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Overview: The Problem

 Malware can obfuscate its purpose by encrypting or compressing 
code segments within the PE structure.

 First-order obfuscation techniques (encryption and compression) 
can disguise the malicious commands so that they pass through 
traditional "signature-based detection" of anti-virus programs. 

 Meta-obfuscation techniques (e.g. null content insertion) can then 
disguise the encryption and compression so that the file passes 
through entropy filters. 
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Overview: The Contribution
 We describe a technique called structural entropy analysis which can help 

to detect the presence of suspicious patterns of obfuscation. 

 Structural entropy analysis goes beyond mean entropy analysis and mere 
“detection of packing” to find suspicious patterns of entropy change. 
 It quantifies the "amount of structure" in the entropy signal; finds the location of mean change 

points; and computes the distribution of energy across multiple spatial scales.
 It then derives 387 mathematical features which are jointly predictive of the file being malware.   

 Structural entropy is much harder for a malware writer to control than commonly used 
measures such as mean entropy alone.

 SE performs well (87.2% accuracy) on predicting malicious behavior for completely novel 
files "in the wild.”   Moreover, it can easily be combined with other types of features.

3



#RSAC

Apply Slide: Relevance to Audience

 For Architects & Consumers of Machine Learning-Based Anti-
Malware Systems:  
 We illustrate the usefulness of incorporating 520 structural entropy  features within a machine 

learning classifier. 

 For Architects & Consumers of Detection-Based Anti-Malware 
Systems:  
 We provide an in-depth example of how "soft-constraint" features can be built for a machine-

learning type system. 
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Mean entropy:  A first clue to packing
High entropy is a symptom of “packing” (compression or encryption)

• Entropy calculated over neighboring bins of 256 bytes
• Minimum possible entropy = 0 bits; maximum possible entropy = 8 bits

Lyda, R., & Hamrock, J. (2007). Using entropy analysis to find encrypted and packed malware. IEEE Security & Privacy, (2), 40-45.
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Structural entropy:  “Time series” approach
 We treat the file as an 

entropy time series.  We 
want to take into account 
sequential structure

 The entropy measurements, 
taken at adjacent points in 
the code, are not 
independent and identically 
distributed, but have strong 
spatial correlations (based 
on proximity)  
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Structural entropy:  “Time series” approach
 The executable file's raw 

machine code (in hex) is 
split into non-overlapping 
chunks of fixed length, 
typically 256 bytes. 

 Where
 H is entropy
 c is a chunk of code
 n is the number of possible 

characters (here n=256)

 pi is the probability of each 
character in the chunk

7



#RSAC

Nonstationary Time Series: Which tools can we use?

 Problem: This is a non-
stationary time series.
 Statistical features (mean, 

variance, etc.) change over 
the file.

 But most time series 
approaches assume 
stationarity.
 E.g. Fourier 

decompositions, 
autoregressive models, 
moving average models.
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Nonstationary Time Series: Which tools can we use?

 Solution: We characterize 
entropy streams as mean-
change point time series.
 Structure: local stable 

means plus noisy variation 
around that mean

 Local stable means have an 
unknown length.
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Nonstationary Time Series: Three Modeling Techniques

Statistical tools which discover the underlying structure of software entropy
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This Work vs. Previous Work

• Moreover, by applying the big-picture modeling perspective of non-
stationary time series, we broaden the notion of structural entropy

• In particular, we gain
• At least two new techniques (DFA, MCPM)
• Development of wavelet techniques (Multi-Resolution Analysis)
• A multi-tiered workflow (see “Structural Entropy Analysis Flowchart”)
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Method Overview

ENTER BULLETPOINTS FROM GOLDEN 

Features are shown in the 
5th and 6th columns.  
Model-based features are 
shown in orange. 
Propensity features, which 
require pre-processing by 
logistic regression, have 
thick borders. 
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This Work vs. Previous Work

• Previous work: structural entropy analysis computes similarity between 2 files.  
• This goal comes from a signature-based approach.  

• This project: structural entropy analysis extracts predictive features from 1 file.
• This goal comes from a machine-learning approach.  

e.g. Baysa, Donabelle, Richard M. Low, and Mark Stamp. "Structural entropy and metamorphic malware.”
Journal of Computer Virology and Hacking Techniques, 9.4 (2013): 179-192.
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Detrended Fluctuation Analysis (DFA): Intro

 Derived from random fractal theory.
 Generalizes the Hurst statistic for stationary processes, which 

quantifies the extent to which time series exhibit power-law (i.e. 
unusually slowly decaying) correlations. 

 Fits piecewise linear models to integrated time series at different 
spatial scales.

 Has been applied to non-stationary signals in bioinformatics 
(neuronal spiking, DNA sequences, heart rate dynamics, human 
gate analysis) and theoretically studied in physics.
Chen, Z., Ivanov, P. C., Hu, K., & Stanley, H. E. (2002). Effect of nonstationarities on detrended fluctuation analysis. 
Physical Review E, 65(4), 041107. 
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Detrended Fluctuation Analysis (DFA): Algorithm

Heart beat interval time series

Integrated version
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Detrended Fluctuation Analysis (DFA): Concept

: How does error amplify as models simplify?
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Detrended Fluctuation Analysis (DFA): Utility in Previous Research

Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling 
exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An 
Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87.
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Detrended Fluctuation Analysis (DFA): Application to Software Entropy

Question: How would this technique apply to a mean change point time series?
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Detrended Fluctuation Analysis (DFA): Pilot Test

 Pilot study: n=93 files that 
had between 4000 and 
5000 entropy blocks

 Shown are files with:
 5 lowest      ‘s  (left column)

 5 highest     ‘s  (right 
column)

 Note that, as we argued, 
files with larger      tend to 
be more “structured”: they 
flip between stable local 
means

The DFA statistic,   , describes the level of structure in the entropy time series
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Detrended Fluctuation Analysis (DFA): Our Data

DFA is essentially uncorrelated with mean entropy!
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Mean Changepoint Modeling: Intro

 A major problem for reverse engineering of software is to identify 
the entry points for encrypted or compressed sections. 

 Mean change point modeling can automatically determine the 
inherent sections of a file according to entropy-based code 
regimes (native code, strings, padding, encryption, compression) 

 These code regimes needn't align with author-designated section 
labels: text, rsrc, reloc, data, etc.
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#RSACMean Changepoint Modeling: Concept
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Mean Changepoint Modeling: Example Fit
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Mean Changepoint Modeling: Features

These features characterize the size and 
prevalence of jumps, the value of landmark 
mean entropies, and the fit of the model.
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Mean Changepoint Modeling: Algorithm
The mean change point model solves
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#RSACMean Changepoint Modeling: Limitations
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Wavelet Transforms: Intro

 The Wavelet Transform is a generalization of the Fourier Transform. 

 The Wavelet Transform we have chosen is known as a Haar Wavelet 
Transform. 
 We can project the original entropy signal onto a family of square waves.

 By re-representing the signal in terms of changes at various scales, the 
Haar Wavelet Transform performs a multi-resolution analysis,  
revealing how entropic changes in the computer program are distributed 
across small, intermediate, and large scales.
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#RSACHaar Wavelet Decompositions
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Wavelet-Based Functional Approximations

Entropy Time Series projected onto Haar father wavelet space with 23 segments
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Wavelet-Based Functional Approximations

Entropy Time Series projected onto Haar father wavelet space with 26 segments
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Wavelet-Based Functional Approximations

Entropy Time Series projected onto Haar father wavelet space with 2J segments
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Wavelet Energy Spectrum: Formula
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Wavelet Energy Spectrum: Summary

 We perform a multi-resolution analysis, revealing how entropic 
changes in the computer program are distributed across small, 
intermediate, and large scales. 

 The wavelet coefficients summarize the amount of "detail" or "change" 
exhibited within a time series at various locations over various levels of 
resolution. 

 Using these wavelet coefficients, we summarize the overall amount of 
entropic detail in a time series at various levels of resolution.  The total 
amount of detail at a particular level of resolution is known as its energy.

 The distribution of energy across various levels of resolution is known as 
an energy spectrum.

38



#RSAC

Wavelet Energy Spectrum as Features

 There is strong precedent, especially in biology, for using the energy 
spectrum of signals as features within automatic classification systems. 

 For instance, using wavelet coefficients, researchers have been able to 
 Automatically classify lung sounds into categories (crackles, wheezes, 

striders, squawks, etc.)
 Determine whether brain EEG scans originated from healthy patients, 

patients with epilepsy, or patients who were in the middle of having a 
seizure.

 Determine whether EMG signals collected from the bicep originated from 
patients who were healthy, suffering from myopathy, or suffering from 
neurogenic disease
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Pilot Study on n=1,599 files of size J=5

These are (Haar) wavelet-
based functional 
approximations to a 
representative good and 
bad file. 
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#RSACPilot Study on n=1,599 files of size J=5
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A problem in application to malware analysis

 The biological studies above were all controlled observational 
situations which produced time series samples (e.g. lung sounds, brain 
EEGs)  of fixed length. 

 Thus, these samples all produce the same number of wavelet energy 
features, J

 Variation in these J features were then immediately associated with a 
classification variable (categories of lung sounds, presence/absence of 
epilepsy, etc.) by setting the input layer of the neural network to have J 
activation notes. 

 Yet executable files out in the "wild" have different lengths, and so J will 
vary from sample to sample. 
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Wavelet Energy Spectrum Suspiciousness: Definition

 To solve this problem, we create an algorithm which converts the 
wavelet energy spectrum into a malware "propensity score" or 
"suspiciousness score" within [0,1] describing the "propensity" of  
that executable file to be malware based on the wavelet energy 
spectrum alone.

 We call the resulting feature Wavelet Energy Spectrum 
Suspiciousness

 This feature can be compared from sample to sample. the input 
layer of the neural network to have J activation notes. 
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Data

 Data is a corpus of Windows Portable Executable (PE) files. 

 We formed a balanced data set of 39,968 files; of these, 19,991 
(50.01%) were malware, whereas 19,997 (49.98%) were clean 
computer programs. 

 The "malware" category contained different types of malicious 
software (e.g., computer viruses, Trojan horses and spyware -- but 
not adware). 
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Data: Training and test Set

 Before feature extraction, 31,676 (80%) of the samples were 
randomly selected to belong to the "training set," and the other 
7,916 (20%) of the samples were classified in the "test set." 

 The training set was used to
1. train the feature weights in the final classifier
2. determine the sparsity of the final classifier
3. determine weights for constructing the "propensity features"
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Method
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Feature Overview
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Model Building: Lasso Logistic Regression

 We model the binary classification variable (malware or not) as a function 
of the 520 features related to structural entropy described above.

 We apply lasso logistic regression, a principled statistical method for 
model fitting while simultaneously performing feature selection. 

 The logistic lasso produces an entire set of models, indexed by the 
sparsity parameter,    . As the sparsity parameter increases, the size of 
the model decreases (by discarding features). 

 The value of the sparsity parameter can be optimized.  Thus, the lasso 
discovers the optimal proportion of features useful for classification
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Model Building: Lasso Logistic Regression
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Model Building: Lasso Logistic Regression
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Optimal sparsity of model

Our feature construction method was rather liberal.  For example, our 
original dataset included 488  interaction terms (bivariate products of 
simpler features), and these had no a priori justifications.  Could we 
have used far fewer than 520 features in our set?
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#RSACOptimal sparsity of model: Keep 387 Features

Finding useful features in the dataset.  The 
graph depicts the relationship between model 
size (governed by the sparsity parameter, and 
plotted on the x-axis) and the fit of model 
(assessed by the deviance measure, and 
plotted on the y-axis) to validation data. 

The number of features retained by model is 
completely determined by the sparsity
parameter and is shown in the top row above 
the plot. 
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Overall model performance

Test set performance of structural entropy classifier on a set of 7,916 newly seen files.
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#RSACContribution of model-based features

Test set performance (n=7,916) of classifiers using various subsets of the 
model-based entropy features 
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#RSACContribution of model-based features

Feature Importance Plot: Blue, 
purple, and cyan are prominent 
throughout the display, which 
reflects that the model-based 
features are quite substantially 
involved in the overall 
predictive performance of the 
automated malware classifier. 
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The plot shows logistic regression beta 
coefficients for determining the 
probability that a portable executable file 
is malware based upon the magnitude 
of file's entropic energy at various levels 
of resolution within the code.

 Positive betas mean that higher 
"entropic energy" at that resolution 
level is associated with a greater 
probability of being malware. 

 Negative betas (mean that higher 
"entropic energy" at that resolution 
level is associated with a lower 
probability of being malware. 
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Take Home Points 
 Machine learning automatic malware classification systems could benefit from 

incorporating "structural entropy" features.
 We extracted structural entropy features via three primary techniques: 

detrended fluctuation analysis, mean change point modeling, and wavelet 
decompositions. 

 These features, especially considered in tandem, allow for the structural 
entropy classifier to construct a fairly complex relationship between machine 
code and a judgment of "entropic suspiciousness." 

 This relationship would be much harder for an adversary to control than, say, 
mean entropy levels.

 Moreover, the strong predictive performance of these structural entropy 
features suggest that they may be a powerful contributor to a larger machine 
learning system for automatically classifying malware. 
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#RSACQuestions and Answers

Contacts:

 Mike Wojnowicz mwojnowicz@cylance.com

 Glenn Chisholm    gchisholm@cylance.com
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