
#RSAC

SESSION ID:

James Lyne Stephen Sims

Patching Exploits with Duct Tape: 
Bypassing Mitigations and 
Backward Steps

EXP-R01

Security Researcher

SANS Institute

@Steph3nSims

Global Head of Security Research

Sophos / SANS Institute

@jameslyne



#RSAC

Exploit Mitigations



#RSAC

Purpose

 0-day exploit sales and bug bounties are very popular and 
profitable

 In early 2014, Yang Yu earned $100K disclosing 3 exploit mitigation 
bypass techniques to MS

 At CanSecWest Pwn2Own 2014 Vupen took home $400K

 At CanSecWest Pwn2Own 2015 Jung Hoon Lee took home $225K

 Google paid over $1.5M in 2014 in bug bounties

 Exploit writing is becoming very competitive

 We will focus on some of the mitigations and bypass techniques



#RSAC

Exploit Mitigation Controls

 Controls to mitigate the successful exploitation of a software 
vulnerability

 Three primary categories:

 Compile-Time Controls – Canaries, SafeSEH

 OS Controls – ASLR, DEP

 Application Opt-In Controls – /dynamicbase, DEP

 Often have strict requirements to be effective

 One bad module can break the whole protection

 Better security when using multiple categories

Application 
Opt-In 

Controls

Compile-
Time 

Controls

OS 
Controls



#RSACHigh Level Timeline – Notable Client 
Mitigations

5

ASLR

DEP
None

Windows XP Windows XP SP2 Windows Vista Windows 7 Windows 8 Windows 10

SafeSEH
Safe Unlink

LFH
SEHOP

Null Ptr Deref

CFG

2001 2004 2007 2009 2012 2015

Canaries - /GS

Guard Pages

EMET



#RSAC

Exploit Mitigation Examples

 Data Execution Prevention (DEP)

 Address Space Layout Randomization (ASLR)

 Security Cookies / Canaries

 Safe-Unlink, Low Fragmentation Heap

 VTGuard, Sealed Optimization

 Ring3 and Ring0 Guard Pages

 Null Pointer Dereference Protection

 Range Checks

 SafeSEH, SEHOP



#RSACSampling of Exploit Mitigation Bypass 
Techniques

 DEP – Return Oriented Programming (ROP), return-to-libc

 ASLR – Locate non-rebased modules, memory leaks and RVA offsets, brute 
force, memory spraying

 Security Cookies / Canaries – Canary repair, heap overflows, unprotected 
functions, SEH overwrites

 Safe-Unlink & LFH – Application data attacks

 SafeSEH – Locate non-protected modules, identify non-DLL executable memory 
regions

 SEHOP – Repair the SEH chain with local access and identification of required 
opcodes



#RSAC

Not as good as it seems?

Demo

8



#RSACMicrosoft Enhanced Mitigation 
Experience Toolkit (EMET)

 Toolkit offering new and improved exploit mitigation controls

 EMET 5.2 officially released in March, 2015

 Must verify that applications are not negatively impacted due to controls

 Can help protect against 0-day attacks

 Heavily focused on ROP mitigation

 Newer control additions include EAF+, attack surface reduction, and 

Control Flow Guard (CFG)

 Very low adoption rate



#RSAC

EMET Demonstration

Demo

10



#RSAC

Isolated Heaps and New IE Protections

 Last year MS released patches for IE security

 The June patch added Isolated Heaps for DOM objects to make the 

replacement of freed objects harder

 The July patch added memory protection to help protect the freeing of 

objects with a delayed release

 The primary goal is to mitigate UAF exploitation

 Protected Free can be bypassed by meeting the release threshold

 Isolated Heaps can be bypassed by finding proper sized objects 



#RSAC

Control Flow Guard (CFG)

 New control targeting ROP-based exploitation

 Compiler control supported by Windows 10 and Windows 8, 

update 3

 Creates a bitmap representing the start addressing of all functions

 If an indirect call (call EAX) is going to an address that is not the 

start of a valid function, the application terminates



#RSAC

Internet of Things (IoT)

 Typically, the more obscure an OS or device, the lower the number 
of exploit mitigation controls

 Lots of low-hanging fruit in home security devices, cars, power 
meters, electronic toll devices, wearable medical devices

 Pro tip: Don’t fuzz the baby monitor

13



#RSAC

Use After Free (UAF)



#RSAC

What is Use After Free?

 A vulnerability class primarily affecting web browsers and large 

C++ applications

 Typically detected when prematurely freed memory is later accessed 

by the application

 Responsible for the bulk of Microsoft security bulletins

 Extremely profitable, yielding $10K - $20K USD from ethical buyers 

and more from others

 Difficult to detect through static analysis



#RSAC

Use After Free Basics

 When an object is created from a C++ class, and uses virtual 
functions:

 A virtual function table (vftable) is created, holding pointers to relevant 
functions at static offsets

 A virtual pointer (vptr) is allocated along with each instantiated object, 
pointing to the vftable

 When a virtual function is called:

 The vptr is dereferenced into a register such as EAX

 An offset from the [vptr] is dereferenced from the vftable

 The virtual function is called



#RSAC

Normal Virtual Function Behavior

 1) mov eax, [ecx]  Deref the vptr from the object

 2) mov edx, [eax+1ch]  Deref the virtual function from vftable

 3) call  edx  Call the virtual function

VPTR

DATA
DATA

DATA
DATA

Object VTABLE

Virtual Function 1 – Offset 0x0

Virtual Function 2 – Offset 0x4
Virtual Function 3 – Offset 0x8

Virtual Function 4 – Offset 0xc
Virtual Function 5 – Offset 0x10

Virtual Function 6 – Offset 0x14
Virtual Function 7 – Offset 0x18
Virtual Function 8 – Offset 0x1c

ECX EAX

1

EDX

2

3 CALL



#RSAC

UAF Exploit Behavior

VPTR

AAAAAA
AAAAAA

AAAA

Replaced Object

AAAA – Offset 0x0

AAAA – Offset 0x4
AAAA – Offset 0x8

AAAA – Offset 0xc
AAAA – Offset 0x10

…
…
0xdeadc0de – Offset 0x70

ECX EAX

1

EDX

2

3 CALL

Fake vtable we control

 We replace the freed object with a malicious object

 If we can control the vptr and the data at that location, we can get control of 

the instruction pointer



#RSAC

Use After Free

 In other words…

Frodo the 
Hamster



#RSAC

 In other words…

Use After Free



#RSAC

Use After Free

 In other words…



#RSAC

Use After Free

 In other words…



#RSAC

Use After Free

 In other words…

23



#RSAC

Use After Free

 In other words…

24



#RSAC

UAF Demo One – MS13-038

 On Tuesday, May 14th Microsoft issued the security bulletin for MS13-038

 Critical Use After Free Vulnerability

 http://technet.microsoft.com/en-us/security/bulletin/ms13-038

 Allows for remote code execution on Windows XP through Windows 7 OS 

running IE8

 Publicly disclosed vulnerability discovered on April 30, 2013, found on the 

Department of Labor website, serving the exploit code to visitors

 https://community.qualys.com/blogs/laws-of-vulnerabilities/2013/05/14/patch-tuesday-may-2013

25

http://technet.microsoft.com/en-us/security/bulletin/ms13-038
https://community.qualys.com/blogs/laws-of-vulnerabilities/2013/05/14/patch-tuesday-may-2013


#RSAC

UAF Demo Two – MS14-012

 UAF in MSHTML!Cmarkup

 Crashes in UpdateMarkupContentsVersion

 https://technet.microsoft.com/library/security/ms14-012

 Originally used in targeted attacks against military and industrial 

targets

 Original exploit checked for EMET

 Does not bypass EMET, fails silently

 Publicly available code does not check 

26

https://technet.microsoft.com/library/security/ms14-012


#RSAC

Bypassing Isolated Heap

 Isolated Heap

 k33nteam discovered a technique using heap coalescing to groom the 

heap and control the allocation space

http://k33nteam.org/blog-4-use-after-free-not-dead-in-internet-explorer-part-1.htm

http://k33nteam.org/blog-4-use-after-free-not-dead-in-internet-explorer-part-1.htm


#RSAC

Code (1)

Punch a hole for UAF object

Avoid coalesce

CTitle Objects

Force release, aimed at 
deferred free



#RSAC

Code (2)

Force coalesce

Create objects to allocate from backend at 

predictable location 

0x42424242

Trigger UAF, then…



#RSAC

UAF Demo Three – MS14-056

 Bypassing Isolated Heap

30



#RSAC

Apply

 Consider using EMET for your environment

 At least for high risk corporate applications

 Profiles can be configured centrally and deployed

 Insure your development process uses latest mitigations (SDL)

 Microsoft has invested heavily in anti-exploit

 What other platforms/devices are in your environment that haven’t?

 Attackers have invested heavily in these skills – all security 
professionals need to develop an understanding, not just exploit 
writers.

31



#RSAC

Thanks!

Questions?

James Lyne - @jameslyne

Stephen Sims - @Steph3nSims


