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PERENTAGE OF JAR ATTACKS AMONGST 
DRIVE BY DOWNLOAD
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TARGETED  ATTACKS  

 CVE-2013-2465 used in strategic Web Compromise on an 
Embassy. 

Exploit was leveraged to disable security permissions, after which 
malicious executable was executed, which initiated call back and in 
the response base 64 embedded executable was served.
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Attack Flow



ATTACK FLOW 

 Vulnerability  Elevation of Privilege  Security 
Manager Disabled  Download and Execute the 
malware. 
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VULNERABILITIES

 Improper implementation of  Java Runtime Environment

awt_ImagingLib.c

7



VULNERABILITIES

 Type Confusion

 Ex: CVE-2011-3521/CVE-2012-0507
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VULNERABILITIES

 Type Confusion Example: CVE 2012-0507
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VULNERABILITIES

 Improper implementation of base classes

Bug inside the base classes can be used to run privileged code from untrusted 
code. Eg CVE 2013-5076
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DIVE INTO THE EXPLOITATION BYJAVA

 Live Demo
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EXPLOITATION BASED UPON THE OPERATING 
SYSTEM 
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USING EXPIRED CERTIFICATES
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OBFUSCATION FLOW STEPS

 obfuscated string => decrypting function => parameter to the 
function
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OBFUSCATION
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#RSAC
CHALLENGES FOR A FILE 
BASED SANDBOX. 



HTML PAGE FOR EXECUTION 
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Network Connectivity
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RIGHT ENVIRONMENT

 CVE-2012-0507 :
Java SE  7 Update 2, 6 Update 30, 5.0 Update 33
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Malicious Indicators



Obfuscation 

 Hide the Data , name of URL,  file name

 Data Obfuscation : 
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METRICS TO DETERMINE OBFUSCATION

 N-gram, Entropy and Word Size

 N-gram checks for the probability of occurrence of certain 
sequence based upon the good and the bad sample set 

 Entropy checks for the distribution of the used bytes codes 

 Word Size checks if very long strings are used 
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DATA OBFUSCATION 
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FUNCTIONAL OBFUSCATION

 Hide the function Names By Using reflection API calls. 

Two Steps Process:

a. Create the Obfuscated API calls.

b. Use Reflection API to call at the runtime. 
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API’s FOR RETRIVING CLASS NAMES

 Class.forName()

 Object.getClass()

Access to Fields, Methods, and Constructors of the Class

a. getMethod()

b. getField()
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MALICIOUS INDICATORS:
NAMES OF THE CLASS FILES.
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N-GRAM ANALYSIS ON CLASS NAMES

 Accuracy ~ 90%.
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FEATURES IN A DETECTION MODEL

 Correlation between the static using probabilistic and Machine 
learning Algorithms, dynamic behavior and the network 
communication is a must .
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FEATURES FOR A DETECTION MODEL

 Multi Flow Analysis  of a network stream is must.
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DESIGN ARCHITECTURE 

 Multi Vector Multi Flow analysis providing correlation between the 
static dynamic and network behavior of a file.

31



SUMMARY

 JAR attacks are complex make use of obfuscation, reflection to prevent 
the static analysis which provides challenge to static scanning. 

 Detonation of the JAR inside the file based sandboxes require the input 
parameters, live internet connection, right version which yet provided 
challenge to the file based sandbox. 

 Multi Vector and Multi Flow analysis is must for detection of JAR.
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SO WHAT SHOULD WE DO ?

 Ensure latest version java plugin is installed on client browser.
 Leverage and use the Java security policy built around certificate 

signing.
 Make an educated decision about use of Java Plugin. 

 Detection solution at the Perimeter : Automated Analysis System 
leveraging correlation is must to detect and prevent sophisticated 
unknown jar applet attacks
 File based sandbox will fail to analyze the behavior of malicious jar. 

These are designed as a research tool.
 Static Scanning has limitations .
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Q&A
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REFERENCES

 Brewing up Trouble: Analyzing the four widely exploited Java 
Vulnerabilities. 
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireey

e-java-vulnerabilities.pdf.

 A daily grind : Filtering Java Vulnerabilities.   I
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye
-a-daily-grind-filtering-java-vulnerabilities.pdf
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