
Hadley Wickham  
@hadleywickham
Chief Scientist, RStudio

Getting your  
data into R

June 2015

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Transform

Visualise

Model

Surprises, but doesn't scale

Scales, but doesn't (fundamentally) surprise

Tidyx

Tidy dataTid
y

Data frameIng
es

t

Data
On disk (csv, excel, SAS, ...)

In a database (SQL)

On the web (xml, json, ...)

Common
features

Input
• Fast enough.  

(Want fastest? use data.table)

• No external dependencies.  
(just C and C++ bundled with the package)

• Consistent function names and
arguments.

• Underscores, not dots.

Output

• No row names.

• Never change column names.

• Retain dates.

• Return a tbl_df. 
(better printing if dplyr loaded)

Never turn characters into factors!

On disk

readr::read_csv()
readr::read_csv2()
readr::read_tsv()
readr::read_log()
readr::read_delim()
readr::read_fwf()
readr::read_table()

readxl::read_excel()

haven::read_sas()
haven::read_spss()
haven::read_stata()

Column types

• Logical, integer, double, character

• Factor

• ISO8601 date times

• Dates with format string (%Y-%m-%d)

• Sloppy numeric parser

library(readr)

read_csv("my.csv",
 col_names = c("x", "y", "z")
 col_types = list(
 x = col_date("%m/%d/%Y"),
 y = col_datetime(),
 z = col_integer()
)
)

Heuristic currently looks at first 1000 rows
Any problems recorded in a data frame

Data Package Alternatives

Statistics
packages haven foreign, sas7bdat,

readstata13

Excel readxl gdata, openxlsx,
XLConnect, xlsx

Flat files readr base, data.table

http://cran.r-project.org/web/packages/sas7bdat

In a
database

Best way to talk to a database is with the DBI
package. It provides a common front-end to many
backends

1) Load the DBI package
library(DBI)

2) Connect to a specific database
db <- dbConnect(RPostgres::Postgres(), user, pass, ...)
db <- dbConnect(RMySQL::MySQL(), user, pass, ...)
db <- dbConnect(RSQLite::SQLite(), path)

3) Execute a query
dbGetQuery(db, "SELECT * FROM mtcars")

4) Be polite and close connection
dbDisconnect(db)

RPostgres Postgres

RJDBC Java JDBC
Postgres driver Postgres

More layers make code slower and installation more painful (can’t just
install R package, need Java, more drivers etc)

(DBI)

RODBC ODBC
Postgres driver Postgres

Three families of database packages

Dev versions
• Never leak memory. Never leak

connections. Never crash.

• Always send and receive UTF-8 text

• Always send and receive datetimes in

UTC.

• A little faster than previous versions.

• Provide parameterised query interface

(Somewhat aspirational goals)

For the rest of the talk I want to focus
on the development versions. Probably a month
or two away from CRAN, but contain some important
new features

http://github.com/rstats-db/
devtools::install_github("rstats-db/DBI")
devtools::install_github("rstats-db/RPostgres")
devtools::install_github("rstats-db/RMySQL")
devtools::install_github("rstats-db/RSQLite")

http://xkcd.com/327/ http://bobby-tables.com/

http://xkcd.com/327/
http://bobby-tables.com/

find_student <- function(db, name) {
 sql <- paste0("SELECT * FROM Students",
 "WHERE (name = '", name, "');")
 dbGetQuery(db, sql)
}

find_student("Hadley")
SELECT * FROM Students
WHERE (name = 'Hadley');

find_student("Robert'); DROP TABLE Students; --")
SELECT * FROM Students
WHERE (name = 'Robert');
DROP TABLE Students; --');

find_student <- function(db, name) {
 sql <- "SELECT * FROM Students WHERE (name = ?);
 dbGetQuery(db, sql, list(name))
}

find_student("Hadley")
SELECT * FROM Students
WHERE (name = 'Hadley');

find_student("Robert'); DROP TABLE Students; --")
SELECT * FROM Students
WHERE (name = 'Robert'' DROP TABLE Students; --')

On the
web

http

xml json html
xml2 jsonlite rvest

(Jeroen Ooms)

httr/curl

Request -----------------------------
[VERB] [URL] [VERSION]
[HEADER-NAME]: [HEADER-VALUE]

[BODY?]

Response -----------------------------
[VERSION] [STATUS]
[HEADER-NAME]: [HEADER-VALUE]

[BODY?]

-> GET / HTTP/1.1
-> User-Agent: curl/7.37.1 Rcurl/1.95.4.5 httr/0.6.1.9000
-> Host: www.google.com
-> Accept-Encoding: gzip
-> Accept: application/json, text/xml, application/xml, */*
->
<- HTTP/1.1 200 OK
<- Date: Mon, 23 Mar 2015 17:31:11 GMT
<- Expires: -1
<- Cache-Control: private, max-age=0
<- Content-Type: text/html; charset=ISO-8859-1
<- Set-Cookie: PREF=...; expires=Wed, 22-Mar-2017 17:31:11 GMT; path=/;
<- Server: gws
<- X-XSS-Protection: 1; mode=block
<- X-Frame-Options: SAMEORIGIN
<- Vary: Accept-Encoding
<- Transfer-Encoding: chunked
<-
<< <!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
<< lang="en"><head><meta content=<< "Search the world's information, including
<< webpages, images, videos and more. Google has many special features to help you
<< find exactly what you're looking for." name="description"><meta content="noodp"
<< name="robots"><meta content="/logos/...
...

library(httr)

r <- GET("http://google.com", verbose(data_in = TRUE))
http_status(r)
content(r)

Also POST, PUT, DELETE, HEAD, & VERB

Lots of helper functions to generate headers
* authenticate()
* oauth1_token(); oauth2_token()
* add_header()
* content_type()

Other helpers connect to underlying curl:
* progress()
* verbose()

http

xml json html
xml2 jsonlite rvest

(Jeroen Oooms)

httr

APIs

xml
• xml2 is a new binding to libxml2  

(alternative to XML package).

• Works with xml and html.

• Simple, no memory leaks, no crashes.
RCpp & C++.

• I hope you don’t have to work with xml,
but if you do xml2 should make it less
painful.

jsonlite

• Use jsonlite, not rjson, or RJSONIO

• Actively maintained

• Lots of unit tests

• C backend & performance improving

http

xml json html
xml2 jsonlite rvest

(Jeroen Oooms)

httr

Scraping

rvest
• Not all data comes in via a machine

readable format like json or xml.

• Sometimes you need to scrape (or
harvest) data from human readable html.

• Goal of rvest is to provide pipeable API
to make that as easy as possible.

• (rvest = beautiful soup for R)

Demo

Tidy data

Tidy dataTid
y

Data frameIng
es

t

Data
On disk (csv, excel, SAS, ...)

In a database (SQL)

On the web (xml, json, ...)

Storage Meaning

Table / File Data set

Rows Observations

Columns Variables

Tidy data = data that makes data
analysis easy

library(tidyr)
library(dplyr, warn = FALSE)
tb <- tbl_df(read.csv("tb.csv", stringsAsFactors = FALSE))
tb
#> Source: local data frame [5,769 x 22]
#>
#> iso2 year m04 m514 m014 m1524 m2534 m3544 m4554 m5564 m65 mu f04 f514
#> 1 AD 1989 NA NA NA NA NA NA NA NA NA NA NA NA
#> 2 AD 1990 NA NA NA NA NA NA NA NA NA NA NA NA
#> 3 AD 1991 NA NA NA NA NA NA NA NA NA NA NA NA
#> 4 AD 1992 NA NA NA NA NA NA NA NA NA NA NA NA
#> 5 AD 1993 NA NA NA NA NA NA NA NA NA NA NA NA
#> 6 AD 1994 NA NA NA NA NA NA NA NA NA NA NA NA
#> 7 AD 1996 NA NA 0 0 0 4 1 0 0 NA NA NA
#> 8 AD 1997 NA NA 0 0 1 2 2 1 6 NA NA NA
#> 9 AD 1998 NA NA 0 0 0 1 0 0 0 NA NA NA
#> 10 AD 1999 NA NA 0 0 0 1 1 0 0 NA NA NA
#>..
#> Variables not shown: f014 (int), f1524 (int), f2534 (int), f3544 (int),
#> f4554 (int), f5564 (int), f65 (int), fu (i

What are the variables in this
dataset? (Hint: f = female,  
u = unknown, 1524 = 15-24)

To convert this messy data into tidy data
we need two verbs. First we need to gather
together all the columns that aren't variables

tb2 <- tb %>%
 gather(demo, n, -iso2, -year, na.rm = TRUE)
tb2

Then separate the demographic variable into
sex and age
tb3 <- tb2 %>%
 separate(demo, c("sex", "age"), 1)
tb3

tidyr provides a few other useful verbs:
spread (opposite of gather)
extract (like separate, but uses regexp groups)
unite (opposite of extract/gather)
nest & unnest, …

Conclusions

Future plans

• Bug fixing and testing (you can help!)

• Get on CRAN! (RPostgres, RMySQL,
RSQLite)

• GUI for all these packages in RStudio

• Better tools for navigating complex
hierarchical data

Acknowledgements

• JJ Allaire

• Jeroen Ooms

• Evan Miller (ReadStat)

• rapidxml, libxml2, libxls, Rcpp, MySQL,
Postgres, SQLite

Questions?

