
#RSAC

SESSION ID:

Adrian Mettler Yulong Zhang

Analysis of SSL and Crypto
Vulnerabilities in Android
Applications

MBS-W04

Senior Software Research Engineer

FireEye, Inc.

Staff Software Development Engineer

FireEye, Inc.

#RSAC

Outline

 Introduction

 Part I: Transport Security

 How SSL/TLS works, and how it can fail to work if used incorrectly

 Usage in Android and possible mistakes

 Attack demo and vulnerability statistics

 Part II: Data Encryption

 Primitives and security properties

 Android capabilities and mistakes

 Attack demo and vulnerability statistics

 Summary and Recommendations

#RSAC

Introduction

We identified common Android cryptographic security vulnerabilities

 Options that can “fix” SSL/TLS problems but break security

 Insecure usage of cryptographic operations such as random number

generation and block ciphers

And then analyzed a large data set of common applications

 All free applications in Google Play with over a million downloads

 The total number of such applications as of Apr. 8, 2015 is 11,113

#RSAC

Transport Security:
SSL/TLS

#RSAC

Part I. Securing communications channels

Internet

Bob

Alice

Alice sends data to Bob

Bob sends

data to Alice

Apps need to securely communicate with their backend servers. This

can include sensitive user data. What can go wrong?

#RSAC

Part I. Securing communications channels

Internet

Bob

Alice

Alice sends data to Bob

Bob sends

data to Alice

If the data being sent is not encrypted, anyone can read it.

And they can also modify it by acting as a “Man in the Middle”,

intercepting and replacing traffic as they see fit.

#RSAC

Part I. The SSL/TLS protocols

Internet

Bob

Alice

Alice sends data to Bob

Bob sends

data to Alice

Encryption can ensure that only the endpoints can read or write the data

transferred over the connection. So let’s do that.

#RSAC

Part I. The SSL/TLS protocols

Internet

Bob

Alice

Alice sends data to Bob

Bob sends

data to Alice

But how does Alice know that she is talking to the real Bob?

This is a job for PKI.

#RSAC

Part I. The Public-Key Infrastructure

Internet

Bob

Alice

Alice sends data to Bob

Bob sends

data to Alice

But how does Alice know that she is talking to the real Bob?

Because he has the right public key.

But how does she know Bob’s public key?

A trusted third party (TTP) vouches for his identity.

#RSAC

Part I. The Public-Key Infrastructure

Internet

Bob

Alice

Alice sends data to Bob

Bob sends

data to Alice

Identity verification using a TTP:

• Bob creates an unsigned certificate that specifies his public key

• After verifying Bob’s identity, TTP signs the certificate using its private key

• When Alice connects, Bob sends the signed certificate to prove his identity.

• Alice verifies the TTP’s signature and that Bob is using the specified key

#RSAC

Part I. The Public-Key Infrastructure

Internet

Bob

Alice

Alice sends data to Bob

Bob sends

data to Alice

Note that Alice must:

• Check that the presented certificate is in fact for Bob, and not Charlie

• Validate that the certificate is properly signed by a TTP

#RSAC

Part I. The Public-Key Infrastructure

Internet

Bob

Alice

Alice sends data to “Bob”

Bob sends

data to “Alice”
Attacker forwards

data to Alice

Attacker forwards

data to Bob

A “Man-in-the-Middle” Attacker able to impersonate Bob again gets full

access to the communication

#RSAC

Part I. The Public-Key Infrastructure. MITM

Demo…

#RSAC

Part I. Android (Java) capabilities

Trust management for SSL/TLS

javax.net.ssl.SSLContext

 .init(KeyManager[], TrustManager[], SecureRandom)

The TrustManager parameter allows a custom class to be used for
verifying the server’s certificate. This has some legitimate uses, e.g. for
“pinning” a specific trusted certificate.

Problem: Defining a custom TrustManager that is too accepting (e.g., takes
any certificate) to work around SSL errors. This allows an attacker to use
any certificate (even self-signed) to perform a man-in-the-middle attack.

Solution: Try to avoid overriding this option. Scrutinize custom Trust
Managers carefully to ensure that they perform sufficient checks or are
only used in debug/testing mode.

#RSAC

Part I. Android (Java) capabilities

Trust management for SSL/TLS

javax.net.ssl.HttpsURLConnection

 .setHostnameVerifier(HostnameVerifier v)

Specifies a custom hostname verifier that can permit certificate hostnames
that do not match the DNS host name

Problem: Defining a custom HostnameVerifier that is too accepting (e.g. of
any hostname) to work around SSL errors. This allows the attacker to use
a valid certificate for his own domain to become a man-in-the-middle.

Solution: Try to avoid overriding this option. Scrutinize custom Hostname
Verifiers carefully to ensure that they perform sufficient checks or are only
used in debug/testing mode.

#RSAC

Automated vulnerability detection for apps

Android code analysis engine

 Abstract interpretation-based dataflow analysis on Android apps

 Dalvik bytecode translated to intermediate language for analysis

 Reachability of Hostname Verifiers and Trust Managers verified by

dynamic analysis

#RSAC

Part I. Statistics

3311, 72%

452, 10%

111, 2% 759, 16%

Trust managers in SSL/TLS

No use of unsafe trust
managers seen

Unsafe trust managers
from common third-
party libraries only

Unsafe trust managers
from common libraries
and app code

Unsafe trust managers
in app code only

42%

58%

The stats are for the

42% of applications that

use SSL/TLS
Unsafe trust managers

do not check certificates

#RSAC

Part I. Statistics

130, 54%

111, 46%

Custom hostname verifiers

Verifier that
checks
hostnames

Insecure verifier
that does not
check hostnames

Apps in red effectively disable

hostname verification, allowing a man-

in-the-middle attack

5%

95%

Stats are for the 5% of

applications using SSL/TLS

that pass a HostnameVerifier to

HttpsURLConnection

#RSAC

Vulnerabilities are sometimes not your fault

 Crypto is hard to get right, even for experts

 OpenSSL is the most popular crypto library, and has a history of

severe vulnerabilities with cute names. Some are implementation

bugs, others are protocol design flaws.

 If you package your own crypto library with your app, it is important

to keep it up to date.

20

#RSAC

OpenSSL vulnerability du jour: FREAK

 Attack spoofs the communication endpoints into using weak,

“export” grade ciphers (remember those?)

 Both client and server must be vulnerable to exploit

 11.2% of apps on Google Play with over one million downloads

were vulnerable to FREAK as of last month

 They connect to a vulnerable server

 They use Android’s built-in OpenSSL implementation or package their

own vulnerable version

21

#RSAC

Data Encryption

#RSAC

Part II. Encrypting data: Why?

 Encryption makes it difficult for a malicious entity to read sensitive

information on the device

 Data stored on the filesystem, in memory, or even the SD card

 Encryption allows sensitive data sharing with untrusted parties

 Data encrypted by an endpoint device can be kept private even from a

service provider that stores or transfers the data

#RSAC

Part II. Data stored on the device

1 Any application can read data

on the SD card SD Card

Memory

Filesystem

#RSAC

Part II. Data stored on the device

SD Card

Memory

Filesystem

1 Any application can read data

on the SD card

1 Code injection using other

vulnerabilities provide a

backdoor to data in memory or

the filesystem

#RSAC

Part II. Data stored on the device

SD Card

Memory

Filesystem

1 Any application can read data

on the SD card

1 Code injection using other

vulnerabilities provide a

backdoor to data in memory or

the filesystem

2 A compromised machine can

access the device filesystem

over USB using ADB

#RSAC

Part II. The need for encryption

Demo…

#RSAC

Part II. Desirable security properties

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Encryption should be hard to reverse

Indistinguishability under Chosen Plaintext Attack (IND-CPA):

First, the attacker is allowed to have many messages of their choice

encrypted and see the results.

Overall goal: make it computationally infeasible to break the crypto

Encryption

oracle

P1
P2
P3
 …

C1 = E(P1)
C2 = E(P2)
C3 = E(P3)
 …

#RSAC

Part II. Desirable security properties

 Encryption should be hard to reverse

Indistinguishability under Chosen Plaintext Attack (IND-CPA):

First, the attacker is allowed to have many messages of their choice

encrypted and see the results. Attacker then specifies two messages

of their choice that they will try to distinguish between.

Overall goal: make it computationally infeasible to break the crypto

T1, T2 should be
easy to tell apart

#RSAC

Part II. Desirable security properties

 Encryption should be hard to reverse

Indistinguishability under Chosen Plaintext Attack (IND-CPA):

Given the encryption of one of these chosen at random, they try to

guess which one it is. If no attacker can guess correctly more than half

the time, the algorithm is IND-CPA.

Overall goal: make it computationally infeasible to break the crypto

Encryption

challenge

T1

T2

n ∈ {1, 2}

Given E(Tn), n = ?

#RSAC

Part II. Desirable security properties

 Robustness against Chosen Plaintext Attack

O = f(I, K)

Foobarbaz

Quxluxtux

Foobarbaz

…

d34df216e9…

9a3f374ed6…

d34df216e9…

…

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Robustness against Chosen Plaintext Attack

O = f(I, K)

Foobarbaz

Quxluxtux

Foobarbaz

…

d34df216e9…

9a3f374ed6…

d34df216e9…

…

Identical inputs (I) get encrypted using key (K) to identical outputs (O)!

Algorithm is stateless, and thus gives a trivial attack.

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Robustness against Chosen Plaintext Attack

O = f(I, K)

Overall goal: make it computationally infeasible to break the crypto

Foobarbaz

Quxluxtux

Foobarbaz

…

d34df216e9…

9a3f374ed6…

d34df216e9…

…

Attacker can easily build a reverse dictionary by choosing a large

number of inputs and recording the outputs

#RSAC

Part II. Desirable security properties

 Robustness against Chosen Plaintext Attack

O1 = f’(I1, K, IV)

O2 = f’(I2, K, O1)

O3 = f’(I3, K, O2)

...

A better algorithm that is

Stateful

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Robustness against Chosen Plaintext Attack

O1 = f’(I1, K, IV)

O2 = f’(I2, K, O1)

O3 = f’(I3, K, O2)

...

I1, I2, I3, … are fixed size blocks of input text

K is the encryption key
Output blocks

Initial Vector

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Robustness against Chosen Plaintext Attack

O1 = f’(I1, K, IV)

O2 = f’(I2, K, O1)

O3 = f’(I3, K, O2)

...

K and IV are used to encrypt O1

K and O1 are used to encrypt O2

K and O2 are used to encrypt O3

etc.

Algorithm is stateful. Additional input to each block means identical

blocks differ. The IV is used to ensure that similar or identical

messages will have no similarities in cyphertext

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Robustness against Chosen Plaintext Attack

O1 = f’(I1, K, IV)

O2 = f’(I2, K, O1)

O3 = f’(I3, K, O2)

...

Overall goal: make it computationally infeasible to break the crypto

Given appropriate function f’, inputs are indistinguishable under

chosen plaintext attack, offering a strong security guarantee.

#RSAC

Part II. Android (Java) capabilities

Encryption mode

javax.crypto.Cipher.getInstance(String transformation)

The Cipher class is a general mechanism for obtaining instances of
different cryptographic block ciphers in various operation modes, with a
string of the form algorithm/mode/padding

Problem: The mode “ECB” is stateless and vulnerable to chosen plaintext
attack. The other, stateful modes are only IND-CPA secure if a
randomized initial vector is used

Solution: Use a stateful mode like “CBC” or “CTR”. Use a securely
random (high entropy) value for the initial vector each time.

#RSAC

Part II. Statistics

1488, 25%

2221, 37%
643, 11%

1591, 27%

Encryption algorithm weaknesses

Safe stateful encryption

Use both stateful and
stateless encryption

Stateful but with static
Initial Vectors

Purely stateless
encryption

Apps in red and orange use encryption modes or parameters that

are not secure against chosen plaintext attack

#RSAC

Part II. Android (Java) capabilities

Encryption key selection

javax.crypto.Cipher.init(…,Key key,…)

Cipher class is initialized with a passed-in key

Problem: The key should not be a fixed value, where it could be
recovered from one device and used to decrypt data from another
device.

Solution: Reliably protecting data belonging to the user requires use of
a user-specific key that is not stored persistently on the device, such as
a password-based key. But a password-based key should be hashed
with many iterations to make password-guessing attacks impractical.

#RSAC

Part II. Statistics

3857, 69%
217, 4%

1543, 27%

Encryption algorithm weaknesses

Keys are not statically
defined

Static keys in apps with
stateless encryption

Static keys in apps with only
stateful encryption

Orange and red apps encrypt with static (fixed) keys that can be

easily extracted by reverse-engineering the application and used to

decrypt stored data

#RSAC

Part II. Desirable security properties

 Entropy in random sources

 High entropy implies more unpredictability

 Low entropy implies more predictability

We want a high degree of entropy (unpredictability) in the random

numbers that are used for security-sensitive purposes like key

generation. They should not follow any guessable pattern.

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Android (Java) capabilities

Random number generation

java.security.SecureRandom(byte[] seed)

secureRandom.setSeed(byte[] seed)

The SecureRandom class defaults to seeding itself from /dev/urandom, but
also lets the user intialize the generator with their own seed.

Problem: If a fixed value is used, it renders the output of the “random”
generator completely predictable. We’ve seen cases where the value is a
static constant of the program.

Solution: The default seed uses the Linux kernel’s random number
generator, which should suffice. Only seed the generator explicitly if you
need and have a better entropy source than this.

#RSAC

Part II. Statistics

436,
80%

108,
20%

Low entropy in random number generation
(for the 7% of apps that explicitly set random seeds)

Variable seed

Static, fixed seed

Apps in red have low entropy since they seed the random generator

with static strings defined in the application bytecode, resulting in

completely predictable “random” numbers

#RSAC

Part II. Desirable security properties

 Robustness of Password-Based Encryption

 Given a password how do we encrypt data?

Ease of remembering

passphrase
Difficulty in guessing

passphrase

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Robustness of Password-Based Encryption

K1 = augment(Passwd, Salt)

K2 = augment(K1, Salt)

K3 = augment(K2, Salt)

...

K1000 = augment(K999, Salt)

Augment key from
previous step with a Salt
to generate key for the

next step

Overall goal: make it computationally infeasible to break the crypto

#RSAC

Part II. Desirable security properties

 Robustness of Password-Based Encryption

Augment key from

previous step with a Salt

to generate key for the

next step

K1000 is used as the final encryption key. The extra iterations slow

down a password-guessing attack

(RFC 2898 recommends >=1000 iterations.)

Overall goal: make it computationally infeasible to break the crypto

K1 = augment(Passwd, Salt)

K2 = augment(K1, Salt)

K3 = augment(K2, Salt)

...

K1000 = augment(K999, Salt)

#RSAC

Part II. Statistics

Red apps have with vulnerabilities that make it faster to break

encryption keys by guessing the password

0%

20%

40%

60%

80%

100%

Salts in PBE Low iteration counts

Difficult

Easy

Weaknesses in Password-Based-Encryption (PBE)

#RSAC

Summary and
Recommendations

#RSAC

Best Security Practices for SSL/Cryptography

SSL/TLS

 Make sure that you are not bypassing important security features by
using insecure TrustManagers or HostnameVerifiers in production code

 Keep your libraries up to date

Cryptographic operations

 Use algorithms that are stateful and have the indistinguishability under
chosen plaintext attack property

 Pick keys, initial vectors, and salts using a source of random numbers
with high entropy

 Use at least 1000 iterations in computing keys to use with Password-
Based Encryption

#RSAC

Apply Slide

 Things to do soon:

 Verify that your apps don’t use unsafe HostnameVerifiers or
TrustManagers. Doing so can defeat the protections provided by SSL.

 Update your SSL implementations on app and server

 In the next few months

 Consider how you store potentially sensitive user data on devices. Can
you improve the handling of this data to improve user privacy?

 Audit apps used by your organization for security vulnerabilities

 Long-term, consider

 Features and design approaches for your apps to help user privacy and
security

53

