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Overview: The Problem

+ Malware can obfuscate its purpose by encrypting or compressing
code segments within the PE structure.

¢ First-order obfuscation techniques (encryption and compression)
can disguise the malicious commands so that they pass through
traditional "signature-based detection" of anti-virus programs.

¢ Meta-obfuscation techniques (e.g. null content insertion) can then
disguise the encryption and compression so that the file passes
through entropy filters.
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Overview: The Contribution

¢ We describe a technique called structural entropy analysis which can help
to detect the presence of suspicious patterns of obfuscation.

¢ Structural entropy analysis goes beyond mean entropy analysis and mere
“detection of packing” to find suspicious patterns of entropy change.

¢ It quantifies the "amount of structure" in the entropy signal; finds the location of mean change
points; and computes the distribution of energy across multiple spatial scales.

¢ Itthen derives 387 mathematical features which are jointly predictive of the file being malware.

¢ Structural entropy is much harder for a malware writer to control than commonly used
measures such as mean entropy alone.

¢ SE performs well (87.2% accuracy) on predicting malicious behavior for completely novel
files "in the wild.” Moreover, it can easily be combined with other types of features.

CYLANCE
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Apply Slide: Relevance to Audience

¢ For Architects & Consumers of Machine Learning-Based Anti-
Malware Systems:
¢ We illustrate the usefulness of incorporating 520 structural entropy features within a machine
learning classifier.
¢ For Architects & Consumers of Detection-Based Anti-Malware
Systems:

¢ We provide an in-depth example of how "soft-constraint” features can be built for a machine-
learning type system.

CYLANCE
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Mean entropy:. A first clue to packing

High entropy is a symptom of “packing” (compression or encryption)

Table 1. Computed statistical measures based on four training sets.

DATA SETS AVERAGE 99.99% CONFIDENCE HIGHEST ENTROPY 99.99% CONFIDENCE
ENTROPY INTERVALS (LOW TO HIGH) (AVERAGE) INTERVALS (LOW TO HIGH)

Plain text 4.347 4.066 - 4.629 4.715 4.401 - 5.030

Native executables 5.099 4.941 - 5.258 6.227 6.084 - 6.369

Packed executables 6.801 6.677 - 6.926 7.233 7.199 - 7.267

Encrypted executables 7175 774 -7.177 7.303 7.295-7.312

e Entropy calculated over neighboring bins of 256 bytes
*  Minimum possible entropy = 0 bits; maximum possible entropy = 8 bits

Lyda, R., & Hamrock, J. (2007). Using entropy analysis to find encrypted and packed malware. IEEE Security & Privacy, (2), 40-45.
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Structural entropy: “Time series” approach

¢ We treat the file as an
entropy time series. We
want to take into account
sequential structure

¢ The entropy measurements,
taken at adjacent points in
the code, are not
independent and identically
distributed, but have strong
spatial correlations (based
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Structural entropy: “Time series” approach

¢ The executable file's raw
machine code (in hex) is
split into non-overlapping
chunks of fixed length,
typically 256 bytes.

H(c) = —> _pi(c)log, pi(c),
=1

¢ Where
¢ His entropy
¢ cis achunk of code

o ° & . . ] ¢ nisthe number of possible
| | | ‘ | ‘ characters (here n=256)
0 1000 2000 3000 4000 5000 - 18
Chunk . p;is the probability of each
character in the chunk o,
'S “
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Nonstationary Time Series: Which tools can we use?

¢ Problem: This is a non-
stationary time series.

¢  Statistical features (mean,
variance, etc.) change over
the file.

¢ But most time series
approaches assume
stationarity.
¢ E.g. Fourier
decompositions,

autoregressive models,
moving average models.
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Nonstationary Time Series: Which tools can we use?

¢ Solution: We characterize
entropy streams as mean-
change point time series.

¢  Structure: local stable
means plus noisy variation
around that mean

¢ Local stable means have an
unknown length.
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Nonstationary Time Series: Three Modeling Techniques

f Method Purpose

1 Detrended How non-stationary is

Fluctuation the entropy signal?
Analysis
2 Mean Change Find shifts in entropy
Point Modeling

3 Wavelet Energy Which scales show

g Decomposition entropic change?

Statistical tools which discover the underlying structure of software entropy

CYLANCE
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Point Modeling

) Wavelet Energy
Decomposition

.

( Method Purpose !
1 Detrended How non-stationary is
Fluctuation the entropy signal?
Analysis
2 Mean Change Find shifts in entropy

Which scales show
entropic change?

Entropy Stream for A Portable Executable File
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This Work vs. Previous Work

Moreover, by applying the big-picture modeling perspective of non-
stationary time series, we broaden the notion of structural entropy

In particular, we gain
At least two new techniques (DFA, MCPM)

Development of wavelet techniqgues (Multi-Resolution Analysis)
A multi-tiered workflow (see “Structural Entropy Analysis Flowchart”)

=
o
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Structural Entropy Analysis Flowchart

Wavelet Energy Logistic Wavelet Energy
Decomposition Regression ™™ suspiciousness
Change Point Change Point
Modeling Variables .
Features are shown in the
5th and 6th columns.
Multiscaled

Linenri A DFA Model-based features are

shown in orange.
Raw Byte Entropy_' Time Interaction (hlfl_:!sr;((z:ll_ac?gs:gt?; Real—\:"al_ued P ro pe nSIty featu reS, Wh I Ch
Stream Series Features Regression) Prediction req u | re pre_processi ng by

logistic regression, have
thick borders.

2?;:{;?;: Logistic Sectional
{Sectional) Regressian Suspicinusness

Summary Statistics
(Whole File)

_| Basic Features
7| (Section-Specific)

Basic Fealures

{Whole File) -
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This Work vs. Previous Work

- Previous work: structural entropy analysis computes similarity between 2 files.
- This goal comes from a signature-based approach.

- This project: structural entropy analysis extracts predictive features from 1 file.
- This goal comes from a machine-learning approach.

ETS{[trythem[k]]
ETS[trythem[310]]]

T T T T T T
0 1000 2000 3000 4000 5000

Index

T T T T T T
0 1000 2000 3000 4000 5000

Index

e.g. Baysa, Donabelle, Richard M. Low, and Mark Stamp. "Structural entropy and metamorphic malware.”
Journal of Computer Virology and Hacking Techniques, 9.4 (2013): 179-192.
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Detrended Fluctuation Analysis (DFA): Intro

¢ Derived from random fractal theory.

¢ Generalizes the Hurst statistic for stationary processes, which
guantifies the extent to which time series exhibit power-law (i.e.
unusually slowly decaying) correlations.

¢ Fits piecewise linear models to integrated time series at different
spatial scales.

¢ Has been applied to non-stationary signals in bioinformatics
(neuronal spiking, DNA sequences, heart rate dynamics, human
gate analysis) and theoretically studied in physics.

Chen, Z., Ivanoy, P. C., Hu, K., & Stanley, H. E. (2002). Effect of nonstationarities on detrended fluctuation analysis.
Physical Review E, 65(4), 041107.

CYLANCE
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Detrended Fluctuation Analysis (DFA): Algorithm

Heart beat interval time series

' .&J}w NUM |

80 000

Beat Number, /

C 200 400 800 800 1000

Integrated version
CYLANCE

0. Input: Discrete time series. Make it dyadic (so its

lengthis T = 29 for some integer J.)

1. Integrate: Compute the running sum of the
detrended time series.

2. Loop: Choose a scale size or resolution level

2.1 Partition: Divide the time series into T /2J

"boxes", with n = 2/ points per box. Note
that the number of boxes decreases (and
so the partition is more coarse) as
increases.

2.2 Local OLS Fit: Within each box, get the
OLS (Ordinary Least Squares) regression
line.

2.3 Detrend: Compute the residuals around
the local regression lines.

2.4 Calculate RMSE fluctuation: Define R(n)
as the standard residual (RMSE, or Root
Mean Squared Error) from the piecewise
linear model at resolution level j.

3. Calculate scaling exponent: Fit a linear regression

to log A(n) as a function of log n, where n = 2f
describes the resolution level. Get the slope of that

line. Titis is the DFA statistic, . RSAConference?015
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Detrended Fluctuation Analysis (DFA): Concept

#RSAC

a: How does error amplify as models simplify?

Cartoon ’Error Amplification’ Curves

Typical Model Error (root MSE)

CYLANCE

Model Resolution (fine to coarse)

The DFA statistic, « is therefore simply the exponent giving
the best fit to the equation

R(n) = ¢ n® (1)

where n describes the coarseness of the piecewise linear
model for the entropy time series, R(n) describes the size of
the "typical" residual (or error) for that model, and c is a
constant which is ignored.
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Detrended Fluctuation Analysis (DFA): Utility in Previous Research
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Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87.
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Detrended Fluctuation Analysis (DFA): Application to Software Entropy
Question: How would this technique apply to a mean change point time series?

Cartoon ’Error Amplification’ Curves

The DFA statistic, « is therefore simply the exponent giving
the best fit to the equation

& R(n) = ¢ n® (1)

where n describes the coarseness of the piecewise linear
model for the entropy time series, R(n) describes the size of
the "typical" residual (or error) for that model, and c is a
constant which is ignored.

Typical Model Error (root MSE)

Model Resolution (fine to coarse)
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Detrended Fluctuation Analysis (DFA): Pilot Test

The DFA statistic, g describes the level of structure in the entropy time series

Entropy
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Detrended Fluctuation Analysis (DFA): Our Data

Alpha and Mean Entropy for 39,968 Virus Total Files

CYLANCE o
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Mean Changepoint Modeling: Intro

+ A major problem for reverse engineering of software is to identify
the entry points for encrypted or compressed sections.

¢ Mean change point modeling can automatically determine the
Inherent sections of a file according to entropy-based code
regimes (native code, strings, padding, encryption, compression)

¢ These code regimes needn't align with author-designated section
labels: text, rsrc, reloc, data, etc.

wa
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Mean Changepoint Modeling: Concept RSAC

» Input: an ordered sequence of data, Yi.7+ = (Yi,..., Y7).

» Output: The number of change points, m, along with their
positions 71:m = (11, ..., Tm).

Mean change point fit to an entropy time series
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File Location (Chunk)
The m change points split the data into m + 1 segments, with gl
the ith segment containing data subset y(,, .1, i
CYLANCE
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Mean Changepoint Modeling: Example Fit

Mean change point fit to an entropy time series
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length

1

local Mean 2.77 0.89 4.36 6.39 4.4 0.12 3.98 1.4
16 4

22

2 3 4 o5 6 7 8

6 19 7 59 1
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Mean Changepoint Modeling: Features

Mean change point fit to an entropy time series

Entropy
4
|

/WMJ\ VN [ A
SR BV

VVVW

CYL.
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T T
20 40 60 80 100 120
File Location (Chunk)

1 2 3 4 5 6 7 8
local Mean 2.77 0.89 4.36 6.39 4.4 0.12 3.98 14
length 22 6 19 7 59 1 16 4

2

maxJumpSize 3.864
minJumpSize -4.287

maxLongestRunPct 0.44
meanRunLength  0.077

stableProp 0.44
entropyRuns 1.882
meanLongestRun 4.403
realFileMean 4.403
maxResid 2.645

These features characterize the size and
prevalence of jumps, the value of landmark

mean entropies, and the fit of the model.
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Mean Changepoint Modeling: Algorithm

Mean change point fit to an entropy time series

The mean change point model solves °
m+1 § @ T e 4
' £
argmin > [E(Yr 41:7)]+ P(m) 5 .
i e : N = S oL | | |
I=1 0 50 100 150

: enalt
fit error P y File Location (Chunk)

» £ is an error function (twice the negative log likelihood, where data is assumed
to be normally distributed around the local mean with some unknown variance o)

» P(m) = p log(n)m is the Schwartz Information Criterion (SIC), a penalty
to guard against over fitting
» n = number of data points in entropy time series

» m = number of change points
» p = number of additional parameters introduced by adding a single

change point (here p=1)

We minimize this function through the "PELT" (Pruned Exact
Linear Time) algorithm, which is O(n).
CYLANCE 28 RSAConference?015 -




Mean Changepoint Modeling: Limitations RS

Mean change point fit; Linear penalty coefficient = 1*log(n)
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Wavelet Transforms: Intro

¢ The Wavelet Transform is a generalization of the Fourier Transform.

¢ The Wavelet Transform we have chosen is known as a Haar Wavelet
Transform.

¢ We can project the original entropy signal onto a family of square waves.

¢ By re-representing the signal in terms of changes at various scales, the
Haar Wavelet Transform performs a multi-resolution analysis,
revealing how entropic changes in the computer program are distributed
across small, intermediate, and large scales.

FZ
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Haar Wavelet Decompositions

The so called "mother

function”, (t) is defined by:

| i e [ i 3

I,L'(r) = —1, t e [1 /2 1)
0, otherwise

A collection of dyadically

scaled and translated wavelet
functions ; x(t) for resolution
J in location k is then formed:

i k(t) = 2722t — k)

» The resolution levels,
je{0,...,J— 1}, are ordered

coarse- to fine-grained
P Location is in

CYLANCE Skmitn BN EE N B m
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Haar Wavelet Decompositions

The "wavelet coefficients"
{d; «} are given by

ik =< X,Pj x >= Z H; k(t)

The functional approximations
are then obtained:

of _ 1

Xj+1 Zd]k?vbfk

CYLANCE
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Wavelet-Based Functional Approximations
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Entropy Time Series projected onto Haar father wavelet space with 23 segments
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Wavelet-Based Functional Approximations

y.quad

0 100 200 300 400 500

Index

Entropy Time Series projected onto Haar father wavelet space with 2° segments
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Wavelet-Based Functional Approximations

y.quad

0 100 200 300 400 500

Index

Entropy Time Series projected onto Haar father wavelet space with 2’ segments

CYLANCE
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Wavelet Energy Spectrum: Formula

The Wavelet Energy Spectrum summarizes the "detail" or
"variation" available at various resolution levels. The energy
spectrum is computed as a function of the mother wavelet
coefficients, di. In particular, the "energy”, E;, of the time
series at the jth resolution level is defined by:

= li=l=p

.,;{ >
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Wavelet Energy Spectrum: Summary

+ We perform a multi-resolution analysis, revealing how entropic
changes in the computer program are distributed across small,
Intermediate, and large scales.

¢ The wavelet coefficients summarize the amount of "detall" or "change”
exhibited within a time series at various locations over various levels of
resolution.

¢ Using these wavelet coefficients, we summarize the overall amount of
entropic detall in a time series at various levels of resolution. The total
amount of detail at a particular level of resolution is known as its energy.

¢ The distribution of energy across various levels of resolution is known as
an energy spectrum.

CYLANCE
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Wavelet Energy Spectrum as Features

¢ There is strong precedent, especially in biology, for using the energy
spectrum of signals as features within automatic classification systems.

¢ For instance, using wavelet coefficients, researchers have been able to

¢ Automatically classify lung sounds into categories (crackles, wheezes,
striders, squawks, etc.)

¢ Determine whether brain EEG scans originated from healthy patients,
patients with epilepsy, or patients who were in the middle of having a
seizure.

¢ Determine whether EMG signals collected from the bicep originated from
patients who were healthy, suffering from myopathy, or suffering from
neurogenic disease

FZ
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Pilot Study on n=1,599 files of size J=5

Entropy

L acanmi e ol 4 il Y e B

Wavelet Energy at Level 1 = 4,35 squared bits

Wavelet Energy at Level 1 = 14.44 squared bits
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These are (Haar) wavelet-
based functional
approximations to a
representative good and
bad file.
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Pilot Study on n=1,599 files of size J=5 #RSAC

Resolution Statistical Model! For File Size J =5
Level # Bins Bin Size Value of 3; P — value  Malware Sensitivity
1 2 16 0.448 e +56.5%
2 4 8 0.174 * +19.0%
3 8 4 0.847 bl +133.2%
4 16 2 -0.106 n.s. -10.0%
5 32 1 -0.240 o -21.4%

» "Value of 3,": the estimated beta weight in a logistic regression, based on a corpus
of n=1,599 files of size J=5, fitting file maliciousness to the (normalized) wavelet
energy values at five levels of resolution

» "P-value"codes: x =p < .05, =p < .01, xx=p < .001, % * xx = p <
0001, * * x x x%x = p < .00001.

» "Malware Sensitivity": the estimated change in the odds that a file is malware
associated with an increase of one standard deviation in the corresponding feature.

It is calculated by (e — 1) x 100%.

CYLANCE 41 RSAConference?015 J



#RSAC

A problem in application to malware analysis

4

CYLANCE

The biological studies above were all controlled observational
situations which produced time series samples (e.g. lung sounds, brain
EEGs) of fixed length.

Thus, these samples all produce the same number of wavelet energy
features, J

Variation in these J features were then immediately associated with a
classification variable (categories of lung sounds, presence/absence of
epilepsy, etc.) by setting the input layer of the neural network to have J
activation notes.

Yet executable files out in the "wild" have different lengths, and so J will
vary from sample to sample.

-
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Wavelet Energy Spectrum Suspiciousness: Definition

¢ To solve this problem, we create an algorithm which converts the
wavelet energy spectrum into a malware "propensity score" or
"suspiciousness score" within [0,1] describing the "propensity" of
that executable file to be malware based on the wavelet energy
spectrum alone.

¢ We call the resulting feature Wavelet Energy Spectrum
Suspiciousness

¢ This feature can be compared from sample to sample. the input
layer of the neural network to have J activation notes.

wa
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Data

¢ Data is a corpus of Windows Portable Executable (PE) files.

¢ We formed a balanced data set of 39,968 files: of these, 19,991
(50.01%) were malware, whereas 19,997 (49.98%) were clean
computer programs.

¢ The "malware" category contained different types of malicious
software (e.g., computer viruses, Trojan horses and spyware -- but

not adware).
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Data: Training and test Set

+ Before feature extraction, 31,676 (80%) of the samples were
randomly selected to belong to the "training set,"” and the other
7,916 (20%) of the samples were classified in the "test set."

¢ The training set was used to
1. train the feature weights in the final classifier
2. determine the sparsity of the final classifier
3. determine weights for constructing the "propensity features"

=
o
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Feature Overview

. WHOLE FILE FEATURES (20)

A. BASIC (2} B. SUMMARY ENTROPY (7} C. CHANGE POINT = (9) D. WAVELETS ** (1} E. DFA * (1}
length miean maxJumpSize WESSS fa
I:.tn-;rrh2 sd mindumpSize
=TH maxResidual
max meanLongestRun
zneaky High maxLongestRunPct
lotzHigh meanAunLength
pctl entropyRuns
realFilebean
stableProp
Il. SECTION SPECIFIC FEATURES {12}
A. BASIC (&) B. SECTION SUSPICIOUSNESS ™ (&)
dataExists dataSuspiciousness
rsrcExists rarcSuspicicusness
relocExists relocSuspiciousness
textExists textSuspiciousness
headerExists headerSuspiciousness

certificateExists

certificateSuspiciousness

Il INTERACTION FEATURES (488

All structural entropy features used for classification.
KEY: * = Model-based features, + = Propensity Features

48
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Model Building: Lasso Logistic Regression

+ We model the binary classification variable (malware or not) as a function
of the 520 features related to structural entropy described above.

¢ We apply lasso logistic regression, a principled statistical method for
model fitting while simultaneously performing feature selection.

¢ The logistic lasso produces an entire set of models, indexed by the
sparsity parameter, /4. As the sparsity parameter increases, the size of
the model decreases (by discarding features).

¢ The value of the sparsity parameter can be optimized. Thus, the lasso
discovers the optimal proportion of features useful for classification

=
o
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Model Building: Lasso Logistic Regression

In particular, the vector of feature weights, 3, which solve the
lasso logistic regression function, is given by :

N

where ) is the "lasso parameter” or "regularization parameter”
that determines the sparsity of the solution.
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Model Building: Lasso Logistic Regression

In particular, the vector of feature weights, 3, which solve the
lasso logistic regression function, is given by :

N
min [f(ﬁ) = log(1 + e VF™) + )|l

1 _  Penalty

Bl

Error in Fit

where ) is the "lasso parameter" or "regularization parameter"
that determines the sparsity of the solution.

The optimal value of A is chosen by 10-fold cross-validation.
CYLANCE
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Optimal sparsity of model

Our feature construction method was rather liberal. For example, our
original dataset included 488 interaction terms (bivariate products of
simpler features), and these had no a priori justifications. Could we
have used far fewer than 520 features in our set?

-
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Optimal sparsity of model: Keep 387 Features #RSAC

489 453 387 292 201

128 75 52 25 9 5 0

1.4

1.2

0.8

Lack of Fit (Binomial Deviance)
1.0

0.6

CYLANCE
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Finding useful features in the dataset. The
graph depicts the relationship between model
size (governed by the sparsity parameter, and
plotted on the x-axis) and the fit of model
(assessed by the deviance measure, and
plotted on the y-axis) to validation data.

The number of features retained by model is
completely determined by the sparsity
parameter and is shown in the top row above
the plot.
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Overall model performance

Actual
Predicted Clean Malware
Clean 3413 443
Malware 569 3491
Total Accuracy 87.21% )

Test set performance of structural entropy classifier on a set of 7,916 newly seen files.
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Contribution of model-based features HRSAC

Feature Subsets Test Set Performance
Alphas Only 53.09%
Mean Change Point Only 64.16%
Wavelet Features Only 67.42%
All 3 (Main Effects Only) 71.70%
All 3 (with Interactions) 73.44%
Full Model 87.21%

Test set performance (n=7,916) of classifiers using various subsets of the
model-based entropy features
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Contribution of model-based features HRSAC

Logistic Lasso Feature Weights

Feature Importance Plot: Blue,
purple, and cyan are prominent
. throughout the display, which
e ° . reflects that the model-based

([ ] .'

. ° & : C
* e :..- so ® enl® o0 ° opy (NME) features are quite substantially

"’; °®
g . * Model-Based Entropy (ME) i i
involved in the overall
W N(CCO. SaEam . ve

predictive performance of the
ME x B =5
. automated malware classifier.

L ME x NME
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Wavelet Energy Patterns: A “Danger Map” RSAC

A "‘Danger Map® For Software Entropy
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The plot shows logistic regression beta
coefficients for determining the
probability that a portable executable file
Is malware based upon the magnitude
of file's entropic energy at various levels
of resolution within the code.

¢ Positive betas mean that higher
"entropic energy" at that resolution
level is associated with a greater
probability of being malware.

¢ Negative betas (mean that higher
"entropic energy" at that resolution
level is associated with a lower
probability of being malware.
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Take Home Points

*

*

CYLANCE

Machine learning automatic malware classification systems could benefit from
incorporating "structural entropy"” features.

We extracted structural entropy features via three primary techniques:
detrended fluctuation analysis, mean change point modeling, and wavelet
decompositions.

These features, especially considered in tandem, allow for the structural
entropy classifier to consiruct a fairly complex relatlonshlp between machine
code and a judgment of "entropic suspiciousness.

This relationship would be much harder for an adversary to control than, say,
mean entropy levels.

Moreover, the strong predictive performance of these structural entropy
features suggest that they may be a powerful contributor to a larger machine
learning system for automatically classifying malware.
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Questions and Answers #RSAC

contacts:

¢ Mike Wojnowicz mwojnowicz@-cylance.com

¢ Glenn Chisholm gchisholm@cylance.com
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