RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

SESSION ID: MBS-T10

Wanted: Innovation in Security Research

Gus de los Reyes, PhD

Executive Director

AT&T Security Research Center

Evolution of Security Attacks

The Top 10

- 2009 Stuxnet
- 2008-2009 Conficker
- 2007-2008 Storm Worm
- 2004 Sasser
- 2003 MyDoom
- 2003 Sobig.F / Nachi(Welchia)
- 2003 Blaster/Lovesan
- 2003 Sapphire/SQL Slammer
- 2001 Code Red II
- 2000 ILOVEYOU

Trojan Horse

Evolution of Security Defenses

The Crossover Point

Current Security Cycle

AT&T Security Research Cycle

Research to protect against broad classes of sophisticated attacks

Deploy intermediate research results that get closer to end state

Continue researching new solutions as existing methods start to weaken

Repeat

How do we get started?

Security Research Vision

Out-innovate attackers

Security Research Goals

- ◆ 100% Mobility Availability against Security Attacks
 - Protect mobility as we connect billions of devices
- Unquestionable Cloud Security
 - Secure the cloud to host anything from the virtual enterprise to virtualized networks
- Deep Learning for Network Security
 - Squeeze all of the security potential from our network

Approach

- Look at the end-to-end system to be protected
- Extract features that are common across attacks
- ◆ Come up with a solution mosaic
- ◆ Fill in mosaic with available tiles
- Complete mosaic with R&D

Business Value of Success

- Maintain the value of Intellectual Property
- ◆ Provide extreme flexibility in running a business
- Wring the maximum potential from new technology

Mobility Network

© 2015 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

Mobility Attack Taxonomy

Local Core (EPC) Internet Core network SW Jamming Spread malware Low traffic vulnerabilities (MME, S- Base station SW APT vulnerabilities GW, etc) load (DoS) Botnet of phones HSS saturation Base station saturation DDoS attack against **High traffic** Amplification attacks Protocol misbehavior Internet nodes affecting load (DDoS) Botnet of phones network availability Node damage/shut down DDoS against 3rd party Base station shutdown HSS saturation cellular network **Insider Attack** EPC saturation • 3rd party HSS saturation

Solution Tiles

HTML/Apps

Does not apply

Titan container

•App repackaging detect.

Malware detection

TCP/UDP/IP

Does not apply

- Anomaly detection
- Core network fuzzing
- SMS spam detectionM2M security

•DDoS protection

Saturn

- •IP/DNS reputation
- Anomaly and attack detection

MAC/RRC/RLC

PHY

- eNodeB and core network fuzzing
- Protocol misbehavior detection
- Low layer network security
- Network attack detection and mitigation
- •Fake base station defenses

Does not apply

Access network

Core network

IP domain

Handset

Titan container, malware detection/mitigation, handset SMS fuzzing, provably secure transactions.

© 2015 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

Automated Smartphone Fuzz Testing

© 2015 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

Detect Widespread Attack Campaigns

APT Attack Model

Exfiltration or Destruction

System View

(Public) Rendering/input device

Trusted Device

Plaintext
Ciphertext
Visual Encoding

Visual Encoding

EyeDecrypt is a novel technology for privacy-preserving human-computer interaction. EyeDecrypt allows only authorized users to decipher data shown on a display, such as an electronic screen or plain printed material; in the former case, the authorized user can then interact with the system (e.g., by typing a password), without revealing the details of the interaction to others who may be watching (e.g., shoulder-surfing) or to the system itself (e.g., key-loggers).

Decoding and Decryption

© 2015 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

EyeDecrypt Demonstration

Data Access Policy Checker

contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

Virtual Network Browser

© 2015 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

Secure Storage

Servers with confidential data

If adversaries break through the perimeter, They learn confidential information

Secure Distributed Storage

Server 1

Server 2

Server 3

If adversaries break through the perimeter into <u>one</u> server, they learns <u>nothing</u>.

In order to learn anything, adversaries must break into <u>all</u> servers.

Suppose we have a secret s

An n-out-of-n secret sharing scheme:

Pick n-1 random values s_1, s_2, \dots, s_{n-1} and set $s_n = s_1 \oplus s_2 \oplus \dots \oplus s_n$

Now, if we store each s_i on a different server, then even if an adversary learns any n-1 of the s_i values, he (provably) learns nothing about s

This can be generalized to k-out-of-n secret sharing scheme such that even if an adv learns k of the s_i values, he learns nothing about s; Advantage is that s can be reconstructed using any k+1 out of the s_i values (better reliability)

Secret Sharing and Secure Computation

© 2015 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual Property and/or AT&T affiliated companies.

Rethink Possible

