
#RSAC

SESSION ID:

James Lyne Stephen Sims

Patching Exploits with Duct Tape:
Bypassing Mitigations and
Backward Steps

EXP-R01

Security Researcher

SANS Institute

@Steph3nSims

Global Head of Security Research

Sophos / SANS Institute

@jameslyne

#RSAC

Exploit Mitigations

#RSAC

Purpose

 0-day exploit sales and bug bounties are very popular and
profitable

 In early 2014, Yang Yu earned $100K disclosing 3 exploit mitigation
bypass techniques to MS

 At CanSecWest Pwn2Own 2014 Vupen took home $400K

 At CanSecWest Pwn2Own 2015 Jung Hoon Lee took home $225K

 Google paid over $1.5M in 2014 in bug bounties

 Exploit writing is becoming very competitive

 We will focus on some of the mitigations and bypass techniques

#RSAC

Exploit Mitigation Controls

 Controls to mitigate the successful exploitation of a software
vulnerability

 Three primary categories:

 Compile-Time Controls – Canaries, SafeSEH

 OS Controls – ASLR, DEP

 Application Opt-In Controls – /dynamicbase, DEP

 Often have strict requirements to be effective

 One bad module can break the whole protection

 Better security when using multiple categories

Application
Opt-In

Controls

Compile-
Time

Controls

OS
Controls

#RSACHigh Level Timeline – Notable Client
Mitigations

5

ASLR

DEP
None

Windows XP Windows XP SP2 Windows Vista Windows 7 Windows 8 Windows 10

SafeSEH
Safe Unlink

LFH
SEHOP

Null Ptr Deref

CFG

2001 2004 2007 2009 2012 2015

Canaries - /GS

Guard Pages

EMET

#RSAC

Exploit Mitigation Examples

 Data Execution Prevention (DEP)

 Address Space Layout Randomization (ASLR)

 Security Cookies / Canaries

 Safe-Unlink, Low Fragmentation Heap

 VTGuard, Sealed Optimization

 Ring3 and Ring0 Guard Pages

 Null Pointer Dereference Protection

 Range Checks

 SafeSEH, SEHOP

#RSACSampling of Exploit Mitigation Bypass
Techniques

 DEP – Return Oriented Programming (ROP), return-to-libc

 ASLR – Locate non-rebased modules, memory leaks and RVA offsets, brute
force, memory spraying

 Security Cookies / Canaries – Canary repair, heap overflows, unprotected
functions, SEH overwrites

 Safe-Unlink & LFH – Application data attacks

 SafeSEH – Locate non-protected modules, identify non-DLL executable memory
regions

 SEHOP – Repair the SEH chain with local access and identification of required
opcodes

#RSAC

Not as good as it seems?

Demo

8

#RSACMicrosoft Enhanced Mitigation
Experience Toolkit (EMET)

 Toolkit offering new and improved exploit mitigation controls

 EMET 5.2 officially released in March, 2015

 Must verify that applications are not negatively impacted due to controls

 Can help protect against 0-day attacks

 Heavily focused on ROP mitigation

 Newer control additions include EAF+, attack surface reduction, and

Control Flow Guard (CFG)

 Very low adoption rate

#RSAC

EMET Demonstration

Demo

10

#RSAC

Isolated Heaps and New IE Protections

 Last year MS released patches for IE security

 The June patch added Isolated Heaps for DOM objects to make the

replacement of freed objects harder

 The July patch added memory protection to help protect the freeing of

objects with a delayed release

 The primary goal is to mitigate UAF exploitation

 Protected Free can be bypassed by meeting the release threshold

 Isolated Heaps can be bypassed by finding proper sized objects

#RSAC

Control Flow Guard (CFG)

 New control targeting ROP-based exploitation

 Compiler control supported by Windows 10 and Windows 8,

update 3

 Creates a bitmap representing the start addressing of all functions

 If an indirect call (call EAX) is going to an address that is not the

start of a valid function, the application terminates

#RSAC

Internet of Things (IoT)

 Typically, the more obscure an OS or device, the lower the number
of exploit mitigation controls

 Lots of low-hanging fruit in home security devices, cars, power
meters, electronic toll devices, wearable medical devices

 Pro tip: Don’t fuzz the baby monitor

13

#RSAC

Use After Free (UAF)

#RSAC

What is Use After Free?

 A vulnerability class primarily affecting web browsers and large

C++ applications

 Typically detected when prematurely freed memory is later accessed

by the application

 Responsible for the bulk of Microsoft security bulletins

 Extremely profitable, yielding $10K - $20K USD from ethical buyers

and more from others

 Difficult to detect through static analysis

#RSAC

Use After Free Basics

 When an object is created from a C++ class, and uses virtual
functions:

 A virtual function table (vftable) is created, holding pointers to relevant
functions at static offsets

 A virtual pointer (vptr) is allocated along with each instantiated object,
pointing to the vftable

 When a virtual function is called:

 The vptr is dereferenced into a register such as EAX

 An offset from the [vptr] is dereferenced from the vftable

 The virtual function is called

#RSAC

Normal Virtual Function Behavior

 1) mov eax, [ecx] Deref the vptr from the object

 2) mov edx, [eax+1ch] Deref the virtual function from vftable

 3) call edx Call the virtual function

VPTR

DATA
DATA

DATA
DATA

Object VTABLE

Virtual Function 1 – Offset 0x0

Virtual Function 2 – Offset 0x4
Virtual Function 3 – Offset 0x8

Virtual Function 4 – Offset 0xc
Virtual Function 5 – Offset 0x10

Virtual Function 6 – Offset 0x14
Virtual Function 7 – Offset 0x18
Virtual Function 8 – Offset 0x1c

ECX EAX

1

EDX

2

3 CALL

#RSAC

UAF Exploit Behavior

VPTR

AAAAAA
AAAAAA

AAAA

Replaced Object

AAAA – Offset 0x0

AAAA – Offset 0x4
AAAA – Offset 0x8

AAAA – Offset 0xc
AAAA – Offset 0x10

…
…
0xdeadc0de – Offset 0x70

ECX EAX

1

EDX

2

3 CALL

Fake vtable we control

 We replace the freed object with a malicious object

 If we can control the vptr and the data at that location, we can get control of

the instruction pointer

#RSAC

Use After Free

 In other words…

Frodo the
Hamster

#RSAC

 In other words…

Use After Free

#RSAC

Use After Free

 In other words…

#RSAC

Use After Free

 In other words…

#RSAC

Use After Free

 In other words…

23

#RSAC

Use After Free

 In other words…

24

#RSAC

UAF Demo One – MS13-038

 On Tuesday, May 14th Microsoft issued the security bulletin for MS13-038

 Critical Use After Free Vulnerability

 http://technet.microsoft.com/en-us/security/bulletin/ms13-038

 Allows for remote code execution on Windows XP through Windows 7 OS

running IE8

 Publicly disclosed vulnerability discovered on April 30, 2013, found on the

Department of Labor website, serving the exploit code to visitors

 https://community.qualys.com/blogs/laws-of-vulnerabilities/2013/05/14/patch-tuesday-may-2013

25

http://technet.microsoft.com/en-us/security/bulletin/ms13-038
https://community.qualys.com/blogs/laws-of-vulnerabilities/2013/05/14/patch-tuesday-may-2013

#RSAC

UAF Demo Two – MS14-012

 UAF in MSHTML!Cmarkup

 Crashes in UpdateMarkupContentsVersion

 https://technet.microsoft.com/library/security/ms14-012

 Originally used in targeted attacks against military and industrial

targets

 Original exploit checked for EMET

 Does not bypass EMET, fails silently

 Publicly available code does not check

26

https://technet.microsoft.com/library/security/ms14-012

#RSAC

Bypassing Isolated Heap

 Isolated Heap

 k33nteam discovered a technique using heap coalescing to groom the

heap and control the allocation space

http://k33nteam.org/blog-4-use-after-free-not-dead-in-internet-explorer-part-1.htm

http://k33nteam.org/blog-4-use-after-free-not-dead-in-internet-explorer-part-1.htm

#RSAC

Code (1)

Punch a hole for UAF object

Avoid coalesce

CTitle Objects

Force release, aimed at
deferred free

#RSAC

Code (2)

Force coalesce

Create objects to allocate from backend at

predictable location

0x42424242

Trigger UAF, then…

#RSAC

UAF Demo Three – MS14-056

 Bypassing Isolated Heap

30

#RSAC

Apply

 Consider using EMET for your environment

 At least for high risk corporate applications

 Profiles can be configured centrally and deployed

 Insure your development process uses latest mitigations (SDL)

 Microsoft has invested heavily in anti-exploit

 What other platforms/devices are in your environment that haven’t?

 Attackers have invested heavily in these skills – all security
professionals need to develop an understanding, not just exploit
writers.

31

#RSAC

Thanks!

Questions?

James Lyne - @jameslyne

Stephen Sims - @Steph3nSims

