
FireEye’s 2013, 0 DAY THREAT REPORT

1

PERENTAGE OF JAR ATTACKS AMONGST
DRIVE BY DOWNLOAD

2

TARGETED ATTACKS

 CVE-2013-2465 used in strategic Web Compromise on an
Embassy.

Exploit was leveraged to disable security permissions, after which
malicious executable was executed, which initiated call back and in
the response base 64 embedded executable was served.

3

#RSAC

SESSION ID:

Abhishek Singh Varun Jain

INTO THE WORLD OF JAVA
APPLETS

HT-F02

Malware Researcher
FireEye

Senior Staff Research Scientist Engineer
FireEye

#RSAC

Attack Flow

ATTACK FLOW

 Vulnerability  Elevation of Privilege  Security
Manager Disabled  Download and Execute the
malware.

6

VULNERABILITIES

 Improper implementation of Java Runtime Environment

awt_ImagingLib.c

7

VULNERABILITIES

 Type Confusion

 Ex: CVE-2011-3521/CVE-2012-0507

8

VULNERABILITIES

 Type Confusion Example: CVE 2012-0507

9

VULNERABILITIES

 Improper implementation of base classes

Bug inside the base classes can be used to run privileged code from untrusted
code. Eg CVE 2013-5076

10

DIVE INTO THE EXPLOITATION BYJAVA

 Live Demo

11

EXPLOITATION BASED UPON THE OPERATING
SYSTEM

12

USING EXPIRED CERTIFICATES

13

OBFUSCATION FLOW STEPS

 obfuscated string => decrypting function => parameter to the
function

14

OBFUSCATION

15

#RSAC
CHALLENGES FOR A FILE
BASED SANDBOX.

HTML PAGE FOR EXECUTION

17

Network Connectivity

18

RIGHT ENVIRONMENT

 CVE-2012-0507 :
Java SE 7 Update 2, 6 Update 30, 5.0 Update 33

19

#RSAC

Malicious Indicators

Obfuscation

 Hide the Data , name of URL, file name

 Data Obfuscation :

21

METRICS TO DETERMINE OBFUSCATION

 N-gram, Entropy and Word Size

 N-gram checks for the probability of occurrence of certain
sequence based upon the good and the bad sample set

 Entropy checks for the distribution of the used bytes codes

 Word Size checks if very long strings are used

22

DATA OBFUSCATION

23

FUNCTIONAL OBFUSCATION

 Hide the function Names By Using reflection API calls.

Two Steps Process:

a. Create the Obfuscated API calls.

b. Use Reflection API to call at the runtime.

24

API’s FOR RETRIVING CLASS NAMES

 Class.forName()

 Object.getClass()

Access to Fields, Methods, and Constructors of the Class

a. getMethod()

b. getField()

25

MALICIOUS INDICATORS:
NAMES OF THE CLASS FILES.

26

N-GRAM ANALYSIS ON CLASS NAMES

 Accuracy ~ 90%.

27

#RSACDESIGN ARCHITECTURE
FOR A DETECTION MODEL

FEATURES IN A DETECTION MODEL

 Correlation between the static using probabilistic and Machine
learning Algorithms, dynamic behavior and the network
communication is a must .

29

FEATURES FOR A DETECTION MODEL

 Multi Flow Analysis of a network stream is must.

30

DESIGN ARCHITECTURE

 Multi Vector Multi Flow analysis providing correlation between the
static dynamic and network behavior of a file.

31

SUMMARY

 JAR attacks are complex make use of obfuscation, reflection to prevent
the static analysis which provides challenge to static scanning.

 Detonation of the JAR inside the file based sandboxes require the input
parameters, live internet connection, right version which yet provided
challenge to the file based sandbox.

 Multi Vector and Multi Flow analysis is must for detection of JAR.

32

SO WHAT SHOULD WE DO ?

 Ensure latest version java plugin is installed on client browser.
 Leverage and use the Java security policy built around certificate

signing.
 Make an educated decision about use of Java Plugin.

 Detection solution at the Perimeter : Automated Analysis System
leveraging correlation is must to detect and prevent sophisticated
unknown jar applet attacks
 File based sandbox will fail to analyze the behavior of malicious jar.

These are designed as a research tool.
 Static Scanning has limitations .

33

Q&A

34

REFERENCES

 Brewing up Trouble: Analyzing the four widely exploited Java
Vulnerabilities.
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireey

e-java-vulnerabilities.pdf.

 A daily grind : Filtering Java Vulnerabilities. I
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye
-a-daily-grind-filtering-java-vulnerabilities.pdf

35

https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye-java-vulnerabilities.pdf
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye-a-daily-grind-filtering-java-vulnerabilities.pdf
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye-a-daily-grind-filtering-java-vulnerabilities.pdf

ACKNOWLEDGEMENTS

 We would like to express gratitude to Anirban Das and Ali Mesdaq,
our colleagues at FireEye, for their help with NGRAM analysis.

36

Contact Information

 Varun Jain

Email : varun.jain@fireeye.com

 Abhishek Singh:

Email : abhishek.singh@fireeye.com

37

mailto:varun.jain@fireeye.com
mailto:abhishek.singh@fireeye.com

	FireEye’s 2013, 0 DAY THREAT REPORT
	PERENTAGE OF JAR ATTACKS AMONGST DRIVE BY DOWNLOAD
	TARGETED ATTACKS
	INTO THE WORLD OF JAVA APPLETS
	Attack Flow
	ATTACK FLOW
	VULNERABILITIES
	VULNERABILITIES
	VULNERABILITIES
	VULNERABILITIES
	DIVE INTO THE EXPLOITATION BYJAVA
	EXPLOITATION BASED UPON THE OPERATING SYSTEM
	USING EXPIRED CERTIFICATES
	OBFUSCATION FLOW STEPS
	OBFUSCATION
	CHALLENGES FOR A FILE BASED SANDBOX. ��
	HTML PAGE FOR EXECUTION
	Network Connectivity
	�RIGHT ENVIRONMENT�
	Malicious Indicators
	Obfuscation
	METRICS TO DETERMINE OBFUSCATION
	DATA OBFUSCATION
	FUNCTIONAL OBFUSCATION
	API’s FOR RETRIVING CLASS NAMES
	MALICIOUS INDICATORS:�NAMES OF THE CLASS FILES.
	N-GRAM ANALYSIS ON CLASS NAMES
	DESIGN ARCHITECTURE FOR A DETECTION MODEL
	FEATURES IN A DETECTION MODEL
	FEATURES FOR A DETECTION MODEL
	DESIGN ARCHITECTURE
	SUMMARY
	SO WHAT SHOULD WE DO ?
	Q&A
	REFERENCES
	ACKNOWLEDGEMENTS
	Contact Information

