
SESSION ID:

#RSAC

jOHN (Steven)

Common IAM Flaws Plaguing
Systems After Years of
Assessment

IDY-R04

iCTO, Principal Consultant
Cigital Inc.

@m1splacedsoul

#RSACWhat is an Architectural
Flaw?

#RSACBug

#RSAC

Flaw

#RSAC

Metaphor: Fixing Security Bugs

#RSAC

Metaphorical Pothole Patch – Output Encoding

<%-- Must escape content (even in user names!) --%>
Hello <%= ESAPI.encoder().encodeForHTML(user.getName()) %>!

<%-- Must escape 3 different contexts correctly --%>
<img src="/profile-photo?user=<%= ESAPI.encoder().encodeForURL(user.getId()) %>"

alt="<%= "Photo of ”+ESAPI.encoder().encodeForHTMLAttribute(user.getId()) %>"
onclick="<%= "openProfile('"+ESAPI.encoder().encodeForHTMLAttribute(

ESAPI.encoder().encodeForJavaScript(user.getId())) + "')" %>" />

<%-- Outputting unescape, is however, easy: --%>
<%= user.getProfileHtml() %>

ESAPI

#RSAC

Security Posture – Bug Fixing Leaves Us Here

#RSAC

Bugs vs. Flaws

 Names are not important

 What is important is the:
 Stakeholders engaged in the fix

 Techniques used to fix the problem

 Scope/scale at which the fix is applied

 If fixing a bug entails improving how something is implemented, fixing a
flaw improves what it is.

 …opening a new set of implementation bug opportunities;-)

#RSACCommon IAM/Auth[N|Z]
Flaws

#RSACFlaw #1: Failure to
Propagate Principal Identity

#RSAC

Propagating Principal: Most Basic Form

#RSAC

Federated Systems

#RSAC

Dithering Resolution as Entitlements asserted

#RSAC

Bilateral Principal Agreements

 Browser  AuthN
 User-level: UN/PW
 Creds UID + Session

 Browser  Container
 Binary AuthN: session
 Optional RBAC

 Container  DB
 Host-level AuthN
 Optional RBAC

#RSAC

Consequences: AuthZ Foiled
1. Authenticated requests can access anything

1. Forced browsing
2. Parameter tampering, pollution, and so forth
3. Replay attacks

2. Containers lack info required for AuthZ
 Role is too coarse to mitigate account access
 UID lacks user context
 Access control list lies in directory or DB
 Requests carry no claims-based info

#RSAC

Principal ID Supports AuthN/Z, and Audit

#RSACFlaw #2: UUIDs w/o (or in
place of) AuthZ

#RSAC

Historically, one UUID Represented Principal
Drove CC# or SSN as UUID

Drives “Indirect Object Ref”
security bugs when used for
Principal

UserA CCN

CCN

CCN CCN

CCN

#RSAC

Ex. ID Mapping Flaw w/ Partner Systems

Transactions

#RSAC

Tokenization

#RSACSolution Pattern:
Principals Carrying Proof of
Identity

#RSAC

Solution: DMV?!
Centralize identity provision

 Force requests to carry ID

 Multiple verifiable elements

 Accepted everywhere w/in federation

 Accepted at foreign crossings as well

Verify

 Principal and ID match

 Principal is expected (e.g. guest list)

Quick verify

Costly creation/provision

May carry (optional) endorsements as necessary / appropriate

#RSAC

Identity extends beyond org. boundaries

#RSACFlaw #3: Improper Scope &
Termination

#RSAC

Context: Common Portals & Mash-up Sites

#RSAC

Context: Common Portals & Mash-up Sites
AuthN & Portal UI collaborate
 Conduct login workflow
 Associate session w/ UID
User navigates to App X
 Portal calls AuthN

 Check session validity

 Checks UN valid for realm
 Hands control to App X
App X
 Checks UN valid for App

#RSAC

Consequences

 Decoupling Session Management Log-in/out means

 Application doesn’t know about:

 Timeout

 Logout (sometimes)

 User Termination/Deletion events

 App can’t participate in work flows

#RSAC

Visually…

AuthN can’t talk to AppC

AppC must replicate behavior
 AuthN (Session)
 Portal (User maps, workflow)

Portal Can’t talk to AppC w/o
valid request

#RSAC

Generate Single Scope Handles
AuthN system generates:

 Application-specific sessions, in concert with

 Portal-specific identity

AuthN system formats specific sessions

 <session ID> ‘:’ <app ID>

Unfortunately, existing products don’t support this out of the box

#RSAC

Solution: Callbacks w/ UUID
AuthN system communicates with App
 (Pull) Application polls AuthN for session properties
 (Push) AuthN makes requests ‘pushing’ session events

The application can:
 (pull) Query AuthN for session tuple get back answer

 Centralizes ACLs, PDP

 (push) AuthN annotates request
 Annotation sufficient to make decisions
 UUID  APP_SESSION_UUID
 XACML, JSON, etc.

#RSACSolution Pattern:
Coopt the User for Fraud
Detection

#RSAC

Context
AuthN workflows have become complex
 Discern computer/human
 Implement Multi-”factor” authentication
 Apply ‘risk-based’ workflow based on client

 *** Known clients get ‘easier path’

Fraud systems interact with the login workflow
 Systems involve users in workflow
 Systems support notifications

#RSAC

Problem
Complexity breeds errors

 Workflow state machines often broken

 Confusing end-point registration systems proves easy

 Multi-factors are redundant

Attackers always pick “shortest path”

 Attack a registered end-point

 Spoof a common end-point (IOS)

Privilege / Trust are sticky

 How long is trust appropriate?

 Is there a way to revoke it?

#RSAC

Common Practice
Intended Purpose

 Identify client endpoint

 Prevent brute force attack

 Identify user

 Validate server (anti-phishing)

 Validate user

 Evaluate risk

 Validate user (further)

 Ease login process

#RSAC

Solutions  Problems: Fingerprint
Fingerprint efficacy based on device

 IOS is low entropy (almost always matches)

 Firefox, Opera are so unique they give you away

Browser fingerprint is a biometric misnomer

 Something you have vs. something you are

 Control becomes liability w/ mobile device
 Specially w/ Safari

#RSAC

Solutions  Problems: Speedbumps
Remove these for a mobile device?

 Keyboard & Autocorrect too annoying…

Remove for registered fingerprints?

 Server has seen this device, associates it w/ user…

Differentiate human vs. script

 Control becomes liability w/ mobile device theft

 Many schemes vulnerable to mining attacks

SiteKey: designed to assure user speaking to server directly

 Again: mining attacks

#RSAC

Solutions  Problems: Secret Questions
Another multi-factor conflation

 Duplicate “something you know”

Conflates

 Additional assertions about the user vs. endpoint

#RSAC

Key Scheme Improvements
Improve Fingerprinting

 Focus around only device, not user
 This can’t replace computer/human detection or theft

 Use access patterns
 Telemetry, location (change is as useful as value)
 Time, speed, etc.

#RSAC

Trust once…
Many systems are add only
 No audit list
 No removal
This is bad for fingerprints
This is fatal for bearer tokens

“Trust” should not be binary …and not
for multiple purposes
 Fingerprinted mobile device != OOB

Channel

#RSAC

Key Scheme Improvements (2) - Involve User
Provide the user the ability to label endpoint

Provide a list of end-points, enable user disposition

 Do not think of as a sliding bar (black, grey, white)

 Actions may include:
 Do not allow
 Notify
 Request addl. verification
 Reduce access
 Omit some verifications

Provide OOB notification, include:

 Fingerprint data

 Time

 Actions taken

#RSAC

Flaw #4: Binary ‘Trust’

#RSAC

Castles, like me, are misunderstood

Barbican

Town

Bailey

Building

Keep

Consider a small bank’s “castle”
Consider as alternative: Amazon.com

http://www.flickr.com/photos/sugarmonster/

#RSAC

Castles, Entitlements, and so forth

#RSAC

Thank you for your attention

	Common IAM Flaws Plaguing Systems After Years of Assessment
	What is an Architectural Flaw?
	Bug
	Flaw
	Metaphor: Fixing Security Bugs
	Metaphorical Pothole Patch – Output Encoding
	Security Posture – Bug Fixing Leaves Us Here
	Bugs vs. Flaws
	Common IAM/Auth[N|Z] Flaws
	Flaw #1: Failure to Propagate Principal Identity
	Propagating Principal: Most Basic Form
	Federated Systems
	Dithering Resolution as Entitlements asserted
	Bilateral Principal Agreements
	Consequences: AuthZ Foiled
	Principal ID Supports AuthN/Z, and Audit
	Flaw #2: UUIDs w/o (or in place of) AuthZ
	Historically, one UUID Represented Principal
	Ex. ID Mapping Flaw w/ Partner Systems
	Tokenization
	Solution Pattern:�Principals Carrying Proof of Identity
	Solution: DMV?!
	Identity extends beyond org. boundaries
	Flaw #3: Improper Scope & Termination
	Context: Common Portals & Mash-up Sites
	Context: Common Portals & Mash-up Sites
	Consequences
	Visually…
	Generate Single Scope Handles
	Solution: Callbacks w/ UUID
	Solution Pattern:�Coopt the User for Fraud Detection
	Context
	Problem
	Common Practice
	Solutions  Problems: Fingerprint
	Solutions  Problems: Speedbumps
	Solutions  Problems: Secret Questions
	Key Scheme Improvements
	Trust once…
	Key Scheme Improvements (2) - Involve User
	Flaw #4: Binary ‘Trust’
	Castles, like me, are misunderstood
	Castles, Entitlements, and so forth
	Thank you for your attention

