CHANGE

San Francisco | April 20-24 | Moscone Center

Secure Graphical Passwords

Peter Robinson

Senior Engineering Manager
RSA, The Security Division of EMC

Is this Secure?

Google ${ }^{T M}$ Android ${ }^{\text {TM }}$ Pattern Unlock
RSA

What about this?

Microsoft ${ }^{\circledR}$ Windows $8{ }^{\circledR}$ Picture Password
RSA

Introduction

This presentation:

- Analyses the security strength of Android Pattern Unlock and Windows 8 Picture Password.
- Introduces a new graphical password scheme which offers:
- Better security strength, whilst still being memorable, and fast to enter.
- Allows for automatic password simplification, which makes passwords easier to remember.

Agenda

- Password Entropy and Security Strength
- Android Pattern Unlock
- Windows 8 Picture Password
- Peter's Graphical Password Scheme
- Other Considerations

RS^^Conference2015

San Francisco | April 20-24 | Moscone Center

Password Entropy and Security Strength

Password Entropy and Security Strength

- Entropy:
- The amount of uncertainty or unpredictable randomness.

Example:

- Sample the pixel colour value from a light sensor pointed at a busy street.
- The light sensor could return 256 possible values.
- Entropy $=8$ bits $=\log _{2}(256)$
- Assumes:
- Attackers can't see the street scene \& don't know when the sample is taken.
- The possible light values are evenly distributed.

Password Entropy and Security Strength

- Password Entropy:
- The amount of entropy which can be derived from a password. Example:
- Randomly selected 8 character password with 64 possible values per character.
- The Password Entropy is 48 bits $=\log _{2}(64) \times 8$
- Can anyone remember: cFz8^Mcq ?

Password Entropy and Security Strength

- NIST SP-800-63 ${ }^{1}$ has a methodology for estimating the entropy of user selected passwords.
- Wier et al. ${ }^{2}$ have introduced the concept of Guessing Entropy, which is based on how hard a password is to crack.

RSA
Note 1: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
Note 2: http://dl.acm.org/citation.cfm?id=1866327

Password Entropy and Security Strength

- Security Strength:
- A measure of the difficulty of discovering a key or breaking an algorithm.

Password Entropy and Security Strength

Password Entropy and Security Strength

Password \longrightarrow| Password Hardening |
| :---: |
| Algorithm |

Processed
Password

Password
Entropy

Processed Password
Security Strength

Password Entropy and Security Strength

- Password hardening algorithms:
- SHA 256 salted hash
- PBKDF2
- Variable time factor
- scrypt
- Variable time / memory factor

Password Entropy and Security Strength

Processed Password Security Strength $=$ Password Entropy ${ }^{3}$

RSA
Note 3: With the limitation that Password Entropy < security strength of SHA256

Password Entropy and Security Strength

Processed Password Security Strength
$=$ Password Entropy $+\log _{2}\left(\frac{\text { scrypt time to process one candidate }}{\text { SHA256 time to process one candidate }}\right)$

Password Entropy and Security Strength

> Processed Password Security Strength
> $=$ Password Entropy $+\log _{2}\binom{$ effective number of SHA256 }{ operations executed }

Password Entropy and Security Strength

- Password Hardening Algorithm parameters:
- Scale so algorithm execution time is acceptable on target hardware. 100 ms on a Samsung Galaxy S5 or iPhone 6.
- Battery usage may be a factor in determining acceptable hardening.
- Effective number of SHA 256 operations:
- Number of times SHA 256 can execute in 100 ms on target hardware. This is approximately $1,000,000$.
$20 \cong \log _{2}(1,000,000)$

Password Entropy and Security Strength

Processed Password Security Strength $=$ Password Entropy +20 bits

> Required Password Entropy
> $=$ Desired Processed Password Security Strength -20 bits

RSA

Password Entropy and Security Strength

Summary

Entropy: The amount of uncertainty or unpredictable randomness.

- Password Entropy: The amount of entropy which can be derived from a password.
- Security Strength:
- A measure of the difficulty of discovering a key or breaking an algorithm.
- The security strength of a system whose strength is based on password entropy is typically limited by the entropy of the passwords.

Password Entropy and Security Strength Summary

- 20 bits:
- Approximate scaling factor between password entropy and security strength, assuming a well written algorithm which takes 100 ms to execute.
- 60 to 90 bits:
- Amount of password entropy needed for systems which base their security strength on passwords.

RSNConference2015
San Francisco | April 20-24 | Moscone Center

Android Pattern Unlock

Android Pattern Unlock

- At least four points must be chosen.
- No point can be used twice.
- Only straight lines are allowed.
- Cannot jump over points not visited before.

Android Pattern Unlock: Video Demo

RSA

Android Pattern Unlock

- Theoretically:
- 389,112 possible combinations.
- Password entropy: 19 bits.
- After five failed attempts, the user is locked out for 30 seconds.

RSA

Android Pattern Unlock

Do people really do this?

RSA

Android Pattern Unlock

- Do people really do this?
- People avoid hard to enter patterns.
- Most people use a 4 or 5 point pattern.

Try again

Charging, 20\%

Verizon Wireless

Android Pattern Unlock

- Uellenbeck et al. ${ }^{4}$ did a user study (584 participants creating 2900 patterns) which showed:
- Starting point bias ${ }^{5}$.
- Bias towards lines along outside.
- 300 patterns capture around 50% of the whole test population.

- Password Entropy: 8 bits for 50\%.

Android Pattern Unlock

- Android pattern unlock passwords are SHA1 message digested and compared with a value in a system file: android/data/system/gesture.key
- If your phone has been rooted ${ }^{6}$, the system file is accessible. The pattern can then be quickly recovered by comparing the SHA1 hash of all possible patterns.
- Security Strength: between 8 bits and 19 bits.

Android Pattern Unlock
 Summary

- Usability:
- User selected.
- Time to enter: 1 second (usually correct first attempt).
- Easy to remember.
- Security:
- Security Strength: 8 bits, but possibly as much as 19 bits.
- 300 patterns cover 50\% of all passwords.
- User selected security level (user select number of points).

RSNConference2015
San Francisco | April 20-24 | Moscone Center

Windows 8
 Picture Password

Windows 8 Picture Password

- User chooses photo.
- Draw three gestures in sequence.
- Circle, line, or dot.
- Direction of circle or line is important.

RSA

Windows 8 Picture Password: Video Demo

RSA

Windows 8 Picture Password

- Example passwords invariably contain a limited number of Points Of Interest.

RSA

Windows 8 Picture Password

- From a security perspective, lines and circles are better than dots.
- However, dots are faster to enter and easier to reliably enter than circles and lines.

RSA

Windows 8 Picture Password

- Picture passwords can only be used for local login.
- After five failed attempts, you must enter your character based password.

RSA

Windows 8 Picture Password

- Microsoft ${ }^{7}$ have analysed possible combinations based on the number of Points of Interest in a photo.
- They have assumed all gesture types (dot, line, circle) are equally likely, which is not the case.

Windows 8 Picture Password

Points of Interest	Microsoft's Analysis	My Analysis		
	Number of Combinations, assuming lines, circles and dots	Bits of Entropy	Number of Combinations, assuming dots only	Bits of Entropy
5	421,875	19	125	7
10	$8,000,000$	23	1,000	10
15	$52,734,375$	26	3,375	12
20	$216,000,000$	28	8,000	13

Windows 8 Picture Password

- Zhao et al. ${ }^{8}$ devised automated analysis tools to find Points of Interest in picture passwords.

Methodology	Correct Guesses
Automated Pol recognition, 1st guess	0.8%
Manual Pol recognition, 1st guess:	0.9%
Automated Pol recognition, 5 guesses	1.9%
Manual Pol recognition, 5 guesses	2.6%

Windows 8 Picture Password

- The longest dimension of the image is divided into 100 segments. The shorter dimension is then divided on that scale to create the grid upon which you draw gestures ${ }^{9}$.
- Within the grid, points nearby are deemed to be a match.

70%	77%	82%	85%	86%	85%	82%	77%	70%
77%	84%	89%	92%	93%	92%	89%	84%	77%
82%	89%	94%	97%	98%	97%	94%	89%	82%
85%	92%	97%	100%	100%	100%	97%	92%	85%
86%	93%	98%	100%	100%	100%	98%	93%	86%
85%	92%	97%	100%	100%	100%	97%	92%	85%
82%	89%	94%	97%	98%	97%	94%	89%	82%
77%	84%	89%	92%	93%	92%	89%	84%	77%
70%	77%	82%	85%	86%	85%	82%	77%	70%

Windows 8 Picture Password

- Windows stores the Picture Password information encrypted.
- It decrypts and compares the stored password with the entered password.
- For users with admin privileges, there are tools to recover the Picture Password information! ${ }^{10}$

RSA

Windows 8 Picture Password
 Summary

- Usability:
- User selected.
- Time to enter: 3 seconds for each attempt (I find it difficult to reliably enter).
- Generally, easy to remember.
- Security:
- Password Entropy: More than 12 bits and less than 26 bits.
- Probability of guessing a password is 2.6%.
- Password was encrypted, not processed by a one way function.
- User selected security level (user selected types and position of gestures).

RSNConference2015
San Francisco | April 20-24 | Moscone Center

Peter's Graphical Password Schemes

Competing Qualities

Quality	User Selected	Computer Generated
Security	Much Lower Difficult to Measure	Much Higher Deterministic
Ease of memory	Generally Easier	Generally Harder
Speed of Entry	Generally Faster	Generally Slower

- I chose Computer Generated.

Competing Styles

Style	Processing
Grid Based	Hash / Process to a fixed value
Free Form	Encrypt plain text, or try to use Fuzzy Hashing

- I chose Grid Based.

RSA

Variable Security

Password Type / Usage		Typical Existing		uessing
Serious	Access at work	correct horse battery staple ${ }^{11}$	94	44
Important	Internet Banking Work phone	bill00pay	34	30
Casual	Social networking Personal phone	truelove	27	20
Kids	Education software	home21	19	12
Android Pattern Unlock		4 points	-	8 to 19
Windows 8 Picture Password		3 dots	-	12 to 26

Variable Security

- I chose to design the scheme to allow different configurations for different usages, matching the security, ease of use trade-offs.

Peter's Graphical Password Scheme

 Password Entry- To enter password:
- Select the line colour.
- Slide finger along the screen to enter a line.
- Enter the lines in order.
- Click on Submit to authenticate.

RSA

Peter's Graphical Password Scheme

Password Entry

- Lines are snapped to the grid, either on the side or corners of boxes.
- Use the Android device's Back button to remove the previously entered line if a mistake is made.
- Check Auto Hide to hide lines moments after you enter them if you are concerned about shoulder surfers.

Peter's Graphical Password Scheme Video Demo: Authentication

Peter's Graphical Password Scheme Password Creation

\% ®	${ }_{47}^{36}$. 191% - 13:52
1-P	ord

-When a password is created:

- The password is played to the user; the App draws the lines one at a time.
- The user can ask for the password to be replayed by clicking on Replay Password.
- The user can learn the password by clicking on Learn.

Peter's Graphical Password Scheme

 Learn Mode

- In Learn mode:
- The user draws lines and gets feedback on whether they are correct.
- They can ask for the next line to be drawn by clicking on Show Next.

RSA

Peter's Graphical Password Scheme
Video Demo: Learning

RSA

Peter's Graphical Password Scheme Default Configuration

- Default Configuration:
- 9 cells.
- 4 lines.
- 8 line directions.
- 8 line colours.
- Learning time: 60 seconds.
- Entry time: 5 seconds.
- Password Entropy: 36 bits

RSA

Peter's Graphical Password Scheme Simple Configuration

- Simple Configuration:
- 9 cells.
- 2 lines.
- 4 line directions (either diagonal or along grid).
- 8 line colours.
- Child learning time: 60 seconds.
- Child entry time: 5 seconds.
- Password Entropy: 17 bits

Peter's Graphical Password Scheme Strong Configuration

- Strong Configuration:
- 16 cells.
- 6 lines.
- 8 line directions.
- 8 line colours.
- Learning time: 5 minutes.
- Entry time: 10 seconds.
- Password Entropy: 60 bits

RSA

Peter's Graphical Password Scheme Comparison

Password Category	Example	Typical Existing Password	Peter's Graphical Password Scheme
		Guessing Entropy	Entropy
Serious	Access at work	44	60
Important	Internet Banking	30	36
Casual	Social networking	20	36
Kids	Education software	12	17
RSA			56

Peter's Graphical Password Scheme Auto Simplification

- Auto simplification:
- A method of generating new passwords which are simpler, whilst minimally reducing password entropy.
- Good for users who forget their password and need a password reset.
- Parallel to PIN number auto simplification:
- Initial PIN: 4673
- After first PIN reset: 4554
- After second PIN reset: 1234
- After third PIN reset: 1111

Peter's Graphical Password Scheme Auto Simplification Methodology

- Randomly select first line.
- Base subsequent lines on the first line. Randomly select between:
- Same colour or sub-set of colours and / or
- Same direction or sub-set of direction and / or
- Same cell or sub-set of cells.

Peter's Graphical Password Scheme Auto Simplification Methodology

Peter's Graphical Password Scheme Auto Simplification Methodology

Simplification Scheme	Password Entropy
None: 9 cells, 4 lines, 8 colours, 8 line directions	36
9 cells, 4 lines, 8 colours, 2 line directions	32
9 cells, 4 lines, 2 colours, 8 line directions	32
9 cells, 4 lines, 8 colours, same line direction	29
9 cells, 4 lines, 8 directions, same colour direction	29
9 cells, 4 lines, same colour and same direction	20

What is the minimum entropy you are comfortable with?

Peter's Graphical Password Scheme

Summary

- Usability:
- Computer generated.
- Time to enter: 5 to 10 seconds, depending on configuration.
- As hard to remember as equivalent character based password.
- Security:
- Entropy: 17 to 60 bits, depending on configuration.
- User / application selected security level.
- Auto simplification.

RSN:Conference2015
San Francisco | April 20-24 | Moscone Center

Other Considerations

Other Considerations

- Smudge Attack ${ }^{10}$:
- Wikipedia, "..a method to discerning the password pattern of a touchscreen device..."
- A big factor in degree of smudge is how hard the user touches the screen.
- My graphical password scheme provides some protection against this type of attack:
- Line colours.
- Line ordering.

- The intricate nature of the password promotes lighter touch.

Note 10: http://static.usenix.org/events/woot10/tech/full papers/Aviv.pdf

Other Considerations

- Offline attack and online attack.
- Colour blind ${ }^{12}$ support.
- Gamification: Gamify graphical password learning.
- Biometrics: They can never be revoked.
- Complex passwords, TodayIsAGreatDayToHaveAL1zPassword:
- Allow more than three attempts before lockout.
- Allow password hiding to be optional.

RSNConference2015

San Francisco | April 20-24 | Moscone Center

Wrapping Up

Security Strength Gap

- 112+ bits security strength: What we need.
- 20 bits hardening: 100 ms of password hardening.
- 60 bits entropy: What my algorithm can supply.
- 32 bits: The difference between what we need and what we can achieve.

How to Apply this Information?

- In the systems you have today:
-What are the password requirements?
- How are passwords processed?
-What security strength does your system need?
- When you assess a graphical password scheme, compared to existing passwords for the same usage:
- Is it more secure?
- Is it easier to remember?
- Is it faster to enter?

Summary

- Google's Android Pattern Unlock and Microsoft's Windows 8 Picture Password, given typical usage, are very weak.
- My graphical password scheme offers varying levels of security depending on configuration and usage. For each usage, when compared with traditional passwords, it offers:
- Password entropy: Better.
- Ease of memorization and speed of entry: Similar.
- My password scheme can't deliver as much entropy as we need.

Any Questions?

- Peter Robinson: peter.robinson@rsa.com

