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Introduction 

We identified common Android cryptographic security vulnerabilities 

 Options that can “fix” SSL/TLS problems but break security 

 Insecure usage of cryptographic operations such as random number 

generation and block ciphers 

And then analyzed a large data set of common applications 

 All free applications in Google Play with over a million downloads 

 The total number of such applications as of Apr. 8, 2015 is 11,113  
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Transport Security: 
SSL/TLS 
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Part I. Securing communications channels 

Internet 

Bob 

Alice 

Alice sends data to Bob 

Bob sends 

data to Alice 

Apps need to securely communicate with their backend servers.  This 

can include sensitive user data.  What can go wrong? 
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Part I. Securing communications channels 

Internet 

Bob 

Alice 

Alice sends data to Bob 

Bob sends 

data to Alice 

If the data being sent is not encrypted, anyone can read it. 

And they can also modify it by acting as a “Man in the Middle”, 

intercepting and replacing traffic as they see fit. 
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Part I. The SSL/TLS protocols 

Internet 

Bob 

Alice 

Alice sends data to Bob 

Bob sends 

data to Alice 

Encryption can ensure that only the endpoints can read or write the data 

transferred over the connection.  So let’s do that. 
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Part I. The SSL/TLS protocols 

Internet 

Bob 

Alice 

Alice sends data to Bob 

Bob sends 

data to Alice 

But how does Alice know that she is talking to the real Bob? 

 

This is a job for PKI. 
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Part I. The Public-Key Infrastructure 

Internet 

Bob 

Alice 

Alice sends data to Bob 

Bob sends 

data to Alice 

But how does Alice know that she is talking to the real Bob? 

Because he has the right public key. 

But how does she know Bob’s public key? 

A trusted third party (TTP) vouches for his identity. 
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Part I. The Public-Key Infrastructure 

Internet 

Bob 

Alice 

Alice sends data to Bob 

Bob sends 

data to Alice 

Identity verification using a TTP: 
 

• Bob creates an unsigned certificate that specifies his public key 

• After verifying Bob’s identity, TTP signs the certificate using its private key 

• When Alice connects, Bob sends the signed certificate to prove his identity. 

• Alice verifies the TTP’s signature and that Bob is using the specified key 
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Part I. The Public-Key Infrastructure 

Internet 

Bob 

Alice 

Alice sends data to Bob 

Bob sends 

data to Alice 

Note that Alice must: 
 

• Check that the presented certificate is in fact for Bob, and not Charlie 

• Validate that the certificate is properly signed by a TTP 
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Part I. The Public-Key Infrastructure 

Internet 

Bob 

Alice 

Alice sends data to “Bob” 

Bob sends 

data to “Alice” 
Attacker forwards  

data to Alice 

Attacker forwards  

data to Bob 

A “Man-in-the-Middle” Attacker able to impersonate Bob again gets full 

access to the communication 
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Part I. The Public-Key Infrastructure. MITM 

Demo… 
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Part I. Android (Java) capabilities 

Trust management for SSL/TLS 

javax.net.ssl.SSLContext 

  .init(KeyManager[], TrustManager[], SecureRandom) 

The TrustManager parameter allows a custom class to be used for 
verifying the server’s certificate.  This has some legitimate uses, e.g. for 
“pinning” a specific trusted certificate. 

Problem: Defining a custom TrustManager that is too accepting (e.g., takes 
any certificate) to work around SSL errors.  This allows an attacker to use 
any certificate (even self-signed) to perform a man-in-the-middle attack. 

Solution: Try to avoid overriding this option.  Scrutinize custom Trust 
Managers carefully to ensure that they perform sufficient checks or are 
only used in debug/testing mode. 
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Part I. Android (Java) capabilities 

Trust management for SSL/TLS 

javax.net.ssl.HttpsURLConnection 

  .setHostnameVerifier(HostnameVerifier v) 

Specifies a custom hostname verifier that can permit certificate hostnames 
that do not match the DNS host name 

Problem: Defining a custom HostnameVerifier that is too accepting (e.g. of 
any hostname) to work around SSL errors.  This allows the attacker to use 
a valid certificate for his own domain to become a man-in-the-middle.  

Solution: Try to avoid overriding this option.  Scrutinize custom Hostname 
Verifiers carefully to ensure that they perform sufficient checks or are only 
used in debug/testing mode. 
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Automated vulnerability detection for apps 

Android code analysis engine 

 Abstract interpretation-based dataflow analysis on Android apps 

 Dalvik bytecode translated to intermediate language for analysis 

 Reachability of Hostname Verifiers and Trust Managers verified by 

dynamic analysis 
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Part I. Statistics 

3311, 72% 

452, 10% 

111, 2% 759, 16% 

Trust managers in SSL/TLS 

No use of unsafe trust
managers seen

Unsafe trust managers
from common third-
party libraries only

Unsafe trust managers
from common libraries
and app code

Unsafe trust managers
in app code only

42% 

58% 

The stats are for the 

42% of applications that 

use SSL/TLS 
Unsafe trust managers 

do not check certificates 
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Part I. Statistics 

130, 54% 

111, 46% 

Custom hostname verifiers 

Verifier that
checks
hostnames

Insecure verifier
that does not
check hostnames

Apps in red effectively disable 

hostname verification, allowing a man-

in-the-middle attack 

5% 

95% 

Stats are for the 5% of 

applications using SSL/TLS 

that pass a HostnameVerifier to 

HttpsURLConnection 
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Vulnerabilities are sometimes not your fault 

 Crypto is hard to get right, even for experts 

 OpenSSL is the most popular crypto library, and has a history of 

severe vulnerabilities with cute names.  Some are implementation 

bugs, others are protocol design flaws. 

 If you package your own crypto library with your app, it is important 

to keep it up to date. 

20 
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OpenSSL vulnerability du jour: FREAK 

 Attack spoofs the communication endpoints into using weak, 

“export” grade ciphers (remember those?) 

 Both client and server must be vulnerable to exploit 

 11.2% of apps on Google Play with over one million downloads 

were vulnerable to FREAK as of last month 

 They connect to a vulnerable server 

 They use Android’s built-in OpenSSL implementation or package their 

own vulnerable version 

 

21 
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Data Encryption 
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Part II. Encrypting data: Why? 

 Encryption makes it difficult for a malicious entity to read sensitive 

information on the device 

 Data stored on the filesystem, in memory, or even the SD card 

 Encryption allows sensitive data sharing with untrusted parties 

 Data encrypted by an endpoint device can be kept private even from a 

service provider that stores or transfers the data 
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Part II. Data stored on the device 

1 Any application can read data 

on the SD card SD Card 

Memory 

Filesystem 
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Part II. Data stored on the device 

SD Card 

Memory 

Filesystem 

1 Any application can read data 

on the SD card 

 

1 Code injection using other 

vulnerabilities provide a 

backdoor to data in memory or 

the filesystem 
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Part II. Data stored on the device 

SD Card 

Memory 

Filesystem 

1 Any application can read data 

on the SD card 

 

1 Code injection using other 

vulnerabilities provide a 

backdoor to data in memory or 

the filesystem 

 

2 A compromised machine can 

access the device filesystem 

over USB using ADB 
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Part II. The need for encryption 

Demo… 
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Part II. Desirable security properties 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Encryption should be hard to reverse 

Indistinguishability under Chosen Plaintext Attack (IND-CPA): 

First, the attacker is allowed to have many messages of their choice 

encrypted and see the results. 
 

Overall goal: make it computationally infeasible to break the crypto 

Encryption 

oracle 

P1 
P2 
P3 
 … 

C1 = E(P1) 
C2 = E(P2) 
C3 = E(P3) 
 … 



#RSAC 

Part II. Desirable security properties 

 Encryption should be hard to reverse 

Indistinguishability under Chosen Plaintext Attack (IND-CPA): 

First, the attacker is allowed to have many messages of their choice 

encrypted and see the results.  Attacker then specifies two messages 

of their choice that they will try to distinguish between. 
 

Overall goal: make it computationally infeasible to break the crypto 

T1, T2 should be 
easy to tell apart 



#RSAC 

Part II. Desirable security properties 

 Encryption should be hard to reverse 

Indistinguishability under Chosen Plaintext Attack (IND-CPA): 

Given the encryption of one of these chosen at random, they try to 

guess which one it is.  If no attacker can guess correctly more than half 

the time, the algorithm is IND-CPA. 

Overall goal: make it computationally infeasible to break the crypto 

Encryption 

challenge 

 

T1 

T2 
 

n ∈ {1, 2} 

Given E(Tn), n = ? 
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Part II. Desirable security properties 

 Robustness against Chosen Plaintext Attack 

 

O = f(I, K) 

 

Foobarbaz 

Quxluxtux 

Foobarbaz 

… 

 

d34df216e9… 

9a3f374ed6… 

d34df216e9… 

… 

 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Robustness against Chosen Plaintext Attack 

 

O = f(I, K) 

 

Foobarbaz 

Quxluxtux 

Foobarbaz 

… 

 

d34df216e9… 

9a3f374ed6… 

d34df216e9… 

… 

 

Identical inputs (I) get encrypted using key (K) to identical outputs (O)! 

Algorithm is stateless, and thus gives a trivial attack. 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Robustness against Chosen Plaintext Attack 

 

O = f(I, K) 

 

Overall goal: make it computationally infeasible to break the crypto 

Foobarbaz 

Quxluxtux 

Foobarbaz 

… 

 

d34df216e9… 

9a3f374ed6… 

d34df216e9… 

… 

 

Attacker can easily build a reverse dictionary by choosing a large 

number of inputs and recording the outputs 
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Part II. Desirable security properties 

 Robustness against Chosen Plaintext Attack 

 
O1 = f’(I1, K, IV) 

O2 = f’(I2, K, O1) 

O3 = f’(I3, K, O2) 

... 

A better algorithm that is 

Stateful 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Robustness against Chosen Plaintext Attack 

 
O1 = f’(I1, K, IV) 

O2 = f’(I2, K, O1) 

O3 = f’(I3, K, O2) 

... 

I1, I2, I3, … are fixed size blocks of input text 

K is the encryption key 
Output blocks 

Initial Vector 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Robustness against Chosen Plaintext Attack 

 
O1 = f’(I1, K, IV) 

O2 = f’(I2, K, O1) 

O3 = f’(I3, K, O2) 

... 

K and IV are used to encrypt O1 

K and O1 are used to encrypt O2 

K and O2 are used to encrypt O3 

etc. 

Algorithm is stateful.  Additional input to each block means identical 

blocks differ.  The IV is used to ensure that similar or identical 

messages will have no similarities in cyphertext 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Robustness against Chosen Plaintext Attack 

 
O1 = f’(I1, K, IV) 

O2 = f’(I2, K, O1) 

O3 = f’(I3, K, O2) 

... 

Overall goal: make it computationally infeasible to break the crypto 

Given appropriate function f’, inputs are indistinguishable under 

chosen plaintext attack, offering a strong security guarantee. 
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Part II. Android (Java) capabilities 

Encryption mode 

javax.crypto.Cipher.getInstance(String transformation) 

The Cipher class is a general mechanism for obtaining instances of 
different cryptographic block ciphers in various operation modes, with a 
string of the form algorithm/mode/padding 

Problem: The mode “ECB” is stateless and vulnerable to chosen plaintext 
attack.  The other, stateful modes are only IND-CPA secure if a 
randomized initial vector is used 

Solution: Use a stateful mode like “CBC” or “CTR”.  Use a securely 
random (high entropy) value for the initial vector each time. 
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Part II. Statistics 

1488, 25% 

2221, 37% 
643, 11% 

1591, 27% 

Encryption algorithm weaknesses 

Safe stateful encryption

Use both stateful and
stateless encryption

Stateful but with static
Initial Vectors

Purely stateless
encryption

Apps in red and orange use encryption modes or parameters that 

are not secure against chosen plaintext attack 
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Part II. Android (Java) capabilities 

Encryption key selection 

javax.crypto.Cipher.init(…,Key key,…) 

Cipher class is initialized with a passed-in key 

Problem: The key should not be a fixed value, where it could be 
recovered from one device and used to decrypt data from another 
device. 

Solution: Reliably protecting data belonging to the user requires use of 
a user-specific key that is not stored persistently on the device, such as 
a password-based key.  But a password-based key should be hashed 
with many iterations to make password-guessing attacks impractical. 
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Part II. Statistics 

3857, 69% 
217, 4% 

1543, 27% 

Encryption algorithm weaknesses 

Keys are not statically
defined

Static keys in apps with
stateless encryption

Static keys in apps with only
stateful encryption

Orange and red apps encrypt with static (fixed) keys that can be 

easily extracted by reverse-engineering the application and used to 

decrypt stored data 
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Part II. Desirable security properties 

 Entropy in random sources 

 High entropy implies more unpredictability 

 Low entropy implies more predictability 

 

We want a high degree of entropy (unpredictability) in the random 

numbers that are used for security-sensitive purposes like key 

generation.  They should not follow any guessable pattern. 

 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Android (Java) capabilities 

Random number generation 

java.security.SecureRandom(byte[] seed) 

secureRandom.setSeed(byte[] seed) 

The SecureRandom class defaults to seeding itself from /dev/urandom, but 
also lets the user intialize the generator with their own seed. 

Problem: If a fixed value is used, it renders the output of the “random” 
generator completely predictable.  We’ve seen cases where the value is a 
static constant of the program. 

Solution: The default seed uses the Linux kernel’s random number 
generator, which should suffice.  Only seed the generator explicitly if you 
need and have a better entropy source than this. 
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Part II. Statistics 

436, 
80% 

108, 
20% 

Low entropy in random number generation 
(for the 7% of apps that explicitly set random seeds) 

Variable seed

Static, fixed seed

Apps in red have low entropy since they seed the random generator 

with static strings defined in the application bytecode, resulting in 

completely predictable “random” numbers 



#RSAC 

Part II. Desirable security properties 

 Robustness of Password-Based Encryption 

 Given a password how do we encrypt data? 

Ease of remembering 

passphrase 
Difficulty in guessing 

passphrase 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Robustness of Password-Based Encryption 

K1 = augment(Passwd, Salt) 

K2 = augment(K1, Salt) 

K3 = augment(K2, Salt) 

... 

K1000 = augment(K999, Salt) 

Augment key from 
previous step with a Salt 
to generate key for the 

next step 

Overall goal: make it computationally infeasible to break the crypto 
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Part II. Desirable security properties 

 Robustness of Password-Based Encryption 

Augment key from 

previous step with a Salt 

to generate key for the 

next step 

K1000 is used as the final encryption key.  The extra iterations slow 

down a password-guessing attack 

(RFC 2898 recommends >=1000 iterations.) 

Overall goal: make it computationally infeasible to break the crypto 

K1 = augment(Passwd, Salt) 

K2 = augment(K1, Salt) 

K3 = augment(K2, Salt) 

... 

K1000 = augment(K999, Salt) 
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Part II. Statistics 

Red apps have with vulnerabilities that make it faster to break 

encryption keys by guessing the password 

0%

20%

40%

60%

80%

100%

Salts in PBE Low iteration counts

Difficult

Easy

Weaknesses in Password-Based-Encryption (PBE) 
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Summary and 
Recommendations 



#RSAC 

Best Security Practices for SSL/Cryptography 

SSL/TLS 

 Make sure that you are not bypassing important security features by 
using insecure TrustManagers or HostnameVerifiers in production code 

 Keep your libraries up to date 

Cryptographic operations 

 Use algorithms that are stateful and have the indistinguishability under 
chosen plaintext attack property 

 Pick keys, initial vectors, and salts using a source of random numbers 
with high entropy 

 Use at least 1000 iterations in computing keys to use with Password-
Based Encryption 
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Apply Slide 

 Things to do soon: 

 Verify that your apps don’t use unsafe HostnameVerifiers or 
TrustManagers.  Doing so can defeat the protections provided by SSL. 

 Update your SSL implementations on app and server 

 In the next few months 

 Consider how you store potentially sensitive user data on devices.  Can 
you improve the handling of this data to improve user privacy? 

 Audit apps used by your organization for security vulnerabilities 

 Long-term, consider 

 Features and design approaches for your apps to help user privacy and 
security 

 

53 


