u>, 1976 RFC 5246

Old DH – Performance Impact

At around 500 TPS response time for DH grows from 10ms to 10s For traditional RSA

everything runs smoothly until 2500 TPS

From Vincent Bernat's SSL/TLS blog

RSAConference2015

DH with Elliptic Curves

SrvKeyExchange will contain EC parameters It can be a pre-defined named curve, e.g. prime256v1, or explicitly defined curve with all necessary params:

p – big prime, which defines a field Fp ECurve (α , β) (y² = x³ + α x + β) – short Weierstrass equation, defines E(Fp) ECPoint – base point G (generator) order - order of G (a min n for which nG is not defined) cofactor – order*cofactor = |E(Fp)| Public ECDH server key: Ys = aG

ClientKeyExchange will contain ClientECDiffieHellmanPublic with: Public ECDH client key: Yc = bG

Shared Secret = abG = aYc = bYs

An Efficient Protocol for Authenticated Key Agreement, 1998 RFC4492

ECDHE – Performance vs. RSA

On server side DHE three times slower than RSA 2048

For optimized ECDHE-64 the overhead is 15% only

From Vincent Bernat's SSL/TLS blog

RSAConference2015

TLS Cheatsheet

Handshake Algorithm	Public(*) params for session key	Private(*) params for session key	Long term key (LTK) usage	Attack complexity	Speed
Classic (RFC 5264)	Random a,b Public cert of LTK	Premaster Secret(sent encrypted) LTK	Authentication and encryption	Same as attack on RSA/DSA based PKI	Still fastest
DHE (RFC 5264)	p – big prime g – its primitive root	Random, private a,b (a & b are never sent)	Authentication only	Same as discrete logarithm problem	Times slower than RSA
ECDHE (RFC 4492)	$\begin{array}{l} p-\text{ big prime} \\ G-\text{ base point} \\ r-\text{ order of } G \\ k-\text{ small cofactor} \\ \alpha-\text{ curve's param} \\ \beta-\text{ curve's param} \end{array}$	Random, private a,b (a & b are never sent)	Authentication only	Same as discrete logarithm problem	Almost the same as classical RSA

RS^AConference2015

San Francisco | April 20-24 | Moscone Center

A SA LOAN LE HI SA DA RA IN REAL R and the or again a sound a daga

RSAC

C 01000171 01000101 0100 THE READ BALLE

PFS - Grades

Possible PFS Implementations

As discussed, we have three major options:

- No Diffie-Hellman
- Older Diffie-Hellman without curves (DHE)
- New Diffie-Hellman with curves (ECDHE)

In addition, server can also:

Have preferred ciphers that fall to one of the categories above
 It can support or not support newer and older DH protocols

Supported	Preferred	Grade
PFS Only	ECDHE	1
PFS Only	DHE	2
PFS and non PFS	ECDHE	3
PFS and non PFS	DHE	4
DHE, ECDHE and non PFS	Non PFS	5
DHE and non PFS	Non PFS	6
PFS are not supported	Non PFS (obviously)	7

PFS Grades – More Reasoning

Why preferred ciphers are important?

 Client can send a list of ciphers that it supports
 Server will always select a preferred, even if client has a better cipher in the list

Why ECDHE vs DHE is important?

Because of performance (see slides 7 and 9)
 If we don't care about performance, we could consider the following grades equivalent: 1 and 2, 3 and 4, 5 and 6

You can reduce the number of grades to 4 if you care about security only, but it's probably not a wise thing to do, because too many security initiatives are stopped because of "poor performance". Example – old DHE itself vs. RSA.

RS^AConference2015

San Francisco | April 20-24 | Moscone Center

Sala and the sale of the sale advantio crassiti oradi di casast

RSAC

C 0-0000111 0-000010 0-1000 11 AT 85 83 88 87 AT 0177 01000107

PFS - Testing

Let us test them

Ten companies in each of the following industries have been selected:

 Manufacturing Finance Government InfoSec Defense Health Internet Electronics Education Software

Notes on site selections

How – Just Googled them, e.g. "top ten health providers"

The biggest challenge – it was difficult to find SSL protected Websites in
 Defense – everything is usually public at those ⁽³⁾
 Exception – their job related portals

Used a Python client with JSON configuration file

Code for testing : sf.net/projects/pfschecker

Configuration file example

"statfile":"statfile.html", "ciphers"·"FCDHF-RSA-AFS256-GC

.....

"ciphers":"ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHEECDSA-

"baseline_ciphers":"AES128-SHA:RC4-MD5:RC4-SHA:AES256-SHA:DES-CBC3-SHA", "hosts":[

{"host":"www.bank1.com","port":443,"name":"Bank One","tag":"Finanace"},
{"host":"www.bank2.com","port":443,"name":"Bank Two","tag":"Finanace"},
{"host":"www.bank3.com","port":443,"name":"Bank Three","tag":"Finanace"},
{"host":"www.bank4.com","port":443,"name":"Bank Four","tag":"Finanace"},

Test results

of websites tested

RSAConference2015

23

Winners and Losers

Winners:

- Internet
 InfoSec
 Defense
 Education
 At least one has PFS as preferred:
- Manufacturing
- Government
- Health
- PFS not implemented as

preferred:

- Finance
- Electronics

Some Thoughts:

- Finance organizations are usually very good when it comes to privacy or fraud, but do not adopt technology fast
- Internet companies might not be that good in privacy, but are quick in picking up new technologies including security
- Education/Universities are similar when it comes to innovations
- InfoSec, Defense they ought to and could've been done even better IMO

Host (Int	ernet, rating R3)	Preferred cipher	Time	BL Cipher	BL Time	Protos(*)
www.	.com:443	ECDHE-RSA-RC4-SHA	92.20	AES128-SHA	83.48	[2,4,5,6]
www.	com:443	ECDHE-RSA-RC4-SHA	159.14	AES128-SHA	153.48	[2,4,5,6]
www.	.com:443	ECDHE-RSA-RC4-SHA	192.70	AES128-SHA	209.93	[2, 4, 5, 6]
www.	.com:443	ECDHE-RSA-RC4-SHA	164.13	AES128-SHA	157.28	[2,4,5,6]
(*)Proto	codes	2 - SSLv3; 4 - TLSv1; 5 -	TLSv1	.1; 6 - TLSv1.2	2	

No difference in handshake time from client point of view

- All major Internet companies graded as 3 or 4
- Everyone supports all versions of TLS
 - Everyone uses the same fast preferred ECDHE cipher

Disappointment:

SSLv3 and TLSv1 support. I would love to see only TLSv1.2

Details for Finance Sector

<u>Host (Finar</u>	1ace	, rating R7)	Preferred cipher	<u>Time</u>	BL Cipher	<u>BL Time</u>	Protos(*)
www		com:443	RC4-SHA	190.35	AES128-SHA	218.72	[2, 4, 5, 6]
wwv		443	RC4-SHA	182.31	AES128-SHA	180.33	[2,4]
www.		.com:443	RC4-SHA	129.40	AES128-SHA	128.19	[2,4]
www.	CC	om:443	RC4-SHA	289.39	RC4-SHA	281.64	[2]
www	.0	om:443	DES-CBC3-SHA	174.40	AES128-SHA	168.71	[2,4]
l	:443	3	RC4-SHA	151.85	AES128-SHA	144.61	[2,4]
www.	co	m:443	AES256-SHA	602.04	AES128-SHA	146.57	[2,4,6]
	1:4	43	AES128-SHA	44.45	AES128-SHA	44.94	[2, 4, 5, 6]
(*)Proto co	des		2 - SSLv3; 4 - TL	Sv1; 5 -	TLSv1.1; 6 - 7	LSv1.2	

Too many companies (80%) don't support PFS at all (grade 7)
 Poor support for the newer TLS versions (1.1 and 1.2)

What about Browser's Support for ECDHE

#RSAC

Handshake Simulation (Experimental)

Chrome 27	TLS 1.1	TLS_ECDHE_RSA_WITH_RC4_128_SHA (0xc011) Forward Secrecy	128
Firefox 21	TLS 1.0	TLS_ECDHE_RSA_WITH_RC4_128_SHA (0xc011) Forward Secrecy	128
Internet Explorer 9	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013) Forward Secrecy	128
Internet Explorer 10	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013) Forward Secrecy	128
Safari iOS 6.0.1	TLS 1.2	TLS_ECDHE_RSA_WITH_RC4_128_SHA (0xc011) Forward Secrecy	128
Safari 5.1	TLS 1.0	TLS_ECDHE_RSA_WITH_RC4_128_SHA (0xc011) Forward Secrecy	128

From Qualys Community Website

Legend

of websites tested

R1 Only PFS ciphers are supported and preferred cipher is ECDHE

R2 Only PFS ciphers are supported, preferred cipher is an old DHE

R3 PFS and non-PFS ciphers are supported. A preferred cipher is ECDHE

R4 PFS and non-PFS ciphers are supported. A preferred cipher is an old DHE

R5 PFS and non-PFS ciphers are supported including ECDHE. A preferred cipher is a non-PFS

R6 Old PFS (DHE) and non-PFS ciphers are supported, but ECDHE is not. A preferred cipher is a non-PFS

R7 PFS ciphers are not supported

You can make a difference

"If you think you are too small to make a difference, try sleeping with a mosquito."

-His Holiness the 14th Dalai Lama

cigital

#RSAC

RSAConference2015

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

TREAT REAL PROPERTY OF THE PARTY OF THE PART

PFS – Getting to Conclusions

Conclusion

- There is no any reason why you can't move your servers to category #3 or #4 (there is a fallback on non PFS)
- To move them to the the categories #1 or #2 (there is no fallback on non-PFS) a decision about not supporting legacy browsers should be made. That decision would make a perfect sense since it'll improve the overall security of web applications.
 Other factors to consider to make a decision about not support for the provider to make a perfect sense since it'll improve the overall security of web applications.
- Other factors to consider to make a decision about not supporting "legacy browsers":
 - They are less secure
 - You want to take the full advantage of HTML5
 - Upgrade to newer versions if usually free

Just Tell Them to Upgrade! No significant excuses have left.

There are always exceptions ...

There is only one grade of perfection

Thanks for Coming !

Oleg Gryb Sr. Manager, Security Engineering @ SSIC Twitter: @oleggryb