RSA Conference2015

San Francisco | April 20-24 | Moscone Center

SESSION ID: IDY-F02

CHANGE

Challenge today's security thinking

Secure Graphical Passwords

Peter Robinson

Senior Engineering Manager RSA, The Security Division of EMC

Is this Secure?

RSΛ

Google[™] Android[™] Pattern Unlock

What about this?

Draw three gestures on your picture. You can use any combination of circles. straight lines, and taps.

Remember, the size, position, and direction of your gestures -- and the order in which you make them become part of your picture password.

3

Microsoft[®] Windows 8[®] Picture Password

Introduction

This presentation:

- Analyses the security strength of Android Pattern Unlock and Windows 8 Picture Password.
- Introduces a new graphical password scheme which offers:
 - Better security strength, whilst still being memorable, and fast to enter.
 - Allows for automatic password simplification, which makes passwords easier to remember.

Agenda

- Password Entropy and Security Strength
- Android Pattern Unlock
- Windows 8 Picture Password
- Peter's Graphical Password Scheme
- Other Considerations

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Password Entropy and Security Strength

Entropy:

- The amount of uncertainty or unpredictable randomness.
 Example:
- Sample the pixel colour value from a light sensor pointed at a busy street.

#RSAC

RSAConference2015

- The light sensor could return 256 possible values.
- Entropy = 8 bits = $\log_2(256)$
- Assumes:
 - Attackers can't see the street scene & don't know when the sample is taken.
 - The possible light values are evenly distributed.

Password Entropy:

- The amount of entropy which can be derived from a password.
 Example:
 - Randomly selected 8 character password with 64 possible values per character.
 - The Password Entropy is 48 bits = log₂(64) x 8
 - Can anyone remember: cFz8^Mcq ?

 NIST SP-800-63¹ has a methodology for estimating the entropy of user selected passwords.

 Wier et al.² have introduced the concept of Guessing Entropy, which is based on how hard a password is to crack.

RSA

Note 1: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

Note 2: <u>http://dl.acm.org/citation.cfm?id=1866327</u>

RS∧^{*}Conference2015

Security Strength:

A measure of the difficulty of discovering a key or breaking an algorithm.

S	Security trength (bits)	Symmetric	RSA (bits)	ECC (bits)	Message Digest
2010	80	3DES (2-key)	1024	160	SHA-1
2030	112	3DES (3-key)	2048	224	SHA-224
Secret	128	AES 128	3072	256	SHA-256
Top	192	AES 192	7060	384	SHA-384
Jeciel	256	AES 256	15360	521	SHA-512
RS	Ń		11	RSAC	onference2015

RSAConference2015

#RSAC

12

- Password hardening algorithms:
 - SHA 256 salted hash
 - PBKDF2
 - Variable time factor
 - scrypt
 - Variable time / memory factor

SHA 256 Salted Hash Password Hardening Algorithm

RSAConference2015

#RSAC

Processed Password Security Strength = Password Entropy³

14

Note 3: With the limitation that Password Entropy < security strength of SHA256

scrypt Password Hardening Algorithm

Processed Password Security Strength = Password Entropy + $\log_2\left(\frac{\text{scrypt time to process one candidate}}{\text{SHA256 time to process one candidate}}\right)$

Password Hardening Algorithm

 $Processed Password Security Strength = Password Entropy + \log_2 \begin{pmatrix} effective number of SHA256 \\ operations executed \end{pmatrix}$

Password Hardening Algorithm parameters:

- Scale so algorithm execution time is acceptable on target hardware.
 100 ms on a Samsung Galaxy S5 or iPhone 6.
- Battery usage may be a factor in determining acceptable hardening.
- Effective number of SHA 256 operations:
 - Number of times SHA 256 can execute in 100 ms on target hardware. This is approximately 1,000,000.
 20 ≅ log₂(1,000,000)

Processed Password Security Strength = Password Entropy + 20 bits

Required Password Entropy = Desired Processed Password Security Strength - 20 bits

- Entropy: The amount of uncertainty or unpredictable randomness.
- Password Entropy: The amount of entropy which can be derived from a password.

Security Strength:

- A measure of the difficulty of discovering a key or breaking an algorithm.
- The security strength of a system whose strength is based on password entropy is typically limited by the entropy of the passwords.

- 20 bits:
 - Approximate scaling factor between password entropy and security strength, assuming a well written algorithm which takes 100 ms to execute.
- 60 to 90 bits:
 - Amount of password entropy needed for systems which base their security strength on passwords.

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Android Pattern Unlock

- At least four points must be chosen.
- No point can be used twice.
- Only straight lines are allowed.
- Cannot jump over points not visited before.

Android Pattern Unlock: Video Demo

RSΛ

Theoretically:

♦ 389,112 possible combinations.

- Password entropy: 19 bits.
- After five failed attempts, the user is locked out for 30 seconds.

RSAConference2015

Do people really do this?

- Do people really do this?
- People avoid hard to enter patterns.
- Most people use a 4 or 5 point pattern.

- Uellenbeck et al.⁴ did a user study (584 participants creating 2900 patterns) which showed:
 - Starting point bias⁵.
 - Bias towards lines along outside.
 - 300 patterns capture around 50% of the whole test population.
 - Password Entropy: 8 bits for 50%.

Note 4: http://emsec.rub.de/media/emma/veroeffentlichungen/2013/09/26/patternLogin-CCS13.pdf Note 5: Probably culturally specific. **27**

#RSAC

RSAConference2015

Android Pattern Unlock

- Android pattern unlock passwords are SHA1 message digested and compared with a value in a system file: android/data/system/gesture.key
- If your phone has been *rooted*⁶, the system file is accessible.
 The pattern can then be quickly recovered by comparing the SHA1 hash of all possible patterns.
- Security Strength: between 8 bits and 19 bits.

RSA

Note 6: Rooted definition: http://en.wikipedia.org/wiki/Rooting_%28Android_OS%29

Android Pattern Unlock Summary

- Usability:
 - User selected.
 - Time to enter: 1 second (usually correct first attempt).
 - Easy to remember.
- Security:
 - Security Strength: 8 bits, but possibly as much as 19 bits.
 - 300 patterns cover 50% of all passwords.
 - User selected security level (user select number of points).

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Windows 8 Picture Password

- User chooses photo.
- Draw three gestures in sequence.
- Circle, line, or dot.
- Direction of circle or line is important.

Set up your gestures

Draw three gestures on your picture. You can use any combination of circles, straight lines, and taps.

Remember, the size, position, and direction of your gestures -- and the order in which you make them - become part of your picture password.

123

Start Over

Cancel

Windows 8 Picture Password: Video Demo

#RSA

32

 Example passwords invariably contain a limited number of Points Of Interest.

- From a security perspective, lines and circles are better than dots.
- However, dots are faster to enter and easier to reliably enter than circles and lines.

- Picture passwords can only be used for local login.
- After five failed attempts, you must enter your character based password.

- Microsoft⁷ have analysed possible combinations based on the number of Points of Interest in a photo.
- They have assumed all gesture types (dot, line, circle) are equally likely, which is not the case.

Note 7: http://blogs.msdn.com/b/b8/archive/2011/12/16/signing-in-with-a-picture-password.aspx

RSAConference2015

Points of Interest	Microsoft's Analysis	My Analysis			
	Number of Combinations, assuming lines, circles and dots	Bits of Entropy	Number of Combinations, assuming dots only	Bits of Entropy	
5	421,875	19	125	7	
10	8,000,000	23	1,000	10	
15	52,734,375	26	3,375	12	
20	216,000,000	28	8,000	13	

 Zhao et al.⁸ devised automated analysis tools to find Points of Interest in picture passwords.

Methodology	Correct Guesses
Automated Pol recognition, 1st guess	0.8%
Manual Pol recognition, 1st guess:	0.9%
Automated Pol recognition, 5 guesses	1.9%
Manual Pol recognition, 5 guesses	2.6%

Note 8: <u>http://sefcom.asu.edu/publications/security-picture-gesture-security2013.pdf</u>

RSAConference2015

- The longest dimension of the image is divided into 100 segments. The shorter dimension is then divided on that scale to create the grid upon which you draw gestures⁹.
- Within the grid, points nearby are deemed to be a match.

70%	77%	82%	85%	86%	85%	82%	77%	70%
77%	84%	89%	92%	93%	92%	89%	84%	77%
82%	89%	94%	97%	98%	97%	94%	89%	82%
85%	92%	97%	100%	100%	100%	97%	92%	85%
86%	93%	98%	100%	100%	100%	98%	93%	86%
85%	92%	97%	100%	100%	100%	97%	92%	85%
82%	89%	94%	97%	98%	97%	94%	89%	82%
77%	84%	89%	92%	93%	92%	89%	84%	77%
70%	77%	82%	85%	86%	85%	82%	77%	70%

Note 9: Image from: <u>http://blogs.msdn.com/b/b8/archive/2011/12/16/signing-in-with-a-picture-password.aspx</u>

- Windows stores the Picture Password information encrypted.
- It decrypts and compares the stored password with the entered password.
- For users with admin privileges, there are tools to recover the Picture Password information!¹⁰

Background path : C:\ProgramData\Microsoft\Windows\SystemData\S-L-5-21-1611942080-558399661-3083519937-1001\ReadOnly\PicturePassword\background. png Picture password (grid is 150×100) [0] point (x = 58 ; y = 32) [1] line (x = 55 ; y = 42) -> (x = 56 ; y = 57) [2] point (x = 43 ; y = 89)

#RSAC

RSAConference2015

Note 10: Image from: <u>http://www.top-password.com/knowledge/recover-windows-8-pin-code-picture-password.html</u>

Windows 8 Picture Password Summary

- Usability:
 - User selected.
 - Time to enter: 3 seconds for each attempt (I find it difficult to reliably enter).
 - Generally, easy to remember.
 - Security:
 - Password Entropy: More than 12 bits and less than 26 bits.
 - Probability of guessing a password is 2.6%.
 - Password was encrypted, not processed by a one way function.
 - User selected security level (user selected types and position of gestures).

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Peter's Graphical Password Schemes

Competing Qualities

Quality	User Selected	Computer Generated
Security	Much Lower Difficult to Measure	Much Higher Deterministic
Ease of memory	Generally Easier	Generally Harder
Speed of Entry	Generally Faster	Generally Slower

I chose Computer Generated.

Competing Styles

Style	Processing
Grid Based	Hash / Process to a fixed value
Free Form	Encrypt plain text, or try to use Fuzzy Hashing

Variable Security

RSĄ

Passwor	d Type / Usage	Typical Existing Passwords	NIST Entropy	Guessing Entropy
Serious	Access at work	correct horse battery staple ¹¹	94	44
Important	Internet Banking Work phone	bill00pay	34	30
Casual	Social networking Personal phone	truelove	27	20
Kids Education software		home21	19	12
Android Pattern Unlock		4 points	-	8 to 19
Windows 8 Pi	icture Password	3 dots	-	12 to 26

45

Note 11: See: http://xkcd.com/936/

RSAConference2015

Variable Security

 I chose to design the scheme to allow different configurations for different usages, matching the security, ease of use trade-offs.

Peter's Graphical Password Scheme Password Entry

- To enter password:
 - Select the line colour.
 - Slide finger along the screen to enter a line.
 - Enter the lines in order.
 - Click on Submit to authenticate.

#RSAC

Auto Hide

Submit

Peter's Graphical Password Scheme Password Entry

- Lines are snapped to the grid, either on the side or corners of boxes.
- Use the Android device's Back button to remove the previously entered line if a mistake is made.
- Check Auto Hide to hide lines moments after you enter them if you are concerned about shoulder surfers.

#RSAC

RSAConference2015

Auto Hide

RSĄ

Peter's Graphical Password Scheme Video Demo: Authentication

Peter's Graphical Password Scheme Password Creation

- When a password is created:
 - The password is *played* to the user; the App draws the lines one at a time.
 - The user can ask for the password to be replayed by clicking on Replay Password.
 - The user can learn the password by clicking on Learn.

Peter's Graphical Password Scheme Learn Mode

In Learn mode:

- The user draws lines and gets feedback on whether they are correct.
- They can ask for the next line to be drawn by clicking on Show Next.

51

Peter's Graphical Password Scheme Video Demo: Learning

Peter's Graphical Password Scheme Default Configuration

- Default Configuration:
 - ♦ 9 cells.
 - 4 lines.

RSΛ

- 8 line directions.
- 8 line colours.
- Learning time: 60 seconds.
- Entry time: 5 seconds.
- Password Entropy: 36 bits

Peter's Graphical Password Scheme Simple Configuration

- Simple Configuration:
 - ♦ 9 cells.
 - 2 lines.
 - ◆ 4 line directions (either diagonal or along grid).
 - 8 line colours.
- Child learning time: 60 seconds.
- Child entry time: 5 seconds.
- Password Entropy: 17 bits

Peter's Graphical Password Scheme Strong Configuration

- Strong Configuration:
 - ♦ 16 cells.
 - 6 lines.

 RSA

- 8 line directions.
- 8 line colours.
- Learning time: 5 minutes.
- Entry time: 10 seconds.
- Password Entropy: 60 bits

* 4G / 84% 16:23

Peter's Graphical Password Scheme Comparison

Password Category	Example Usage	Typical Existing Password	Peter's Graphical Password Scheme
		Guessing Entropy	Entropy
Serious	Access at work	44	60
Important	Internet Banking	30	36
Casual	Social networking	20	36
Kids	Education software	12	17
RSA		56	RS ∧Conference2015

#RSAC

Peter's Graphical Password Scheme Auto Simplification

Auto simplification:

- A method of generating new passwords which are simpler, whilst minimally reducing password entropy.
- Good for users who forget their password and need a password reset.
- Parallel to PIN number auto simplification:
 - Initial PIN: 4673
 - After first PIN reset: 4554
 - After second PIN reset: 1234
 - After third PIN reset: 1111

Peter's Graphical Password Scheme Auto Simplification Methodology

- Randomly select first line.
- Base subsequent lines on the first line. Randomly select between:
 - Same colour or sub-set of colours and / or
 - Same direction or sub-set of direction and / or
 - Same cell or sub-set of cells.

#RSAC

Learn

Replay Password

Peter's Graphical Password Scheme Auto Simplification Methodology

- As the first line is randomly selected:
 - First line has full entropy.
- As there are many options for how subsequent lines can be simplified:
 - Entropy of subsequent lines is greater than if a deterministic simplification approach was used.
- A graduated amount of simplification can be applied.

RSAConference2015

Peter's Graphical Password Scheme Auto Simplification Methodology

Simplification Scheme	Password Entropy
None: 9 cells, 4 lines, 8 colours, 8 line directions	36
9 cells, 4 lines, 8 colours, 2 line directions	32
9 cells, 4 lines, 2 colours, 8 line directions	32
9 cells, 4 lines, 8 colours, same line direction	29
9 cells, 4 lines, 8 directions, same colour direction	29
9 cells, 4 lines, same colour and same direction	20

What is the minimum entropy you are comfortable with?

Peter's Graphical Password Scheme Summary

- Usability:
 - Computer generated.
 - Time to enter: 5 to 10 seconds, depending on configuration.
 - As hard to remember as equivalent character based password.
- Security:
 - Entropy: 17 to 60 bits, depending on configuration.
 - User / application selected security level.
 - Auto simplification.

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

Other Considerations

Other Considerations

- Smudge Attack¹⁰:
 - Wikipedia, "..a method to discerning the password pattern of a touchscreen device..."
 - A big factor in degree of smudge is how hard the user touches the screen.
- My graphical password scheme provides some protection against this type of attack:
 - Line colours.
 - Line ordering.
 - The intricate nature of the password promotes lighter touch.

Note 10: <u>http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf</u>

Note 11: Photo from: https://guardianproject.info/2012/01/04/strong-mobile-passwords-with-yubikey-usb-token/

RSAConference2015

Other Considerations

- Offline attack and online attack.
- Colour blind¹² support.
- Gamification: Gamify graphical password learning.
- Biometrics: They can never be revoked.
- Complex passwords, TodayIsAGreatDayToHaveAL1zPassword:
 - Allow more than three attempts before lockout.
 - Allow password hiding to be optional.

Note 12: http://www.colourblindawareness.org/colour-blindness/types-of-colour-blindness/

RSA Conference2015

San Francisco | April 20-24 | Moscone Center

CHI AS AS A

Wrapping Up

#RSAC

Security Strength Gap

- 112+ bits security strength: What we need.
- 20 bits hardening: 100 ms of password hardening.
- 60 bits entropy: What my algorithm can supply.
- 32 bits: The difference between what we need and what we can achieve.

How to Apply this Information?

- In the systems you have today:
 - What are the password requirements?
 - How are passwords processed?
 - What security strength does your system need?
- When you assess a graphical password scheme, compared to existing passwords for the same usage:
 - Is it more secure?
 - Is it easier to remember?
 - Is it faster to enter?

Summary

- Google's Android Pattern Unlock and Microsoft's Windows 8 Picture Password, given typical usage, are very weak.
- My graphical password scheme offers varying levels of security depending on configuration and usage. For each usage, when compared with traditional passwords, it offers:
 - Password entropy: Better.
 - Ease of memorization and speed of entry: Similar.
- My password scheme can't deliver as much entropy as we need.

Any Questions?

Peter Robinson: peter.robinson@rsa.com

