Sage Developer’s Guide
Release 8.0

The Sage Development Team

Jul 23, 2017

1 Git for Sage development

1.1

1.2

1.3

First Stepswith Git
1.1.1 Setting Up Git
1.1.2 Sage Development Process
The git-trac command

2 Sage Trac and tickets

2.1

The Sage Trac Server

2.1.1 Obtaining an Account
2.1.2 Trac authentication through SSH
2.1.3 Reporting Bugs
2.1.4 Guidelines for Opening Tickets
2.1.5 The Ticket Fields
2.1.6 The status of a ticket
2.1.7 Stopgapso .o
2.1.8 Working on Tickets
2.1.9 Reviewing and closing Tickets
2.1.10 Reasons to Invalidate Tickets

3 Writing Code for Sage

3.1

3.2
33

General Conventions

3.1.1 Python Code Style
3.1.2 Files and Directory Structure
3.1.3 Learn by copy/paste
3.1.4 Headings of Sage Library Code Files
3.1.5 Documentation Strings
3.1.6 Running Automated Doctests
3.1.7 General Coding Style Regarding Whitespace
3.1.8 The Pickle Jar

3.1.9 Global Options
3.1.10 Miscellanous minor things
The reviewer’s check list

Running Sage’s tests

3.3.1 Running Sage’s doctests

1.2.1 Collaborative Development with Git-Trac
GitTricks & Tips
1.3.1 Git the Hard Way
1.3.2 Tips and References
1.3.3 Advanced Git
1.3.4 Distributed Development

CONTENTS

0 B W W W

......................... 16

3.4 Contributing to Manuals and Tutorials 82
34.1 TheSage Manuals e e e e 82

3.5 SageCoding Details L e e e e e e 85
3.5.1 Codingin Pythonfor Sage o 85

352 CodinginCython e 93

3.5.3 Using External Libraries and Interfaces 96

3.6 Packaging Third-Party Code e e e e e 107
3.6.1 Packaging Third-Party Code i e 107

3.6.2 Packaging Old-Style SPKGs e 116

4 Sage Notebook Developer Guide 125
4.1 Sage Notebook Developer Guide e 125
4.1.1 Following the Latest Source i e 125

412 MakingaPatch 126

4.1.3 GitforDevelopment e 128

5 Indices and tables 139
Bibliography 141
Index 143

Sage Developer’s Guide, Release 8.0

Everybody who uses Sage is encouraged to contribute something back to Sage at some point. You could:
e Add examples to the documentation
* Find bugs or typos
* Fix a bug
* Implement a new function
 Contribute a useful tutorial for a mathematical topic
* Translate an existing document to a new language
* Create a new class, create a fast new C library, etc.

This document tells you what you need to know to do all the above, from reporting bugs to modifying and extending
Sage and its documentation. We also discuss how to share your new and modified code with other Sage users around
the globe.

Here are brief overviews of each part; for more details, see the extended table of contents below. No matter where you
start, good luck and welcome to Sage development!

» Trac server: all changes go through the the Sage Trac server at some point. It contains bug reports, upgrade
requests, changes in progress, and those already part of Sage today. Click here for more information.

Importantly, you will need to create a trac account in order to contribute.

* Source code: You need your own copy of Sage’s source code to change it. Go there to get it and for instructions
to build it.

If you have never worked on software before, pay close attention to the prerequisites to compile on your system.
¢ Conventions: read our conventions and guidelines for code and documentation.
For everything related to manuals, tutorials, and languages, click here.

¢ Git (revision control): To share changes with the Sage community, you will need to learn about revision control;
we use the software Git for this purpose.

— Here is an overview of our development flow.

Unfamiliar with Git or revision control?

How to install it?

How to configure it for use with Trac?

CONTENTS 1

http://trac.sagemath.org
http://doc.sagemath.org/html/en/installation/source.html
http://doc.sagemath.org/html/en/installation/source.html#prerequisites

Sage Developer’s Guide, Release 8.0

2 CONTENTS

CHAPTER
ONE

GIT FOR SAGE DEVELOPMENT

1.1 First Steps with Git

Sage uses git for version control.

1.1.1 Setting Up Git

To work on the Sage source code, you need

» a working git installation, see Installing Git. Sage actually comes with git, see below. However, it is recom-
mended that you have a system-wide install if only to save you some typing.

* configure git to use your name and email address for commits, see Your Name and Email. The Sage development
scripts will prompt you if you don’t. But, especially if you use git for other projects in the future as well, you
really should configure git.

The Tips and References chapter contains further information about git that might be useful to some but are not
required.

Installing Git

First, try git on the command line. Most distributions will have it installed by default if other development tools are
installed. If that fails, use the following to install git:

Debian / Ubuntu sudo apt-get install git-core

Fedora sudo yum install git-core

Windows Download and install Git for Windows

OS X Use the git OSX installer. If you have an older Mac, be sure to get the correct version. (Alternately you may
get it from the Command Line Tools or even simply by attempting to use git and then following instructions.)

Finally, Sage includes git. Obviously there is a chicken-and-egg problem to checkout the Sage source code from its
git repository, but one can always download a Sage source tarball or binary distribution. You can then run git via the
sage —git command line switch. So, for example, git help becomes sage —git help and so on. Note that
the examples in the developer guide will assume that you have a system-wide git installation.

Some further resources for installation help are:
* Chapter 2 of the git book
* The git homepage for the most recent information.

* Github install help pages

https://github.com/git-for-windows/git/releases/latest
https://sourceforge.net/projects/git-osx-installer/files/
http://book.git-scm.com/2_installing_git.html
http://git-scm.com
http://help.github.com

Sage Developer’s Guide, Release 8.0

Your Name and Email

The commit message of any change contains your name and email address to acknowledge your contribution and to
have a point of contact if there are questions in the future; Filling it in is required if you want to share your changes.
The simplest way to do this is from the command line:

[user@localhost ~] git config --global user.name "Your Name"
[user@localhost ~] git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file with your name and email:

[user]
name = Your Name
email = you@dyourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com with your actual name and
email address.

1.1.2 Sage Development Process
This section is a concise overview of the Sage development process. In it, we will see how to make changes to the
Sage source code and record them in the git revision control system.

In the following section on Collaborative Development with Git-Trac we will look at communicating these changes
back to the Sage project. We also have a handy one-page “cheat sheet” of commonly used git commands that you can
print out and leave on your desk. We have some recommended references and tutorials as well.

You can alternatively fork and create a pull request at github which will automatically fetch your code and open a
ticket on our trac server.

Configuring Git

One way or another, git is what Sage uses for tracking changes. So first, open a shell (for instance, Terminal on Mac)
and check that git works:

[user@localhost]$ git
usage: git [--version] [--help] [-C <path>] [-c name=value]

The most commonly used git commands are:
add Add file contents to the index

tag Create, list, delete or verify a tag object signed with GPG
'git help -a' and 'git help —-g' lists available subcommands and some

concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.

Don’t worry about the giant list of subcommands. You really only need a handful for effective development, and we
will walk you through them in this guide. If you got a “command not found” error, then you don’t have git installed.
Now is the time to install it; see Serting Up Git for instructions.

Because we also track who does changes in Sage with git, you must tell git how you want to be known. This only
needs to be done once:

[user@localhost]$ git config --global user.name "Your Name"
[user@localhost]$ git config —--global user.email you@yourdomain.example.com

4 Chapter 1. Git for Sage development

http://github.com/sagemath/git-trac-command/raw/master/doc/git-cheat-sheet.pdf
http://github.com/sagemath/sage

Sage Developer’s Guide, Release 8.0

If you have multiple accounts / computers use the same name on each of them. This name/email combination ends up
in commits, so do it now before you forget!

Obtaining the Sage Source Code

Obviously one needs the Sage source code to develop. You can use your local installation of Sage, or (to start without
Sage) download it from github which is a public read-only mirror (=faster) of our internal git repository:

[user@localhost ~]$ git clone git://github.com/sagemath/sage.git
Cloning into 'sage'...
[...]

Checking connectivity... done.

This creates a directory named sage containing the sources for the current stable and development releases of Sage.
You next need to switch to the develop branch (latest development release):

[user@localhost ~]$ cd sage
[user@localhost sage]$ git checkout develop

You will then need to compile Sage in order to use it. If you cloned, you will need to remain on the internet for it to
download various packages of Sage:

’[user@localhost sage]$ make

Note: If your system supports multiprocessing and you want to use multiple processors to build Sage, replace the last
line above by:

[user@localhost sage]$ MAKE='make —-7JNUM' make

to tell the make program to run NUM jobs in parallel when building Sage.

Note: Mac OS X allows changing directories without using exact capitalization. Beware of this convenience when
compiling for OS X. Ignoring exact capitalization when changing into SAGE_ROOT can lead to build errors for de-
pendencies requiring exact capitalization in path names.

For the experts, note that the repository at git.sagemath.org is where development actually takes place.

Branching Out

In order to start modifying Sage, we want to make a branch of Sage. A branch is a copy (except that it doesn’t take up
twice the space) of the Sage source code where you can store your modifications to the Sage source code and which
you can upload to trac tickets.

To begin with, type the command git branch. You will see the following:

[user@localhost]$ git branch
* develop
master

The asterisk shows you which branch you are on. Without an argument, the git branch command displays a list
of all local branches with the current one marked by an asterisk.

1.1. First Steps with Git 5

http://doc.sagemath.org/html/en/installation/source.html
http://git.sagemath.org

Sage Developer’s Guide, Release 8.0

It is easy to create a new branch; first make sure you are on the branch from which you want to branch out. That is, if
you are not currently on the develop branch, type the command git checkout develop:

[user@localhost sagel$ git checkout develop
Switched to branch 'develop'

Your branch is up-to-date with 'origin/develop'.

Then use the git branch command to create a new branch, as follows:

[user@localhost sagel$ git branch last_twin_prime

Also note that git branch creates a new branch, but does not switch to it. For this, you have to use git
checkout:

[user@localhost sage]$ git checkout last_twin_prime
Switched to branch 'last_twin_prime'

Now if you use the command git branch, you will see the following:

[user@localhost]$ git branch
develop

+ last_twin_prime
master

Note that unless you explicitly upload (“push”) a branch to a remote git repository, the branch is a local branch that is
only on your computer and not visible to anyone else.

To avoid typing the new branch name twice you can use the shortcut git checkout -b my_new_branch to
create and switch to the new branch in one command.

The History

It is always a good idea to check that you are making your edits on the version that you think you are on. The first one
shows you the topmost commit in detail, including its changes to the sources:

’[user@localhost sagel$ git show

To dig deeper, you can inspect the log:

’[user@localhost sagel$ git log

By default, this lists all commits in reverse chronological order.
* If you find your branch to be in the wrong place, see the Reset and Recovery section.

* Many programs are available to help you visualize the history tree better. tig is a very nice text-mode such
tool.

Editing the Source Code
Once you have your own branch, feel free to make any changes as you like. Subsequent chapters of this developer
guide explain how your code should look like to fit into Sage, and how we ensure high code quality throughout.

Status is probably the most important git command. It tells you which files changed, and how to continue with
recording the changes:

6 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

[user@localhost sagel]$ git status
On branch last_twin_prime
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
modified: some_file.py
modified: src/sage/primes/all.py

Untracked files:
(use "git add <file>..." to include in what will be committed)

src/sage/primes/last_pair.py

no changes added to commit (use "git add" and/or "git commit -a")

To dig deeper into what was changed in the files you can use:

[user@localhost sagel$ git diff some_file.py

to show you the differences.

Rebuilding Sage

Once you have made any changes you of course want to build Sage and try out your edits. As long as you only
modified the Sage library (that is, Python and Cython files under src/sage/ . . .) you just have to run:

’[user@localhost sagel]$./sage -br

to rebuild the Sage library and then start Sage. This should be quite fast. If you made changes to third-party packages,
then you have to run

’[user@localhost sage] $ make

as if you were installing Sage from scratch. However, this time only packages which were changed (or which depend
on a changed package) will be recompiled, so it should be much faster than compiling Sage the first time.

Note: If you have pulled a branch from trac, it may depend on changes to third-party packages, so ./sage -br
may fail. If this happens (and you believe the code in this branch should compile), try running make.

Rarely there are conflicts with other packages, or with the already-installed older version of the package that you
changed, in that case you do have to recompile everything using:

[user@localhost sage]$ make distclean && make

Also, don’t forget to run the tests (see Running Sage’s doctests) and build the documentation (see The Sage Manuals).

Note: If you switch between branches based on different releases, the timestamps of modified files will change. This
triggers recythonization and recompilation of modified files on subsequent builds, whether or not you have made any
additional changes to files. To minimize the impact of switching between branches, install ccache using the command

./sage -1 ccache

1.1. First Steps with Git 7

http://doc.sagemath.org/html/en/installation/source.html
http://doc.sagemath.org/html/en/developer/manual_git.html#checking-out-tickets

Sage Developer’s Guide, Release 8.0

Recythonization will still occur when rebuilding, but the recompilation stage first checks whether previously compiled
files are cached for reuse before compiling them again. This saves considerable time rebuilding.

Commits (Snapshots)

Whenever you have reached your goal, a milestone towards it, or just feel like you got some work done you should
commit your changes. A commit is just a snapshot of the state of all files in the repository (the program you are
working on).

Unlike with some other revision control programs, in git you first need to stage the changed files, which tells git which
files you want to be part of the next commit:

[user@localhost sage]$ git status
On branch my_branch
Untracked files:

(use "git add <file>..." to include in what will be committed)
#
src/sage/primes/last_pair.py

nothing added to commit but untracked files present (use "git add" to track)

[user@localhost sagel$ git add src/sage/primes/last_pair.py
[user@localhost sage]$ git status

On branch my_branch

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: src/sage/primes/last_pair.py

H 4

Once you are satisfied with the list of staged files, you create a new snapshot with the git commit command:

[user@localhost sage]$ git commit
editor opens
[my_branch 31331f7] Added the very important foobar text file
1 file changed, 1 insertion (+)
create mode 100644 foobar.txt

This will open an editor for you to write your commit message. The commit message should generally have a one-line
description, followed by an empty line, followed by further explanatory text:

Added the last twin prime

This is an example commit message. You see there is a one-line
summary followed by more detailed description, if necessary.

You can then continue working towards your next milestone, make another commit, repeat until finished. As long as
youdonot git checkout another branch, all commits that you make will be part of the branch that you created.

1.2 The git-trac command

Putting your local changes on a Trac ticket.

8 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

1.2.1 Collaborative Development with Git-Trac

Sometimes you will only want to work on local changes to Sage, for your own private needs. However, typically it is
beneficial to share code and ideas with others; the manner in which the Sage project does this (as well as fixing bugs
and upgrading components) is in a very collaborative and public setting on the Sage Trac server (the Sage bug and
enhancement tracker).

One can use git the hard way for this, but this section explains how to use the helper git trac command, which
simplifies many of the most common actions in collaboration on Sage. Some of the tuforials we suggest may be
helpful in navigating what they are for.

Most of the commands in the following section will not work unless you have an account on Trac. If you want to
contribute to Sage, it is a good idea to get an account now (see Obraining an Account).

Installing the Git-Trac Command

Git is a separate project from trac, and the two do not know how to talk to each other. To simplify the development, we
have a special git trac subcommand for the git suite. Note that this really is only to simplify interaction with our
trac issue management, you can perform every development task with just git and a web browser. See Git the Hard
Way instead if you prefer to do everything by hand:

[user@localhost]$ git clone https://github.com/sagemath/git-trac-command.git
Cloning into 'git-trac-command'...

[...]

Checking connectivity... done.

[user@localhost]$ source git-trac-command/enable.sh

Prepending the git-trac command to your search PATH

This creates a directory git-trac—command.

Sourcing the enable. sh script in there is just a quick and dirty way to enable it temporarily. For a more permanent
installation on your system later, make sure to put the git-trac command in your PATH. Assuming that ~/bin is
already in your PATH, you can do this by symlinking:

[user@localhost]$ echo S$SPATH
/home/user/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin
[user@localhost]$ cd git-trac-command

[user@localhost git-trac—-command]$ 1ln -s “pwd /git-trac ~/bin/

See the git-trac README for more details. At this point you leave git-trac—command subdirectory, and only go
there whenever you need to update the git—-trac command.

Git and Trac Configuration

Note:
e trac uses username/password for authentication.

* Our git repository server uses SSH public key authentication for write access.

You need to set up both authentication mechanisms to be able to upload your changes with “git trac”. For read-only
access neither authentication mechanism is needed. To set up git trac, first go to the Sage directory and tell git
trac about your trac account:

1.2. The git-trac command 9

http://sagemath.org
http://trac.sagemath.org
https://github.com/sagemath/git-trac-command
http://trac.sagemath.org
http://git.sagemath.org

Sage Developer’s Guide, Release 8.0

[user@localhost sagel$ git trac config --user USERNAME --pass 'PASSWORD'
Trac xmlrpc URL:
http://trac.sagemath.org/xmlrpc (anonymous)
http://trac.sagemath.org/login/xmlrpc (authenticated)
realm sage.math.washington.edu
Username: USERNAME
Password: PASSWORD
Retrieving SSH keys...
1024 ab:1b:7c:c9:9b:48:fe:dd:59:56:1e:9d:a4:a6:51:9d My SSH Key

where you have to replace USERNAME with your trac user name and PASSWORD with your trac password. If you
don’t have a trac account, use git trac config without any arguments. The single quotes in 'PASSWORD'
escape special characters that you might have in your password. The password is stored in plain-text in .git/
config, so make sure that it is not readable by other users on your system. For example, by running chmod 0600
.git/config if your home directory is not already private.

If there is no SSH key listed then you haven’t uploaded your SSH public key to the trac server. You should do that
now following the instructions to Linking your Public Key to your Trac Account, if you want to upload any changes.
You may have to add your private key to your authentication agent:

[user@localhost sagel$ ssh-add

Note: The git trac config command will automatically add a trac remote git repository to your list of
remotes if necessary.

If you followed the above instructions then you will have two remote repositories set up:

[user@localhost sagel$ git remote -v

origin git://github.com/sagemath/sage.git (fetch)

origin git://github.com/sagemath/sage.git (push)

trac git://trac.sagemath.org/sage.git (fetch)

trac git@trac.sagemath.org:sage.git (push)

The git@. .. part of the push url means that write access is secured with SSH keys, which you must have set up as

in Linking your Public Key to your Trac Account. Read-only access happens through the fetch url and does not require
SSH.

Finally, if you do not want to use the git trac subcommand at all then you can set up the remote by hand as
described in the section on The Trac Server.

Trac Tickets and Git Branches

Now let’s start adding code to Sage!

Create a Ticket

Suppose you have written an algorithm for calculating the last twin prime, and want to add it to Sage. You would first
open a ticket for that:

[user@localhost sagel$ git trac create 'Last Twin Prime'
Remote branch: u/user/last_twin_prime
Newly-created ticket number: 12345

10 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

Ticket URL: http://trac.sagemath.org/12345
Local branch: t/12345/last_twin_prime

This will create a new trac ticket titled “Last Twin Prime” with a remote branch u/user/last_twin_prime
attached to it. The remote branch name is automatically derived from the ticket title; If you don’t like this then you can
use the —b switch to specify it explicitly. See git trac create -—h for details. This new branch is automatically
checked out for you with the local branch name t /12345/1last_twin_prime.

Note: Only some trac fields are filled in automatically. See The Ticket Fields for what trac fields are available and
how we use them.

Check out an Existing Ticket

Alternatively, you can use the web interface to the Sage trac development server to open a new ticket. Just log in and
click on “Create Ticket”.

Or maybe somebody else already opened a ticket. Then, to get a suitable local branch to make your edits, you would
just run:

[user@localhost sagel$ git trac checkout 12345

Loading ticket #12345...

Checking out Trac #13744 remote branch u/user/last_twin_prime -> local branch t/12345/
—last_twin_prime...

The git trac checkout command downloads an existing branch (as specified in the “Branch:” field on the trac
ticket) or creates a new one if there is none yet. Just like the create command, you can specify the remote branch name
explicitly using the —b switch if you want.

Note on Branch Names

The “Branch:” field of a trac ticket (see The Ticket Fields) indicates the git branch containing its code. Our git server
implements the following access restrictions for remote branch names:

* You can read/write/create a branch named u/your_username/whatever_you_like. Everybody else
can read.

» Everybody can read/write/create a branch named public/whatever_you_like.

Depending on your style of collaboration, you can use one or the other. The git trac subcommands defaults to the
former.

As a convention, the git trac subcommand uses local branch names of the form t/12345/description,
where the number is the trac ticket number. The script uses this number to figure out the ticket from the local branch
name. You can rename the local branches if you want, but if they don’t contain the ticket number then you will have
to specify the ticket number manually when you are uploading your changes.

Making Changes

Once you have checked out a ticket, edit the appropriate files and commit your changes to the branch as described in
Editing the Source Code and Commits (Snapshots).

1.2. The git-trac command 11

http://trac.sagemath.org

Sage Developer’s Guide, Release 8.0

Uploading Changes to Trac

Automatic Push

At some point, you may wish to share your changes with the rest of us: maybe it is ready for review, or maybe you are
collaborating with someone and want to share your changes “up until now”. This is simply done by:

[user@localhost sage]$ git trac push
Pushing to Trac #12345...
Guessed remote branch: u/user/last_twin_prime

To git@trac.sagemath.org:sage.git
* [new branch] HEAD -> u/user/last_twin_prime

Changing the trac "Branch:" field...

This uploads your changes to a remote branch on the Sage git server. The git trac command uses the following
logic to find out the remote branch name:

* By default, the remote branch name will be whatever is already on the trac ticket.

e If there is no remote branch yet, the branch will be called u/user/description (u/user/
last_twin_prime in the example).

* You can use the ——branch option to specify the remote branch name explicitly, but it needs to follow the
naming convention from Note on Branch Names for you to have write permission.

Specifying the Ticket Number

You can upload any local branch to an existing ticket, whether or not you created the local branch with git trac.
This works exactly like in the case where you started with a ticket, except that you have to specify the ticket number
(since there is no way to tell which ticket you have in mind). That is:

[user@localhost sage]$ git trac push TICKETNUM

where you have to replace TICKETNUM with the number of the trac ticket.

Finishing It Up

It is common to go through a few iterations of commits before you upload, and you will probably also have pushed
your changes a few times before your changes are ready for review.

Once you are happy with the changes you uploaded, they must be reviewed by somebody else before they can be
included in the next version of Sage. To mark your ticket as ready for review, you should set it to needs_review
on the trac server. Also, add yourself as the (or one of the) author(s) for that ticket by inserting the following as the
first line:

Authors: Your Real Name

Downloading Changes from Trac

If somebody else worked on a ticket, or if you just switched computers, you’ll want to get the latest version of the
branch from a ticket into your local branch. This is done with:

12 Chapter 1. Git for Sage development

http://git.sagemath.org/sage.git

Sage Developer’s Guide, Release 8.0

[user@localhost sagel]$ git trac pull

Technically, this does a merge (just like the standard git pull) command. See Merging and Rebasing for more
background information.

Merging

As soon as you are working on a bigger project that spans multiple tickets you will want to base your work on branches
that have not been merged into Sage yet. This is natural in collaborative development, and in fact you are very much
encouraged to split your work into logically different parts. Ideally, each part that is useful on its own and can be
reviewed independently should be a different ticket instead of a huge patch bomb.

For this purpose, you can incorporate branches from other tickets (or just other local branches) into your current
branch. This is called merging, and all it does is include commits from other branches into your current branch. In
particular, this is done when a new Sage release is made: the finished tickets are merged with the Sage master and the
result is the next Sage version. Git is smart enough to not merge commits twice. In particular, it is possible to merge
two branches, one of which had already merged the other branch. The syntax for merging is easy:

[user@localhost sagel$ git merge other_branch

This creates a new “merge” commit, joining your current branch and other_branch.

Warning: You should avoid merging branches both ways. Once A merged B and B merged A, there is no way to
distinguish commits that were originally made in A or B. Effectively, merging both ways combines the branches
and makes individual review impossible.

In practice, you should only merge when one of the following holds:
* Either two tickets conflict, then you have to merge one into the other in order to resolve the merge conflict.

¢ Or you definitely need a feature that has been developed as part of another branch.

A special case of merging is merging in the develop branch. This brings your local branch up to date with the newest
Sage version. The above warning against unnecessary merges still applies, though. Try to do all of your development
with the Sage version that you originally started with. The only reason for merging in the develop branch is if
you need a new feature or if your branch conflicts. See Update Branch to Latest SageMath Version (and Minimizing
Recompilation Time) for details.

Collaboration and conflict resolution
Exchanging Branches

It is very easy to collaborate by just going through the above steps any number of times. For example, Alice starts a
ticket and adds some initial code:

[alice@laptop sage]$ git trac create "A and B Ticket"
EDIT EDIT ...

[alice@laptop sagel$ git add

[alice@laptop sagel]$ git commit

[alice@laptop sagel$ git trac push

The trac ticket now has “Branch:” settou/alice/a_and_b_ticket. Bob downloads the branch and works some
more on it:

1.2. The git-trac command 13

Sage Developer’s Guide, Release 8.0

[bob@home sage]$ git
EDIT EDIT
[bob@home sage]$ git
[bob@home sage]$ git
[bob@home sagel$ git

trac checkout TICKET_NUMBER

add
commit
trac push

The trac ticket now has “Branch:” set to u/bob/a_and_b_ticket, since Bob cannot write to u/alice/. ...
Now the two authors just pull/push in their collaboration:

[alice@laptop sagel$ git trac pull

EDIT EDIT
[alice@laptop
[alice@laptop
[alice@laptop

sagel$
sage]l$
sage] $

[bob@home sagel$ git
EDIT EDIT
[bob@home sagel$ git
[bob@home sagel$ git
[bob@home sage]$ git

git add
git commit
git trac push

trac pull
add

commit
trac push

Alice and Bob need not alternate, they can also add further commits on top of their own remote branch. As long as
their changes do not conflict (edit the same lines simultaneously), this is fine.

Conflict Resolution

Merge conflicts happen if there are overlapping edits, and they are an unavoidable consequence of distributed devel-
opment. Fortunately, resolving them is common and easy with git. As a hypothetical example, consider the following
code snippet:

def fibonacci (i) :
mmn

Return the "1

mmn

-th Fibonaccili number

return fibonacci(i-1) * fibonacci (i-2)

This is clearly wrong; Two developers, namely Alice and Bob, decide to fix it. First, in a cabin in the woods far away
from any internet connection, Alice corrects the seed values:

def fibonacci (i) :

mmn

Return the "1

mn

—-th Fibonacci number

if i > 1:
return fibonacci(i-1) * fibonacci (i-2)
return [0, 1][1i]

and turns those changes into a new commit:

[alice@laptop sagel$ git add fibonacci.py
[alice@laptop sage]l$ git commit -m 'return correct seed values'

However, not having an internet connection, she cannot immediately send her changes to the trac server. Meanwhile,
Bob changes the multiplication to an addition since that is the correct recursion formula:

14 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

def fibonacci(i):

Return the i '—-th Fibonacci number
mmwn

return fibonacci(i-1) + fibonacci (i-2)

and immediately uploads his change:

[bob@home sage]$ git add fibonacci.py
[bob@home sagel]$ git commit -m 'corrected recursion formula, must be + instead of *'
[bob@home sage]$ git trac push

Eventually, Alice returns to civilization. In her mailbox, she finds a trac notification email that Bob has uploaded
further changes to their joint project. Hence, she starts out by getting his changes into her own local branch:

[alice@laptop sagel]$ git trac pull

CONFLICT (content): Merge conflict in fibonacci.py
Automatic merge failed; fix conflicts and then commit the result.

The file now looks like this:

def fibonacci(i):

Return the "1 '-th Fibonacci number
mmwn
<<<<<<< HEAD
if 1 > 1:
return fibonacci(i-1) * fibonacci (i-2)
return i

return fibonacci(i-1) + fibonacci (i-2)
>>>>>>> 41675dfaedbfb89dcff0ad47e520bedaal2b6c5dlb

The conflict is shown between the conflict markers <<<<<<< and >>>>>>>. The first half (up to the =======
marker) is Alice’s current version, the second half is Bob’s version. The 40-digit hex number after the second conflict
marker is the SHA1 hash of the most recent common parent of both.

It is now Alice’s job to resolve the conflict by reconciling their changes, for example by editing the file. Her result is:

def fibonacci (i) :

Return the "1 '—-th Fibonacci number
if 1 > 1:

return fibonacci(i-1) + fibonacci (i-2)
return [0, 1][1]

And then upload both her original change and her merge commit to trac:

[alice@laptop sagel$ git add fibonacci.py
[alice@laptop sage]$ git commit -m "merged Bob's changes with mine"

The resulting commit graph now has a loop:

[alice@laptop sagel$ git log —--graph —--oneline
* 6316447 merged Bob's changes with mine
I\

1.2. The git-trac command 15

Sage Developer’s Guide, Release 8.0

| = 41675df corrected recursion formula, must be + instead of =
* | 14aeld3 return correct seed values
|/

* 1l4afeb53 initial commit

If Bob decides to do further work on the ticket then he will have to pull Alice’s changes. However, this time there is
no conflict on his end: git downloads both Alice’s conflicting commit and her resolution.

Reviewing

For an explanation of what should be checked by the reviewer, see The reviewer’s check list.

If you go to the web interface to the Sage trac development server then you can click on the “Branch:” field and see
the code that is added by combining all commits of the ticket. This is what needs to be reviewed.

The git trac command gives you two commands that might be handy (replace 12345 with the actual ticket
number) if you do not want to use the web interface:

* git trac print 12345 displays the trac ticket directly in your terminal.

* git trac review 12345 downloads the branch from the ticket and shows you what is being added, anal-
ogous to clicking on the “Branch:” field.

To review tickets with minimal recompiling, start by building the “develop” branch, that is, the latest beta. Just
checking out an older ticket would most likely reset the Sage tree to an older version, so you would have to compile
older versions of packages to make it work. Instead, you can create an anonymous (“detached HEAD”’) merge of the
ticket and the develop branch using

$ git trac try 12345

This will only touch files that are really modified by the ticket. In particular, if only Python files are changed by the
ticket (which is true for most tickets) then you just have to run sage —b to rebuild the Sage library. If files other than
Python have been changed, you must run make. When you are finished reviewing, just check out a named branch, for
example

$ git checkout develop

If you want to edit the ticket branch (that is, add additional commits) you cannot use git trac try. You must
Check out an Existing Ticket to get the actual ticket branch as a starting point.

1.3 Git Tricks & Tips

When git trac is not enough.

1.3.1 Git the Hard Way
If you have no git experience, we recommend you to read the Collaborative Development with Git-Trac chapter
instead. The git—-trac simplifies the interaction with our git and trac servers.

If you want to contribute using git only, you are at the right place. This chapter will tell you how to do so, assuming
some basic familiarity with git. In particular, you should have read Sage Development Process first.

Randall Munroe has provided a basic overview.

We assume that you have a copy of the Sage git repository, for example by running:

16 Chapter 1. Git for Sage development

http://trac.sagemath.org
http://xkcd.com/1597/

Sage Developer’s Guide, Release 8.0

[user@localhost ~1$ git clone git://github.com/sagemath/sage.git
[user@localhost ~]$ cd sage

[user@localhost sagel$ git checkout develop

[user@localhost sage]$ make

Note: If your system supports multiprocessing and you want to use multiple processors to build Sage, replace the last
line above by:

[user@localhost sage]$ MAKE='make -JjNUM' make

to tell the make program to run NUM jobs in parallel when building Sage.

The Trac Server

The Sage trac server also holds a copy of the Sage repository, it is served via the ssh and git protocols. To add it as a
remote repository to your local git repository, use these commands:

[user@localhost sagel$ git remote add trac git://trac.sagemath.org/sage.git -t master
[user@localhost sagel$ git remote set-url —--push trac git@trac.sagemath.org:sage.git
[user@localhost sagel$ git remote -v

origin git://github.com/sagemath/sage.git (fetch)
origin git://github.com/sagemath/sage.git (push)
trac git://trac.sagemath.org/sage.git (fetch)
trac git@trac.sagemath.org:sage.git (push)

Instead of t rac you can use any local name you want, of course. It is perfectly fine to have multiple remote reposito-
ries for git, think of them as bookmarks. You can then use git pull to get changes and git push to upload your
local changes using:

[user@localhost sagel$ git <push|pull> trac [ARGS]

Note: In the command above we set up the remote to only track the master branch on the trac server (the -t
master option). This avoids clutter by not automatically downloading all branches ever created. But it also means
that you will not fetch everything that is on trac by default, and you need to explicitly tell git which branch you want
to get from trac. See the Checking Out Tickets section for examples.

We set up the remote here to perform read-only operations (fetch) using the git protocol and write operations (push)
using the ssh protocol (specified by the git@ part). To use the ssh protocol you need to have a trac account and to
set up your ssh public key as described in Trac authentication through ssh. Authentication is necessary if you want to
upload anything to ensure that it really is from you.

If you want to use ssh only, use these commands:

[user@localhost sage]$ git remote add trac git@trac.sagemath.org:sage.git -t master
[user@localhost sage]$ git remote -v

origin git://github.com/sagemath/sage.git (fetch)
origin git://github.com/sagemath/sage.git (push)
trac git@trac.sagemath.org:sage.git (fetch)
trac git@trac.sagemath.org:sage.git (push)

1.3. Git Tricks & Tips 17

http://doc.sagemath.org/html/en/developer/trac.html#trac-authentication-through-ssh

Sage Developer’s Guide, Release 8.0

Checking Out Tickets

Trac tickets that are finished or in the process of being worked on can have a git branch attached to them. This is the
“Branch:” field in the ticket description. The branch name is generally of the form u/user/description, where
user is the name of the user who made the branch and description is some free-form short description (and can
include further slashes).

If you want to work with the changes in that remote branch, you must make a local copy. In particular, git has no
concept of directly working with the remote branch, the remotes are only bookmarks for things that you can get
from/to the remote server. Hence, the first thing you should do is to get everything from the trac server’s branch into
your local repository. This is achieved by:

[user@localhost sage]$ git fetch trac u/user/description
remote: Counting objects: 62, done.

remote: Compressing objects: 100% (48/48), done.

remote: Total 48 (delta 42), reused 0 (delta 0)
Unpacking objects: 100% (48/48), done.

From trac.sagemath.org:sage

* [new branch] u/user/description —-> FETCH_HEAD

The u/user/description branch is now temporarily (until you fetch something else) stored in your local git
database under the alias FETCH_HEAD. In the second step, we make it available as a new local branch and switch to
it. Your local branch can have a different name, for example:

[user@localhost sage]$ git checkout -b my_branch FETCH_HEAD
Switched to a new branch 'my_branch'

creates a new branch in your local git repository named my_branch and modifies your local Sage filesystem tree to
the state of the files in that ticket. You can now edit files and commit changes to your local branch.

Pushing Your Changes to a Ticket

To add your local branch to a trac ticket, you should first decide on a name on the Sage trac repository.
For read/write permissions on git branches, see Note on Branch Names

In order to avoid name clashes, you can use u/your_username/a_description_of_your_branch (the
description can contain slashes, but no spaces). Then:

¢ Fill the Branch field of the trac ticket with that name.

* Push your branch to trac with either:

’[user@localhost sage]$ git push —--set-upstream trac HEAD:u/user/description

if you started the branch yourself and do not follow any other branch, or use:

’[user@localhost sage]$ git push trac HEAD:u/user/description

if your branch already has an upstream branch.

Here, HEAD means that you are pushing the most recent commit (and, by extension, all of its parent commits) of the
current local branch to the remote branch.

The Branch field on the trac ticket can appear in red/green. See The Ticket Fields to learn what it means.

18 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

Getting Changes

A common task during development is to synchronize your local copy of the branch with the branch on trac. In
particular, assume you downloaded somebody else’s branch and made some suggestions for improvements on the
trac ticket. Now the original author incorporated your suggestions into his branch, and you want to get the added
changesets to complete your review. Assuming that you originally got your local branch as in Checking Out Tickets,
you can just issue:

[user@localhost sagel]$ git pull trac u/user/description
From trac.sagemath.org:sage

* branch u/user/description -> FETCH_HEAD
Updating 8237337..07152d8
Fast-forward

src/sage/tests/cmdline.py | 3 ++-

1 file changed, 2 insertions(+), 1 deletions(-)

where now user is the other developer’s trac username and description is some description that he chose. This
command will download the changes from the originally-used remote branch and merge them into your local branch.
If you haven’t published your local commits yet then you can also rebase them via:

[user@localhost sagel$ git pull -r trac u/user/description
From trac.sagemath.org:sage

* branch u/user/description -> FETCH_HEAD
First, rewinding head to replay your work on top of it...
Applying: my local commit

See Merging and Rebasing section for an in-depth explanation of merge vs. rebase.

So far, we assumed that there are no conflicts. It is unavoidable in distributed development that, sometimes, the same
location in a source source file is changed by more than one person. Reconciling these conflicting edits is explained
in the Conflict Resolution section.

Updating Master

The master branch can be updated just like any other branch. However, your local copy of the master branch should
stay identical to the trac master branch.

If you accidentally added commits to your local copy of master, you must delete them before updating the branch.

One way to ensure that you are notified of potential problems is touse git pull --ff-only, which will raise an
error if a non-trivial merge would be required:

[user@localhost sagel$ git checkout master
[user@localhost sagel$ git pull --ff-only trac master

If this pull fails, then something is wrong with the local copy of the master branch. To switch to the correct Sage
master branch, use:

[user@localhost sage]$ git checkout master
[user@localhost sage]l$ git reset —--hard trac/master

Merging and Rebasing

Sometimes, a new version of Sage is released while you work on a git branch.

1.3. Git Tricks & Tips 19

Sage Developer’s Guide, Release 8.0

Let us assume you started my_branch at commit B. After a while, your branch has advanced to commit Z, but you
updated master (see Updating Master) and now your git history looks like this (see The History):

X-—=Y-—-Z my_branch

A-——B—-—-C——-D master

How should you deal with such changes? In principle, there are two ways:

* Rebase: The first solution is to replay commits X, Y, Z atop of the new master. This is called rebase, and it
rewrites your current branch:

git checkout my_branch
git rebase -1 master

In terms of the commit graph, this results in:

X'-=Y'--Z' my_branch

A——-B——--C-—-D master

Note that this operation rewrites the history of my_branch (see Rewriting History). This can lead to problems
if somebody began to write code atop of your commits X, Y, Z. It is safe otherwise.

Alternatively, you can rebase my_branch while updating master at the same time (see Getting Changes):

git checkout my_branch
git pull -r master

Merging your branch with master will create a new commit above the two of them:

git checkout my_branch
git merge master

The result is the following commit graph:

X——==Y-—-Z——-W my_branch
/ /
A-——-B-——-C——————- D master

— Pros: you did not rewrite history (see Rewriting History). The additional commit is then easily pushed to
the git repository and distributed to your collaborators.

— Cons: it introduced an extra merge commit that would not be there had you used rebase.

Alternatively, you can merge my_branch while updating master at the same time (see Getting Changes):

git checkout my_branch
git pull master

In case of doubt use merge rather than rebase. There is less risk involved, and rebase in this case is only useful for
branches with a very long history.

Finally, do nothing unless necessary: it is perfectly fine for your branch to be behind master. You can always
merge/rebase if/when your branch’s name appears in red on its trac page (see The Ticket Fields), or when you will
really need a feature that is only available in the current master.

20 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

Merge Tools

Simple conflicts can be easily solved with git only (see Conflict Resolution)

For more complicated ones, a range of specialized programs are available. Because the conflict marker includes the
hash of the most recent common parent, you can use a three-way diff:

[alice@laptopl$ git mergetool

This message is displayed because 'merge.tool' is not configured.

See 'git mergetool —--tool-help' or 'git help config' for more details.
'git mergetool' will now attempt to use one of the following tools:
meld opendiff kdiff3 [...] merge araxis bc3 codecompare emerge vimdiff
Merging:

fibonacci.py

Normal merge conflict for 'fibonacci.py':
{local}: modified file
{remote}: modified file

Hit return to start merge resolution tool (meld):

If you don’t have a favourite merge tool we suggest you try meld (cross-platform). The result looks like the following
screenshot.

File Edit Changes View Tabs Help

59) Undo

[1
*/ fibonacci.py.LOCAL...py.REMOTE.551.py @

k=l /tmp/tirepoffibonaccipy ¥ || Browse... ftmp/t/repo/fibonacci.py ¥ || Browse.. Jtmp/tirepo/fibonacci.py ¥ || Browse.. | (3
def fibonacci(i): def fibonacci(i): def fibonacci(i):
Return the “i'-th Fibona Return the "1 -th Fibona Return the “i'-th Fibona
if 1 = 1: - return fibonacci(i-1) * | =€ return fibonacci(i-1) +

return fibonacci(i-1
return [@, 1][i]

I

Ln7, Col 11 INS

The middle file is the most recent common parent; on the right is Bob’s version and on the left is Alice’s conflicting
version. Clicking on the arrow moves the marked change to the file in the adjacent pane.

1.3.2 Tips and References

This chapter contains additional material about the git revision control system. It is not necessary if you stick with the
Sage development scripts. See Setting Up Git for the minimal steps needed for Sage development.

Configuration Tips

Your personal git configurations are saved in the ~/ . gitconfig file in your home directory. Here is an example:

1.3. Git Tricks & Tips 21

http://meldmerge.org/

Sage Developer’s Guide, Release 8.0

[user]

name = Your Name

email = you@yourdomain.example.com
[core]

editor = emacs

You can edit this file directly or you can use git to make changes for you:

[user@localhost ~] git config --global user.name "Your Name"

[user@localhost ~] git config --global user.email you@yourdomain.example.com
[user@localhost ~] git config --global core.editor vim

Aliases

Aliases are personal shortcuts for git commands. For example, you might want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words (which gives a nicely formatted output of the
diff) to git wdiff. You can do this with:

[user@localhost ~] git config --global alias.ci "commit -a"
[user@localhost ~] git config --global alias.co checkout
[user@localhost ~] git config --global alias.st "status -a"
[user@localhost ~] git config --global alias.stat "status -a"
[user@localhost ~] git config --global alias.br branch

[user@localhost ~] git config --global alias.wdiff "diff --color-words"

The above commands will create an alias section in your .gitconfig file with contents like this:

[alias]
ci = commit -a
co = checkout
st = status -a
stat = status -a
br = branch

wdiff = diff --color-words

Editor

To set the editor to use for editing commit messages, you can use:

[user@localhost ~] git config --global core.editor vim

or set the £EDITOR environment variable.

Merging

To enforce summaries when doing merges (~/ .gitconfig file again):

[merge]
log = true

Or from the command line:

22 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

[user@localhost ~] git config --global merge.log true

Fancy Log Output

Here is an alias to get a fancy log output; it should go in the alias section of your .gitconfig file:

lg = log ——graph —-pretty=format:'%Cred Creset —-%C(yellow) %Creset $Cgreen (2cr)
—%C(bold blue) [$an]%Creset' ——abbrev-commit —--date=relative

Using this 1g alias gives you the changelog with a colored ascii graph:

[user@localhost ~] git 1lg

x 6d8elee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy file (45
—minutes ago) [Matthew Brett]

* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from hhuuggoo/
—master (2 weeks ago) [Jonathan Terhorst]

I\

| = 4affz2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago) [Hugo]
|/

x a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit. (2
—weeks ago) [Corran Webster]
x 68£6752 — Initial implimentation of AxisIndexer - uses 'index_ by' which needs to be

—~changed to a call on an Axes object - this is all very sketchy right now. (2 weeks
—ago) [Corr

* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago) [Jonathan,,
—Terhorst]

I\

| = b605216 - updated joshu example to current api (3 weeks ago) [Jonathan Terhorst]
| » 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]

| = 7bedaba - prevent axis from throwing an exception if testing equality with non-
—axis object (3 weeks ago) [Jonathan Terhorst]

| = 65af65e — convert unit testing code to assertions (3 weeks ago) [Jonathan
—Terhorst]

| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago),,

— [Jonathan Terhorst]

I\

I 1/

Tutorials and Summaries

There are many, many tutorials and command summaries available online.
Beginner

» Try Git is an entry-level tutorial you can do in your browser. If you are unfamiliar with revision control, you
will want to pay close attention to the “Advice” section toward the bottom.

» Git magic is an extended introduction with intermediate detail.
* The git parable is an easy read explaining the concepts behind git.
* Git foundation expands on the git parable.

* Although it also contains more advanced material about branches and detached head and the like, the visual
summaries of merging and branches in Learn Git Branching are really quite helpful.

1.3. Git Tricks & Tips 23

https://try.github.io/levels/1/challenges/1
http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://matthew-brett.github.com/pydagogue/foundation.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://pcottle.github.io/learnGitBranching/

Sage Developer’s Guide, Release 8.0

Advanced

Github help has an excellent series of how-to guides.

* The pro git book is a good in-depth book on git.

Github Training has an excellent series of tutorials as well as videos and screencasts.
e The git tutorial.

 Git ready is a nice series of tutorials.

» Fernando Perez’ git page contains many links and tips.

* A good but technical page on git concepts

* Git svn crash course: git for those of us used to subversion

Summaries/Cheat Sheets

e A git cheat sheet is a page giving summaries of common commands.

e The git user manual.

Git Best Practices
There are many ways of working with git; here are some posts on the rules of thumb that other projects have come up
with:

* Linus Torvalds on git management

* Linus Torvalds on linux git workflow. Summary: use the git tools to make the history of your edits as clean as
possible; merge from upstream edits as little as possible in branches where you are doing active development.

Manual Pages Online
You can get these on your own machine with (e.g) git help push or (same thing) git push —--help, but, for
convenience, here are the online manual pages for some common commands:
e gitadd
e git branch
* git checkout
* git clone
* git commit
* git config
o git diff
* gitlog
e git pull
e git push
* git remote

e git status

24 Chapter 1. Git for Sage development

http://help.github.com
http://git-scm.com/book
http://training.github.com
http://schacon.github.com/git/gittutorial.html
http://www.gitready.com/
http://www.fperez.org/py4science/git.html
http://www.eecs.harvard.edu/~cduan/technical/git/
http://git-scm.com/course/svn.html
http://subversion.tigris.org/
http://github.com/guides/git-cheat-sheet
http://schacon.github.com/git/user-manual.html
https://web.archive.org/web/20120511084711/http://kerneltrap.org/Linux/Git_Management
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://schacon.github.com/git/git-add.html
http://schacon.github.com/git/git-branch.html
http://schacon.github.com/git/git-checkout.html
http://schacon.github.com/git/git-clone.html
http://schacon.github.com/git/git-commit.html
http://schacon.github.com/git/git-config.html
http://schacon.github.com/git/git-diff.html
http://schacon.github.com/git/git-log.html
http://schacon.github.com/git/git-pull.html
http://schacon.github.com/git/git-push.html
http://schacon.github.com/git/git-remote.html
http://schacon.github.com/git/git-status.html

Sage Developer’s Guide, Release 8.0

1.3.3 Advanced Git

This chapter covers some advanced uses of git that go beyond what is required to work with branches. These features
can be used in Sage development, but are not really necessary to contribute to Sage. If you are just getting started with
Sage development, you should read Sage Development Process instead. If you are new to git, please see Git the Hard
Way.

Detached Heads and Reviewing Tickets

Each commit is a snapshot of the Sage source tree at a certain point. So far, we always used commits organized in
branches. But secretly the branch is just a shortcut for a particular commit, the head commit of the branch. But you
can just go to a particular commit without a branch, this is called “detached head”. If you have the commit already in
your local history, you can directly check it out without requiring internet access:

[user@localhost sagel$ git checkout a63227d0636e29a8212c32eb9caB84e9588bbf80b
Note: checking out 'a63227d0636e29a8212c32eb9ca84e9588bbf80b"' .

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at a63227d... Szekeres Snark Graph constructor

If it is not stored in your local git repository, you need to download it from the trac server first:

[user@localhost sagel$ git fetch trac a63227d0636e29a8212c32eb9ca84e9588bbf80b
From ssh://trac/sage

*+ branch a63227d0636e29%9a8212c32eb9%9ca84e9588bbf80b —> FETCH_HEAD
[user@localhost sage]l$ git checkout FETCH_HEAD
HEAD is now at a63227d... Szekeres Snark Graph constructor

Either way, you end up with your current HEAD and working directory that is not associated to any local branch:

[user@localhost sage]$ git status
HEAD detached at a63227d
nothing to commit, working directory clean

This is perfectly fine. You can switch to an existing branch (with the usual git checkout my_branch) and back
to your detached head.

Detached heads can be used to your advantage when reviewing tickets. Just check out the commit (look at the “Com-
mit:” field on the trac ticket) that you are reviewing as a detached head. Then you can look at the changes and run
tests in the detached head. When you are finished with the review, you just abandon the detached head. That way you
never create a new local branch, so you don’t have to type git branch -D my_branch at the end to delete the
local branch that you created only to review the ticket.

Update Branch to Latest SageMath Version (and Minimizing Recompilation Time)

* You have a compiled and working new SageMath version n, and

* you want to work on a branch some_code which is based on some old SageMath version o

1.3. Git Tricks & Tips 25

Sage Developer’s Guide, Release 8.0

* by updating this branch from version o to n
 with only recompiling changed files (and not all touched files from o to n),

* then continue reading this section.

Introduction

When developing, quite frequently one ends up with a branch which is not based on the latest (beta) version of
SageMath.

Note: Continue working on a feature based on an old branch is perfecly fine and usually there is no need to merge in
this latest SageMath version.

However sometimes there is a need for a merge, for example
« if there are conflicts with the latest version or
* one needs a recent feature or
* simply because the old SageMath version is not available on your machine any longer.

Then merging in the latest SageMath version has to be done.

Merge in the Latest SageMath Version

(This is the easy way without minimizing the recompilation time.)

Suppose we are on our current working branch some_ code (branch is checked out). Then

git merge develop

does the merging, i.e. we merge the latest development version into our working branch.

However, after this merge, we need to (partially) recompile SageMath. Sometimes this can take ages (as many files
are touched and their timestamps are renewed) and there is a way to avoid it.

Minimize the Recompilation Time

Suppose we are on some new SageMath (e.g. on branch develop) which was already compiled and runs successfully,
and we have an “old” branch some_code, that we want to bring onto this SageMath version (without triggering
unnecessary recompilations).

We first create a new working tree in a directory new_worktree and switch to this directory:

git worktree add new_worktree
cd new_worktree

Here we have a new copy of our source files. Thus no timestamps etc. of the original repository will be changed. Now
we do the merge:

git checkout some_code
git merge develop

And go back to our original repository:

26 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

git checkout develop
cd

We can now safely checkout some_ code:

’git checkout some_code

We still need to call

’make

but only changed files will be recompiled.

To remove the new working tree simply use

’rm -r new_worktree

Why not Merging the Other Way Round?

Being on some new SageMath (e.g. on branch deve 1 op) which runs successfully, it would be possible to merge in our
branch some_code into develop. This would produce the same source files and avoid unnecessary recompilations.
However, it makes reading git’s history very unpleasant: For example, it is hard to keep track of changes etc., as one
cannot simply pursue the first parent of each git commit.

Reset and Recovery

Git makes it very hard to truly mess up. Here is a short way to get back onto your feet, no matter what. First, if you
just want to go back to a working Sage installation you can always abandon your working branch by switching to your
local copy of the master branch:

[user@localhost sagel$ git checkout master

As long as you did not make any changes to the master branch directly, this will give you back a working Sage.

If you want to keep your branch but go back to a previous commit you can use the reset command. For this, look up the
commit in the log which is some 40-digit hexadecimal number (the SHA1 hash). Then use git reset --hardto
revert your files back to the previous state:

[user@localhost sagel$ git log

commit eafaedad5b0ae2013f8ael091d2fl1df58b72bae3
Author: First Last <user@email.com>

Date: Sat Jul 20 21:57:33 2013 -0400

Commit message

[user@localhost sagel$ git reset --hard eafae

Warning: Any uncommitted changes will be lost!

You only need to type the first couple of hex digits, git will complain if this does not uniquely specify a commit.
Also, there is the useful abbreviation HEAD~ for the previous commit and HEAD~n, with some integer n, for the n-th
previous commit.

1.3. Git Tricks & Tips 27

Sage Developer’s Guide, Release 8.0

Finally, perhaps the ultimate human error recovery tool is the reflog. This is a chronological history of git operations
that you can undo if needed. For example, let us assume we messed up the git reset command and went back too far
(say, 5 commits back). And, on top of that, deleted a file and committed that:

[user@localhost sagel]$ git reset --hard HEAD~5
[user@localhost sagel$ git rm sage
[user@localhost sage]$ git commit -m "I shot myself into my foot"

Now we cannot just checkout the repository from before the reset, because it is no longer in the history. However, here
is the reflog:

[user@localhost sagel]$ git reflog

2eca2a2 HEADQ@{O}: commit: I shot myself into my foot

b4d86b9 HEAD@{l}: reset: moving to HEAD~5

af353bb HEAD@{2}: checkout: moving from some_branch to master
1142feb HEAD@{3}: checkout: moving from other_branch to some_branch

The HEAD@ {n} revisions are shortcuts for the history of git operations. Since we want to rewind to before the
erroneous git reset command, we just have to reset back into the future:

[user@localhost sage]$ git reset —-—-hard HEAD@{2}

Rewriting History

Git allows you to rewrite history, but be careful: the SHA1 hash of a commit includes the parent’s hash. This means
that the hash really depends on the entire content of the working directory; every source file is in exactly the same state
as when the hash was computed. This also means that you can’t change history without modifying the hash. If others
branched off your code and then you rewrite history, then the others are thoroughly screwed. So, ideally, you would
only rewrite history on branches that you have not yet pushed to trac.

As an advanced example, consider three commits A, B, C that were made on top of each other. For simplicity, we’ll
assume they just added a file named file_A.py, file_B.py,and file_C.py

[user@localhost]$ git log —-oneline
9621dae added file C

7873447 added file B

bf817a5 added file A

5b5588e base commit

Now, let’s assume that the commit B was really independent and ought to be on a separate ticket. So we want to move
it to a new branch, which we’ll call second_branch. First, branch off at the base commit before we added A:

[user@localhost]$ git checkout 5b5588e
Note: checking out '5b5588e’.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at 5b5588e... base commit

28 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

[user@localhost]$ git checkout -b second_branch
Switched to a new branch 'second_branch'
[user@localhost]$ git branch

first_branch
* second_branch
[user@localhost]$ git log —-oneline
5b5588e base commit

Now, we make a copy of commit B in the current branch:

[user@localhost]$ git cherry-pick 7873447
[second_branch 758522b] added file B

1 file changed, 1 insertion (+)

create mode 100644 file_B.py
[user@localhost]$ git log —-oneline
758522b added file B

5b5588e base commit

Note that this changes the SHA1 of the commit B, since its parent changed! Also, cherry-picking copies commits,
it does not remove them from the source branch. So we now have to modify the first branch to exclude commit B,
otherwise there will be two commits adding file_B.py and our two branches would conflict later when they are
being merged into Sage. Hence, we first reset the first branch back to before B was added:

[user@localhost]$ git checkout first_branch
Switched to branch 'first_branch'
[user@localhost]$ git reset —--hard bf817a5
HEAD is now at bf817a5 added file A

Now we still want commit C, so we cherry-pick it again. Note that this works even though commit C is, at this point,
not included in any branch:

[user@localhost]$ git cherry-pick 9621dae
[first_branch 5844535] added file C

1 file changed, 1 insertion (+)

create mode 100644 file_C.py
[user@localhost]$ git log —-oneline
5844535 added file C
bf817a5 added file A

5p5588e base commit

And, again, we note that the SHA1 of commit C changed because its parent changed. Voila, now you have two
branches where the first contains commits A, C and the second contains commit B.

Interactively Rebasing

An alternative approach to Rewriting History is to use the interactive rebase feature. This will open an editor where
you can modify the most recent commits. Again, this will naturally modify the hash of all changed commits and all of
their children.

Now we start by making an identical branch to the first branch:

[user@localhost]$ git log —--oneline
9621dae added file C

7873447 added file B

bf817a5 added file A

5p5588e base commit

1.3. Git Tricks & Tips 29

Sage Developer’s Guide, Release 8.0

[user@localhost]$ git checkout -b second_branch
Switched to a new branch 'second_branch'
[user@localhost]$ git rebase -i HEAD~3

This will open an editor with the last 3 (corresponding to HEAD~3) commits and instuctions for how to modify them:

pick bf8l7a5 added file A
pick 7873447 added file B
pick 9621dae added file C

Rebase 5b5588e..9621dae onto 5b5588e
Commands :

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

S T S R H R R P R W T R R R R %

Note that empty commits are commented out

To only use commit B, we delete the first and third line. Then save and quit your editor, and your branch now consists
only of the B commit.

You still have to delete the B commit from the first branch, so you would go back (git checkout
first_branch) and then run the same git rebase -i command and delete the B commit.

1.3.4 Distributed Development

Git is a tool to exchange commits (organized into branches) with other developers. As a distributed revision control
system, it does not have the notion of a central server. The Sage trac server is just one of many possible remote
repositories from your point of view. This lets you use and experiment with different ways to interact with other
developers. In this chapter, we describe some common ways to develop for Sage.

For simplicity, let us assume two developers (Alice and Bob) are collaborating on a ticket. The first step of opening
the ticket is always the same, and could be performed by either Alice or Bob or a third person.

30 Chapter 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

1.3. Git Tricks & Tips 31

Sage Developer’s Guide, Release 8.0

Simple Workflow

(Open Ticlet)
v

Create branch
on trac

) All in Author

’ and Reviewer

(Merge into Sage)
Relezs & Manager

Reviewer

Author

Who makes
corrections?

Author/Reviewer
« .

witch roles -
32 S ChaptFr 1. Git for Sage development

Sage Developer’s Guide, Release 8.0

1. Alice creates a new local branch and commits changes to the Sage sources.

2. Alice uploads her branch to the trac server. This fills in the “Branch:” field with her remote branch name
u/alice/description.

3. Bob downloads Alice’s branch, looks through the source, and leaves a comment on the ticket about a mistake in
Alice’s code.

4. Alice fixes the bug on top of her current branch, and uploads the updated branch.
5. Bob retrieves Alice’s updates and reviews the changes.

6. Once Bob is satisfied, he sets the ticket to positive review. The “Author:” field is set to Alice’s full name, and
the “Reviewer:” field is set to Bob’s full name.

Alternatively, Bob might want to make some changes himself. Then, instead, we would have
3. Bob downloads Alice’s branch, makes changes, and commits them to his local branch.

4. Bob uploads his branch to the trac server. This fills in the “Branch:” field with his remote branch name u/
bob/description.

5. Alice downloads Bob’s branch and reviews his changes.

6. Once Alice is satisfied, she sets the ticket to positive review. If both contributions are of comparable size, then
the “Author:” and “Reviewer:” fields are set to both Alice’s and Bob’s full name.

Public Repository

In addition to the user branches (u/<user>/<description> on the Sage trac server with <user> replaced
by your trac user name) that only you can write to, you can also create a public branch that everybody with a trac
account can write to. These start with public/ plus some description. To avoid branch name collisions it is a
good idea to include your trac user name in the branch name, so it is recommended that you use public/<user>/
<description> as the branch name. Now all ticket authors push to the same remote branch.

1. Alice creates a new local branch and commits some changes to the Sage library.

2. Alice uploads her branch as a public branch to the trac server. This fills in the “Branch:” field with her remote
branch name public/alice/description.

3. Bob downloads Alice’s branch and makes changes to his local copy.
4. Bob commits changes to his local branch of the Sage sources.

5. Bob uploads his changes to the joint remote repository:

[bob@localhost sagel]$ git push trac local_branch:public/alice/description

6. Alice retrieves Bob’s updates, makes more changes, commits, and pushes them to trac.

7. Charly reviews the final version, and then sets the ticket to positive review. The “Author:” field is set to Alice’s
and Bob’s full name, and the “Reviewer:” field is set to Charly’s full name.

GitHub

Yet another possible workflow is to use GitHub (or any other third-party git repository) to collaboratively edit your
new branch, and only push the result to trac once you and your ticket co-authors are satisfied.

1.3. Git Tricks & Tips 33

Sage Developer’s Guide, Release 8.0

Fork

The first step is to create your own fork of the Sage repository; simply click “Fork” on the Sage GitHub repository.
Then add it as one of the remotes to your local Sage repository. In the following, we will use the label “github” for
this remote repository, though you are of course free to use a different one:

$ git remote add github git@github.com:github_user_name/sage.git
$ git remote -v

github git@github.com:github_user_name/sage.git (fetch)
github git@github.com:github_user_name/sage.git (push)
trac git@trac.sagemath.org:sage.git (fetch)
trac git@trac.sagemath.org:sage.git (push)

$ git fetch github

remote: Counting objects: 107, done.

remote: Compressing objects: 100% (63/63), done.
remote: Total 74 (delta 41), reused 40 (delta 10)
Unpacking objects: 100% (74/74), done.

From github.com:github_user_name/sage

* [new branch] master -> github/master

Develop

You now use the github repository to develop your ticket branch; First create a new branch:

$ git checkout -b my_branch —--track github/master
Branch my_branch set up to track remote branch master from github.
Switched to a new branch 'my_branch'
$ git push github my_branch
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com:github_user_name/sage.git
* [new branch] my_branch -> my_branch

Because of the ——t rack option, the git pull command will default to downloading your coauthor’s changes from
your github branch. Alternatively, you can create a new branch on your fork’s GitHub webpage.

At this point you can use the GitHub workflow that you prefer. In particular, your choices are

 Give your coauthors write permissions to your github fork. Every author edits/commits to their own local copy
and they jointly push to your github branch.

* Have every coauthor create their own fork and send you (the lead author) pull requests to your GitHub fork.

» Use the GitHub web page editing & commiting feature, that way you can make changes without ever using your
local machine.

Push to Trac

When you are satisfied with your branch, you push it to the Sage trac server:

$ git push trac HEAD:u/user/description

and then fill in the “Branch” field in the trac ticket description as explained in Pushing Your Changes to a Ticket.

34 Chapter 1. Git for Sage development

https://github.com/sagemath/sage

CHAPTER
TWO

SAGE TRAC AND TICKETS

All changes to Sage source code require a ticket on the Sage trac server.

2.1 The Sage Trac Server

All changes to Sage source code have to go through the Sage Trac development server. The purpose of the Sage trac
server is to

1. Provide a place for discussion on issues and store a permanent record.
2. Provide a repository of source code and all proposed changes.
3. Link these two together.
There is also a wiki for more general organizational web pages, like Sage development workshops.

Thus if you find a bug in Sage, if you have new code to submit, want to review new code already written but not yet
included in Sage, or if you have corrections for the documentation, you should post on the trac server. Items on the
server are called fickets, and anyone may search or browse the tickets. For a list of recent changes, just visit the Sage
trac timeline.

2.1.1 Obtaining an Account
You need a trac account if you want to change anything on the Sage trac server, even if you just want to comment on
a ticket. To obtain one, send an email to sage-trac—account@googlegroups.com containing:

¢ your full name,

e preferred username,

e contact email,

* and reason for needing a trac account

Your trac account also grants you access to the sage wiki. Make sure you understand the review process, and the
procedures for opening and closing tickets before making changes. The remainder of this chapter contains various
guidelines on using the trac server.

2.1.2 Trac authentication through SSH

There are two avenues to prove to the trac server that you are who you claim to be. First, to change the ticket web
pages you need to log in to trac using a username/password. Second, there is public key cryptography used by git
when copying new source files to the repository. This section will show you how to set up both.

35

http://trac.sagemath.org
http://trac.sagemath.org
http://trac.sagemath.org/wiki
http://trac.sagemath.org/timeline
http://trac.sagemath.org/timeline
https://wiki.sagemath.org

Sage Developer’s Guide, Release 8.0

Generating and Uploading your SSH Keys
The git installation on the development server uses SSH keys to decide if and where you are allowed to upload code.
No SSH key is required to report a bug or comment on a ticket, but as soon as you want to contribute code yourself

you need to provide trac with the public half of your own personal key. Details are described in the following two
sections.

Generating your SSH Keys

If you don’t have a private key yet, you can create it with the ssh-keygen tool:

[user@localhost ~]$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
ce:32:03:de:38:56:80:¢9:11:£0:03:88:£2:1c:89:0a user@localhost
The key's randomart image is:

+-—[RSA 2048]--—-+
| I
| .. I
| .0+ |
| o oto. |
|E + . .S |
| +o) |
| o +.0 |
| oB |
| o+.. |
o +

This will generate a new random private RSA key in the . ssh folder in your home directory. By default, they are
~/ .ssh/id_rsa Your private key. Keep safe. Never hand it out to anybody.
~/ .ssh/id_rsa.pub The corresponding public key. This and only this file can be safely disclosed to third parties.

The ssh-keygen tool will let you generate a key with a different file name, or protect it with a passphrase. Depend-
ing on how much you trust your own computer or system administrator, you can leave the passphrase empty to be able
to login without any human intervention.

If you have accounts on multiple computers you can use the SSH keys to log in. Just copy the public key file (ending in
.pub)to ~/.ssh/authorized_keys on the remote computer and make sure that the file is only read/writeable
by yourself. Voila, the next time you ssh into that machine you don’t have to provide your password.

Linking your Public Key to your Trac Account

The Sage trac server needs to know one of your public keys. You can upload it in the preferences, that is
1. Go to http://trac.sagemath.org
2. Log in with your trac username/password
3. Click on “Preferences”

4. Go to the “SSH Keys” tab

36 Chapter 2. Sage Trac and tickets

http://trac.sagemath.org

Sage Developer’s Guide, Release 8.0

5. Paste the content of your public key file (e.g. ~/.ssh/id_rsa.pub)
6. Click on “Save changes”

Note that this does not allow you to ssh into any account on trac, it is only used to authenticate you to the gitolite
installation on trac. You can test that you are being authenticated correctly by issuing some basic gitolite commands,
for example:

[user@localhost ~]$ ssh git@trac.sagemath.org info
hello user, this is git@trac running gitolite3 (unknown) on git 1.7.9.5

R W sage
[user@localhost ~]1$ ssh git@trac.sagemath.org help
hello user, this is gitolite3 (unknown) on git 1.7.9.5

list of remote commands available:

desc
help
info
perms
writable

2.1.3 Reporting Bugs

If you think you have found a bug in Sage, here is the procedure:

¢ Search through our Google groups for postings related to your possible bug (it may have been fixed/reported
already):

— sage—devel: http://groups.google.com/group/sage-devel
— sage-support: http://groups.google.com/group/sage-support
Similarly, you can search The Sage Trac Server to see if anyone else has opened a ticket about your bug.

* If you do not find anything, and you are not sure that you have found a bug, ask about it on sage-devel. A bug
report should contain:

— An explicit and reproducible example illustrating your bug (and/or the steps required to reproduce the
buggy behavior).

— The version of Sage you run, as well as the version of the optional packages that may be involved in the
bug.

— Describe your operating system as accurately as you can and your architecture (32-bit, 64-bit, ...).
* You might be asked to open a new ticket. In this case, follow the Guidelines for Opening Tickets.

Thank you in advance for reporting bugs to improve Sage in the future!

2.1.4 Guidelines for Opening Tickets

In addition to bug reports (see Reporting Bugs), you should also open a ticket if you have some new code that makes
Sage a better tool. If you have a feature request, start a discussion on sage-devel first, and then if there seems to
be general agreement that you have a good idea, open a ticket describing the idea.

* Do you already have a trac account? If not, click here.

Before opening a new ticket, consider the following points:

2.1. The Sage Trac Server 37

http://groups.google.com/group/sage-devel
http://groups.google.com/group/sage-support
http://groups.google.com/group/sage-devel

Sage Developer’s Guide, Release 8.0

Make sure that nobody else has opened a ticket about the same or closely related issue.

It is much better to open several specific tickets than one that is very broad. Indeed, a single ticket which deals
with lots of different issues can be quite problematic, and should be avoided.

Be precise: If foo does not work on OS X but is fine on Linux, mention that in the title. Use the keyword option
so that searches will pick up the issue.

The problem described in the ticket must be solvable. For example, it would be silly to open a ticket whose
purpose was ‘“Make Sage the best mathematical software in the world”. There is no metric to measure this
properly and it is highly subjective.

For bug reports: the ticket’s description should contain the information described at Reporting Bugs.

If appropriate, provide URLs to background information or sage-devel conversation relevant to the problem you
are reporting.

When creating the ticket, you may find useful to read 7he Ticket Fields.

Unless you know what you are doing, leave the milestone field to its default value.

2.1.5 The Ticket Fields

When you open a new ticket or change an existing ticket, you will find a variety of fields that can be changed. Here is
a comprehensive overview (for the ‘status’ field, see The status of a ticket):

Reported by: The trac account name of whoever created the ticket. Cannot be changed.

Owned by: Trac account name of owner, by default the person in charge of the Component (see below).
Generally not used in the Sage trac.

Type: One of enhancement (e.g. a new feature), defect (e.g. a bug fix), or task (rarely used).
Priority: The priority of the ticket. Keep in mind that the “blocker” label should be used very sparingly.

Milestone: Milestones are usually goals to be met while working toward a release. In Sage’s trac, we use
milestones instead of releases. Each ticket must have a milestone assigned. If you are unsure, assign it to the
current milestone.

Component: A list of components of Sage, pick one that most closely matches the ticket.

Keywords: List of keywords. Fill in any keywords that you think will make your ticket easier to find. Tickets
that have been worked on at Sage days NN (some number) ofter have sdNN as keyword.

Cc: List of trac user names to Cc (send emails for changes on the ticket). Note that users that enter a comment
are automatically substcribed to email updates and don’t need to be listed under Cc.

Merged in: The Sage release where the ticket was merged in. Only changed by the release manager.
Authors: Real name of the ticket author(s).
Reviewers: Real name of the ticket reviewer(s).

Report Upstream: If the ticket is a bug in an upstream component of Sage, this field is used to summarize the
communication with the upstream developers.

Work issues: Issues that need to be resolved before the ticket can leave the “needs work”™ status.

Branch: The Git branch containing the ticket’s code (see Branching Out). It is displayed in green color, unless
there is a conflict between the branch and the latest beta release (red color). In this case, the branch should be
merged or rebased.

38

Chapter 2. Sage Trac and tickets

Sage Developer’s Guide, Release 8.0

* Dependencies: Does the ticket depend on another ticket? Sometimes, a ticket requires that another ticket be
applied first. If this is the case, put the dependencies as a comma-separated list (#1234, #5678) into the
“Dependencies:” field.

» Stopgaps: See Stopgaps.

2.1.6 The status of a ticket

The status of a ticket appears right next to its number, at the top-left corner of its page. It indicates who has to work
on it.

* new — the ticket has only been created (or the author forgot to change the status to something else).

If you want to work on it yourself it is better to leave a comment to say so. It could avoid having two persons
doing the same job.

* needs_review — the code is ready to be peer-reviewed. If the code is not yours, then you can review it. See The
reviewer’s check list.

* needs_work — something needs to be changed in the code. The reason should appear in the comments.

* needs_info — somebody has to answer a question before anything else can happen. It should be clear from the
comments.

* positive_review — the ticket has been reviewed, and the release manager will close it.

The status of a ticket can be changed using a form at the bottom of the ticket’s page. Leave a comment explaining
your reasons whenever you change it.

2.1.7 Stopgaps

When Sage returns wrong results, two tickets should be opened:
* A main ticket with all available details.
* A “stopgap” ticket (e.g. trac ticket #12699)

This second ticket does not fix the problem but adds a warning that will be printed whenever anyone uses the relevant
code. This, until the problem is finally fixed.

To produce the warning message, use code like the following:

from sage.misc.stopgap import stopgap
stopgap ("This code contains bugs and may be mathematically unreliable.",
TICKET_NUM)

Replace TICKET_NUM by the ticket number for the main ticket. On the main trac ticket, enter the ticket number for
the stopgap ticket in the “Stopgaps” field (see The Ticket Fields). Stopgap tickets should be marked as blockers.

Note: If mathematically valid code causes Sage to raise an error or crash, for example, there is no need for a stopgap.
Rather, stopgaps are to warn users that they may be using buggy code; if Sage crashes, this is not an issue.

2.1.8 Working on Tickets

If you manage to fix a bug or enhance Sage you are our hero. See Sage Development Process for making changes to
the Sage source code, uploading them to the Sage trac server, and finally putting your new branch on the trac ticket.

2.1. The Sage Trac Server 39

https://trac.sagemath.org/12699

Sage Developer’s Guide, Release 8.0

The following are some other relevant issues:

* The Patch buildbot wil automatically test your ticket. See the patchbot wiki for more information about its
features and limitations. Make sure that you look at the log, especially if the patch buildbot did not give you the
green blob.

 Every bug fixed should result in a doctest.

* This is not an issue with defects, but there are many enhancements possible for Sage and too few developers to
implement all the good ideas. The trac server is useful for keeping ideas in a central place because in the Google
groups they tend to get lost once they drop off the first page.

« If you are a developer, be nice and try to solve a stale/old ticket every once in a while.

* Some people regularly do triage. In this context, this means that we look at new bugs and classify them according
to our perceived priority. It is very likely that different people will see priorities of bugs very differently from
us, so please let us know if you see a problem with specific tickets.

2.1.9 Reviewing and closing Tickets

Tickets can be closed when they have positive review or for other reasons. To learn how to review, please see 7he
reviewer’s check list.

Only the Sage release manager will close tickets. Most likely, this is not you nor will your trac account have the
necessary permissions. If you feel strongly that a ticket should be closed or deleted, then change the status of the ticket
to needs review and change the milestone to sage-duplictate/invalid/wontfix. You should also comment on the ticket,
explaining why it should be closed. If another developer agrees, he sets the ticket to positive review.

A related issue is re-opening tickets. You should refrain from re-opening a ticket that is already closed. Instead, open
a new ticket and provide a link in the description to the old ticket.

2.1.10 Reasons to Invalidate Tickets

One Issue Per Ticket: A ticket must cover only one issue and should not be a laundry list of unrelated issues. If
a ticket covers more than one issue, we cannot close it and while some of the patches have been applied to a given
release, the ticket would remain in limbo.

No Patch Bombs: Code that goes into Sage is peer-reviewed. If you show up with an 80,000 lines of code bundle that
completely rips out a subsystem and replaces it with something else, you can imagine that the review process will be
a little tedious. These huge patch bombs are problematic for several reasons and we prefer small, gradual changes that
are easy to review and apply. This is not always possible (e.g. coercion rewrite), but it is still highly recommended
that you avoid this style of development unless there is no way around it.

Sage Specific: Sage’s philosophy is that we ship everything (or close to it) in one source tarball to make debugging
possible. You can imagine the combinatorial explosion we would have to deal with if you replaced only ten compo-
nents of Sage with external packages. Once you start replacing some of the more essential components of Sage that
are commonly packaged (e.g. Pari, GAP, lisp, gmp), it is no longer a problem that belongs in our tracker. If your
distribution’s Pari package is buggy for example, file a bug report with them. We are usually willing and able to solve
the problem, but there are no guarantees that we will help you out. Looking at the open number of tickets that are Sage
specific, you hopefully will understand why.

No Support Discussions: The trac installation is not meant to be a system to track down problems when using Sage.
Tickets should be clearly a bug and not “I tried to do X and I couldn’t get it to work. How do I do this?”” That is usually
not a bug in Sage and it is likely that sage—support can answer that question for you. If it turns out that you did
hit a bug, somebody will open a concise and to-the-point ticket.

40 Chapter 2. Sage Trac and tickets

http://wiki.sagemath.org/buildbot

Sage Developer’s Guide, Release 8.0

Solution Must Be Achievable: Tickets must be achievable. Many times, tickets that fall into this category usually ran
afoul to some of the other rules listed above. An example would be to “Make Sage the best CAS in the world”. There
is no metric to measure this properly and it is highly subjective.

2.1. The Sage Trac Server 41

Sage Developer’s Guide, Release 8.0

42 Chapter 2. Sage Trac and tickets

CHAPTER
THREE

WRITING CODE FOR SAGE

3.1 General Conventions

There are many ways to contribute to Sage including sharing scripts and Sage worksheets that implement new func-
tionality using Sage, improving to the Sage library, or to working on the many underlying libraries distributed with
Sage'. This guide focuses on editing the Sage library itself.

Sage is not just about gathering together functionality. It is about providing a clear, systematic and consistent way to
access a large number of algorithms, in a coherent framework that makes sense mathematically. In the design of Sage,
the semantics of objects, the definitions, etc., are informed by how the corresponding objects are used in everyday
mathematics.

To meet the goal of making Sage easy to read, maintain, and improve, all Python/Cython code that is included with
Sage should adhere to the style conventions discussed in this chapter.

3.1.1 Python Code Style

Follow the standard Python formatting rules when writing code for Sage, as explained at the following URLs:
* http://www.python.org/dev/peps/pep-0008
* http://www.python.org/dev/peps/pep-0257

In particular,

» Use 4 spaces for indentation levels. Do not use tabs as they can result in indentation confusion. Most editors have
a feature that will insert 4 spaces when the tab key is hit. Also, many editors will automatically search/replace
leading tabs with 4 spaces.

* Whitespace before and after assignment and binary operator of the lowest priority in the expression:

i=1i+1
c = (atb) » (a-b)

No whitespace before or after the = sign if it is used for keyword arguments:

def complex(real, imag=0.0):
return magic(r=real, i=imaqg)

No whitespace immediately inside parenthesis, brackets, and braces:

spam (ham[1], {eggs: 2})
[172 for i in range(3)]

I'See http://www.sagemath.org/links-components.html for a full list of packages shipped with every copy of Sage

43

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0257
http://www.sagemath.org/links-components.html

Sage Developer’s Guide, Release 8.0

 Use all lowercase function names with words separated by underscores. For example, you are encouraged to
write Python functions using the naming convention:

def set_some_value () :
return 1

Note, however, that some functions do have uppercase letters where it makes sense. For instance, the function
for lattice reduction by the LLL algorithm is called Matrix_integer_dense.LLL.

¢ Use CamelCase for class names:

class SomeValue (object) :
def _ init_ (self, x):
self. x =1

and factory functions that mimic object constructors, for example PolynomialRing or:

def SomeldentityValue (x) :
return SomeValue (1)

3.1.2 Files and Directory Structure

Roughly, the Sage directory tree is layout like this. Note that we use SAGE_ROOT in the following as a shortcut for
the (arbitrary) name of the directory containing the Sage sources:

SAGE_ROOT/
sage # the Sage launcher
Makefile # top level Makefile
build/ # sage's build system
deps
install
pkgs/ # install, patch, and metadata from spkgs
src/
setup.py

module_list.py

sage/

sage library (formerly devel/sage-main/sage)
ext/ # extra sage resources (formerly devel/ext-main)
mac-app/ # would no longer have to awkwardly be in extcode
bin/ # the scripts in local/bin that are tracked

upstream/ # tarballs of upstream sources
local/ # installed binaries

Python Sage library code goes into src/ and uses the following conventions. Directory names may be plural
(e.g. rings) and file names are almost always singular (e.g. polynomial_ring.py). Note that the file
polynomial_ ring.py might still contain definitions of several different types of polynomial rings.

Note: You are encouraged to include miscellaneous notes, emails, design discussions, etc., in your package. Make
these plain text files (with extension . txt) in a subdirectory called notes.

If you want to create a new directory in the Sage library SAGE_ROOT/src/sage (say, measure_theory), that
directory should containafile__init__ .py that contains the single line import all inaddition to whatever files
you want to add (say, borel_measure.py and banach_tarski.py), and also a file all.py listing imports

44 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

from that directory that are important enough to be in the Sage’s global namespace at startup. The file a11 . py might
look like this:

from borel _measure import BorelMeasure
from banach_tarski import BanachTarskiParadox

but it is generally better to use the lazy import framework:

from sage.misc.lazy_ import import lazy_ import
lazy_import ('sage.measure_theory.borel_measue', 'BorelMeasure')
lazy_import ('sage.measure_theory.banach_tarski', 'BanachTarskiParadox')

Then in the file SAGE_ROOT/src/sage/all.py, add a line

from sage.measure_theory.all import =

Non-Python Sage source code and supporting files should be placed in appropriate subdirectories of SAGE_ROOT/
src/ext/. They will then be automatically copied to the corresponding subdirectories of SAGE_ROOT/local/
share/sage/ext/ during the build process and can be accessed at runtime using SAGE_EXTCODE. For example,
if file is placed in SAGE_ROOT/src/ext/directory/ it can be accessed with

from sage.env import SAGE_EXTCODE
file = os.path.Jjoin (SAGE_EXTCODE, 'directory', 'file')

SAGE_EXTCODE is used because not all distributions have SAGE_ROOT.

3.1.3 Learn by copy/paste

For all of the conventions discussed here, you can find many examples in the Sage library. Browsing through the
code is helpful, but so is searching: the functions search_src, search_def, and search_doc are worth know-
ing about. Briefly, from the “sage:” prompt, search_src (string) searches Sage library code for the string
string. The command search_def (string) does a similar search, but restricted to function definitions, while
search_doc (string) searches the Sage documentation. See their docstrings for more information and more
options.

3.1.4 Headings of Sage Library Code Files

The top of each Sage code file should follow this format:

mwon
r

<Very short 1-line summary>

<Paragraph description>

EXAMPLES: :

<Lots and lots of examples>

AUTHORS :

— YOUR NAME (2005-01-03): initial version

- person (date in ISO year-month-day format): short desc

mwn

3.1. General Conventions 45

Sage Developer’s Guide, Release 8.0

#**************X’***********X’***********X’***********X’***********X’**************
Copyright (C) 2013 YOUR NAME <your email>

#

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 2 of the License, or

(at your option) any later version.

http://www.gnu.org/licenses/

#*******************X‘**‘***

As an example, see SAGE_ROOT/src/sage/rings/integer.pyx, which contains the implementation for Z.
The names of the people who made major contributions to the file appear in the AUTHORS section. You can add your
name to the list if you belong to the people, but refrain from being verbose in the description. The AUTHORS section
shows very rough overview of the history, especially if a lot of people have been working on that source file. The
authoritative log for who wrote what is always the git repository (see the output of git blame).

All code included with Sage must be licensed under the GPLv2+ or a compatible, that is, less restrictive license (e.g.
the BSD license).

3.1.5 Documentation Strings

The docstring of a function: content

Every function must have a docstring that includes the following information. You can use the existing functions of
Sage as templates.

* A one-sentence description of the function.

It must be followed by a blank line and end in a period. It describes the function or method’s effect as a command
(“Do this”, “Return that”), not as a description like “Returns the pathname ...”.

For methods of a class, it is recommended to refer to the se 1 f argument in a descriptive way, unless this leads to
a confusion. For example, if self is an integer, then this integer or the integer is more descriptive,
and it is preferable to write

Return whether this integer is prime.

* A longer description.
This is optional if the one-sentence description does not need more explanations.

Start with assumptions of the object, if there are any. For example,

’The poset is expected to be ranked.

if the function raises an exception when called on a non-ranked poset.

Define your terms

’The lexicographic product of G and H 1is the graph with vertex set

and mention possible aliases

’The tensor product is also known as the categorical product and

¢ An INPUT and an OUTPUT block describing the input/output of the function.

46 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

The INPUT block describes all arguments that the function accepts.

1. The type names should be descriptive, but do not have to represent the exact Sage/Python types. For
example, use “integer” for anything that behaves like an integer, rather than int.

2. Mention the default values of the input arguments when applicable.

INPUT:
- 'n —-- integer
- 'p = —— prime integer (default: 2); coprime with "~ n

The OUTPUT block describes the expected output. This is required if the one-sentence description of the
function needs more explanation.

OUTPUT: the plaintext decrypted from the ciphertext "~ "C

It is often the case that the output consists of several items.

OUTPUT: a tuple of

- the reduced echelon form H of the matrix

- the transformation matrix U such that UA = H°

You are recommended to be verbose enough for complicated outputs.

OUTPUT:
The decomposition of the free module on which this matrix A acts from
the right (i.e., the action is "x goes to xA), along with whether

this matrix acts irreducibly on each factor. The factors are guaranteed
to be sorted in the same way as the corresponding factors of the
characteristic polynomial.

* An EXAMPLES block for examples. This is not optional.
These examples are used for documentation, but they are also tested before each release just like TESTS block.
They should have good coverage of the functionality in question.

* A SEEALSO block (highly recommended) with links to related parts of Sage. This helps users find the features
that interest them and discover the new ones.

SEEALSO: :

:ref: chapter-sage_manuals_links",
:meth: sage.somewhere.other_useful_method’,
:mod: " sage.some.related.module’ .

See Hyperlinks for details on how to setup link in Sage.
¢ An ALGORITHM block (optional).

It indicates what algorithm and/or what software is used, e.g. ALGORITHM: Uses Pari. Here’s a longer
example with a bibliographical reference:

ALGORITHM:

The following algorithm is adapted from page 89 of [Nat2000]_.

3.1. General Conventions 47

Sage Developer’s Guide, Release 8.0

Let "p° be an odd (positive) prime and let “g° be a generator
modulo ‘p’ . Then "g”k’ is a generator modulo 'p° 1if and only if

“\gcd (k, p-1) = 1°. Since 'p° 1is an odd prime and positive, then
'p - 1° is even so that any even integer between 1 and 'p - 17,
inclusive, 1is not relatively prime to 'p - 1 . We have now
narrowed our search to all odd integers "k' between 1 and 'p - 17,
inclusive.

So now start with a generator g modulo an odd (positive) prime
‘p’. For any odd integer "k’ between 1 and 'p - 1°, inclusive,
‘g”k’ is a generator modulo ‘p° if and only if “\gcd(k, p-1) = 1°

The bibliographical reference should go in Sage’s master bibliography file, SAGE_ROOT/src/doc/en/
reference/references/index.rst:

[Nat2000] \M. B. Nathanson. Elementary Methods in Number Theory.
Springer, 2000.

A NOTE block for tips/tricks (optional).

NOTE: :

You should note that this sentence is indented at least 4
spaces. Never use the tab character.

* A WARNING block for critical information about your code (optional).

For example known situations for which the code breaks, or anything that the user should be aware of.

WARNING: :

Whenever you edit the Sage documentation, make sure that

the edited version still builds. That is, you need to ensure
that you can still build the HTML and PDF versions of the
updated documentation. If the edited documentation fails to
build, it is very likely that you would be requested to
change your patch.

¢ A TODO block for future improvements (optional).

It can contain disabled doctests to demonstrate the desired feature. Here’s an example of a TODO block:

TODO: :

Add to "~ have_fresh_beers’ an interface with the faster
algorithm "Buy a Better Fridge" (BaBF) ::

sage: have_fresh_beers('Biere de 1\'Yvette', algorithm="BaBF") # not,
—limplemented
Enjoy !

* A PLOT block to illustrate with pictures the output of a function.

Generate with Sage code an object g with a . plot method, then call sphinx_plot (g):

PLOT: :

48 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

g = graphs.PetersenGraph ()
sphinx_plot (g)

* A REFERENCES block to list related books or papers (optional).

Almost all bibliographic information should be put in the master bibliography file, see below. Citations will
then link to the master bibliography where the reader can find the bibliographic details (see below for citation
syntax). REFERENCE blocks in individual docstrings are therefore usually not necessary.

Nevertheless, a REFERENCE block can be useful if there are relevant sources which are not explicitly men-
tioned in the docstring or if the docstring is particularly long. In that case, add the bibliographic information to
the master bibliography file, if not already present, and add a reference block to your docstring as follows:

REFERENCES:
For more information, see [Strl969]_, or one of the following references:
- [Sto2000]_

- [Voe2003]_

Note the trailing underscores which makes the citations into hyperlinks. See below for more about the master
bibliography file. For more about citations, see the Sphinx/reST markup for citations. For links to trac tickets or
wikipedia, see Hyperlinks.

e A TESTS block (highly recommended).

Formatted just like EXAMPLES, containing tests that are not relevant to users. In particular, these blocks are
not shown when users ask for help via foo?: they are stripped by the function sage.misc.sagedoc.
skip_TESTS_block ().

Special and corner cases, like number zero, one-element group etc. should usually go to this block. This is
also right place for most tests of input validation; for example if the function accepts direction="'up' and
direction="down"', you can use this block to check that direction="'junk' raises an exception.

For the purposes of removal, A “TESTS” block is a block starting with “TEST:” or “TESTS:” (or the same with
two colons), on a line on its own, and ending either with a line indented less than “TESTS”, or with a line with
the same level of indentation — not more — matching one of the following:

— a Sphinx directive of the form .. foo:”, optionally followed by other text.
— text of the form “UPPERCASE:”, optionally followed by other text.

— lines which look like a reST header: one line containing anything, followed by a line consisting only of
whitespace, followed by a string of hyphens, equal signs, or other characters which are valid markers for
reST headers: - = ° L S R

Note about Sphinx directives vs. other blocks

The main Sphinx directives that are used in Sage are:

MATH::, .. NOTE::, .. PLOT::, .. RUBRIC::, .. SEEALSO::, .. TODO::, .. TOPIC:: and
WARNING: :.

They must be written exactly as above, so for example WARNING: : or .. WARNING :: will not work.
Some other directives are also available, but less frequently used, namely:

MODULEAUTHOR: :, .. automethod::, .. autofunction::,.. image::,.. figure::.

3.1. General Conventions 49

http://www.sphinx-doc.org/rest.html#citations

Sage Developer’s Guide, Release 8.0

Other blocks shall not be used as directives; for example . . ALGORITHM: : will not be shown at all.

Sage documentation style

All Sage documentation is written in reStructuredText (reST) and is processed by Sphinx. See http://www.sphinx-doc.
org/rest.html for an introduction. Sage imposes these styles:

* Lines should be shorter than 80 characters. If in doubt, read PEP8: Maximum Line Length.

e All reST and Sphinx directives (like . . WARNING::, .. NOTE::, .. MATH: :,etc.) are written in upper-
case.

* Code fragments are quoted with double backticks. This includes function arguments and the Python literals like
"“True' ', "False' " and " “None' . For example:

If "~ “check " is ~ "True ', then

Sage’s master BIBLIOGRAPHY file

All bibliographical references should be stored in the master bibliography file, SAGE_ROOT/src/doc/en/
reference/references/index. rst, in the format

[Gaul801l] \C. F. Gauss, *Disquisitiones Arithmeticaex, 1801.

[RSA1978] \R. Rivest, A. Shamir, L. Adleman,
"A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems".
Communications of the ACM xx21lxx (February 1978),
120-126. :doi:"10.1145/359340.359342".

The part in brackets is the citation key: given these examples, you could then use [Gaul801]_ in a docstring to
provide a link to the first reference. Note the trailing underscore which makes the citation a hyperlink.

When possible, the key should have this form: for a single author, use the first three letters of the family name followed
by the year; for multiple authors, use the first letter of each of the family names followed by the year. Note that the
year should be four digits, not just the last two — Sage already has references from both 1910 and 2010, for example.

When abbreviating the first name of an author in a bibliography listing, be sure to put a backslash in front of it. This
ensures that the letter (C . in the example above) will not be interpreted as a list enumerator.

For more about citations, see the Sphinx/reST markup for citations.

Template

Use the following template when documenting functions. Note the indentation:

def point (self, x=1, y=2):

rmmn

Return the point " (x"5,y) .

INPUT:
- ''x'' —-- integer (default: "1°); the description of the
argument ' 'x' ' goes here. If it contains multiple lines, all

the lines after the first need to begin at the same indentation

50 Chapter 3. Writing Code for Sage

http://www.sphinx-doc.org/rest.html
http://www.sphinx-doc.org/rest.html
https://www.python.org/dev/peps/pep-0008/#maximum-line-length
http://www.sphinx-doc.org/rest.html#citations

Sage Developer’s Guide, Release 8.0

as the backtick.

- "'y’ —-- integer (default: "2°); the description of the
argument "y’

OUTPUT: the point as a tuple

EXAMPLES :

This example illustrates
sage: A = ModuliSpace/()
sage: A.point (2,3)

XXX

We now

sage: B = A.point (5,6)
sage: xxx

It is an error to

sage: C = A.point ('x"',7)
Traceback (most recent call last):

TypeError: unable to convert 'r' to an integer
NOTE: :

This function uses the algorithm of [BCDT2001]_ to determine
whether an elliptic curve 'E° over "Q° 1s modular.

SEEALSO: :
:func: line’
TESTS: :

sage: A.point (42, 0) # Check for corner case y=0
XXX

mmn

<body of the function>

The master bibliography file would contain

[BCDT2001] Breuil, Conrad, Diamond, Taylor,
"Modularity"

You are strongly encouraged to:
» Use LaTeX typesetting (see LaTeX Typesetting).

¢ Liberally describe what the examples do.

Note: There must be a blank line after the example code and before the explanatory text for the next example

3.1. General Conventions 51

Sage Developer’s Guide, Release 8.0

(indentation is not enough).

* Illustrate the exceptions raised by the function with examples (as given above: “It is an error to [..]”, ...)
* Include many examples.

They are helpful for the users, and are crucial for the quality and adaptability of Sage. Without such examples,
small changes to one part of Sage that break something else might not go seen until much later when someone
uses the system, which is unacceptable.

Private functions

Functions whose names start with an underscore are considered private. They do not appear in the reference manual,
and their docstring should not contain any information that is crucial for Sage users. You can make their docstrings be
part of the documentation of another method. For example:

class Foo (SageObject) :

def f(self):

mnn

<usual docstring>

automethod:: _f

mnn

return self._f£f ()

def f(self):

mmon

This would be hidden without the "' .. automethod:: "

mmn

Private functions should contain an EXAMPLES (or TESTS) block.

A special case is the constructor __init__ : due to its special status the __init__ docstring is used as the class
docstring if there is not one already. That is, you can do the following:

sage: class Foo (SageObject) :

et # no class docstring

e def _ _init__ (self):

el """Construct a Foo."""

sage: foo Foo ()

sage: from sage.misc.sageinspect import sage_getdoc

sage: sage_getdoc (foo) # class docstring
'Construct a Foo.\n'
sage: sage_getdoc(foo.__init_) # constructor docstring

'Construct a Foo.\n'

LaTeX Typesetting

In Sage’s documentation LaTeX code is allowed and is marked with backticks or dollar signs:
"x72 + y*2 = 1" and $x*2 + y”~2 = 1S bothyield 22 +y? = 1.

Backslashes: For LaTeX commands containing backslashes, either use double backslashes or begin the docstring with
a r""" instead of """. Both of the following are valid:

52 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

def cos(x):

mon

Return “\\cos(x) .

mmn

def sin(x):
T mmn

Return $\sin(x)S.

mmn

MATH block: This is similar to the LaTeX syntax \[<math expression>\] (or $$<math
expression>$$). For instance:

. MATH::

\sum_{i=1}"{\infty} (a_l a_2 \cdots a_i)"{1/i}
\leqg
e \sum_{i=1}"{\infty} a_1i

o0 oo
1/
Z(alag'uai) < eZai
i=1 i=1
The aligned environment works as it does in LaTeX:
. MATH::
\begin{aligned}

f(x) & = x"2 — 1 \\
g(x) & = x"x - f(x - 2)
\end{aligned}

flz)=a® 1
g(x) = 2" — f(z - 2)
When building the PDF documentation, everything is translated to LaTeX and each MATH block is automatically
wrapped in a math environment — in particular, it is turned into \begin{gather} block \end{gather}. So

if you want to use a LaTeX environment (like a1ign) which in ordinary LaTeX would not be wrapped like this, you
must add a :nowrap: flag to the MATH mode. See also Sphinx’s documentation for math blocks.

. MATH::
rnowrap:

\begin{align}
1+...+n &= n(n+1)/2\\
&= 0(n"2)\\
\end{tabular}

1+..+n=n(n+1)/2 3.1
= 0(n?) (3.2)
(3.3)

Readability balance: in the interactive console, LaTeX formulas contained in the documentation are represented
by their LaTeX code (with backslashes stripped). In this situation \\frac{a} {b} is less readable than a/b or a
b"{-1} (some users may not even know LaTeX code). Make it pleasant for everybody as much as you can manage.

Commons rings (Z, N, ...): The Sage LaTeX style is to typeset standard rings and fields using the locally-defined
macro \\Bold (e.g. \\Bold{Zz} gives Z).

3.1. General Conventions 53

http://sphinx-doc.org/latest/ext/math.html?highlight=nowrap#directive-math

Sage Developer’s Guide, Release 8.0

Shortcuts are available which preserve readability, e.g. \\ZZ (Z), \\RR (R), \\CC (C), and \\QQ (Q). They appear
as LaTeX-formatted \\Bold{Z} in the html manual, and as Z in the interactive help. Other examples: \\GF{qg}
(F,) and \\Zmod {p} (Z/pZ).

See the file SAGE_ROOT/src/sage/misc/latex_macros.py for a full list and for details about how to add
more macros.

Writing Testable Examples

The examples from Sage’s documentation have a double purpose:
* They provide illustrations of the code’s usage to the users
* They are tests that are checked before each release, helping us avoid new bugs.

All new doctests added to Sage should pass all tests (see Running Sage’s doctests), i.e. running sage -t
your_file.py should not give any error messages. Below are instructions about how doctests should be writ-
ten.

What doctests should test:

¢ Interesting examples of what the function can do. This will be the most helpful to a lost user. It is also the
occasion to check famous theorems (just in case):

sage: is_prime(6) # 6 is not prime
False

sage: 2 x 3 # and here is a proof
6

« All meaningful combinations of input arguments. For example a function may accept an algorithm="B"
argument, and doctests should involve both algorithm="A" and algorithm="B".

* Corner cases: the code should be able to handle a 0 input, or an empty set, or a null matrix, or a null function, ...
All corner cases should be checked, as they are the most likely to be broken, now or in the future. This probably
belongs to the TESTS block (see The docstring of a function: content).

 Systematic tests of all small-sized inputs, or tests of random instances if possible.

Note: Note that TestSuites are an automatic way to generate some of these tests in specific situations. See
SAGE_ROOT/src/sage/misc/sage_unittest.py.

The syntax:

e Environment: doctests should work if you copy/paste them in Sage’s interactive console. For example, the
function AA () in the file SAGE_ROOT/src/sage/algebras/steenrod/steenrod_algebra.py
includes an EXAMPLES block containing the following:

sage: from sage.algebras.steenrod.steenrod_algebra import AA as A
sage: A()
mod 2 Steenrod algebra, milnor basis

Sage does not know about the function AA () by default, so it needs to be imported before it is tested. Hence
the first line in the example.

* Preparsing: As in Sage’s console, 4/3 returns 4/3 and not 1 as in Python 2.7. Testing occurs with full Sage
preparsing of input within the standard Sage shell environment, as described in Sage Preparsing.

54 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

* Writing files: If a test outputs to a file, the file should be a temporary file. Use tmp_filename () to get
a temporary filename, or tmp_dir () to get a temporary directory. An example from SAGE_ROOT/src/
sage/plot/graphics.py):

sage: plot(x"2 - 5, (x, 0, 5), ymin=0).save (tmp_filename (ext=".png'))

* Multiline doctests: You may write tests that span multiple lines, using the line continuation marker :

sage: for n in srange(1,10):
e if n.is_prime():
et print (n)

* Split long lines: You may want to split long lines of code with a backslash. Note: this syntax is non-standard
and may be removed in the future:

sage: n = 123456789123456789123456789\
el 123456789123456789123456789
sage: n.is_prime ()

* Doctests flags: flags are available to change the behaviour of doctests: see Special Markup to Influence Doctests.

Special Markup to Influence Doctests

Overly complicated output in the example code can be shortened by an ellipsis marker . . .:

sage: [ZZ(n) .ordinal_str() for n in range (25)]
['Oth"',
'lst',
'2nd"',
'3rd',
'4th',
'5th',
'21st',
'22nd"',
'23rd",
'24th']
sage: ZZ('sage')
Traceback (most recent call last):

TypeError: unable to convert 'sage' to an integer

On the proper usage of the ellipsis marker, see Python’s documentation.

There are a number of magic comments that you can put into the example code that change how the output is verified
by the Sage doctest framework. Here is a comprehensive list:

e random: The line will be executed, but its output will not be checked with the output in the documentation
string:

sage: ¢ = CombinatorialObject([1,2,3])
sage: hash (c) # random
1335416675971793195

3.1. General Conventions 55

https://docs.python.org/release/2.7.13/library/doctest.html#doctest.ELLIPSIS

Sage Developer’s Guide, Release 8.0

sage: hash (c) # random
This doctest passes too, as the output is not checked

However, most functions generating pseudorandom output do not need this tag since the doctesting framework
guarantees the state of the pseudorandom number generators (PRNGs) used in Sage for a given doctest.

When possible, avoid the problem, e.g.: rather than checking the value of the hash in a doctest, one could
illustrate successfully using it as a key in a dict.

long time: The line is only tested if the ——1ong option is given, e.g. sage -t —-long f.py.

Use it for doctests that take more than a second to run. No example should take more than about 30 seconds:

sage: E = EllipticCurve ([0, 0, 1, -1, 01])
sage: E.regulator () # long time (1 second)
0.0511114082399688

tol or tolerance: The numerical values returned by the line are only verified to the given tolerance. It is useful
when the output is subject to numerical noise due to system-dependent (floating point arithmetic, math libraries,
...) or non-deterministic algorithms.

— This may be prefixed by abs[olute] or rel[ative] to specify whether to measure absolute or
relative error (see the Wikipedia article Approximation_error).

— If none of abs/rel is specified, the error is considered to be absolute when the expected value is
zero, and is relat ive for nonzero values.

sage: n(pi) # abs tol le-9
3.14159265358979
sage: n(pi) # rel tol 2

6

sage: n(pi) # abs tol 1.41593

2

sage: K.<zeta8> = CyclotomicField(8)

sage: N(zeta8) # absolute tolerance le-10

0.7071067812 + 0.7071067812*1I

Multiple numerical values: the representation of complex numbers, matrices, or polynomials usually involves
several numerical values. If a doctest with tolerance contains several numbers, each of them is checked individ-
ually:

sage: print ("The sum of 1 and 1 equals 5") # abs tol 1
The sum of 2 and 2 equals 4

sage: e” (ixpi/4) .n() # rel tol le-1

0.7 + 0.7+I

sage: ((x+1.001)"4) .expand() # rel tol 2

X"+ 4xx"3 + 6xx72 + 4dxx + 1

sage: M = matrix.identity(3) + random_matrix(RR,3,3)/10"3
sage: M"2 # abs tol le-2

[1 0 0]

[0 1 0]

[0 0 1]

The values that the doctesting framework involves in the error computations are defined by the regular expression
float_regexin sage.doctest.parsing.

not implemented or not tested: The line is never tested.

Use it for very long doctests that are only meant as documentation. It can also be used for todo notes of what
will eventually be implemented:

56

Chapter 3. Writing Code for Sage

https://en.wikipedia.org/wiki/Approximation_error

Sage Developer’s Guide, Release 8.0

sage: factor(xxy — xxz) # todo: not implemented

It is also immediately clear to the user that the indicated example does not currently work.

Note: Skip all doctests of a file/directory

— file: If one of the first 10 lines of a file starts with any of r""" nodoctest (or """ nodoctest or #
nodoctest or $ nodoctest or .. nodoctest, or any of these with different spacing), then that
file will be skipped.

— directory: If a directory contains a file nodoctest . py, then that whole directory will be skipped.

Neither of this applies to files or directories which are explicitly given as command line arguments: those are
always tested.

 optional: A line flagged with optional - keyword isnot tested unless the ——optional=keyword flag
is passed to sage -t (see Run Optional Doctests). The main applications are:

— optional packages: When a line requires an optional package to be installed (e.g. the
sloane_database package):

’sage: SloaneEncyclopedia[60843] # optional - sloane_database

— internet: For lines that require an internet connection:

’sage: sloane_sequence (60843) # optional - internet

— bug: For lines that describe bugs. Alternatively, use # known bug instead: it is an alias for opt ional
bug.

The following should yield 4. See :trac: 2°

sage: 2+2 # optional: bug
5

sage: 2+2 # known bug

5

Note:
— Any words after # optional are interpreted as a list of package names, separated by spaces.

— Any punctuation (periods, commas, hyphens, semicolons, ...) after the first word ends the list of packages.
Hyphens or colons between the word optional and the first package name are allowed. Therefore, you
should not write optional: needs package CHomP butsimply optional: CHomP.

— Optional tags are case-insensitive, so you could also write optional: chOMP.

* indirect doctest: in the docstring of a function A (. ..), a line calling A and in which the name A does not
appear should have this flag. This prevents sage —--coverage <file> from reporting the docstring as
“not testing what it should test”.

Use it when testing special functions like __repr__,__add__, etc. Use it also when you test the function by
calling B which internally calls A:

This is the docstring of an "~ __add___ " method. The following

example tests it, but "°__add__"" is not written anywhere::

3.1. General Conventions 57

Sage Developer’s Guide, Release 8.0

sage: 1+1 # indirect doctest
2

* 32-bit or 64-bit: for tests that behave differently on 32-bit or 64-bit machines. Note that this particular flag is
to be applied on the output lines, not the input lines:

sage: hash(-920390823904823094890238490238484)
-873977844 # 32-bit
6874330978542788722 # 64-bit

Using search_src from the Sage prompt (or grep), one can easily find the aforementioned keywords. In the case
of todo: not implemented, one can use the results of such a search to direct further development on Sage.

3.1.6 Running Automated Doctests

This section describes Sage’s automated testing of test files of the following types: .py, .pyx, .sage, .rst.
Briefly, use sage -t <file> to test that the examples in <file> behave exactly as claimed. See the follow-
ing subsections for more details. See also Documentation Strings for a discussion on how to include examples in
documentation strings and what conventions to follow. The chapter Running Sage’s doctests contains a tutorial on
doctesting modules in the Sage library.

Testing .py, -pyx and .sage Files

Run sage -t <filename.py> to test all code examples in £ilename.py. Similar remarks apply to . sage
and . pyx files:

sage -t [-—-verbose] [-—optionall] [files and directories ...]

The Sage doctesting framework is based on the standard Python doctest module, but with many additional features
(such as parallel testing, timeouts, optional tests). The Sage doctester recognizes sage: prompts as well as >>>
prompts. It also preparses the doctests, just like in interactive Sage sessions.

Your file passes the tests if the code in it will run when entered at the sage: prompt with no extra imports. Thus
users are guaranteed to be able to exactly copy code out of the examples you write for the documentation and have
them work.

For more information, see Running Sage’s doctests.

Testing reST Documentation

Run sage -t <filename.rst> totest the examples in verbatim environments in reST documentation.

Of course in 1eST files, one often inserts explanatory texts between different verbatim environments. To link together
verbatim environments, use the . . 1ink comment. For example:

EXAMPLES: :

sage: a =1

Next we add 1 to "~ “a °

link::

58 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

sage: 1 + a

If you want to link all the verbatim environments together, you can put . . linkall anywhere in the file, on a line
by itself. (For clarity, it might be best to put it near the top of the file.) Then sage -t will act as if there were a . .
link before each verbatim environment. The file SAGE_ROOT/src/doc/en/tutorial/interfaces.rst
containsa .. linkall directive, for example.

You can also put . . skip right before a verbatim environment to have that example skipped when testing the file.
This goes in the same place as the . . 1ink in the previous example.

See the files in SAGE_ROOT/src/doc/en/tutorial/ for many examples of how to include automated testing
in reST documentation for Sage.

3.1.7 General Coding Style Regarding Whitespace

Use spaces instead of tabs for indentation. The only exception is for makefiles, in which tabs have a syntactic meaning
different from spaces.

Do not add trailing whitespace.

Sage provides editor configuration for Emacs, using the file .dir-locals.el, to use spaces instead of tabs. Re-
garding trailing whitespace, see https://www.emacswiki.org/emacs/DeletingWhitespace for various solutions.

If you use another editor, we recommend to configure it so you do not add tabs to files.

3.1.8 The Pickle Jar

Sage maintains a pickle jar at SAGE_ROOT/src/ext/pickle_jar/pickle_jar.tar.bz2 whichis atar file
of “standard” pickles created by sage. This pickle jar is used to ensure that sage maintains backward compatibility
by having sage.structure.sage_object.unpickle_all () check that sage can always unpickle all of
the pickles in the pickle jar as part of the standard doc testing framework.

Most people first become aware of the pickle_jar when their patch breaks the unpickling of one of the “standard”
pickles in the pickle jar due to the failure of the doctest:

sage -t src/sage/structure/sage_object.pyx

When this happens an error message is printed which contains the following hints for fixing the uneatable pickle:

*% This error is probably due to an old pickle failing to unpickle.
+% See sage.structure.sage_object.register_unpickle_override for

*% how to override the default unpickling methods for (old) pickles.
*% NOTE: pickles should never be removed from the pickle_jar!

For more details about how to fix unpickling errors in the pickle jar see sage.structure.sage_object.
register_unpickle_override ()

Warning: Sage’s pickle jar helps to ensure backward compatibility in sage. Pickles should only be removed from
the pickle jar after the corresponding objects have been properly deprecated. Any proposal to remove pickles from
the pickle jar should first be discussed on sage-devel.

3.1. General Conventions 59

https://www.emacswiki.org/emacs/DeletingWhitespace

Sage Developer’s Guide, Release 8.0

3.1.9 Global Options

Global options for classes can be defined in Sage using GlobalOptions.

3.1.10 Miscellanous minor things

Some decisions are arbitrary, but common conventions make life easier.

¢ Non-ASCII names in identifiers:

Translate g and ¢ to ae and oe, like moebius_function for Mobius function.

Translate d to a, like lovasz_number for Lovdsz number.

* Common function keyword arguments:

This is a list of some keyword arguments that many functions and methods take. For consistency, you should
use the keywords from the list below with the meaning as explained here. Do not use a different keyword with
the same meaning (for example, do not use method; use algorithm instead).

algorithm, a string or None: choose between various implementation or algorithm. Use None as a
default that selects a sensible default, which could depend on installed optional packages.

certificate, a Boolean with False as default: whether the function should return some kind of
certificate together with the result. With certificate=True the return value should be a pair (r,¢)
where r is the result that would be given with certificate=False and cis the certificate or None if
there is no meaningfull certificate.

proof, a Boolean with True as default: if True, require a mathematically proven computation. If
False, a probabilistic algorithm or an algorithm relying to non-proved hypothesis like RH can be used.

check, a Boolean: do some additional checks to verify the input parameters. This should not other-
wise influence the functioning of the code: if code works with check=True, it should also work with
check=False.

coerce, a Boolean: convert the input parameters to a suitable parent. This is typically used in con-
structors. You can call a method with coerce=False to skip some checks if the parent is known to be
correct.

inplace, a Boolean: whether to modify the object in-place or to return a copy.

3.2 The reviewer’s check list

All code that goes into Sage is peer-reviewed. Two reasons for this are:

* Because a developer cannot think of everything at once;

* Because a fresh pair of eyes may spot a mathematical error, a corner-case in the code, insufficient documentation,
a missing consistency check, etc.

Anybody (e.g. you) can do this job for somebody else’s ticket. This document lists things that the reviewer must check
before deciding that a ticket is ready for inclusion into Sage.

* Do you know what the trac server is? If not, click here.

* Do you have a trac account? If not, click here.

60

Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

You can now begin the review by reading the diff code.

Read the diff: the diff (i.e. the ticket’s content) can be obtained by clicking on the (green) branch’s name that appears
on the trac ticket. If that name appears in red (see The Ticket Fields) you can say so in a comment and set the ticket to
needs_work (see The status of a ticket).

Build the code: while you read the code, you can rebuild Sage with the new code. If you do not know how to
download the code, click here (with git trac) or here (git only).

The following should generally be checked while reading and testing the code:

The purpose: Does the code address the ticket’s stated aim? Can it introduce any new problems? Does testing
the new or fixed functionality with a variety of input, not just the examples in the documentation, give expected
and robust output (and no unexpected errors or crashes)?

User documentation: Is the use of the new code clear to a user? Are all mathematical notions involved standard,
or is there explanation (or a link to one) provided? Can he/she find the new code easily if he/she needs it?

Code documentation: Is the code sufficiently commented so that a developer does not have to wonder what
exactly it does?

Conventions: Does the code respect Sage’s conventions? Python’s convention? Cython’s convention?

Doctest coverage: Do all functions contain doctests? Use sage —-coverage <files> tocheckit. Are all
aspects of the new/modified methods and classes tested (see Writing Testable Examples)?

Bugfixes: If the ticket contains a bugfix, does it add a doctest illustrating that the bug has been fixed? This new
doctest should contain the ticket number, for example See :trac: 12345".

Speedup: Can the ticket make any existing code slower? if the ticket claims to speed up some computation,
does the ticket contain code examples to illustrate the claim? The ticket should explain how the speedup is
achieved.

Manuals: Does the reference manual build without errors (check both html and pdf)? See The Sage Manuals to
learn how to build the manuals.

Run the tests: Do all doctests pass without errors? Unrelated components of Sage may be affected by
the change. Check all tests in the whole library, including “long” doctests (this can be done with make
ptestlong) and any optional doctests related to the functionality. See Running Sage’s doctests for more
information.

You are now ready to change the ticket’s status (see The status of a ticket):

positive review: If the answers to the questions above and other reasonable questions are “yes”, you can set the
ticket to positive_review. Add your full name to the “reviewer” field (see The Ticket Fields).

needs_work: If something is not as it should, write a list of all points that need to be addressed in a comment
and change the ticket’s status to needs_work.

needs_info: If something is not clear to you and prevents you from going further with the review, ask your
question and set the ticket’s status to needs_info.

If you do not know what to do, for instance if you don’t feel experienced enough to take a final decision,
explain what you already did in a comment and ask if someone else could take a look.

Reviewer’s commit: if you can fix the issues yourself, you may make a commit in your own name and mark the
commit as a reviewer’s patch. To learn how click here (git trac) or here (git only). This contribution must also be
reviewed, for example by the author of the original patch.

For more advice on reviewing, see [WSblog].

Note:

“The perfect is the enemy of the good”

3.2. The reviewer’s check list 61

Sage Developer’s Guide, Release 8.0

The point of the review is to ensure that the Sage code guidelines are followed and that the implementation is math-
ematically correct. Please refrain from additional feature requests or open-ended discussion about alternative imple-
mentations. If you want the patch written differently, your suggestion should be a clear and actionable request.

REFERENCES:

3.3 Running Sage’s tests

3.3.1 Running Sage’s doctests

Doctesting a function ensures that the function performs as claimed by its documentation. Testing can be performed
using one thread or multiple threads. After compiling a source version of Sage, doctesting can be run on the whole
Sage library, on all modules under a given directory, or on a specified module only. For the purposes of this chapter,
suppose we have compiled Sage 6.0 from source and the top level Sage directory is:

[jdemeyer@sage sage-6.01$ pwd
/scratch/jdemeyer/build/sage-6.0

See the section Running Automated Doctests for information on Sage’s automated testing process. The general syntax
for doctesting is as follows. To doctest a module in the library of a version of Sage, use this syntax:

/path/to/sage-x.y.z/sage -t [--long] /path/to/sage-x.y.z/path/to/module.py[x]

where ——1ong is an optional argument (see Optional Arguments for more options). The version of sage used must
match the version of Sage containing the module we want to doctest. A Sage module can be either a Python script
(with the file extension ”.py”) or it can be a Cython script, in which case it has the file extension ”.pyx”.

Testing a Module

Say we want to run all tests in the sudoku module sage/games/sudoku.py. In a terminal window, first we cd
to the top level Sage directory of our local Sage installation. Now we can start doctesting as demonstrated in the
following terminal session:

[jdemeyer@sage sage-6.0]$./sage -t src/sage/games/sudoku.py
Running doctests with ID 2012-07-03-03-36-49-d82849c6.
Doctesting 1 file.
sage -t src/sage/games/sudoku.py

[103 tests, 3.6 s]

Total time for all tests: 4.8 seconds
cpu time: 3.6 seconds
cumulative wall time: 3.6 seconds

The numbers output by the test show that testing the sudoku module takes about four seconds, while testing all specified
modules took the same amount of time; the total time required includes some startup time for the code that runs the
tests. In this case, we only tested one module so it is not surprising that the total testing time is approximately the
same as the time required to test only that one module. Notice that the syntax is:

[Jjdemeyer@sage sage—-6.0]$./sage -t src/sage/games/sudoku.py
Running doctests with ID 2012-07-03-03-39-02-dabaccbb.
Doctesting 1 file.

62 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

sage -t src/sage/games/sudoku.py
[103 tests, 3.6 s]

Total time for all tests: 4.9 seconds
cpu time: 3.6 seconds
cumulative wall time: 3.6 seconds

but not:

[jdemeyer@sage sage-6.0]$./sage -t sage/games/sudoku.py
Running doctests with ID 2012-07-03-03-40-53-6cc4£f29f.
No files matching sage/games/sudoku.py

No files to doctest

We can also first cd to the directory containing the module sudoku . py and doctest that module as follows:

[jdemeyer@sage sage-6.0]1$ cd src/sage/games/
[jdemeyer@sage games]$ 1ls
__init__ _.py hexad.py sudoku.py sudoku_backtrack.pyx
all.py quantumino.py sudoku_backtrack.c
[jdemeyer@sage games]$../../../../sage -t sudoku.py
Running doctests with ID 2012-07-03-03-41-39-95ebd2ff.
Doctesting 1 file.
sage -t sudoku.py
[103 tests, 3.6 s]

Total time for all tests: 5.2 seconds
cpu time: 3.6 seconds
cumulative wall time: 3.6 seconds

In all of the above terminal sessions, we used a local installation of Sage to test its own modules. Even if we have a
system-wide Sage installation, using that version to doctest the modules of a local installation is a recipe for confusion.

Troubleshooting

To doctest modules of a Sage installation, from a terminal window we first cd to the top level directory of that Sage
installation, otherwise known as the SAGE_ROOT of that installation. When we run tests, we use that particular
Sage installation via the syntax ./sage; notice the “dot-forward-slash” at the front of sage. This is a precaution
against confusion that can arise when our system has multiple Sage installations. For example, the following syntax is
acceptable because we explicitly specify the Sage installation in the current SAGE_ROOT:

[Jjdemeyer@sage sage—-6.0]$./sage -t src/sage/games/sudoku.py
Running doctests with ID 2012-07-03-03-43-24-a3449f54.
Doctesting 1 file.
sage -t src/sage/games/sudoku.py

[103 tests, 3.6 s]

Total time for all tests: 4.9 seconds
cpu time: 3.6 seconds
cumulative wall time: 3.6 seconds

3.3. Running Sage’s tests 63

Sage Developer’s Guide, Release 8.0

[jdemeyer@sage sage—-6.0]$./sage -t "src/sage/games/sudoku.py"
Running doctests with ID 2012-07-03-03-43-54-ac8cal07.
Doctesting 1 file.
sage -t src/sage/games/sudoku.py

[103 tests, 3.6 s]

Total time for all tests: 4.9 seconds
cpu time: 3.6 seconds
cumulative wall time: 3.6 seconds

The following syntax is not recommended as we are using a system-wide Sage installation (if it exists):

[jdemeyer@sage sage—-6.0]$ sage -t src/sage/games/sudoku.py
sage -t "src/sage/games/sudoku.py"
R R e I b I b e b b b I I b b b b b b b S I b b b b b b b S b b b b I I b b b I b b b b b b b b S b b b S b b b b S b b b b i g
File "/home/jdemeyer/sage/sage-6.0/src/sage/games/sudoku.py", line 515:
sage: next (h.solve (algorithm="'backtrack'))
Exception raised:
Traceback (most recent call last):
File "/usr/local/sage/local/bin/ncadoctest.py", line 1231, in run_one_test
self.run_one_example (test, example, filename, compileflags)
File "/usr/local/sage/local/bin/sagedoctest.py", line 38, in run_one_example
OrigDocTestRunner.run_one_example (self, test, example, filename, compileflags)
File "/usr/local/sage/local/bin/ncadoctest.py", line 1172, in run_one_example
compileflags, 1) in test.globs
File "<doctest __main__.example_13[4]>", line 1, in <module>
next (h.solve (algorithm="'backtrack')) ###line 515:
sage: next (h.solve (algorithm="'backtrack'))
File "/home/jdemeyer/.sage/tmp/sudoku.py", line 607, in solve
for soln in gen:
File "/home/jdemeyer/.sage/tmp/sudoku.py", line 719, in backtrack
from sudoku_backtrack import backtrack_all
ImportError: No module named sudoku_backtrack
PR S S S S S S SRS SRR R e R e e Rt R RS E SR I I I I I I I I b i i e
[...more errors...]
2 items had failures:
4 of 15 in _ _main__.example_13
2 of 8 in __main__ .example_14
**xTest Failedxxx 6 failures.
For whitespace errors, see the file /home/jdemeyer/.sage//tmp/.doctest_sudoku.py
[21.1 s]

The following tests failed:

sage -t "src/sage/games/sudoku.py"
Total time for all tests: 21.3 seconds

In this case, we received an error because the system-wide Sage installation is a different (older) version than the one
we are using for Sage development. Make sure you always test the files with the correct version of Sage.

64 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

Parallel Testing Many Modules

So far we have used a single thread to doctest a module in the Sage library. There are hundreds, even thousands of
modules in the Sage library. Testing them all using one thread would take a few hours. Depending on our hardware,
this could take up to six hours or more. On a multi-core system, parallel doctesting can significantly reduce the testing
time. Unless we also want to use our computer while doctesting in parallel, we can choose to devote all the cores of
our system for parallel testing.

Let us doctest all modules in a directory, first using a single thread and then using four threads. For this example,
suppose we want to test all the modules under sage/crypto/. We can use a syntax similar to that shown above to
achieve this:

[Jdemeyer@sage sage-6.0]$./sage -t src/sage/crypto
Running doctests with ID 2012-07-03-03-45-40-7£837dcf.
Doctesting 24 files.
sage -t src/sage/crypto/__init__ .py
[0 tests, 0.0 s]
sage -t src/sage/crypto/all.py
[0 tests, 0.0 s]
sage -t src/sage/crypto/boolean_function.pyx
[252 tests, 4.4 s]
sage -t src/sage/crypto/cipher.py
[10 tests, 0.0 s]
sage -t src/sage/crypto/classical.py
[718 tests, 11.3 s]
sage -t src/sage/crypto/classical_cipher.py
[130 tests, 0.5 s]
sage -t src/sage/crypto/cryptosystem.py
[82 tests, 0.1 s]
sage -t src/sage/crypto/lattice.py
[1 tests, 0.0 s]
sage -t src/sage/crypto/lfsr.py
[31 tests, 0.1 s]
sage -t src/sage/crypto/stream.py
[17 tests, 0.1 s]
sage -t src/sage/crypto/stream_cipher.py
[114 tests, 0.2 s]
sage -t src/sage/crypto/util.py
[122 tests, 0.2 s]
sage -t src/sage/crypto/block_cipher/__init__ .py
[0 tests, 0.0 s]
sage -t src/sage/crypto/block_cipher/all.py
[0 tests, 0.0 s]
sage -t src/sage/crypto/block_cipher/miniaes.py
[430 tests, 1.3 s]
sage -t src/sage/crypto/block_cipher/sdes.py
[290 tests, 0.9 s]
sage -t src/sage/crypto/mg/__init___.py
[0 tests, 0.0 s]
sage -t src/sage/crypto/mg/mpolynomialsystem.py
[320 tests, 9.1 s]
sage -t src/sage/crypto/mg/mpolynomialsystemgenerator.py
[42 tests, 0.1 s]
sage -t src/sage/crypto/sbox.py
[124 tests, 0.8 s]
sage -t src/sage/crypto/mqg/sr.py
[435 tests, 5.5 s]
sage -t src/sage/crypto/public_key/__init__ .py

3.3. Running Sage’s tests 65

Sage Developer’s Guide, Release 8.0

[0 tests, 0.0 s]

sage -t src/sage/crypto/public_key/all.py
[0 tests, 0.0 s]

sage -t src/sage/crypto/public_key/blum_goldwasser.py
[135 tests, 0.2 s]

Total time for all tests: 38.1 seconds
cpu time: 29.8 seconds
cumulative wall time: 35.1 seconds

Now we do the same thing, but this time we also use the optional argument ——1ong:

[jdemeyer@sage sage-6.0]$./sage -t —--long src/sage/crypto/
Running doctests with ID 2012-07-03-03-48-11-cl6721leb.
Doctesting 24 files.
sage -t —--long src/sage/crypto/__init__ .py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/all.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/boolean_function.pyx
[252 tests, 4.2 s]
sage -t —--long src/sage/crypto/cipher.py
[10 tests, 0.0 s]
sage -t —--long src/sage/crypto/classical.py
[718 tests, 10.3 s]
sage -t —--long src/sage/crypto/classical_cipher.py
[130 tests, 0.5 s]
sage -t —--long src/sage/crypto/cryptosystem.py
[82 tests, 0.1 s]
sage -t —--long src/sage/crypto/lattice.py
[1 tests, 0.0 s]
sage -t --long src/sage/crypto/lfsr.py
[31 tests, 0.1 s]
sage -t —--long src/sage/crypto/stream.py
[17 tests, 0.1 s]
sage -t —--long src/sage/crypto/stream_cipher.py
[114 tests, 0.2 s]
sage -t --long src/sage/crypto/util.py
[122 tests, 0.2 s]
sage -t —--long src/sage/crypto/block_cipher/__init__ .py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/block_cipher/all.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/block_cipher/miniaes.py
[430 tests, 1.1 s]
sage -t —--long src/sage/crypto/block_cipher/sdes.py
[290 tests, 0.7 s]
sage -t —--long src/sage/crypto/mg/__init__ _.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/mg/mpolynomialsystem.py
[320 tests, 7.5 s]
sage -t —--long src/sage/crypto/mg/mpolynomialsystemgenerator.py
[42 tests, 0.1 s]
sage -t —--long src/sage/crypto/sbox.py
[124 tests, 0.7 s]
sage -t —--long src/sage/crypto/mg/sr.py

66 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

[437 tests, 82.4 s]
sage -t —--long src/sage/crypto/public_key/_ _init__ .py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/public_key/all.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/public_key/blum_goldwasser.py
[135 tests, 0.2 s]

Total time for all tests: 111.8 seconds
cpu time: 106.1 seconds
cumulative wall time: 108.5 seconds

Notice the time difference between the first set of tests and the second set, which uses the optional argument ——1ong.
Many tests in the Sage library are flagged with # long time because these are known to take a long time to run
through. Without using the optional ——1ong argument, the module sage/crypto/mg/sr.py took about five
seconds. With this optional argument, it required 82 seconds to run through all tests in that module. Here is a snippet
of a function in the module sage/crypto/mqg/sr.py with a doctest that has been flagged as taking a long time:

def test_consistency (max_n=2, xxkwargs):

r mmn

Test all combinations of “‘r'°, “‘c¢'', ‘e’ and “'n°" in (1,
2) " for consistency of random encryptions and their polynomial
systems. ‘\GF{2} ' and ‘\GF{2"e} ' systems are tested. This test takes
a while.

INPUT:

- ""max_n' = —-—- maximal number of rounds to consider (default: 2)

- " kwargs' = -- are passed to the SR constructor

TESTS:

The following test called with '~ "max_n' = 2 requires a LOT of RAM
(much more than 2GB). Since this might cause the doctest to fail
on machines with "only" 2GB of RAM, we test "~ "max_n ' = 1, which

has a more reasonable memory usage.

sage: from sage.crypto.mqg.sr import test_consistency
sage: test_consistency (1) # long time (80s on sage.math, 2011)
True

mmn

Now we doctest the same directory in parallel using 4 threads:

[jdemeyer@sage sage-6.0]$./sage —-tp 4 src/sage/crypto/
Running doctests with ID 2012-07-07-00-11-55-9b17765e.
Sorting sources by runtime so that slower doctests are run first....
Doctesting 24 files using 4 threads.
sage -t src/sage/crypto/boolean_function.pyx

[252 tests, 3.8 s]
sage -t src/sage/crypto/block_cipher/miniaes.py

[429 tests, 1.1 s]
sage -t src/sage/crypto/mg/sr.py

[432 tests, 5.7 s]
sage -t src/sage/crypto/sbox.py

[123 tests, 0.8 s]

3.3. Running Sage’s tests 67

Sage Developer’s Guide, Release 8.0

sage -t src/sage/crypto/block_cipher/sdes.py
[289 tests, 0.6 s]

sage -t src/sage/crypto/classical_cipher.py
[123 tests, 0.4 s]

sage -t src/sage/crypto/stream_cipher.py
[113 tests, 0.1 s]

sage -t src/sage/crypto/public_key/blum_goldwasser.py
[134 tests, 0.1 s]

sage -t src/sage/crypto/lfsr.py
[30 tests, 0.1 s]

sage -t src/sage/crypto/util.py
[121 tests, 0.1 s]

sage -t src/sage/crypto/cryptosystem.py
[79 tests, 0.0 s]

sage -t src/sage/crypto/stream.py
[12 tests, 0.0 s]

sage -t src/sage/crypto/mg/mpolynomialsystemgenerator.py
[40 tests, 0.0 s]

sage -t src/sage/crypto/cipher.py
[3 tests, 0.0 s]

sage -t src/sage/crypto/lattice.py
[0 tests, 0.0 s]

sage -t src/sage/crypto/block_cipher/__init__ .py
[0 tests, 0.0 s]

sage -t src/sage/crypto/all.py
[0 tests, 0.0 s]

sage -t src/sage/crypto/public_key/__init__ .py
[0 tests, 0.0 s]

sage -t src/sage/crypto/__init___.py
[0 tests, 0.0 s]

sage -t src/sage/crypto/public_key/all.py
[0 tests, 0.0 s]

sage -t src/sage/crypto/mg/__init__ .py
[0 tests, 0.0 s]

sage -t src/sage/crypto/block_cipher/all.py
[0 tests, 0.0 s]

sage -t src/sage/crypto/mg/mpolynomialsystem.py
[318 tests, 8.4 s]

sage -t src/sage/crypto/classical.py
[717 tests, 10.4 s]

Total time for all tests: 12.9 seconds
cpu time: 30.5 seconds
cumulative wall time: 31.7 seconds
[jdemeyer@sage sage—-6.0]$./sage —-tp 4 --long src/sage/crypto/
Running doctests with ID 2012-07-07-00-13-04-d71£f3cd4.
Sorting sources by runtime so that slower doctests are run first....
Doctesting 24 files using 4 threads.
sage -t --long src/sage/crypto/boolean_function.pyx
[252 tests, 3.7 s]
sage -t —--long src/sage/crypto/block_cipher/miniaes.py
[429 tests, 1.0 s]
sage -t —--long src/sage/crypto/sbox.py
[123 tests, 0.8 s]
sage -t --long src/sage/crypto/block_cipher/sdes.py
[289 tests, 0.6 s]

68 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

sage -t —--long src/sage/crypto/classical_cipher.py
[123 tests, 0.4 s]
sage -t —--long src/sage/crypto/util.py
[121 tests, 0.1 s]
sage -t --long src/sage/crypto/stream cipher.py
[113 tests, 0.1 s]
sage -t —--long src/sage/crypto/public_key/blum_goldwasser.py
[134 tests, 0.1 s]
sage -t --long src/sage/crypto/lfsr.py
[30 tests, 0.0 s]
sage -t —--long src/sage/crypto/cryptosystem.py
[79 tests, 0.0 s]
sage -t —--long src/sage/crypto/stream.py
[12 tests, 0.0 s]
sage -t —--long src/sage/crypto/mg/mpolynomialsystemgenerator.py
[40 tests, 0.0 s]
sage -t —--long src/sage/crypto/cipher.py
[3 tests, 0.0 s]
sage -t —--long src/sage/crypto/lattice.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/block_cipher/all.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/public_key/_ _init__ .py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/mg/__init__.py
[0 tests, 0.0 s]
sage -t --long src/sage/crypto/all.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/block_cipher/_ init_ .py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/__init__ .py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/public_key/all.py
[0 tests, 0.0 s]
sage -t —--long src/sage/crypto/mg/mpolynomialsystem.py
[318 tests, 9.0 s]
sage -t —--long src/sage/crypto/classical.py
[717 tests, 10.5 s]
sage -t --long src/sage/crypto/mg/sr.py
[434 tests, 88.0 s]

Total time for all tests: 90.4 seconds
cpu time: 113.4 seconds
cumulative wall time: 114.5 seconds

As the number of threads increases, the total testing time decreases.

Parallel Testing the Whole Sage Library

The main Sage library resides in the directory SAGE_ROOT/src/. We can use the syntax described above to doctest
the main library using multiple threads. When doing release management or patching the main Sage library, a release
manager would parallel test the library using 10 threads with the following command:

[jdemeyer@sage sage-6.0]$./sage —-tp 10 —--long src/

3.3. Running Sage’s tests 69

Sage Developer’s Guide, Release 8.0

Another way is run make ptestlong, which builds Sage (if necessary), builds the Sage documentation (if nec-
essary), and then runs parallel doctests. This determines the number of threads by reading the environment variable
MAKE: if it is set to make —7312, then use 12 threads. If MAKE is not set, then by default it uses the number of CPU
cores (as determined by the Python function multiprocessing.cpu_count ()) with a minimum of 2 and a
maximum of 8.

In any case, this will test the Sage library with multiple threads:

[jdemeyer@sage sage-6.0]$ make ptestlong

Any of the following commands would also doctest the Sage library or one of its clones:

make test

make check
make testlong
make ptest
make ptestlong

The differences are:

* make test and make check — These two commands run the same set of tests. First the Sage standard
documentation is tested, i.e. the documentation that resides in

— SAGE_ROOT/src/doc/common
— SAGE_ROOT/src/doc/en
— SAGE_ROOT/src/doc/fr

Finally, the commands doctest the Sage library. For more details on these command, see the file SAGE_ROOT/
Makefile.

* make testlong— This command doctests the standard documentation:
— SAGE_ROOT/src/doc/common
— SAGE_ROOT/src/doc/en
— SAGE_ROOT/src/doc/fr

and then the Sage library. Doctesting is run with the optional argument ——1ong. See the file SAGE_ROOT/
Makefile for further details.

* make ptest — Similar to the commands make test and make check. However, doctesting is run with
the number of threads as described above for make ptestlong.

* make ptestlong — Similar to the command make ptest, but using the optional argument ——1ong for
doctesting.

Beyond the Sage Library

Doctesting also works fine for files not in the Sage library. For example, suppose we have a Python script called
my_python_script.py:

[mvngu@sage build]$ cat my_python_script.py
from sage.all_cmdline import = # import sage library

def square(n):
nmmwn

Return the square of n.

70 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

EXAMPLES: :

sage: square (2)
4

nnn

return nx*2

Then we can doctest it just as with Sage library files:

[mvngu@sage sage—-6.0]1$./sage -t my_python_script.py
Running doctests with ID 2012-07-07-00-17-56-d056£7c0.
Doctesting 1 file.
sage -t my_python_script.py

[1 test, 0.0 s]

Total time for all tests: 2.2 seconds
cpu time: 0.0 seconds
cumulative wall time: 0.0 seconds

Doctesting can also be performed on Sage scripts. Say we have a Sage script called my_sage_script.sage with
the following content:

[mvngu@sage sage-6.0]1$ cat my_sage_script.sage
def cube (n) :

nn
rhoun

Return the cube of n.
EXAMPLES: :

sage: cube (2)
8

wnnn

return nxx3

Then we can doctest it just as for Python files:

[mvngu@sage build]$ sage-6.0/sage -t my_sage_script.sage
Running doctests with ID 2012-07-07-00-20-06-82ee728c.
Doctesting 1 file.
sage -t my_sage_script.sage

[1 test, 0.0 s]

Total time for all tests: 2.5 seconds
cpu time: 0.0 seconds
cumulative wall time: 0.0 seconds

Alternatively, we can preparse it to convert it to a Python script, and then doctest that:

[mvngu@sage build]$ sage-6.0/sage —-preparse my_sage_script.sage
[mvngu@sage build]$ cat my_sage_script.sage.py

This file was xautogenerated* from the file my_sage_script.sage.
from sage.all_cmdline import = # import sage library
_sage_const_3 = Integer(3)

def cube (n) :

3.3. Running Sage’s tests 71

Sage Developer’s Guide, Release 8.0

nnwn
r

Return the cube of n.
EXAMPLES: :

sage: cube (2)
8
o
return nxx_sage_const_3
[mvngu@sage build]$ sage-6.0/sage -t my_sage_script.sage.py
Running doctests with ID 2012-07-07-00-26-46-2bb00911.
Doctesting 1 file.
sage -t my_sage_script.sage.py
[2 tests, 0.0 s]

Total time for all tests: 2.3 seconds
cpu time: 0.0 seconds
cumulative wall time: 0.0 seconds

Doctesting from Within Sage

You can run doctests from within Sage, which can be useful since you don’t have to wait for Sage to start. Use the
run_doctests function in the global namespace, passing it either a string or a module:

sage: run_doctests (sage.coding.sd_codes)

Doctesting /Users/roed/sage/sage—-5.3/src/sage/coding/sd_codes.py

Running doctests with ID 2012-07-07-04-32-36-81£3853b.

Doctesting 1 file.

sage -t /Users/roed/sage/sage-5.3/src/sage/coding/sd_codes.py
[18 tests, 0.3 s]

Total time for all tests: 0.4 seconds
cpu time: 0.2 seconds
cumulative wall time: 0.3 seconds

Optional Arguments

Run Long Doctests

Ideally, doctests should not take any noticeable amount of time. If you really need longer-running doctests (anything
beyond about one second) then you should mark them as:

sage: my_long_test () # long time

Even then, long doctests should ideally complete in 5 seconds or less. We know that you (the author) want to show off
the capabilities of your code, but this is not the place to do so. Long-running tests will sooner or later hurt our ability
to run the testsuite. Really, doctests should be as fast as possible while providing coverage for the code.

Use the ——1ong flag to run doctests that have been marked with the comment # long time. These tests are
normally skipped in order to reduce the time spent running tests:

72 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

[roed@sage sage-6.0]$ sage -t src/sage/rings/tests.py
Running doctests with ID 2012-06-21-16-00-13-40835825.
Doctesting 1 file.
sage -t tests.py

[18 tests, 1.1 s]

Total time for all tests: 2.9 seconds
cpu time: 0.9 seconds
cumulative wall time: 1.1 seconds

In order to run the long tests as well, do the following:

[roed@sage sage-6.0]$ sage -t —--long src/sage/rings/tests.py
Running doctests with ID 2012-06-21-16-02-05-d13a%a24.
Doctesting 1 file.
sage -t tests.py

[20 tests, 34.7 s]

Total time for all tests: 46.5 seconds
cpu time: 25.2 seconds
cumulative wall time: 34.7 seconds

To find tests that take longer than the allowed time use the ——warn-1long flag. Without any options it will cause
tests to print a warning if they take longer than 1.0 second. Note that this is a warning, not an error:

[roed@sage sage-6.0]1$ sage -t --warn-long src/sage/rings/factorint.pyx
Running doctests with ID 2012-07-14-03-27-03-2c952acl.
Doctesting 1 file.
sage -t —--warn-long src/sage/rings/factorint.pyx
Ak kA Ak hk kA Ak kA hkhkhkhkhhkhk ko hkhk Ak hkhkhkhk ko hkhhkhkhkhkhhk kA hkhkrkhkhkhkhkhhkkhkhArkhkhkhkhkhkhhrhkhkxkx*
File "src/sage/rings/factorint.pyx", line 125, in sage.rings.factorint.base_exponent
Failed example:
base_exponent (-4)
Test ran for 4.09 s
R I I I b I I I b I b R b I I e S I b b I R b b b b R b I I b b b b I b b I I b b I R b i b b b b i b
File "src/sage/rings/factorint.pyx", line 153, in sage.rings.factorint.factor_
—aurifeuillian
Failed example:
fa(276+1)
Test ran for 2.22 s
hAhkkhkkhhkhkhkkhkhkhkhkkhhkhhhhkhhhkdhh kA hhhkhhhkhhkhrhkhkhAhhhdhkhhhhkhhhkdhbhhkkhkhAhrhkkhkhkhkhkkhk kA khkhkh ik
File "src/sage/rings/factorint.pyx", line 155, in sage.rings.factorint.factor_
—aurifeuillian
Failed example:
fa(2758+1)
Test ran for 2.22 s
hAhkhk kA Ak kA Ak hkkhhkhAhkhhkhhhkdhhhkhkhAhhhkhkhhkhhkhrhhkhAhkhhdhk bk hhkhkhhkdhhhkkhk A hkkhkhkhkhkd kA khkhhkh*k
File "src/sage/rings/factorint.pyx", line 163, in sage.rings.factorint.factor_
—aurifeuillian
Failed example:
fa(274+1)
Test ran for 2.25 s

R S S e S S R R R b I I I I S S S S S S S S S S I S I b b b b I b I S S S S S S S S g

3.3. Running Sage’s tests 73

Sage Developer’s Guide, Release 8.0

All tests passed!

Total time for all tests: 16.1 seconds
cpu time: 9.7 seconds
cumulative wall time: 10.9 seconds

You can also pass in an explicit amount of time:

[roed@sage sage-6.0]$ sage -t --long --warn-long 2.0 src/sage/rings/tests.py
Running doctests with ID 2012-07-14-03-30-13-c9164c9d.
Doctesting 1 file.
sage -t —--long —--warn-long 2.0 tests.py
khkkhkkhhkhkhkkhkhkhkhkkhhkhhhkhkhhhkdhhhkhkhAhhhkhhhkhhkhrhkhkhAhkhhhkhbhhhkhhkhkdkhkhrhkkhkhAhrhkkhkhkhkhkkh kA khkhh ik
File "tests.py", line 240, in sage.rings.tests.test_random_elements
Failed example:

sage.rings.tests.test_random_elements (trials=1000) # long time (5 seconds)
Test ran for 13.36 s
R I I I I I R I I S I I I I I I I I I I i I I I I I I I I I b I I I b I I S R b b b b I S b I
File "tests.py", line 283, in sage.rings.tests.test_random_arith
Failed example:

sage.rings.tests.test_random_arith(trials=1000) # long time (5 seconds?)
Test ran for 12.42 s

R R I i I I S I R I I S e S b e S b b b I b I S b B b b I b R b S R S b S Sh S b S b e S b e S b S b S b 2

Total time for all tests: 27.6 seconds
cpu time: 24.8 seconds
cumulative wall time: 26.3 seconds

Finally, you can disable any warnings about long tests with -——warn-long O.

Run Optional Doctests

You can run tests that require optional packages by using the ——optional flag. Obviously, you need to have installed
the necessary optional packages in order for these tests to succeed. See http://www.sagemath.org/packages/optional/
in order to download optional packages.

By default, Sage only runs doctests that are not marked with the opt ional tag. This is equivalent to running

[roed@sage sage-6.0]$ sage -t —--optional=sage src/sage/rings/real_mpfr.pyx
Running doctests with ID 2012-06-21-16-18-30-a368a200.
Doctesting 1 file.
sage -t src/sage/rings/real_mpfr.pyx
[819 tests, 7.0 s]

Total time for all tests: 8.4 seconds
cpu time: 4.1 seconds
cumulative wall time: 7.0 seconds

If you want to also run tests that require magma, you can do the following:

[roed@sage sage-6.0]$ sage -t --optional=sage,magma src/sage/rings/real_mpfr.pyx
Running doctests with ID 2012-06-21-16-18-30-a00a7319
Doctesting 1 file.

74 Chapter 3. Writing Code for Sage

http://www.sagemath.org/packages/optional/

Sage Developer’s Guide, Release 8.0

sage -t src/sage/rings/real_mpfr.pyx
[823 tests, 8.4 s]

Total time for all tests: 9.6 seconds
cpu time: 4.0 seconds
cumulative wall time: 8.4 seconds

In order to just run the tests that are marked as requiring magma, omit sage:

[roed@sage sage-6.0]$ sage -t —-—-optional=magma src/sage/rings/real_mpfr.pyx
Running doctests with ID 2012-06-21-16-18-33-a2bclfdf
Doctesting 1 file.
sage -t src/sage/rings/real_mpfr.pyx
[4 tests, 2.0 s]

Total time for all tests: 3.2 seconds
cpu time: 0.1 seconds
cumulative wall time: 2.0 seconds

If you want Sage to detect external software or other capabilities (such as magma, latex, internet) automatically and
run all of the relevant tests, then add external:

$ sage -t —--optional=external src/sage/rings/real_mpfr.pyx
Running doctests with ID 2016-03-16-14-10-21-af2ebb67.
Using —--optional=external
External software to be detected: cplex,gurobi,internet, latex,macaulay2,magma,maple,
—mathematica, matlab, octave, scilab
Doctesting 1 file.
sage -t —--warn-long 28.0 src/sage/rings/real_mpfr.pyx
[5 tests, 0.04 s]

Total time for all tests: 0.5 seconds
cpu time: 0.0 seconds
cumulative wall time: 0.0 seconds
External software detected for doctesting: magma

To run all tests, regardless of whether they are marked optional, pass all as the optional tag:

[roed@sage sage-6.0]$ sage -t —--optional=all src/sage/rings/real_mpfr.pyx
Running doctests with ID 2012-06-21-16-31-18-8c097£55
Doctesting 1 file.
sage -t src/sage/rings/real_mpfr.pyx
[865 tests, 11.2 s]

Total time for all tests: 12.8 seconds
cpu time: 4.7 seconds
cumulative wall time: 11.2 seconds

3.3. Running Sage’s tests 75

Sage Developer’s Guide, Release 8.0

Running Doctests in Parallel

If you’re testing many files, you can get big speedups by using more than one thread. To run doctests in parallel use
the ——nthreads flag (-p is a shortened version). Pass in the number of threads you would like to use (by default
Sage just uses 1):

[roed@sage sage-6.0]$ sage —tp 2 src/sage/doctest/
Running doctests with ID 2012-06-22-19-09-25-a3afdb8c.
Sorting sources by runtime so that slower doctests are run first....
Doctesting 8 files using 2 threads.
sage -t src/sage/doctest/control.py
[114 tests, 4.6 s]
sage -t src/sage/doctest/util.py
[114 tests, 0.6 s]
sage -t src/sage/doctest/parsing.py
[187 tests, 0.5 s]
sage -t src/sage/doctest/sources.py
[128 tests, 0.1 s]
sage -t src/sage/doctest/reporting.py
[53 tests, 0.1 s]
sage -t src/sage/doctest/all.py
[0 tests, 0.0 s]
sage -t src/sage/doctest/__init__ .py
[0 tests, 0.0 s]
sage -t src/sage/doctest/forker.py
[322 tests, 15.5 s]

Total time for all tests: 17.0 seconds
cpu time: 4.2 seconds
cumulative wall time: 21.5 seconds

Doctesting All of Sage

To doctest the whole Sage library use the ——a11 flag (—a for short). In addition to testing the code in Sage’s Python
and Cython files, this command will run the tests defined in Sage’s documentation as well as testing the Sage notebook:

[roed@sage sage-6.0]$ sage -t -a
Running doctests with ID 2012-06-22-19-10-27-e26fcebd.
Doctesting entire Sage library.
Sorting sources by runtime so that slower doctests are run first....
Doctesting 2020 files.
sage -t /Users/roed/sage/sage-5.3/src/sage/plot/plot.py
[304 tests, 69.0 s]

If you want to just run the notebook tests, use the ——sagenb flag instead.

Debugging Tools

Sometimes doctests fail (that’s why we run them after all). There are various flags to help when something goes wrong.
If a doctest produces a Python error, then normally tests continue after reporting that an error occurred. If you use the
flag ——debug (-d for short) then you will drop into an interactive Python debugger whenever a Python exception
occurs. As an example, I modified sage.schemes.elliptic_curves.constructor to produce an error:

76 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

[roed@sage sage-6.0]1$ sage -t --debug src/sage/schemes/elliptic_curves/constructor.py
Running doctests with ID 2012-06-23-12-09-04-0b6352629.
Doctesting 1 file.
khkkhkkhhkhkhkkhkhkhkhkkhhkhAhhhkhhhkdhhhkhkhAhhhkhkhhkhhhhkhkhAhbhhdhkhbhhkhkhhhkdhhhkkhkhAhrhkkhkhkhkhkkhhkhrhkkhkhkhkh*k
File "sage.schemes.elliptic_curves.constructor", line 4, in sage.schemes.elliptic_
—curves.constructor
Failed example:
EllipticCurve ([0,01])
Exception raised:
Traceback (most recent call last):
File "/Users/roed/sage/sage-5.3/local/lib/python2.7/site-packages/sage/doctest/
—forker.py", line 573, in _run
self.execute (example, compiled, test.globs)
File "/Users/roed/sage/sage-5.3/local/lib/python2.7/site-packages/sage/doctest/
—forker.py", line 835, in execute
exec compiled in globs
File "<doctest sage.schemes.elliptic_curves.constructor[0]>", line 1, in
—<module>
EllipticCurve ([Integer (0), Integer(0)])
File "/Users/roed/sage/sage-5.3/local/lib/python2.7/site-packages/sage/schemes/
—elliptic_curves/constructor.py", line 346, in EllipticCurve
return ell_rational_field.EllipticCurve_rational_field(x, vy)
File "/Users/roed/sage/sage-5.3/local/lib/python2.7/site-packages/sage/schemes/

—elliptic_curves/ell_rational_field.py", line 216, in __init___
EllipticCurve_number_field._ _init__ (self, Q, ainvs)
File "/Users/roed/sage/sage-5.3/local/lib/python2.7/site-packages/sage/schemes/
—elliptic_curves/ell_number_field.py", line 159, in __init___
EllipticCurve_field.__init__ (self, [field(x) for x in ainvs])
File "/Users/roed/sage/sage-5.3/local/lib/python2.7/site-packages/sage/schemes/
—elliptic_curves/ell_generic.py", line 156, in __init___

"Invariants %s define a singular curve."%ainvs
ArithmeticError: Invariants [0, 0, 0, 0, 0] define a singular curve.
> /Users/roed/sage/sage-5.3/local/lib/python2.7/site-packages/sage/schemes/elliptic_

—curves/ell_generic.py(156)__init__ ()

-> "Invariants %s define a singular curve."%ainvs

(Pdb) 1

151 if len(ainvs) == 2:

152 ainvs = [K(0),K(0),K(0)] + ainvs

153 self.__ainvs = tuple(ainvs)

154 if self.discriminant () == 0:

155 raise ArithmeticError, \

156 —> "Invariants %s define a singular curve."%ainvs
157 PP = projective_space.ProjectiveSpace (2, K, names='xyz');
158 X, y, z = PP.coordinate_ring() .gens ()

159 al, a2, a3, a4, a6 = ainvs

160 f = yx*2%xz + (alxx + a3xz)xy*z \

161 — (X**3 4+ a*xX**x2xz + ad*x*xz*x*2 + abxzx*3)

(Pdb) p ainvs
o, o, o, 0, 0]
(Pdb) quit
khkkhkkhkhkhkhkkhkhkhkhkkhhkhAhhkhkhkhhkdhhhkhkhAhhhkhhhkhhkhrhkhkdhhhhkhbhhhkhrhhkdhhhkkhkhdhrhkkhkhkhkhkkhhkhrhkhkhhkhk
1 items had failures:

1 of 1 in sage.schemes.elliptic_curves.constructor
xTest Failedx 1 failures.
sage -t src/sage/schemes/elliptic_curves/constructor.py

[64 tests, 89.2 s]

sage -t src/sage/schemes/elliptic_curves/constructor.py # 1 doctest failed

3.3. Running Sage’s tests

77

Sage Developer’s Guide, Release 8.0

Total time for all tests: 90.4 seconds
cpu time: 4.5 seconds
cumulative wall time: 89.2 seconds

Sometimes an error might be so severe that it causes Sage to segfault or hang. In such a situation you have a number of
options. The doctest framework will print out the output so far, so that at least you know what test caused the problem
(if you want this output to appear in real time use the ——verbose flag). To have doctests run under the control of
gdb, use the ——gdb flag:

[roed@sage sage-6.0]$ sage -t ——gdb src/sage/schemes/elliptic_curves/constructor.py
gdb -x /home/roed/sage-6.0.b5/local/bin/sage-gdb-commands —--args python /home/roed/
—ssage—-6.0.b5/local/bin/sage-runtests —--serial —--nthreads 1 —--timeout 1048576 —-—
—optional sage —--stats_path /home/roed/.sage/timings2.json src/sage/schemes/elliptic_
—curves/constructor.py
GNU gdb 6.8-debian
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-1linux—-gnu"...
[Thread debugging using libthread_db enabled]
[New Thread 0x7f£10£85566e0 (LWP 6534)]
Running doctests with ID 2012-07-07-00-43-36-blb735e7.
Doctesting 1 file.
sage -t src/sage/schemes/elliptic_curves/constructor.py
[67 tests, 5.8 s]

Total time for all tests: 15.7 seconds
cpu time: 4.4 seconds
cumulative wall time: 5.8 seconds

Program exited normally.
(gdb) quit

Sage also includes valgrind, and you can run doctests under various valgrind tools to track down memory issues:
the relevant flags are ——valgrind (or ——memcheck), ——massif, ——cachegrind and ——omega. See http:
/Iwiki.sagemath.org/ValgrindingSage for more details.

Once you’re done fixing whatever problems where revealed by the doctests, you can rerun just those files that failed
their most recent test by using the ——failed flag (- £ for short):

[roed@sage sage-6.0]$ sage -t -fa

Running doctests with ID 2012-07-07-00-45-35-d8b5a408.
Doctesting entire Sage library.

Only doctesting files that failed last test.

No files to doctest

Miscellaneous Options

There are various other options that change the behavior of Sage’s doctesting code.

78 Chapter 3. Writing Code for Sage

http://wiki.sagemath.org/ValgrindingSage
http://wiki.sagemath.org/ValgrindingSage

Sage Developer’s Guide, Release 8.0

Show only first failure

The first failure in a file often causes a cascade of others, as NameErrors arise from variables that weren’t defined
and tests fail because old values of variables are used. To only see the first failure in each doctest block use the
-—initial flag (-1 for short).

Show skipped optional tests

To print a summary at the end of each file with the number of optional tests skipped, use the ——show-skipped flag:

[roed@sage sage-6.0]$ sage -t —--show-skipped src/sage/rings/finite_rings/integer_mod.
—pyx
Running doctests with ID 2013-03-14-15-32-05-8136f5e3.
Doctesting 1 file.
sage -t sage/rings/finite_rings/integer_mod.pyx

2 axiom tests not run

1 cunningham test not run

2 fricas tests not run

1 long test not run

3 magma tests not run

[440 tests, 4.0 s]

Total time for all tests: 4.3 seconds
cpu time: 2.4 seconds
cumulative wall time: 4.0 seconds

Running tests with iterations

Sometimes tests fail intermittently. There are two options that allow you to run tests repeatedly in an attempt to search
for Heisenbugs. The flag ——global-iterations takes an integer and runs the whole set of tests that many times
serially:

[roed@sage sage-6.0]$ sage -t —-—global-iterations 2 src/sage/sandpiles
Running doctests with ID 2012-07-07-00-59-28-e7048ad?9.
Doctesting 3 files (2 global iterations).
sage -t src/sage/sandpiles/_ _init__ .py
[0 tests, 0.0 s]
sage -t src/sage/sandpiles/all.py
[0 tests, 0.0 s]
sage -t src/sage/sandpiles/sandpile.py
[711 tests, 14.7 s]

Total time for all tests: 17.6 seconds
cpu time: 13.2 seconds
cumulative wall time: 14.7 seconds
sage -t src/sage/sandpiles/_ _init_ .py
[0 tests, 0.0 s]
sage -t src/sage/sandpiles/all.py
[0 tests, 0.0 s]
sage -t src/sage/sandpiles/sandpile.py

3.3. Running Sage’s tests 79

Sage Developer’s Guide, Release 8.0

Total time for all tests: 14.3 seconds
cpu time: 26.4 seconds
cumulative wall time: 28.5 seconds

You can also iterate in a different order: the ——file-iterations flag runs the tests in each file N times before
proceeding:

[roed@sage sage-6.0]1$ sage -t ——-file-iterations 2 src/sage/sandpiles
Running doctests with ID 2012-07-07-01-01-43-8£954206.
Doctesting 3 files (2 file iterations).
sage -t src/sage/sandpiles/_ _init__ .py
[0 tests, 0.0 s]
sage -t src/sage/sandpiles/all.py
[0 tests, 0.0 s]
sage -t src/sage/sandpiles/sandpile.py
[1422 tests, 13.3 s]

Total time for all tests: 29.6 seconds
cpu time: 12.7 seconds
cumulative wall time: 13.3 seconds

Note that the reported results are the average time for all tests in that file to finish. If a failure in a file occurs, then the
failure is reported and testing proceeds with the next file.

Using a different timeout

On a slow machine the default timeout of 5 minutes may not be enough for the slowest files. Use the ——t imeout
flag (—T for short) to set it to something else:

[roed@sage sage-6.0]$ sage -tp 2 --all --timeout 1

Running doctests with ID 2012-07-07-01-09-37-deblab83.

Doctesting entire Sage library.

Sorting sources by runtime so that slower doctests are run first....

Doctesting 2067 files using 2 threads.

sage -t src/sage/schemes/elliptic_curves/ell_rational_field.py
Timed out!

Using absolute paths

By default filenames are printed using relative paths. To use absolute paths instead pass in the ——abspath flag:

[roed@sage sage-6.0]$ sage -t —-—-abspath src/sage/doctest/control.py
Running doctests with ID 2012-07-07-01-13-03-a023e212.
Doctesting 1 file.
sage -t /home/roed/sage-6.0/src/sage/doctest/control.py
[133 tests, 4.7 s]

80 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

All tests passed!

Total time for all tests: 7.1 seconds
cpu time: 0.2 seconds
cumulative wall time: 4.7 seconds

Testing changed files

If you are working on some files in the Sage library it can be convenient to test only the files that have changed. To do
so use the ——new flag, which tests files that have been modified or added since the last commit:

[roed@sage sage-6.0]$ sage -t —-—new
Running doctests with ID 2012-07-07-01-15-52-645620¢ce.
Doctesting files changed since last git commit.
Doctesting 1 file.
sage -t src/sage/doctest/control.py

[133 tests, 3.7 s]

Total time for all tests: 3.8 seconds
cpu time: 0.1 seconds
cumulative wall time: 3.7 seconds

Running tests in a random order

By default, tests are run in the order in which they appear in the file. To run tests in a random order (which can reveal
subtle bugs), use the ——randorder flag and pass in a random seed:

[roed@sage sage-6.0]1$ sage -t —--new —--randorder 127
Running doctests with ID 2012-07-07-01-19-06-97c8484e.
Doctesting files changed since last git commit.
Doctesting 1 file.
sage -t src/sage/doctest/control.py

[133 tests, 3.6 s]

Total time for all tests: 3.7 seconds
cpu time: 0.2 seconds
cumulative wall time: 3.6 seconds

Note that even with this option, the tests within a given doctest block are still run in order.

Testing external files

When testing a file which is not part of a package (which is not in a directory containing an __init__ .py file), the
testing code loads the globals from that file into the namespace before running tests. To disable this behaviour (and
require imports to be explicitly specified), use the -——force-11ib option.

3.3. Running Sage’s tests 81

Sage Developer’s Guide, Release 8.0

Auxilliary files

To specify a logfile (rather than use the default which is created for sage -t —--all), usethe ——logfile flag:

[roed@sage sage-6.0]$ sage -t —-logfile testl.log src/sage/doctest/control.py
Running doctests with ID 2012-07-07-01-25-49-e7c0eb2d.
Doctesting 1 file.
sage -t src/sage/doctest/control.py
[133 tests, 4.3 s]

Total time for all tests: 6.7 seconds
cpu time: 0.1 seconds
cumulative wall time: 4.3 seconds
[roed@sage sage-6.0]$ cat testl.log
Running doctests with ID 2012-07-07-01-25-49-e7c0eb2d.
Doctesting 1 file.
sage -t src/sage/doctest/control.py
[133 tests, 4.3 s]

Total time for all tests: 6.7 seconds
cpu time: 0.1 seconds
cumulative wall time: 4.3 seconds

To give a json file storing the timings for each file, use the ——stats_path flag. These statistics are used in sorting
files so that slower tests are run first (and thus multiple processes are utilized most efficiently):

[roed@sage sage-6.0]$ sage -tp 2 —--stats-path ~/.sage/timings2.json --all
Running doctests with ID 2012-07-07-01-28-34-2df4251d.

Doctesting entire Sage library.

Sorting sources by runtime so that slower doctests are run first....
Doctesting 2067 files using 2 threads.

3.4 Contributing to Manuals and Tutorials

3.4.1 The Sage Manuals

Sage’s manuals are written in ReST (reStructuredText), and generated with the software Sphinx:

Name Files

Tutorial SAGE_ROOT/src/doc/en/tutorial

Developer’s guide | SAGE_ROOT/src/doc/en/developer

Constructions SAGE_ROOT/src/doc/en/constructions

Installation guide SAGE_ROOT/src/doc/en/installation

Reference manual | SAGE_ROOT/src/doc/en/reference (most of it is generated from the source code)

* Additionally, more specialized manuals can be found under SAGE_ROOT/src/doc/en.

* Some documents have been translated into other languages. In order to access them, change en/ into fr/,es/,
de/... See Document Names.

82 Chapter 3. Writing Code for Sage

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org

Sage Developer’s Guide, Release 8.0

Editing the documentation

(Do you want to convert a Sage worksheet into documentation? Click here)

After modifying some files in the Sage tutorial (SAGE_ROOT/src/doc/en/tutorial/), you will want to visu-
alize the result. In order to build a html version of this document, type:

sage —-docbuild tutorial html

You can now open SAGE_ROOT/local/share/doc/sage/html/en/tutorial/index.html in your
web browser.

* Do you want to add a new file to the documentation? Click here.
¢ For more detailed information on the ——docbuild command, see Building the Manuals.

Run doctests: All files must pass tests. After modifying a document (e.g. tutorial), you can run tests with the
following command (see Running Automated Doctests):

sage —tp SAGE_ROOT/src/doc/en/tutorial/

Reference manual: as this manual is mostly generated from Sage’s source code, you will need to build Sage in order
to see the changes you made to some function’s documentation. Type:

’sage -b && sage —--docbuild reference html

Hyperlinks

The documentation can contain links toward modules, classes, or methods, e.g.:

:mod: link to a module <sage.module_name>"
:mod: sage.module_name’ (here the link's text is the module's name)

For links toward classes, methods, or function, replace :mod: by :class:, :meth: or func: respectively. See Sphinx’
documentation.

Short links: the link : func: ' ~sage.modl.mod2.mod3. funcl’ isequivalentto : func: funcl <sage.
modl.mod2.mod3. funcl>": the function’s name will be used as the link name, instead of its full path.

Local names: links between methods of the same class do not need to be absolute. If you are documenting
method_one, you can write :meth: method_two’.

Global namespace: if an object (e.g. integral) is automatically imported by Sage, you can link toward it without
specifying its full path:

:func: A link toward the integral function <integral>"

Sage-specific roles: Sage defines several specific roles:

Trac server :trac: 17596° trac ticket #17596
Wikipedia :wikipedia: ' Sage_ (mathematics]| SWikipedizenrticle
Sage_(mathematics_software)

Arxiv rarxiv: 1202.1506° Arxiv 1202.1506

On-Line Encyclopedia of :oeis: A000081° OEIS sequence A000081

Integer Sequences

Digital Object Identifier :doi:"10.2752/ doi:10.2752/175303708X390473
175303708X390473"

MathSciNet :mathscinet: MR0100971"° MathSciNet MR0O100971

3.4. Contributing to Manuals and Tutorials 83

http://sphinx.pocoo.org/markup/inline.html
http://sphinx.pocoo.org/markup/inline.html
https://trac.sagemath.org/17596
https://en.wikipedia.org/wiki/Sage_(mathematics_software)
https://en.wikipedia.org/wiki/Sage_(mathematics_software)
http://arxiv.org/abs/1202.1506
https://oeis.org/A000081
https://dx.doi.org/10.2752/175303708X390473
http://www.ams.org/mathscinet-getitem?mr=MR0100971

Sage Developer’s Guide, Release 8.0

http links: copy/pasting a http link in the documentation works. If you want a specific link name, use * 1ink name
<http://www.example.com>" _

Broken links: Sphinx can report broken links. See Building the Manuals.

Adding a New File

If you added a new file to Sage (e.g. sage/matroids/my_algorithm.py) and you want its content to appear in
the reference manual, you have to add its name to the file SAGE_ROOT/src/doc/en/reference/matroids/
index.rst. Replace ‘matroids’ with whatever fits your case.

The combinat/ folder: if your new file belongs to a subdirectory of combinat/ the procedure is different:
* Add your file to the index stored inthe __init__ .py file located in the directory that contains your file.

* Add your file to the index contained in SAGE_ROOT/src/doc/en/reference/combinat/
module_list.rst.

Building the Manuals

(Do you want to edit the documentation? Click here)

All of the Sage manuals are built using the sage —-docbuild script. The content of the sage —-docbuild
script is defined in SAGE_ROOT/src/sage_setup/docbuild/__init__ .py. Itis a thin wrapper around the
sphinx—-build script which does all of the real work. It is designed to be a replacement for the default Makefiles
generated by the sphinx—quickstart script. The general form of the command is:

’sage ——docbuild <document-name> <format>

For example:

sage —-docbuild reference html

Two help commands which give plenty of documentation for the sage ——-docbuild script:

sage ——-docbuild -h # short help message
sage —-docbuild -H # a more comprehensive one

Output formats: All output formats supported by Sphinx (e.g. pdf) can be used in Sage. See http://sphinx.pocoo.org/
builders.html.

Broken links: in order to build the documentation while reporting the broken links that it contains, use the
--warn-1links flag. Note that Sphinx will not rebuild a document that has not been updated, and thus not re-
port its broken links:

sage —-docbuild --warn-links reference html

Document Names

The <document —name> has the form:

lang/name

where 1ang is a two-letter language code, and name is the descriptive name of the document. If the language is not
specified, then it defaults to English (en). The following two commands do the exact same thing:

84 Chapter 3. Writing Code for Sage

http://sphinx.pocoo.org/builders.html
http://sphinx.pocoo.org/builders.html

Sage Developer’s Guide, Release 8.0

sage ——-docbuild tutorial html
sage —-docbuild en/tutorial html

To specify the French version of the tutorial, you would simply run:

sage —-docbuild fr/tutorial html

Syntax Highlighting Cython Code

If you want to write Cython code in a ReST file, precede the code block by . . CODE-BLOCK:: cython instead
of the usual : :. Enable syntax-highlighting in a whole file with . . HIGHLIGHT:: cython. Example:

cdef extern from "descrobject.h":
ctypedef struct PyMethodDef:
void *ml_meth
ctypedef struct PyMethodDescrObject:
PyMethodDef xd_method
voidx PyCFunction_GET_FUNCTION (object)
bint PyCFunction_Check (object)

3.5 Sage Coding Details

3.5.1 Coding in Python for Sage

This chapter discusses some issues with, and advice for, coding in Sage.

Design

If you are planning to develop some new code for Sage, design is important. So think about what your program will do
and how that fits into the structure of Sage. In particular, much of Sage is implemented in the object-oriented language
Python, and there is a hierarchy of classes that organize code and functionality. For example, if you implement ele-
ments of a ring, your class should derive from sage.structure.element .RingElement, rather than starting
from scratch. Try to figure out how your code should fit in with other Sage code, and design it accordingly.

Special Sage Functions

Functions with leading and trailing double underscores ___XXX___are all predefined by Python. Functions with leading
and trailing single underscores _XXX__ are defined for Sage. Functions with a single leading underscore are meant to
be semi-private, and those with a double leading underscore are considered really private. Users can create functions
with leading and trailing underscores.

Just as Python has many standard special methods for objects, Sage also has special methods. They are typically of
the form _XXX_. In a few cases, the trailing underscore is not included, but this will eventually be changed so that the
trailing underscore is always included. This section describes these special methods.

All objects in Sage should derive from the Cython extension class SageOb ject:

from sage.ext.sage_object import SageObject

class MyClass (SageObject, ...):

3.5. Sage Coding Details 85

Sage Developer’s Guide, Release 8.0

or from some other already existing Sage class:

from sage.rings.ring import Algebra

class MyFavoriteAlgebra (Algebra) :

You should implement the _latex_ and _repr_ method for every object. The other methods depend on the nature
of the object.

LaTeX Representation

Every object x in Sage should support the command latex (x), so that any Sage object can be easily and accurately
displayed via LaTeX. Here is how to make a class (and therefore its instances) support the command latex.

1. Define a method _latex_ (self) thatreturns a LaTeX representation of your object. It should be something
that can be typeset correctly within math mode. Do not include opening and closing $’s.

2. Often objects are built up out of other Sage objects, and these components should be typeset using the latex
function. For example, if c is a coefficient of your object, and you want to typeset c using LaTeX, use
latex (c) instead of c._latex_ (), since c might not have a _latex_ method, and latex (c) knows
how to deal with this.

3. Do not forget to include a docstring and an example that illustrates LaTeX generation for your object.

4. You can use any macros included in amsmath, amssymb, or amsfont s, or the ones defined in SAGE_ROOT/
doc/commontex/macros.tex.

An example template for a_latex_ method follows:

class X:

def latex_(self):
r mmn

Return the LaTeX representation of X.
EXAMPLES: :

sage: a = X(1,2)
sage: latex(a)
"\\frac{1}{2}"'

mwn

return '\\frac{ }{%¢s} "% (latex (self.numer), latex(self.denom))

As shown in the example, latex (a) will produce LaTeX code representing the object a. Calling view (a) will
display the typeset version of this.

Print Representation

The standard Python printing method is __repr__ (self). In Sage, that is for objects that derive from
SageObject (which is everything in Sage), instead define _repr_ (self). This is preferable because if you
only define _repr_ (self) andnot __repr__ (self), then users can rename your object to print however they
like. Also, some objects should print differently depending on the context.

Here is an example of the _latex_ and _repr_ functions for the Pi class. It is from the file SAGE_ROOT/src/
sage/functions/constants.py:

86 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

class Pi(Constant) :

mon

The ratio of a circle's circumference to its diameter.
EXAMPLES : :

sage: pi

pi

sage: float (pi) # rel tol le-10
3.1415926535897931

mmn

def _repr_(self):
return "pi"

def latex_(self):
return "\\pi"

Matrix or Vector from Object

Provide a _matrix_ method for an object that can be coerced to a matrix over a ring R. Then the Sage function
matrix will work for this object.

The following is from SAGE_ROOT/src/sage/graphs/graph.py:

class GenericGraph (SageObject) :

def _matrix_(self, R=None):
if R is None:
return self.am()
else:
return self.am() .change_ring(R)

def adjacency_matrix(self, sparse=None, boundary_first=False):

Similarly, provide a _vector_ method for an object that can be coerced to a vector over a ring R. Then the Sage
function vector will work for this object. The following is from the file SAGE_ROOT/sage/sage/modules/
free_module_element.pyx:

cdef class FreeModuleElement (element_Vector) : # abstract base class

def _vector_(self, R):
return self.change_ring(R)

Sage Preparsing

To make Python even more usable interactively, there are a number of tweaks to the syntax made when you use
Sage from the commandline or via the notebook (but not for Python code in the Sage library). Technically, this is
implemented by a preparse () function that rewrites the input string. Most notably, the following replacements are
made:

» Sage supports a special syntax for generating rings or, more generally, parents with named generators:

3.5. Sage Coding Details 87

Sage Developer’s Guide, Release 8.0

sage: R.<x,y> = QQ[]
sage: preparse('R.<x,y> = Q0Q[]")
"R = QQ['x, v'l; (x, y,) = R._first_ngens(2)"

* Integer and real literals are Sage integers and Sage floating point numbers. For example, in pure Python these
would be an attribute error:

sage: 16.sqgrt ()

4

sage: 87.factor ()
3 % 29

» Raw literals are not preparsed, which can be useful from an efficiency point of view. Just like Python ints are
denoted by an L, in Sage raw integer and floating literals are followed by an “r” (or “R”) for raw, meaning not
preparsed. For example:

sage: a = 393939r
sage: a

393939

sage: type(a)
<... 'int'>

sage: b = 393939

sage: type (b)

<type 'sage.rings.integer.Integer'>
sage: a ==

True

* Raw literals can be very useful in certain cases. For instance, Python integers can be more efficient than Sage
integers when they are very small. Large Sage integers are much more efficient than Python integers since they
are implemented using the GMP C library.

Consult the file preparser. py for more details about Sage preparsing, more examples involving raw literals, etc.

When a file foo . sage is loaded or attached in a Sage session, a preparsed version of foo . sage is created with the
name foo.sage.py. The beginning of the preparsed file states:

’This file was *autogeneratedx from the file foo.sage.

You can explicitly preparse a file with the ——preparse command-line option: running

sage —-preparse foo.sage

creates the file foo.sage.py.
The following files are relevant to preparsing in Sage:
1. SAGE_ROOT/src/bin/sage
2. SAGE_ROOT/src/bin/sage-preparse
3. SAGE_ROOT/src/sage/repl/preparse.py

In particular, the file preparse. py contains the Sage preparser code.
The Sage Coercion Model
The primary goal of coercion is to be able to transparently do arithmetic, comparisons, etc. between elements of

distinct sets. For example, when one writes 3 4+ 1/2, one wants to perform arithmetic on the operands as rational
numbers, despite the left term being an integer. This makes sense given the obvious and natural inclusion of the integers

88 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

into the rational numbers. The goal of the coercion system is to facilitate this (and more complicated arithmetic)
without having to explicitly map everything over into the same domain, and at the same time being strict enough to
not resolve ambiguity or accept nonsense.

The coercion model for Sage is described in detail, with examples, in the Coercion section of the Sage Reference
Manual.

Mutability

Parent structures (e.g. rings, fields, matrix spaces, etc.) should be immutable and globally unique whenever possible.
Immutability means, among other things, that properties like generator labels and default coercion precision cannot be
changed.

Global uniqueness while not wasting memory is best implemented using the standard Python weakref module, a
factory function, and module scope variable.

Certain objects, e.g. matrices, may start out mutable and become immutable later. See the file SAGE_ROOT/src/
sage/structure/mutability.py.

The __hash__ Special Method

Here is the definition of __hash___ from the Python reference manual:

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. __hash__ () should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to somehow mix together (e.g. using exclu-
sive or) the hash values for the components of the object that also play a part in comparison of objects. If
a class does not define a ___cmp___ () method it should not define a__hash__ () operation either; if it
defines __cmp__ () or__eqg___ () butnot__hash__ (), its instances will not be usable as dictionary
keys. If a class defines mutable objects and implements a __cmp___ () or __eq__ () method, it should
not implement __hash___ (), since the dictionary implementation requires that a key’s hash value is
immutable (if the object’s hash value changes, it will be in the wrong hash bucket).

Notice the phrase, “The only required property is that objects which compare equal have the same hash value.” This
is an assumption made by the Python language, which in Sage we simply cannot make (!), and violating it has conse-
quences. Fortunately, the consequences are pretty clearly defined and reasonably easy to understand, so if you know
about them they do not cause you trouble. The following example illustrates them pretty well:

sage: v = [Mod(2,7)]
sage: 9 in v

True

sage: v = set([Mod(2,7)])
sage: 9 in v

False

sage: 2 in v

True

sage: w = {Mod(2,7):"'"a'}

sage: w[2]

lal

sage: w[9]

Traceback (most recent call last):

KeyError: 9

Here is another example:

3.5. Sage Coding Details 89

Sage Developer’s Guide, Release 8.0

sage: R = RealField(10000)

sage: a = R(1) + R(10)"-100
sage: a == RDF (1) # because the a gets coerced down to RDF
True

but hash (a) should not equal hash (1).

Unfortunately, in Sage we simply cannot require

(#) "a == b ==> hash(a) == hash(b)"
because serious mathematics is simply too complicated for this rule. For example, the equalities z == Mod (z, 2)
and z == Mod (z, 3) would force hash () to be constant on the integers.

The only way we could “fix” this problem for good would be to abandon using the == operator for “Sage equality”,
and implement Sage equality as a new method attached to each object. Then we could follow Python rules for == and
our rules for everything else, and all Sage code would become completely unreadable (and for that matter unwritable).
So we just have to live with it.

So what is done in Sage is to attempt to satisfy (#) when it is reasonably easy to do so, but use judgment and not go
overboard. For example,

sage: hash(Mod(2,7))
2

The output 2 is better than some random hash that also involves the moduli, but it is of course not right from the Python
point of view, since 9 == Mod (2, 7). The goal is to make a hash function that is fast, but within reason respects
any obvious natural inclusions and coercions.

Exceptions

Please avoid catch-all code like this:

try:
some_code ()

except: # bad
more_code ()

If you do not have any exceptions explicitly listed (as a tuple), your code will catch absolutely anything, including
ctrl-C,typos in the code, and alarms, and this will lead to confusion. Also, this might catch real errors which should
be propagated to the user.

To summarize, only catch specific exceptions as in the following example:

try:
return self.___coordinate_ring

except (AttributeError, OtherExceptions) as msg: # good
more_code_to_compute_something ()

Note that the syntax in except is to list all the exceptions that are caught as a tuple, followed by an error message.

Importing

We mention two issues with importing: circular imports and importing large third-party modules.

First, you must avoid circular imports. For example, suppose that the file SAGE_ROOT/src/sage/algebras/
steenrod_algebra.py started with a line:

920 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

’from sage.sage.algebras.steenrod _algebra bases import =

and that the file SAGE_ROOT/src/sage/algebras/steenrod_algebra_bases.py started with a line:

’from sage.sage.algebras.steenrod _algebra import SteenrodAlgebra

This sets up a loop: loading one of these files requires the other, which then requires the first, etc.

With this set-up, running Sage will produce an error:

Exception exceptions.ImportError: 'cannot import name SteenrodAlgebra'
in 'sage.rings.polynomial.polynomial_element.
Polynomial_generic_dense.__normalize' ignored

ImportError Traceback (most recent call last)

ImportError: cannot import name SteenrodAlgebra

Instead, you might replace the import =« line at the top of the file by more specific imports where they are needed
in the code. For example, the basis method for the class SteenrodAlgebra might look like this (omitting the
documentation string):

def basis(self, n):
from steenrod algebra_bases import steenrod_algebra_basis
return steenrod_algebra_basis (n, basis=self._basis_name, p=self.prime)

Second, do not import at the top level of your module a third-party module that will take a long time to initialize (e.g.
matplotlib). As above, you might instead import specific components of the module when they are needed, rather than
at the top level of your file.

It is important to try to make from sage.all import =« as fast as possible, since this is what dominates the
Sage startup time, and controlling the top-level imports helps to do this. One important mechanism in Sage are lazy
imports, which don’t actually perform the import but delay it until the object is actually used. See sage.misc.
lazy_import for more details of lazy imports, and Files and Directory Structure for an example using lazy imports
for a new module.

Deprecation

When making a backward-incompatible modification in Sage, the old code should keep working and display a
message indicating how it should be updated/written in the future. We call this a deprecation.

Note: Deprecated code can only be removed one year after the first stable release in which it appeared.

Each deprecation warning contains the number of the trac ticket that defines it. We use 666 in the examples below.
For each entry, consult the function’s documentation for more information on its behaviour and optional arguments.

* Rename a keyword: by decorating a function/method with rename_keyword, any user calling
my_function (my_old_keyword=5) will see a warning:

from sage.misc.decorators import rename_keyword
@rename_keyword (deprecation=666, my_old_keyword="'my_ new_keyword")
def my_function (my_new_keyword=True) :

return my_new_keyword

3.5. Sage Coding Details 91

Sage Developer’s Guide, Release 8.0

Rename a function/method: call deprecated_function_alias () to obtain a copy of a function that
raises a deprecation warning:

from sage.misc.superseded import deprecated_function_alias
def my_new_function() :

my_old_function = deprecated_function_alias (666, my_new_function)

Moving an object to a different module: if you rename a source file or move some function (or class) to a
different file, it should still be possible to import that function from the old module. This can be done using a
lazy_import () with deprecation. In the old module, you would write:

from sage.misc.lazy_ import import lazy_import
lazy_import ('sage.new.module.name', 'name_of_ the_function', deprecation=666)

You can also lazily import everything using * or a few functions using a tuple:

from sage.misc.lazy_ import import lazy_import
lazy_import ('sage.new.module.name', 'x', deprecation=666)
lazy_import ('sage.other.module', ('funcl', 'func2'), deprecation=666)

Remove a name from a global namespace: this is when you want to remove a name from a global namespace
(say, sage.all or some other all.py file) but you want to keep the functionality available with an explicit
import. This case is similar as the previous one: use a lazy import with deprecation. One detail: in this case, you
don’t want the name lazy_import to be visible in the global namespace, so we add a leading underscore:

from sage.misc.lazy_ import import lazy_ import as _lazy_import
_lazy_import ('sage.some.package', 'some_function', deprecation=666)

Any other case: if none of the cases above apply, call deprecation () in the function that you want to
deprecate. It will display the message of your choice (and interact properly with the doctest framework):

from sage.misc.superseded import deprecation
deprecation (666, "Do not use your computer to compute 1+1. Use your brain.")

Experimental/Unstable Code

You can mark your newly created code (classes/functions/methods) as experimental/unstable. In this case, no depre-
cation warning is needed when changing this code, its functionality or its interface.

This should allow you to put your stuff in Sage early, without worrying about making (design) changes later.

When satisfied with the code (when stable for some time, say, one year), you can delete this warning.

As usual, all code has to be fully doctested and go through our reviewing process.

Experimental function/method: use the decorator experimental. Here is an example:

from sage.misc.superseded import experimental
@experimental (66666)
def experimental_function():

do something

Experimental class: use the decorator experimental forits __init__ . Here is an example:

92

Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

from sage.misc.superseded import experimental
class experimental_ class (SageObject) :
@experimental (66666)
def _ _init__ (self, some, arguments):
do something

* Any other case: if none of the cases above apply, call experimental_ warning () in the code where you
want to warn. It will display the message of your choice:

from sage.misc.superseded import experimental_warning
experimental_warning (66666, 'This code is not foolproof.')

Using Optional Packages

If a function requires an optional package, that function should fail gracefully—perhaps using a t ry-except block—
when the optional package is not available, and should give a hint about how to install it. For example, typing sage
—optional gives a list of all optional packages, so it might suggest to the user that they type that. The command
optional_packages () from within Sage also returns this list.

3.5.2 Coding in Cython

This chapter discusses Cython, which is a compiled language based on Python. The major advantage it has over
Python is that code can be much faster (sometimes orders of magnitude) and can directly call C and C++ code. As
Cython is essentially a superset of the Python language, one often doesn’t make a distinction between Cython and
Python code in Sage (e.g. one talks of the “Sage Python Library” and “Python Coding Conventions”).

Python is an interpreted language and has no declared data types for variables. These features make it easy to write
and debug, but Python code can sometimes be slow. Cython code can look a lot like Python, but it gets translated
into C code (often very efficient C code) and then compiled. Thus it offers a language which is familiar to Python
developers, but with the potential for much greater speed. Cython also allows Sage developers to interface with C and
C++ much easier than using the Python C API directly.

Cython is a compiled version of Python. It was originally based on Pyrex but has changed based on what Sage’s de-
velopers needed; Cython has been developed in concert with Sage. However, it is an independent project now, which
is used beyond the scope of Sage. As such, it is a young, but developing language, with young, but developing docu-
mentation. See its web page, http://www.cython.org/, for the most up-to-date information or check out the Language
Basics to get started immediately.

Writing Cython Code in Sage

There are several ways to create and build Cython code in Sage.
1. In the Sage Notebook, begin any cell with $cython. When you evaluate that cell,
(a) Itis saved to a file.
(b) Cython is run on it with all the standard Sage libraries automatically linked if necessary.
(c) The resulting shared library file (. so/ .d11/ .dyl1ib) is then loaded into your running instance of Sage.

(d) The functionality defined in that cell is now available for you to use in the notebook. Also, the output cell
has a link to the C program that was compiled to create the . so file.

3.5. Sage Coding Details 93

http://www.cython.org/
http://docs.cython.org/src/userguide/language_basics.html
http://docs.cython.org/src/userguide/language_basics.html

Sage Developer’s Guide, Release 8.0

() A cpdef or def function, say testfunction, defined in a $cython cell in a worksheet can be
imported and made available in a different $cython cell within the same worksheet by importing it as
shown below:

scython
from _ main_ import testfunction

2. Create an . spyx file and attach or load it from the command line. This is similar to creating a $cython cell
in the notebook but works completely from the command line (and not from the notebook).

3. Create a .pyx file and add it to the Sage library.

(a) First, add a listing for the Cython extension to the variable ext_modules in the file SAGE_ROOT/src/
module_list.py. Seethe distutils.extension.Extension class for more information on
creating a new Cython extension.

(b) Run sage —-b to rebuild Sage.

For example, in order to compile SAGE_ROOT/src/sage/graphs/chrompoly.pyx, we see the follow-
ing lines in module_list.py:

Extension ('sage.graphs.chrompoly',
sources = ['sage/graphs/chrompoly.pyx'],
libraries = ['gmp']l),

Special Pragmas
If Cython code is either attached or loaded as a . spyx file or loaded from the notebook as a $cython block, the
following pragmas are available:

* clang — may be either c or c++ indicating whether a C or C++ compiler should be used.

* clib — additional libraries to be linked in, the space separated list is split and passed to distutils.

¢ cinclude — additional directories to search for header files. The space separated list is split and passed to
distutils.

* cfile — additional C or C++ files to be compiled
e cargs — additional parameters passed to the compiler

For example:

#clang C++

#clib givaro

#cinclude /usr/local/include/
#cargs -ggdb

#cfile foo.c

Attaching or Loading .spyx Files
The easiest way to try out Cython without having to learn anything about distutils, etc., is to create a file with the
extension spyx, which stands for “Sage Pyrex”:

1. Create a file power?2.spyx.

2. Put the following in it:

94 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

def is2pow (n):

while n != 0 and n%2 ==
n=n>> 1
return n ==

3. Start the Sage command line interpreter and load the spyx file (this will fail if you do not have a C compiler
installed).

sage: load("power2.spyx")
Compiling power2.spyx...
sage: is2pow (12)

False

Note that you can change power2 . spyx, then load it again and it will be recompiled on the fly. You can also attach
power?2.spyx so it is reloaded whenever you make changes:

sage: attach("power2.spyx")

Cython is used for its speed. Here is a timed test on a 2.6 GHz Opteron:

sage: Stime [n for n in range(1075) if is2pow(n)]

(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
CPU times: user 0.60 s, sys: 0.00 s, total: 0.60 s

Wall time: 0.60 s

Now, the code in the file power2 . spyx is valid Python, and if we copy this to a file powerslow. py and load that,
we get the following:

sage: load("powerslow.py")

sage: S$time [n for n in range(1075) if is2pow(n)]

(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
CPU times: user 1.01 s, sys: 0.04 s, total: 1.05 s

Wall time: 1.05 s

By the way, we could gain even a little more speed with the Cython version with a type declaration, by changing de £
is2pow(n) : todef is2pow(unsigned int n):.

Interrupt and Signal Handling
When writing Cython code for Sage, special care must be taken to ensure that the code can be interrupted with
CTRL-C.

Sage uses the cysignals package for this, see the cysignals documentation for more information.

Unpickling Cython Code

Pickling for Python classes and extension classes, such as Cython, is different. This is discussed in the Python pickling
documentation. For the unpickling of extension classes you need to write a___reduce__ () method which typically
returns a tuple (£, args, ...) suchthat f (xargs) returns (a copy of) the original object. As an example, the
following code snippet is the __reduce__ () method from sage.rings.integer.Integer:

def _ reduce__ (self):

rr

This is used when pickling integers.

3.5. Sage Coding Details 95

https://github.com/sagemath/cysignals
http://cysignals.readthedocs.org/
http://docs.python.org/library/pickle.html#pickle-protocol
http://docs.python.org/library/pickle.html#pickle-protocol

Sage Developer’s Guide, Release 8.0

EXAMPLES : :
sage: n = 5
sage: t = n._ _reduce__ (); t

(<built-in function make_integer>, ('5',))
sage: t[0] (*xt[1])
5
sage: loads (dumps(n)) == n
True
rrr
This single line below took me HOURS to figure out.
It is the xtrick* needed to pickle Cython extension types.
The trick is that you must put a pure Python function
as the first argument, and that function must return
the result of unpickling with the argument in the second
tuple as input. All kinds of problems happen
if we don't do this.
return sage.rings.integer.make_integer, (self.str(32),)

Ho¥ W YR W W W

3.5.3 Using External Libraries and Interfaces

When writing code for Sage, use Python for the basic structure and interface. For speed, efficiency, or convenience,
you can implement parts of the code using any of the following languages: Cython, C/C++, Fortran 95, GAP, Common
Lisp, Singular, and PARI/GP. You can also use all C/C++ libraries included with Sage [SageComponents]. And if you
are okay with your code depending on optional Sage packages, you can use Octave, or even Magma, Mathematica, or
Maple.

In this chapter, we discuss interfaces between Sage and PARI, GAP and Singular.

The PARI C Library Interface

Here is a step-by-step guide to adding new PARI functions to Sage. We use the Frobenius form of a matrix as an
example. Some heavy lifting for matrices over integers is implemented using the PARI library. To compute the
Frobenius form in PARI, the mat frobenius function is used.

There are two ways to interact with the PARI library from Sage. The gp interface uses the gp interpreter. The PARI
interface uses direct calls to the PARI C functions—this is the preferred way as it is much faster. Thus this section
focuses on using PARI.

We will add a new method to the gen class. This is the abstract representation of all PARI library objects. That means
that once we add a method to this class, every PARI object, whether it is a number, polynomial or matrix, will have
our new method. So youcando pari (1) .matfrobenius (), but since PARI wants to apply mat frobenius to
matrices, not numbers, you will receive a PariError in this case.

The gen class is defined in SAGE_ROOT/src/sage/libs/cypari2/gen.pyx, and this is where we add the
method mat frobenius:

def matfrobenius(self, flag=0):
rmn

M.matfrobenius (flag=0): Return the Frobenius form of the square
matrix M. If flag is 1, return only the elementary divisors (a list
of polynomials). If flag is 2, return a two-components vector [F,B]
where F 1s the Frobenius form and B is the basis change so that

‘M=B"{-1} F B".

EXAMPLES : :

96 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

sage: a = pari('[1,2;3,4]")
sage: a.matfrobenius ()
[0, 2; 1, 5]
sage: a.matfrobenius (flag=1)
[x"2 — 5xx — 2]
sage: a.matfrobenius (2)
(ro, 2; 1, 51, [1, -1/3; 0, 1/3]]
sig_on{()
return self.new_gen (matfrobenius(self.qg, flag, 0))

Note the use of the sig_on() statement.

The mat frobenius call is just a call to the PARI C library function mat f robenius with the appropriate param-
eters.

The self.new_gen (GEN x) call constructs a new Sage gen object from a given PARI GEN where the PARI
GEN is stored as the .g attribute. Apart from this, self.new_gen () calls a closing sig_off () macro and
also clears the PARI stack so it is very convenient to use in a return statement as illustrated above. So af-
ter self.new_gen (), all PARI GEN‘s which are not converted to Sage gen‘s are gone. There is also self.
new_gen_noclear (GEN x) which does the same as self.new_gen (GEN x) except that it does not call
sig_off () nor clear the PARI stack.

The information about which function to call and how to call it can be retrieved from the PARI user’s manual
(note: Sage includes the development version of PARI, so check that version of the user’s manual). Looking for
matfrobenius you can find:

The library syntax is GEN matfrobenius (GEN M, long flag, long v = -1),wherevisa
variable number.

In case you are familiar with gp, please note that the PARI C function may have a name that is different from the
corresponding gp function (for example, see mathnf), so always check the manual.

We can also add a frobenius(flag) method to the matrix_integer class where we call the
mat frobenius () method on the PARI object associated to the matrix after doing some sanity checking. Then
we convert output from PARI to Sage objects:

def frobenius(self, flag=0, var='x"'):

mmn

Return the Frobenius form (rational canonical form) of this

matrix.
INPUT:
- ‘‘flag'' -- 0 (default), 1 or 2 as follows:
- 0 —-- (default) return the Frobenius form of this
matrix.
- 1" -= return only the elementary divisor

polynomials, as polynomials in var.
- 2 —-- return a two-components vector [F,B] where F
is the Frobenius form and B 1is the basis change so that

‘M=B"{-1}FB".

- ‘‘var'' -- a string (default: 'x')

3.5. Sage Coding Details 97

http://cysignals.readthedocs.org/en/latest/#using-sig-on-and-sig-off

Sage Developer’s Guide, Release 8.0

ALGORITHM: uses PARI's matfrobenius/()
EXAMPLES : :

sage: A = MatrixSpace (ZZ, 3) (range(9))
sage: A.frobenius (0)

[0 0 0]
[1 0 18]
[0 1 12]

sage: A.frobenius (1)
[x"3 = 124x"2 — 18#*x]
sage: A.frobenius (1, var='y'")
[y"3 — 124y"2 — 18*y]
if not self.is_square():
raise ArithmeticError ("frobenius matrix of non-square matrix not defined.")

v = self.__pari__ () .matfrobenius(flag)
if flag==0:
return self.matrix_space () (v.python())
elif flag==1:
r = PolynomialRing(self.base_ring (), names=var)
retr = []
for £ in v:
retr.append(eval (str(f) .replace (""", "xx"), {'x':r.gen()}, r.gens_dict()))
return retr
elif flag==2:
F = matrix_space.MatrixSpace (QQ, self.nrows()) (v[0].python())
B = matrix_space.MatrixSpace (QQ, self.nrows()) (v[1l].python())
return F, B

GAP

Wrapping a GAP function in Sage is a matter of writing a program in Python that uses the pexpect interface to pipe
various commands to GAP and read back the input into Sage. This is sometimes easy, sometimes hard.

For example, suppose we want to make a wrapper for the computation of the Cartan matrix of a simple Lie algebra.
The Cartan matrix of G is available in GAP using the commands:

gap> L:= SimplelieAlgebra("G", 2, Rationals);
<Lie algebra of dimension 14 over Rationals>
gap> R:= RootSystem(L);

<root system of rank 2>

gap> CartanMatrix(R);

In Sage, one can access these commands by typing:

sage: L = gap.SimplelLieAlgebra('"G"', 2, 'Rationals'); L

Algebra(Rationals, [v.1l, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10,
v.11, v.12, v.13, v.14])

sage: R = L.RootSystem(); R

<root system of rank 2>

sage: R.CartanMatrix()

rrz2, -121, [-3, 211

Note the ' "G" ' which is evaluated in GAP as the string "G".

98 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

The purpose of this section is to use this example to show how one might write a Python/Sage program whose in-
put is, say, ('G',2) and whose output is the matrix above (but as a Sage Matrix—see the code in the directory
SAGE_ROOT/src/sage/matrix/ and the corresponding parts of the Sage reference manual).

First, the input must be converted into strings consisting of legal GAP commands. Then the GAP output, which is also
a string, must be parsed and converted if possible to a corresponding Sage/Python object.

def cartan_matrix(type, rank):
mmn

Return the Cartan matrix of given Chevalley type and rank.

INPUT:
type —-—- a Chevalley letter name, as a string, for
a family type of simple Lie algebras
rank —-- an integer (legal for that type).
EXAMPLES :

sage: cartan_matrix ("A",5)
[2 -1 0 0 0]
[-1 2 -1 0 0]

[0 -1 2 -1 0]
[0 0 -1 2 -1]
[0 0 0 -1 2]
sage: cartan_matrix ("G",2)
[2 -1]
[-3 2]
mmwn
L = gap.SimplelLieAlgebra('"2s"'"'$type, rank, 'Rationals')

R = L.RootSystem()

sM = R.CartanMatrix ()

ans = eval (str(sM))

MS = MatrixSpace (QQ, rank)

return MS (ans)

The output ans is a Python list. The last two lines convert that list to an instance of the Sage class Mat rix.

Alternatively, one could replace the first line of the above function with this:

L = gap.new('SimpleLieAlgebra (" ", , Rationals); 'S (type, rank))

Defining “easy” and “hard” is subjective, but here is one definition. Wrapping a GAP function is “easy” if there is
already a corresponding class in Python or Sage for the output data type of the GAP function you are trying to wrap.
For example, wrapping any GUAVA (GAP’s error-correcting codes package) function is “easy” since error-correcting
codes are vector spaces over finite fields and GUAVA functions return one of the following data types:

¢ vectors over finite fields,
 polynomials over finite fields,
* matrices over finite fields,
e permutation groups or their elements,
* integers.
Sage already has classes for each of these.
A “hard” example is left as an exercise! Here are a few ideas.

e Write a wrapper for GAP’s FreeLieAlgebra function (or, more generally, all the finitely presented Lie
algebra functions in GAP). This would require creating new Python objects.

3.5. Sage Coding Details 99

Sage Developer’s Guide, Release 8.0

* Write a wrapper for GAP’s FreeGroup function (or, more generally, all the finitely presented groups functions
in GAP). This would require writing some new Python objects.

» Write a wrapper for GAP’s character tables. Though this could be done without creating new Python objects, to
make the most use of these tables, it probably would be best to have new Python objects for this.

LibGAP

The disadvantage of using other programs through interfaces is that there is a certain unavoidable latency (of the order
of 10ms) involved in sending input and receiving the result. If you have to call functions in a tight loop this can be
unacceptably slow. Calling into a shared library has much lower latency and furthermore avoids having to convert
everything into a string in-between. This is why Sage includes a shared library version of the GAP kernel, available
as libgap in Sage. The libgap analogue of the first example in GAP is:

sage: SimplelLieAlgebra = libgap.function_factory('SimpleLieAlgebra')
sage: L = SimplelLieAlgebra('G', 2, QOQ)

sage: R = L.RootSystem(); R

<root system of rank 2>

sage: R.CartanMatrix() # output is a GAP matrix

(rz2, -121, [-3, 211

sage: matrix (R.CartanMatrix()) # convert to Sage matrix
[2 -1]

[-3 2]

Singular

Using Singular functions from Sage is not much different conceptually from using GAP functions from Sage. As with
GAP, this can range from easy to hard, depending on how much of the data structure of the output of the Singular
function is already present in Sage.

First, some terminology. For us, a curve X over a finite field F' is an equation of the form f(z,y) = 0, where
f € F[z,y] is a polynomial. It may or may not be singular. A place of degree d is a Galois orbit of d points in X (F),
where E/F is of degree d. For example, a place of degree 1 is also a place of degree 3, but a place of degree 2 is not
since no degree 3 extension of I’ contains a degree 2 extension. Places of degree 1 are also called F'-rational points.

As an example of the Sage/Singular interface, we will explain how to wrap Singular’s NSplaces, which computes
places on a curve over a finite field. (The command closed_points also does this in some cases.) This is “easy”
since no new Python classes are needed in Sage to carry this out.

Here is an example on how to use this command in Singular:

A Computer Algebra System for Polynomial Computations / version 3-0-0
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ May 2005
FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> LIB "brnoeth.lib";

[...]

> ring s=5, (x,vy),1lp;

> poly f=y"2-x"9-x;

> list X1=Adj_div(f);

Computing affine singular points
Computing all points at infinity
Computing affine singular places
Computing singular places at infinity
Computing non-singular places at infinity
Adjunction divisor computed successfully

100 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

The genus of the curve is 4

> list X2=NSplaces (1,X1);

Computing non-singular affine places of degree 1
> list X3=extcurve (l,X2);

Total number of rational places : 6

> def R=X3[1][5];
> setring R;

> POINTS;

[17:

Here is another way of doing this same calculation in the Sage interface to Singular:

sage: singular.LIB("brnoeth.lib")
sage: singular.ring(5,'(x,y)"',"'1lp")

3.5. Sage Coding Details 101

Sage Developer’s Guide, Release 8.0

polynomial ring, over a field, global ordering
// coefficients: ZZ/5

// number of vars : 2
// block 1 : ordering lp
// : names Xy
// block 2 : ordering C
sage: f = singular('y"2-x"9-x")
sage: print (singular.eval ("list X1=Adj_div(%s);"%f.name()))

Computing affine singular points
Computing all points at infinity
Computing affine singular places
Computing singular places at infinity
Computing non-singular places at infinity
Adjunction divisor computed successfully

The genus of the curve is 4

sage: print (singular.eval ("list X2=NSplaces (1,X1);"))
Computing non-singular affine places of degree 1
sage: print (singular.eval ("list X3=extcurve (1,X2);"))

Total number of rational places : 6

sage: singular.eval("def R=X3[1][5];")

[}

sage: singular.eval ("setring R;")

sage: L = singular.eval ("POINTS;")

sage: print (L)

[17:
[17:
0
[2]:
1
[3]:
0
[2]:
[17:
-2
[2]:
-1
[3]:
1

From looking at the output, notice that our wrapper function will need to parse the string represented by L above, so
let us write a separate function to do just that. This requires figuring out how to determine where the coordinates of
the points are placed in the string L. Python has some very useful string manipulation commands to do just that.

def points_parser (string_points,F):
mmwn
This function will parse a string of points
of X over a finite field F returned by Singular's NSplaces
command into a Python 1list of points with entries from F.

EXAMPLES :
sage: F = GF(5)
sage: points_parser (L, F)

102 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

(¢0, 1, 0), (3, 4, 1), (0, 0, 1), (2, 3, 1), (3, 1, 1), (2, 2, 1))
Pts=1[]
n=1len (L)
#start block to compute a pt
L1=L
while len (L1l)>32:
idx=L1.index (" ")
pt=1[]
start blockl for compute pt
idx=L1.index (" ")
idx2=L1[idx:].index ("\n")
L2=L1[idx:1idx+1idx2]
pt.append (F (eval (L2)))
end blockl to compute pt
L1=L1[idx+8:] # repeat block 2 more times
start block2 for compute pt
idx=L1.index (" ")
idx2=L1[idx:].index ("\n")
L2=L1[idx:idx+idx2]
pt.append (F (eval (L2)))
end block2 to compute pt
L1=L1[idx+8:] # repeat block 1 more time
start block3 for compute pt
idx=L1.index (" ")
if "\n" in L1[idx:]:
idx2=L1[idx:].index ("\n")
else:
idx2=len(L1[idx:])
L2=L1[idx:idx+idx2]
pt.append (F (eval (L2)))
end block3 to compute pt
#end block to compute a pt
Pts.append (tuple (pt)) # repeat until no more pts
L1=L1[idx+8:] # repeat block 2 more times
return tuple (Pts)

Now it is an easy matter to put these ingredients together into a Sage function which takes as input a triple (f, F, d):
a polynomial f in F[z,y| defining X : f(z,y) = 0 (note that the variables x,y must be used), a finite field F' of
prime order, and the degree d. The output is the number of places in X of degree d = 1 over F'. At the moment, there
is no “translation” between elements of G F' (pd) in Singular and Sage unless d = 1. So, for this reason, we restrict
ourselves to points of degree one.

def places_on_curve(f,F):

mmon

INPUT:

f —— element of F[x,y], defining X: f(x,y)=0

F —-—- a finite field of #prime orderx
OUTPUT:

integer ——- the number of places in X of degree d=1 over F
EXAMPLES :

sage: F=GF (5)

sage: R=PolynomialRing(F,2,names=["x","y"])
sage: x,y=R.gens ()

sage: f=y"2-x"9-x

sage: places_on_curve (£, F)

3.5. Sage Coding Details 103

Sage Developer’s Guide, Release 8.0

(¢0, 1, 0), (3, 4, 1), (0, 0, 1), (2, 3, 1), (3, 1, 1), (2, 2, 1))
d=1
p = F.characteristic()
singular.eval ('LIB "brnoeth.lib"; ")
singular.eval ("ring s="+str(p)+", (x,v),1lp;")
singular.eval ("poly f="+str(f))
singular.eval ("list X1=Adj_div(f);")
singular.eval ("list X2=NSplaces ("+str(d)+",X1);")
singular.eval ("list X3=extcurve ("+str(d)+",X2);")
singular.eval ("def R=X3[1][5];")
singular.eval ("setring R; ")
L = singular.eval ("POINTS; ")
return points_parser (L, F)

Note that the ordering returned by this Sage function is exactly the same as the ordering in the Singular variable
POINTS.

One more example (in addition to the one in the docstring):

sage: F = GF(2)

sage: R = MPolynomialRing(F,2,names = ["x","y"])
sage: x,y = R.gens()

sage: f = x"3xy+ty”"3+x

sage: places_on_curve (f,F)
(o, 1, 0), (1, 0, 0), (0, 0, 1))

Singular: Another Approach

There is also a more Python-like interface to Singular. Using this, the code is much simpler, as illustrated below. First,
we demonstrate computing the places on a curve in a particular case:

sage: singular.lib('brnoeth.lib")

sage: R = singular.ring(5, '(x,vy)', 'lp')
sage: f singular.new('y"2 - x°9 - x')
sage: X1 = f.Adj_div ()

sage: X2 = singular.NSplaces(l, X1)

sage: X3 singular.extcurve (1, X2)

sage: R = X3[1][5]

sage: singular.set_ring(R)

sage: L = singular.new ('POINTS'")

Note that these elements of L are defined modulo 5 in Singular, and they compare differently than you would expect
from their print representation:

sage: sorted([(L[1i][1], L[i][2], L[i][3]) for i in range(l,7)])
[(OI O! 1)/ (Ol 1/ O)r (2! 2! l), (21 _2! l)/ (_2/ 1! l)/ (_2/ _11 1)]

Next, we implement the general function (for brevity we omit the docstring, which is the same as above). Note that
the point_parser function is not required:

def places_on_curve(f,F):
p = F.characteristic()
if F.degree() > 1:
raise NotImplementedError
singular.lib ('brnoeth.lib")

104 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

R = singular.ring(5, '(x,vy)', 'lp')

f singular.new('y"2 - x*9 - x")

X1 = f.Adj_div ()

X2 = singular.NSplaces(l, X1)

X3 = singular.extcurve(l, X2)

R = X3[1]11[5]

singular.setring(R)

L = singular.new ('POINTS")

return [(int (L[i][1]), int(L[i][2]), int(L[i]([(31)) \
for i in range(l,int(L.size())+1)]

This code is much shorter, nice, and more readable. However, it depends on certain functions, e.g. singular.
setring having been implemented in the Sage/Singular interface, whereas the code in the previous section used
only the barest minimum of that interface.

Creating a New Pseudo-TTY Interface

You can create Sage pseudo-tty interfaces that allow Sage to work with almost any command line program, and which
do not require any modification or extensions to that program. They are also surprisingly fast and flexible (given how
they work!), because all I/O is buffered, and because interaction between Sage and the command line program can
be non-blocking (asynchronous). A pseudo-tty Sage interface is asynchronous because it derives from the Sage class
Expect, which handles the communication between Sage and the external process.

For example, here is part of the file SAGE_ROOT/src/sage/interfaces/octave.py, which defines an in-
terface between Sage and Octave, an open source program for doing numerical computations, among other things:

import os
from expect import Expect, ExpectElement

class Octave (Expect) :

The first two lines import the library os, which contains operating system routines, and also the class Expect, which
is the basic class for interfaces. The third line defines the class Octave; it derives from Expect as well. After this
comes a docstring, which we omit here (see the file for details). Next comes:

def _ init__ (self, script_subdirectory="", logfile=None,
server=None, server_tmpdir=None) :
Expect.__init__ (self,

name = 'octave',

prompt = '>'",

command = "octave —--no-line-editing --silent",
server = server,

server_tmpdir = server_tmpdir,
script_subdirectory = script_subdirectory,

restart_on_ctrlc = False,
verbose_start = False,
logfile = logfile,
eval_using_file_cutoff=100)

This uses the class Expect to set up the Octave interface:

def set (self, wvar, value):

mmn

Set the variable var to the given value.

mmon

3.5. Sage Coding Details 105

Sage Developer’s Guide, Release 8.0

cmd = '%s=%s5; 'S (var,value)
out = self.eval (cmd)
if out.find("error") != -1:

raise TypeError ("Error executing code in Octave\nCODE:\n\t<%s\nOctave
< ERROR:\n\t%s"% (cmd, out))

def get (self, wvar):

mon

Get the value of the variable var.
mmwn

s = self.eval('%s'%var)
s.find('=")
return s[i+1:]

i

def console(self):
octave_console ()

These let users type octave.set ('x', 3),after whichoctave.get ('x") returns ' 3'. Running octave.
console () dumps the user into an Octave interactive shell:

def solve_linear_system(self, A, Db):

mon

Use octave to compute a solution x to Axx = b, as a list.

INPUT:
A —— mxn matrix A with entries in Q0 or RR
b —-- m-vector b entries in QQ or RR (resp)
OUTPUT:

An list x (if it exists) which solves M*xx = b

EXAMPLES :
sage: M33 = MatrixSpace (00, 3, 3)

sage: A = M33([1,2,3,4,5,6,7,8,0])

sage: V3 = VectorSpace (00, 3)

sage: b = V3([1,2,3])

sage: octave.solve_linear_system(A,Db) # optional - octave

[-0.33333299999999999, 0.66666700000000001, -3.5236600000000002e-18]

AUTHOR: David Joyner and William Stein
mmn
m = A.nrows ()
n = A.ncols()
if m != len(b):
raise ValueError ("dimensions of A and b must be compatible™)
from sage.matrix.all import MatrixSpace
from sage.rings.all import QQ
MS = MatrixSpace (QQ,m, 1)
b = MS(list (b)) # converted b to a "column vector"
sA = self.sage2octave_matrix_string(A)
sb = self.sage2octave_matrix_string(b)
self.eval("a = " + sA)
self.eval("b = " + sb)
soln = octave.eval("c = a \\ b")
soln = soln.replace("\n\n ","[")
soln = soln.replace ("\n\n","]")
soln = soln.replace("\n",", ")
sol = soln[3:]

106 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

return eval (sol)

This code defines the method solve_linear_system, which works as documented.

These are only excerpts from octave. py; check that file for more definitions and examples. Look at other files in
the directory SAGE_ROOT/src/sage/interfaces/ for examples of interfaces to other software packages.

3.6 Packaging Third-Party Code

3.6.1 Packaging Third-Party Code

One of the mottoes of the Sage project is to not reinvent the wheel: If an algorithm is already implemented in a
well-tested library then consider incorporating that library into Sage. The current list of available packages are the
subdirectories of SAGE_ROOT /build/pkgs/. The installation of packages is done through a bash script located in
SAGE_ROOT/build/bin/sage-spkg. This script is typically invoked by giving the command:

[user@localhost]$ sage —-i <options> <package name>...

options can be:
 -f: install a package even if the same version is already installed
* -s: do not delete temporary build directory

e —c: after installing, run the test suite for the spkg. This should override the settings of SAGE_CHECK and
SAGE_CHECK_PACKAGES.

* -d: only download the package

The section Directory Structure describes the structure of each individual package in SAGE_ROOT /build/pkgs. In
section Building the package we see how you can install and test a new spkg that you or someone else wrote. Finally,
Inclusion Procedure for New and Updated Packages explains how to submit a new package for inclusion in the Sage
source code.

Package types

Not all packages are built by default, they are divided into standard, optional and experimental ones:

 standard packages are built by default. For a few packages, configure checks whether they are available
from the system, in which case the build of those packages is skipped. Standard packages have stringent quality
requirements: they should work on all supported platforms. In order for a new standard package to be accepted,
it should have been optional for a while, see Inclusion Procedure for New and Updated Packages.

 optional packages are subject to the same requirements, they should also work on all supported platforms. If
there are optional doctests in the Sage library, those tests must pass. Note that optional packages are not tested
as much as standard packages, so in practice they might break more often than standard packages.

« for experimental packages, the bar is much lower: even if there are some problems, the package can still be
accepted.

Directory Structure

Third-party packages in Sage consist of two parts:

3.6. Packaging Third-Party Code 107

Sage Developer’s Guide, Release 8.0

1. The tarball as it is distributed by the third party, or as close as possible. Valid reasons for modifying the tarball are
deleting unnecessary files to keep the download size manageable, regenerating auto-generated files or changing
the directory structure if necessary. In certain cases, you may need to (additionally) change the filename of the
tarball. In any case, the actual code must be unmodified: if you need to change the sources, add a patch instead.
See also Modified Tarballs for automating the modifications to the upstream tarball.

2. The build scripts and associated files are in a subdirectory SAGE_ROOT/build/pkgs/<package>, where
you replace <package> with a lower-case version of the upstream project name. If the project name contains
characters which are not alphanumeric and are not an underscore, those characters should be removed or re-
placed by an underscore. For example, the project FFLAS-FFPACK is called fflas_ffpack in Sage and
path.py is renamed pathpy in Sage.

As an example, let us consider a hypothetical FoO project. They (upstream) distribute a tarball FoO-1.3.tar.gz
(that will be automatically placed in SAGE_ROOT /upst ream during the installation process). To package it in Sage,
we create a subdirectory containing as a minimum the following files:

SAGE_ROOT/build/pkgs/foo
| -— checksums.ini

| -— dependencies

| -— package-version.txt
|-— spkg-install

| -— SPKG.txt

T—— type

The following are some additional files which can be added:

SAGE_ROOT/build/pkgs/foo
| -— patches

| | -— bar.patch

| '—— baz.patch

| -— spkg-check

' —— spkg-src

We discuss the individual files in the following sections.

Package type

The file type should contain a single word, which is either standard, optional or experimental. See
Package types for the meaning of these types.

Build and install scripts

The spkg-build and spkg-install files are shell scripts or Python scripts which build and install the package.
In the best case, the upstream project can simply be installed by the usual configure / make / make install steps. In that
case, the build script would simply consist of:

#!/usr/bin/env bash
cd src

./configure —--prefix="$SAGE_LOCAL" --libdir="$SAGE_LOCAL/lib"
if [$? -ne 0]; then

echo >&2 "Error configuring PACKAGE_NAME."

exit 1

108 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

SMAKE

if [$? —ne 0]; then
echo >&2 "Error building PACKAGE_NAME."
exit 1

fi

The install script would consist of:

#!/usr/bin/env bash

cd src

SMAKE install

if [$? -ne 0]; then
echo >&2 "Error installing PACKAGE_NAME."
exit 1

fi

Note that the top-level directory inside the tarball is renamed to src before calling the spkg-build and
spkg-install scripts, so you can just use cd src instead of cd foo-1.3.

If there is any meaningful documentation included but not installed by make install, then you can add something
like the following to install it:

if ["$SAGE_SPKG_INSTALL_DOCS" = yes] ; then
SMAKE doc
if [$? —ne 0]; then
echo >&2 "Error building PACKAGE_NAME docs."
exit 1
fi
mkdir -p "$SAGE_SHARE/doc/PACKAGE_NAME"
cp -R doc/* "$SAGE_SHARE/doc/PACKAGE_NAME"
fi

Many packages currently do not separate the build and install steps and only provide a spkg-install file that does
both. The separation is useful in particular for root-owned install hierarchies:

* If spkg—build exists, it is first called, followed by $SAGE_SUDO spkg-install.

* Otherwise, only spkg—install is called (without $SAGE_SUDO). Such packages would prefix all com-
mands in spkg—install that write into the installation hierarchy with $SAGE_SUDO.

Self-Tests

The spkg-check file is an optional, but highly recommended, script to run self-tests of the package. It is run
after building and installing if the SAGE_CHECK environment variable is set, see the Sage installation guide. Ide-
ally, upstream has some sort of tests suite that can be run with the standard make check target. In that case, the
spkg-check script would simply contain:

#!/usr/bin/env bash

cd src
SMAKE check

3.6. Packaging Third-Party Code 109

Sage Developer’s Guide, Release 8.0

Python-based packages

The best way to install a Python-based package is to use pip, in which case the spkg-install script might just
consist of

#!/usr/bin/env bash

cd src && SPIP_INSTALL

If pip will not work but a command like python setup.py install will, then the spkg—install script
should call sage-python23 rather than python. This will ensure that the correct version of Python is used to
build and install the package. The same holds for spkg—check scripts; for example, the pycrypto spkg—check
file contains the line

sage—-python23 setup.py test

The SPKG.txt File

The SPKG. txt file should follow this pattern:

= PACKAGE_NAME =

== Description ==

What does the package do?

== License ==

What is the license? If non-standard, is it GPLv3+ compatible?
== Upstream Contact ==

Provide information for upstream contact.

== Dependencies ==

Put a bulleted list of dependencies here:

* python
* readline

== Special Update/Build Instructions ==

If the tarball was modified by hand and not via a spkg-src
script, describe what was changed.

with PACKAGE_NAME replaced by the package name. Legacy SPKG. txt files have an additional changelog section,
but this information is now kept in the git repository.

Package dependencies

Many packages depend on other packages. Consider for example the ec1ib package for elliptic curves. This package
uses the libraries PARI, NTL and FLINT. So the following is the dependencies file for eclib:

110 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

pari ntl flint

All lines of this file are ignored except the first.
It is copied by SAGE_ROOT/build/make/install into SAGE_ROOT/build/make/Makefile.

If there are no dependencies, you can use

no dependencies

All lines of this file are ignored except the first.
It is copied by SAGE_ROOT/build/make/install into SAGE_ROOT/build/make/Makefile.

There are actually two kinds of dependencies: there are normal dependencies and order-only dependencies, which are
weaker. The syntax for the dependencies file is

normal dependencies | order-only dependencies

If there is no |, then all dependencies are normal.

* If package A has an order-only dependency on B, it simply means that B must be built before A can be built.
The version of B does not matter, only the fact that B is installed matters. This should be used if the dependency
is purely a build-time dependency (for example, a dependency on pip simply because the spkg—install file
uses pip).

e If A has a normal dependency on B, it means additionally that A should be rebuilt every time that B gets
updated. This is the most common kind of dependency. A normal dependency is what you need for libraries: if
we upgrade NTL, we should rebuild everything which uses NTL.

In order to check that the dependencies of your package are likely correct, the following command should work without
erTors:

[user@localhost]$ make distclean && make base && make PACKAGE_NAME

Finally, note that standard packages should only depend on standard packages and optional packages should only
depend on standard or optional packages.

Patching Sources

Actual changes to the source code must be via patches, which should be placed in the patches/ directory, and must
have the . patch extension. GNU patch is distributed with Sage, so you can rely on it being available. Patches must
include documentation in their header (before the first diff hunk), and must have only one “prefix” level in the paths
(that is, only one path level above the root of the upstream sources being patched). So a typical patch file should look
like this:

Add autodoc_builtin_argspec config option

Following the title line you can add a multi-line description of
what the patch does, where you got it from if you did not write it
yourself, if they are platform specific, if they should be pushed
upstream, etc...

diff -dru Sphinx-1.2.2/sphinx/ext/autodoc.py.orig Sphinx-1.2.2/sphinx/ext/autodoc.py
——— Sphinx-1.2.2/sphinx/ext/autodoc.py.orig 2014-03-02 20:38:09.000000000 +1300
+++ Sphinx-1.2.2/sphinx/ext/autodoc.py 2014-10-19 23:02:09.000000000 +1300

3.6. Packaging Third-Party Code 111

Sage Developer’s Guide, Release 8.0

@@ -1452,6 +1462,7 @@

app.add_config_value
app.add_config_value

'autoclass_content', 'class', True)

'autodoc_member_order', 'alphabetic', True)

+ app.add_config_value ('autodoc_builtin_argspec', None, True)
app.add_config_value ('autodoc_default_flags', [], True)
app.add_config_value ('autodoc_docstring signature', True, True)
app.add_event ('autodoc-process—-docstring')

(
(
(
(

Patches directly under the pat ches/ directly are applied automatically before running the spkg—install script
(so long as they have the . patch extension). If you need to apply patches conditionally (such as only on a specif-
ically platform), you can place those patches in a subdirectory of patches/ and apply them manually using the
sage—apply-patches script. For example, considering the layout:

SAGE_ROOT /build/pkgs/foo
| -— patches

| |-— solaris

| | |-— solaris.patch
| |-— bar.patch

| ‘—— baz.patch

The patches bar .patch and baz .patch are applied to the unpacked upstream sources in src/ before running
spkg-install. To conditionally apply the patch for Solaris the spkg-install should contain a section like
this:

if [$UNAME == "SunOS"]; then
sage—apply-patches -d solaris
fi

where the —d flag applies all patches in the solaris/ subdirectory of the main patches/ directory.

When to patch, when to repackage, when to autoconfiscate

 Use unpatched original upstream tarball when possible.

Sometimes it may seem as if you need to patch a (hand-written) Make file because it “hard-codes” some paths
or compiler flags:

-—— a/Makefile

+++ b/Makefile

Q@ -77,7 +77,7 Q@
This is a Makefile.
Handwritten.

-DESTDIR = /usr/local

+DESTDIR = $ (SAGE_ROOT) /local
BINDIR = $(DESTDIR)/bin
INCDIR = $(DESTDIR)/include
LIBDIR = $(DESTDIR)/lib

Don’t use patching for that. Makefile variables can be overridden from the command-line. Just use the following
in spkg—install:

$ (MAKE) DESTDIR="$SAGE_ROOT/local"

112 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

Check if Debian or another distribution already provides patches for upstream. Use them, don’t reinvent the
wheel.

If the upstream Makefile does not build shared libraries, don’t bother trying to patch it.

Autoconfiscate the package instead and use the standard facilities of Automake and Libtool. This ensures that
the shared library build is portable between Linux and macOS.

If you have to make changes to configure.ac or other source files of the autotools build system (or if you
are autoconfiscating the package), then you can’t use patching; make a modified tarball instead.

If the patch would be huge, don’t use patching. Make a modified tarball instead.

Otherwise, maintain a set of patches.

How to maintain a set of patches

We recommend the following workflow for maintaining a set of patches.

Fork the package and put it on a public git repository.

If upstream has a public version control repository, import it from there. If upstream does not have a public ver-
sion control repository, import the current sources from the upstream tarball. Let’s call the branch upstream.

Create a branch for the changes necessary for Sage, let’s call it sage_package_VERSION, where version
is the upstream version number.

Make the changes and commit them to the branch.

Generate the patches against the upst ream branch:

rm -Rf SAGE_ROOT/build/pkgs/PACKAGE/patches
mkdir SAGE_ROOT/build/pkgs/PACKAGE/patches
git format-patch -o SAGE_ROOT/build/pkgs/PACKAGE/patches/ upstream

Optionally, create an spkg-src file in the Sage package’s directory that regenerates the patch directory using
the above commmands.

When a new upstream version becomes available, merge (or import) it into upstream, then create a new
branch and rebase in on top of the updated upstream:

git checkout sage_package_OLDVERSION
git checkout -b sage_package_ NEWVERSION
git rebase upstream

Then regenerate the patches.

Modified Tarballs

The spkg-src file is optional and only to document how the upstream tarball was changed. Ideally it is not modified,
then there would be no spkg-src file present either.

However, if you really must modify the upstream tarball then it is recommended that you write a script, called
spkg-src, that makes the changes. This not only serves as documentation but also makes it easier to apply the
same modifications to future versions.

3.6. Packaging Third-Party Code 113

Sage Developer’s Guide, Release 8.0

Package Versioning

The package-version.txt file containts just the version. So if upstream is FoO-1.3.tar.gz then the pack-
age version file would only contain 1. 3.

If the upstream package is taken from some revision other than a stable version or if upstream doesn’t have a version
number, you should use the date at which the revision is made. For example, the database_stein_watkins
package with version 20110713 contains the database as of 2011-07-13. Note that the date should refer
to the contents of the tarball, not to the day it was packaged for Sage. This particular Sage package for
database_stein_watkins was created in 2014, but the data it contains was last updated in 2011.

If you apply any patches, or if you made changes to the upstream tarball (see Directory Structure for allowable
changes), then you should append a . p0 to the version to indicate that it’s not a vanilla package.

Additionally, whenever you make changes to a package without changing the upstream tarball (for example, you add
an additional patch or you fix something in the spkg-install file), you should also add or increase the patch level.
So the different versions would be 1.3, 1.3.p0, 1.3.p1, ... The change in version number or patch level will
trigger re-installation of the package, such that the changes are taken into account.

Checksums

The checksums. ini file contains the filename pattern of the upstream tarball (without the actual version) and its
checksums. So if upstream is $SAGE_ROOT/upstream/FoO-1.3.tar.gz, create a new file $SAGE_ROOT/
build/pkgs/foo/checksums.ini containing only:

’tarball:FoO*VERSION.tar.qz

Sage internally replaces the VERSION substring with the content of package-version.txt. To recompute the
checksums, run:

[user@localhost]$ sage --package fix-checksum foo

which will modify the checksums. ini file with the correct checksums.

Utility script to create package

Assuming that you have downloaded $SAGE_ROOT/upstream/FoO-1.3.tar.gz, you can use:

[user@localhost]$ sage —--package create foo —--version 1.3 —--tarball FoO-VERSION.tar.
gz ——type experimental

to create SSAGE_ROOT/build/pkgs/foo/package-version.txt, checksums.ini, and type in one
step.

Building the package

At this stage you have a new tarball that is not yet distributed with Sage (FoO-1.3.tar.gz in the example of
section Directory Structure). Now you need to manually place it in the SAGE_ROOT /upstream/ directory and run
sage —-—-fix-pkg-checksums if you have not done that yet.

Now you can install the package using:

[user@localhost]$ sage —-i package_name

114 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

or:

’[user@localhost]$ sage —-f package_name

to force a reinstallation. If your package contains a spkg—check script (see Self-Tests) it can be run with:

’[user@localhost]$ sage -1 —-c package_name

or:

’[user@localhost]$ sage —-f —-c package_name

If all went fine, open a ticket, put a link to the original tarball in the ticket and upload a branch with the code under
SAGE_ROOT/build/pkgs.

Inclusion Procedure for New and Updated Packages

Packages that are not part of Sage will first become optional or experimental (the latter if they will not build on all
supported systems). After they have been in optional for some time without problems they can be proposed to be
included as standard packages in Sage.

To propose a package for optional/experimental inclusion please open a trac ticket with the respective Component :
field set to either packages:experimental or packages:optional. The associated code requirements are
described in the following sections.

After the ticket was reviewed and included, optional packages stay in that status for at least a year, after which they
can be proposed to be included as standard packages in Sage. For this a trac ticket is opened with the Component :
field set to packages: standard. Then make a proposal in the Google Group sage—devel.

Upgrading packages to new upstream versions or with additional patches includes opening a ticket in the respective
category too, as described above.

License Information

If you are patching a standard Sage spkg, then you should make sure that the license information for that package is up-
to-date, both in its SPKG. txt file and in the file SAGE_ROOT/COPYING. txt. For example, if you are producing
an spkg which upgrades the vanilla source to a new version, check whether the license changed between versions.

Prerequisites for New Standard Packages

For a package to become part of Sage’s standard distribution, it must meet the following requirements:

* License. For standard packages, the license must be compatible with the GNU General Public License, version
3. The Free Software Foundation maintains a long list of licenses and comments about them.

* Build Support. The code must build on all the fully supported platforms.

A standard package should also work on all the platforms where Sage is expected to work and on which Sage
almost works but since we don’t fully support these platforms and often lack the resources to test on them, you
are not expected to confirm your packages works on those platforms.

* Quality. The code should be “better” than any other available code (that passes the two above criteria), and
the authors need to justify this. The comparison should be made to both Python and other software. Criteria in
passing the quality test include:

— Speed

3.6. Packaging Third-Party Code 115

http://www.gnu.org/licenses/license-list.html
http://wiki.sagemath.org/SupportedPlatforms#Fully_supported
http://wiki.sagemath.org/SupportedPlatforms#Expected_to_work
http://wiki.sagemath.org/SupportedPlatforms#Almost_works

Sage Developer’s Guide, Release 8.0

Documentation

Usability

Absence of memory leaks

Maintainable

Portability

Reasonable build time, size, dependencies

* Previously an optional package. A new standard package must have spent some time as an optional package.
Or have a good reason why this is not possible.

* Refereeing. The code must be refereed, as discussed in The Sage Trac Server.

3.6.2 Packaging Old-Style SPKGs

This chapter explains old-style spkgs; It applies only to legacy optional spkgs and experimental spkgs.

Warning: Old-style packages are deprecated, it is strongly suggested that you make a new-style package instead.
See Packaging Third-Party Code for the modern way of packaging third-party software.

Creating an Old-Style SPKG

If you are producing code to add new functionality to Sage, you might consider turning it into a package (an “spkg”)
instead of a patch file. If your code is very large (for instance) and should be offered as an optional download, a
package is the right choice. Similarly, if your code depends on some other optional component of Sage, you should
produce a package. When in doubt, ask for advice on the sage—devel mailing list.

The abbreviation “spkg” stands for “Sage package”. The directory SAGE_ROOT/spkg/standard contains spkg’s.
In a source install, these are all Sage spkg files (actually .tar or .tar.bz2 files), which are the source code that
defines Sage. In a binary install, some of these may be small placeholder files to save space.

Sage packages are distributed as . spkg files, which are . tar.bz?2 files (or t ar files) but have the extension . spkg
to discourage confusion. Although Sage packages are packed using tar and/or bzip2, note that . spkg files contain
control information (installation scripts and metadata) that are necessary for building and installing them. When you
compile Sage from a source distribution (or when you run sage -p <pkg>), the file SAGE_ROOT /build/bin/
sage-spkg takes care of the unpacking, compilation, and installation of Sage packages for you. You can type:

tar -jxvf mypackage-version.spkg

to extract an spkg and see what is inside. If you want to create a new Sage package, it is recommended that you start by
examining some existing spkg’s. The URL http://www.sagemath.org/download-packages.html lists spkg’s available
for download.

Naming Your SPKG

Each Sage spkg has a name of the following form:

BASENAME-VERSION. spkg

116 Chapter 3. Writing Code for Sage

http://www.sagemath.org/download-packages.html

Sage Developer’s Guide, Release 8.0

BASENAME is the name of the package; it may contain lower-case letters, numbers, and underscores, but no hyphens.
VERSION is the version number; it should start with a number and may contain numbers, letters, dots, and hyphens;
it may end in a string of the form “pNUM”, where “NUM?” is a non-negative integer. If your spkg is a “vanilla”
(unmodified) version of some piece of software, say version 5.3 of “my-python-package”, then BASENAME would be
“my_python_package” — note the change from hyphens to underscores, because BASENAME should not contain any
hyphens — and VERSION would be “5.3”. If you need to modify the software to use it with Sage (as described below
and in the chapter Overview of Patching SPKGs), then VERSION would be “5.3.p0”, the “p0” indicating a patch-level
of 0. If someone adds more patches, later, this would become “p1”, then “p2”, etc.

The string VERSION must be present. If you are using a piece software with no obvious version number, use a date.
To give your spkg a name like this, create a directory called BASENAME-VERSION and put your files in that directory
— the next section describes the directory structure.

Directory Structure

Put your files in a directory with a name like mypackage—0.1, as described above. If you are porting another
software package, then the directory should contain a subdirectory src/, containing an unaltered copy of the package.
Every file not in src/ should be under version control, i.e. checked into an hg repository.

More precisely, the directory should contain the following:

e src/: this directory contains vanilla upstream code, with a few exceptions, e.g. when the spkg shipped with
Sage is in effect upstream, and development on that code base is happening in close coordination with Sage.
See John Cremona’s eclib spkg, for instance. The directory src/ must not be under revision control.

* .hg, .hgignore, and . hgtags: Old-style spkgs use Mercurial for its revision control system. The hidden
directory . hg is part of the standard Sage spkg layout. It contains the Mercurial repository for all files not in
the src/ directory. To create this Mercurial repository from scratch, you should do:

’hg init

The files . hgignore and .hgtags also belong to the Mercurial repository. The file . hgtags is optional,
and is frequently omitted. You should make sure that the file .hgignore contains “src/”, since we are not
tracking its content. Indeed, frequently this file contains only a single line:

src/

* spkg-install: this file contains the install script. See The File spkg-install for more information and a
template.

* SPKG.txt: this file describes the spkg in wiki format. Each new revision needs an updated changelog entry or
the spkg will get an automatic “needs work™ at review time. See The File SPKG.txt for a template.

* spkg-check: this file runs the test suite. This is somewhat optional since not all spkg’s have test suites. If
possible, do create such a script since it helps isolate bugs in upstream packages.

* patches/: this directory contains patches to source files in src/. See Overview of Patching SPKGs. Patches
to files in src/ should be applied in spkg—install, and all patches must be self-documenting, i.e. the
header must contain what they do, if they are platform specific, if they should be pushed upstream, etc. To
ensure that all patched versions of upstream source files under src/ are under revision control, the whole
directory patches/ must be under revision control.

Never apply patches to upstream source files under src/ and then package up an spkg. Such a mixture of upstream
source with Sage specific patched versions is a recipe for confusion. There must be a clean separation between the
source provided by the upstream project and the patched versions that the Sage project generates based on top of the
upstream source.

3.6. Packaging Third-Party Code 117

Sage Developer’s Guide, Release 8.0

The only exception to this rule is for removals of unused files or directories. Some packages contain parts which are
not needed for Sage. To save space, these may be removed directly from src/. But be sure to document this in the
“Special Update/Build Instructions” section in SPKG. txt!

The File spkg-install

The script spkg—install is run during installation of the Sage package. In this script, you may make the following
assumptions:

* The PATH has the locations of sage and python (from the Sage installation) at the front. Thus the command:

python setup.py install

will run the correct version of Python with everything set up correctly. Also, running gap or Singular, for
example, will run the correct version.

* The environment variable SAGE_ROOT points to the root directory of the Sage installation.
* The environment variable SAGE_LOCAL points to the SAGE_ROOT/1local directory of the Sage installation.

The spkg-install script should copy your files to the appropriate place after doing any build that is necessary.
Here is a template:

#!/usr/bin/env bash

if [-z "$SAGE_LOCAL"]; then
echo >&2 "SAGE_LOCAL undefined ... exiting"
echo >&2 "Maybe run 'sage —--sh'?"
exit 1

fi

cd src

Apply patches. See SPKG.txt for information about what each patch
does.
for patch in ../patches/*.patch; do
[-r "S$patch"] || continue # Skip non-existing or non-readable patches
patch -pl <"S$patch"
if [$? -ne 0]; then
echo >&2 "Error applying 'Spatch'"
exit 1
fi
done

./configure —--prefix="$SAGE_LOCAL"

if [$? —-ne 0]; then
echo >&2 "Error configuring PACKAGE_NAME."
exit 1

fi

SMAKE

if [$? —-ne 0]; then
echo >&2 "Error building PACKAGE_NAME."
exit 1

fi

SMAKE install
if [$? -ne 0]; then

118 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

echo >&2 "Error installing PACKAGE_NAME."
exit 1
fi

if ["S$SAGE_SPKG_INSTALL_DOCS" = yes] ; then

Before trying to build the documentation, check if any
needed programs are present. In the example below, we
check for 'latex', but this will depend on the package.
Some packages may need no extra tools installed, others
may require some. We use 'command -v' for testing this,
and not 'which' since 'which' is not portable, whereas
'command -v' 1is defined by POSIX.

S e e S o e o

if [‘command -v latex”] ; then

echo "Good, latex was found, so building the documentation"
else

echo "Sorry, can't build the documentation for PACKAGE_NAME as latex is not
—installed"

exit 1

fi

R

make the documentation in a package-specific way
for example, we might have

cd doc

SMAKE html

if [$? —-ne 0]; then
echo >&2 "Error building PACKAGE_NAME docs."
exit 1
fi
mkdir -p "$SAGE_ROOT/local/share/doc/PACKAGE_NAME"
assuming the docs are in doc/«*
cp -R doc/* "$SAGE_ROOT/local/share/doc/PACKAGE_NAME"
fi

Note that the first line is #! /usr/bin/env bash; this is important for portability. Next, the script checks that
SAGE_LOCAL is defined to make sure that the Sage environment has been set. After this, the script may simply
run cd src and then call either python setup.py install or the autotools sequence . /configure &&
make && make install, or something else along these lines.

Sometimes, though, it can be more complicated. For example, you might need to apply the patches from the patches
directory in a particular order. Also, you should first build (e.g. with python setup.py build, exiting if there
is an error), before installing (e.g. with python setup.py install). In this way, you would not overwrite a
working older version with a non-working newer version of the spkg.

When copying documentation to $SAGE_ROOT/local/share/doc/PACKAGE_NAME, it may be necessary to
check that only the actual documentation files intended for the user are copied. For example, if the documentation is
built from . tex files, you may just need to copy the resulting pdf files, rather than copying the entire doc directory.
When generating documentation using Sphinx, copying the build/html directory generally will copy just the actual
output intended for the user.

The File SPKG.txt

The old-style SPKG. txt file is the same as described in The SPKG.zxt File, but with a hand-maintained changelog
appended since the contents are not part of the Sage repository tree. It should follow the following pattern:

3.6. Packaging Third-Party Code 119

Sage Developer’s Guide, Release 8.0

== Changelog ==

Provide a changelog of the spkg here, where the entries have this format:
== mypackage-0.1.p0 (Mary Smith, 1 Jan 2012) ===

+ Patch src/configure so it builds on Solaris. See Sage trac #137.

=== mypackage-0.1 (Leonhard Euler, 17 September 1783) ===

x» Initial release. See Sage trac #007.

When the directory (say, mypackage-0. 1) is ready, the command

sage —-pkg mypackage-0.1

will create the file mypackage—-0.1.spkg. As noted above, this creates a compressed tar file. Running sage
--pkg_nc mypackage-0.1 creates an uncompressed tar file.

When your spkg is ready, you should post about it on sage-devel. If people there think it is a good idea, then
post a link to the spkg on the Sage trac server (see The Sage Trac Server) so it can be refereed. Do not post the spkg
itself to the trac server: you only need to provide a link to your spkg. If your spkg gets a positive review, it might be
included into the core Sage library, or it might become an optional download from the Sage website, so anybody can
automatically install it by typing sage —-p mypackage-version.spkg.

Note: For any spkg:

* Make sure that the hg repository contains every file outside the src directory, and that these are all up-to-date
and committed into the repository.

* Include an spkg—check file if possible (see trac ticket #299).

Note: External Magma code goes in SAGE_ROOT/src/ext/magma/user, so if you want to redistribute Magma
code with Sage as a package that Magma-enabled users can use, that is where you would put it. You would also want
to have relevant Python code to make the Magma code easily usable.

Avoiding Troubles

This section contains some guidelines on what an spkg must never do to a Sage installation. You are encouraged to
produce an spkg that is as self-contained as possible.

1. An spkg must not modify an existing source file in the Sage library.

2. Do not allow an spkg to modify another spkg. One spkg can depend on other spkg — see above. You need to
first test for the existence of the prerequisite spkg before installing an spkg that depends on it.

Overview of Patching SPKGs

Make sure you are familiar with the structure and conventions relating to spkg’s; see the chapter Packaging Old-Style
SPKGs for details. Patching an spkg involves patching the installation script of the spkg and/or patching the upstream
source code contained in the spkg. Say you want to patch the Matplotlib package matplotlib-1.0.1.p0. Note
that “p0” denotes the patch level of the spkg, while “1.0.1” refers to the upstream version of Matplotlib as contained
under matplotlib-1.0.1.p0/src/. The installation script of that spkg is:

120 Chapter 3. Writing Code for Sage

http://trac.sagemath.org/sage_trac/ticket/299

Sage Developer’s Guide, Release 8.0

matplotlib-1.0.1.p0/spkg-install

In general, a script with the name spkg—install is an installation script for an spkg. To patch the installation
script, use a text editor to edit that script. Then in the log file SPKG. txt, provide a high-level description of your
changes. Once you are satisfied with your changes in the installation script and the log file SPKG. t xt, use Mercurial
to check in your changes and make sure to provide a meaningful commit message.

The directory src/ contains the source code provided by the upstream project. For example, the source code of
Matplotlib 1.0.1 is contained under

matplotlib-1.0.1.p0/src/

To patch the upstream source code, you should edit a copy of the relevant file — files in the src/ directory should be
untouched, “vanilla” versions of the source code. For example, you might copy the entire src/ directory:

S pwd
matplotlib-1.0.1.p0
$ cp -pR src src-patched

Then edit files in src—patched/. Once you are satisfied with your changes, generate a unified diff between the
original file and the edited one, and save it in patches/:

$ diff -u src/configure src-patched/configure > patches/configure.patch

Save the unified diff to a file with the same name as the source file you patched, but using the file extension ”.patch”.
Note that the directory src/ should not be under revision control, whereas pat ches/ must be under revision control.
The Mercurial configuration file . hgignore should contain the following line:

’src/

Ensure that the installation script spkg—-install contains code to apply the patches to the relevant files under src/.
For example, the file

’matplotlibfl.o.1.pO/patches/finance.py.patch

is a patch for the file

’matplotlibfl.O.1.pO/src/lib/matplotlib/finance.py

The installation script matplotlib-1.0.1.p0/spkg-install contains the following code to install the rele-
vant patches:

cd src

Apply patches. See SPKG.txt for information about what each patch
does.
for patch in ../patches/*.patch; do
patch -pl <"S$patch"
if [$? —ne 0]; then
echo >&2 "Error applying 'S$patch'"
exit 1
fi
done

Of course, this could be modified if the order in which the patches are applied is important, or if some patches were
platform-dependent. For example:

3.6. Packaging Third-Party Code 121

Sage Developer’s Guide, Release 8.0

if ["SUNAME" = "Darwin"]; then
for patch in ../patches/darwin/*.patch; do
patch -pl <"$patch"
if [$? —ne 0]; then
echo >&2 "Error applying 'S$patch'"
exit 1
fi
done
fi

(The environment variable UNAME is defined by the script sage-env, and is available when spkg-install is
run.)

Now provide a high-level explanation of your changes in SPKG.txt. Note the format of SPKG.txt — see the
chapter Packaging Old-Style SPKGs for details. Once you are satisfied with your changes, use Mercurial to check in
your changes with a meaningful commit message. Then use the command hg tag to tag the tip with the new version
number (using “p1” instead of “p0”: we have made changes, so we need to update the patch level):

$ hg tag matplotlib-1.0.1.pl

Next, rename the directory matplotlib-1.0.1.p0 tomatplotlib-1.0.1.p1 to match the new patch level.
To produce the actual spkg file, change to the parent directory of matplotlib-1.0.1.p1 and execute

$ /path/to/sage-x.y.z/sage —-pkg matplotlib-1.0.1.pl
Creating Sage package matplotlib-1.0.1.pl

Created package matplotlib-1.0.1.pl.spkg.

NAME: matplotlib
VERSION: 1.0.1.pl
SIZE: 11.8M
HG REPO: Good
SPKG.txt: Good

Spkg files are either bzipped tar files or just plain tar files; the command sage —--pkg ... produces the bzipped
version. If your spkg contains mostly binary files which will not compress well, you can use sage —-pkg_nc
to produce an uncompressed version, i.e., a plain tar file:

$ sage —--pkg_nc matplotlib-1.0.1.p0/
Creating Sage package matplotlib-1.0.1.p0/ with no compression

Created package matplotlib-1.0.1.p0.spkg.

NAME: matplotlib
VERSION: 1.0.1.p0
SIZE: 32.8M
HG REPO: Good
SPKG.txt: Good

Note that this is almost three times the size of the compressed version, so we should use the compressed version!

At this point, you might want to submit your patched spkg for review. So provide a URL to your spkg on the relevant
trac ticket and/or in an email to the relevant mailing list. Usually, you should not upload your spkg itself to the relevant
trac ticket — don’t post large binary files to the trac server.

122 Chapter 3. Writing Code for Sage

Sage Developer’s Guide, Release 8.0

SPKG Versioning

If you want to bump up the version of an spkg, you need to follow some naming conventions. Use the name and
version number as given by the upstream project, e.g. matplotlib-1.0.1. If the upstream package is taken
from some revision other than a stable version, you need to append the date at which the revision is made, e.g. the
Singular package singular—-3-1-0-4-20090818.p3. spkg is made with the revision as of 2009-08-18. If you
start afresh from an upstream release without any patches to its source code, the resulting spkg need not have any
patch-level labels (appending .p0” is allowed, but is optional). For example, sagenb-0. 6. spkg is taken from
the upstream stable version sagenb-0.6 without any patches applied to its source code. So you do not see any
patch-level numbering such as .p0 or .p1l.

Say you start with matplotlib-1.0.1.p0 and you want to replace Matplotlib 1.0.1 with version 1.0.2. This
entails replacing the source code for Matplotlib 1.0.1 under matplotlib-1.0.1.p0/src/ with the new source
code. To start with, follow the naming conventions as described in the section Overview of Patching SPKGs. If
necessary, remove any obsolete patches and create any new ones, placing them in the patches/ directory. Modify
the script spkg-install to take any changes to the patches into account; you might also have to deal with changes
to how the new version of the source code builds. Then package your replacement spkg using the Sage command line
options ——pkg or ——pkg_nc (or tar and bzip2).

To install your replacement spkg, you use:

’sage -p http://URL/to/package-x.y.z.spkg

or:

’sage -p /path/to/package-x.y.z.spkg

To compile Sage from source with the replacement (standard) spkg, untar a Sage source tarball, remove the existing
spkg under SAGE_ROOT/spkg/standard/. In its place, put your replacement spkg. Then execute make from
SAGE_ROOT.

3.6. Packaging Third-Party Code 123

Sage Developer’s Guide, Release 8.0

124 Chapter 3. Writing Code for Sage

CHAPTER
FOUR

SAGE NOTEBOOK DEVELOPER GUIDE

4.1 Sage Notebook Developer Guide

Development of the Sage notebook currently occurs on Github using the Git revision control system. The development
model for the Sage Notebook project is a git and github workflow.

To update to the latest development source, run the commands below, where SAGE_ROOT is the root directory of the
Sage installation, and where hackdir is a directory you create for working on code changes (it need not have the
name or location given below).

Warning: This will create a new sagenb repository ignoring any changes you have made to the files.

mkdir ~/hackdir

cd ~/hackdir

git clone git://github.com/sagemath/sagenb.git sagenb-git
cd SAGE_ROOT/src

rm sagenb

1ln -s ~/hackdir/sagenb sagenb

cd sagenb

../../sage setup.py develop

What this has done is to create a new directory, move to that directory, and create a clone of the most up-to-date version
of the upstream notebook sources there. Then we remove a symbolic link sagenb in the Sage folder and replace it
with a link to your clone of upstream, finally making sure that the notebook has the correct dependencies.

An advantage of having the separate directory for sagenb is that you would later be able to keep it and do development
work in it even when you upgrade Sage, or even if you accidentally destroy your Sage installation somehow.

The rest of these instructions is some very generic documentation, slightly adapted to help develop the notebook using
Git and Github.

The most important section involves how to update your new sagenb source repository and create a “fork™ of the master
copy, so that you will be able to request your changes to be merged in the Sage notebook, called a “pull request”; see
Git for Development.

4.1.1 Following the Latest Source

These are the instructions if you just want to follow the latest Sage Notebook source, but you don’t need to do any
development for now.

The steps are:

125

http://nb.sagemath.org
http://git-scm.com
http://github.com

Sage Developer’s Guide, Release 8.0

e Installing Git
* get local copy of the Sage Notebook github git repository
* update local copy from time to time

Get the Local Copy of the Code

From the command line:

git clone git://github.com/sagemath/sagenb.git

You now have a copy of the code tree in the new sagenb directory.

Updating the Code

From time to time you may want to pull down the latest code. Do this with:

cd sagenb
git pull

The tree in sagenb will now have the latest changes from the initial repository.

4.1.2 Making a Patch

You’ve discovered a bug or something else you want to change in Sage Notebook — excellent!
You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here we explain how.

Making a patch is simple and quick, but it is not part of our normal workflow. So if you are going to be doing anything
more than a once-off patch one time, please consider following the Git for Development model instead. See especially
the part about “pull requests” at The Editing Workflow.

Making Patches

Overview

tell git who you are

git config --global user.email you@yourdomain.example.com
git config —--global user.name "Your Name Comes Here"
get the repository if you don't have it

git clone git://github.com/sagemath/sagenb.git

make a branch for your patching

cd sagenb

git branch the-fix-im-thinking-of

git checkout the-fix-im-thinking-of

hack, hack, hack

Tell git about any new files you've made

git add somewhere/tests/test_my_bug.py

commit work in progress as you go

git commit -am 'BEF - added tests for Funny bug'

126 Chapter 4. Sage Notebook Developer Guide

http://github.com/sagemath/sagenb
http://nb.sagemath.org

Sage Developer’s Guide, Release 8.0

hack hack, hack

git commit —-am 'BF - added fix for Funny bug'
make the patch files

git format-patch -M -C master

You may attach a short generated patch file to the Sage Notebook mailing list or better, open an issue at the Sage
Notebook github site (see Git for Development) and cut and paste your patch in a comment there. In either case we
will thank you warmly.

In Detail

1. Tell git who you are so it can label the commits you’ve made:

git config —--global user.email you@yourdomain.example.com
git config —-global user.name "Your Name Comes Here"

2. If you don’t already have one, clone a copy of the Sage Notebook repository:

git clone git://github.com/sagemath/sagenb.git
cd sagenb

3. Make a ‘feature branch’. This will be where you work on your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

4. Do some edits, and commit them as you go:

hack, hack, hack

Tell git about any new files you've made

git add somewhere/tests/test_my_bug.py

commit work in progress as you go

git commit -am 'BEF - added tests for Funny bug'
hack hack, hack

git commit -am 'BEF - added fix for Funny bug'

Note the —am options to commit. The m flag just signals that you’re going to type a message on the command
line. The a flag — you can just take on faith — or see why the -a flag?.

5. When you have finished, check you have committed all your changes:

’git status

6. Finally, make your commits into patches. You want all the commits since you branched from the master
branch:

’git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

4.1. Sage Notebook Developer Guide 127

http://groups.google.com/group/sage-notebook
http://github.com/sagemath/sagenb
http://github.com/sagemath/sagenb
http://nb.sagemath.org
http://www.gitready.com/beginner/2009/01/18/the-staging-area.html

Sage Developer’s Guide, Release 8.0

Although some projects would have you send these files to the Sage Notebook mailing list, we prefer submitting
an issue request at the web interface to the Sage Notebook github page. See The Editing Workflow for how to
create a “pull request” once you have created a Github account.

When you are done, to switch back to the main copy of the code, just return to the master branch:

git checkout master

Moving from Patching to Development

If you find you have done some patches, and you have one or more feature branches, you will probably want to switch
to development mode. You can do this with the repository you have.

Fork the Sage Notebook repository on github — Making Your Own Copy (Fork) of Sage Notebook. Then:

checkout and refresh master branch from main repo

git checkout master

git pull origin master

rename pointer to main repository to 'upstream'

git remote rename origin upstream

point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/sagenb.git

push up any branches you've made and want to keep

git push origin the-fix-im-thinking-of

Then you can, if you want, follow the Development Workflow.

4.1.3 Git for Development

Contents:

Making Your Own Copy (Fork) of Sage Notebook
You need to do this only once. The instructions here are very similar to the instructions at http://help.github.com/

forking/ — please see that page for more detail. We’re repeating some of it here just to give the specifics for the Sage
Notebook project, and to suggest some default names.

Set Up and Configure a Github Account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see the Generating SSH keys help on github
help.

Create Your Own Forked Copy of Sage Notebook

1. Log into your github account.

2. Go to the Sage Notebook github home at Sage Notebook github.

128 Chapter 4. Sage Notebook Developer Guide

http://groups.google.com/group/sage-notebook
http://github.com/sagemath/sagenb
http://nb.sagemath.org
http://help.github.com/forking/
http://help.github.com/forking/
http://nb.sagemath.org
http://nb.sagemath.org
http://help.github.com
http://help.github.com
http://nb.sagemath.org
http://github.com/sagemath/sagenb

Sage Developer’s Guide, Release 8.0

3. Click on the fork button:

<» Unwatch #1 Fork i1 Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

Now, after a short pause, you should find yourself at the home page for your own forked copy of Sage Notebook.

Set Up Your Fork

First you follow the instructions for Making Your Own Copy (Fork) of Sage Notebook.

Overview

git clone git@github.com:your-user-name/sagenb.git
cd sagenb
git remote add upstream git://github.com/sagemath/sagenb.git

In Detail
Clone Your Fork

1. Clone your fork to the local computer with git clone git@github.com:your-user—name/
sagenb.git

2. Investigate. Change directory to your new repo: cd sagenb. Then git branch -a to show you all
branches. You’ll get something like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and that you also have a remote connection to
origin/master. What remote repository is remote/origin? Try git remote -v to see the URLs
for the remote. They will point to your github fork.

Now you want to connect to the upstream Sage Notebook github repository, so you can merge in changes from
trunk.

Linking Your Repository to the Upstream Repo

cd sagenb
git remote add upstream git://github.com/sagemath/sagenb.git

upstream here is just the arbitrary name we’re using to refer to the main Sage Notebook repository at Sage Notebook
github.

4.1. Sage Notebook Developer Guide 129

http://nb.sagemath.org
http://github.com/sagemath/sagenb
http://nb.sagemath.org
http://github.com/sagemath/sagenb
http://github.com/sagemath/sagenb

Sage Developer’s Guide, Release 8.0

Note that we’ve used git:// for the URL rather than git@. The git:// URL is read only. This means we that
we can’t accidentally (or deliberately) write to the upstream repo, and we are only going to use it to merge into our
own code.

Just for your own satisfaction, show yourself that you now have a new ‘remote’, with git remote -v show,
giving you something like:

upstream git://github.com/sagemath/sagenb.git (fetch)
upstream git://github.com/sagemath/sagenb.git (push)
origin git@github.com:your-user—-name/sagenb.git (fetch)
origin git@github.com:your-user—-name/sagenb.git (push)

Development Workflow

You already have your own forked copy of the Sage Notebook repository, by following Making Your Own Copy (Fork)
of Sage Notebook. You have Set Up Your Fork. You have configured git by following Configuration Tips. Now you
are ready for some real work.

Workflow Summary

In what follows we’ll refer to the upstream Sage Notebook master branch, as “trunk”.
* Don’t use your master branch for anything. Consider deleting it.

* When you are starting a new set of changes, fetch any changes from trunk, and start a new feature branch from

that.
* Make a new branch for each separable set of changes — “one task, one branch” (ipython git workflow).
e Name your branch for the purpose of the changes - e.g. bugfix-for-issue-14 or

refactor-database-code.

* If you can possibly avoid it, avoid merging trunk or any other branches into your feature branch while you are
working.

* If you do find yourself merging from trunk, consider Rebasing on trunk
* Ask on the Sage Notebook mailing list if you get stuck.
* Ask for code review!

This way of working helps to keep work well organized, with readable history. This in turn makes it easier for project
maintainers (that might be you) to see what you’ve done, and why you did it.

See linux git workflow and ipython git workflow for some explanation.

Consider Deleting Your Master Branch

It may sound strange, but deleting your own master branch can help reduce confusion about which branch you are
on. See deleting master on github for details.

Update the Mirror of trunk

First make sure you have done Linking Your Repository to the Upstream Repo.

From time to time you should fetch the upstream (trunk) changes from github:

130 Chapter 4. Sage Notebook Developer Guide

http://nb.sagemath.org
http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html
http://groups.google.com/group/sage-notebook
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html
http://matthew-brett.github.com/pydagogue/gh_delete_master.html

Sage Developer’s Guide, Release 8.0

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to point to the right commit. For
example, ‘trunk’ is the branch referred to by (remote/branchname) upstream/master - and if there have been
commits since you last checked, upstream/master will change after you do the fetch.

Make a New Feature Branch

When you are ready to make some changes to the code, you should start a new branch. Branches that are for a
collection of related edits are often called ‘feature branches’.

Making an new branch for each set of related changes will make it easier for someone reviewing your branch to see
what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us what the changes in the branch are
for. For example add-ability-to-fly, orbuxfix—for—-issue—42.

Update the mirror of trunk

git fetch upstream

Make new feature branch starting at current trunk
git branch my-new-feature upstream/master

git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github fork of Sage Notebook. To do this, you
git push this new branch up to your github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push up to your own repo on github with:

’git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the -—set-upstream option:

’qit push ——-set-upstream origin my-new-feature

From now on git will know that my—new-feature is related to the my—new-feature branch in the github repo.

The Editing Workflow

Overview

hack hack

git add my_new_file

git commit —-am 'NE - some message'
git push

In More Detail

1. Make some changes

2. See which files have changed with git status (see git status). You’ll see a listing like this one:

4.1. Sage Notebook Developer Guide 131

http://github.com
http://nb.sagemath.org
http://schacon.github.com/git/git-push.html
http://schacon.github.com/git/git-status.html

Sage Developer’s Guide, Release 8.0

On branch ny-new-feature

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout —-- <file>..." to discard changes in working directory)
#

modified: README

#

Untracked files:

(use "git add <file>..." to include in what will be committed)
#

INSTALL

no changes added to commit (use "git add" and/or "git commit -a")

3. Check what the actual changes are with git diff (git diff).
4. Add any new files to version control git add new_file_name (see git add).

5. To commit all modified files into the local copy of your repo,, do git commit -am 'A commit
message'. Note the —am options to commit. The m flag just signals that you’re going to type a message
on the command line. The a flag — you can just take on faith — or see why the -a flag? — and the helpful
use-case description in the tangled working copy problem. The git commit manual page might also be useful.

6. To push the changes up to your forked repo on github, do a git push (see git push).

Ask for Your Changes to be Reviewed or Merged

When you are ready to ask for someone to review your code and consider a merge:
1. Go to the URL of your forked repo, say http://github.com/your-user-name/sagenb.

2. Use the ‘Switch Branches’ dropdown menu near the top left of the page to select the branch with your changes:

source Commits MNetwork Full Requests (0)

Switch Branches [2) Switch Tags (0) Branch List

my-fancy-feature
amed axes for data management -
placeholdar +

= e i e

3. Click on the ‘Pull request’ button:

 Admin @ Unwatch s Pull Request L= Downl

Downloads (0) Wiki (1) Graphs

132 Chapter 4. Sage Notebook Developer Guide

http://schacon.github.com/git/git-diff.html
http://schacon.github.com/git/git-add.html
http://www.gitready.com/beginner/2009/01/18/the-staging-area.html
http://tomayko.com/writings/the-thing-about-git
http://schacon.github.com/git/git-commit.html
http://schacon.github.com/git/git-push.html

Sage Developer’s Guide, Release 8.0

Enter a title for the set of changes, and some explanation of what you’ve done. Say if there is anything you’d
like particular attention for - like a complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your pull request message. This is still a
good way of getting some preliminary code review.

Some Other Things You Might Want to Do

Delete a Branch on Github

git checkout master

delete branch locally

git branch -D my-unwanted-branch

delete branch on github

git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also: http://github.com/guides/remove-a-remote-branch

Several People Sharing a Single Repository

If you want to work on some stuff with other people, where you are all committing into the same repository, or even
the same branch, then just share it via github.

First fork Sage Notebook into your account, as from Making Your Own Copy (Fork) of Sage Notebook.
Then, go to your forked repository github page, say http://github.com/your—-user—-name/sagenb

Click on the ‘Admin’ button, and add anyone else to the repo as a collaborator:

 Admin <» Unwatch i1 Pull Request =1 Downl

Downloads (0) Wiki (1) Graphs

Now all those people can do:

’git clone git@githhub.com:your-user—-name/sagenb.git

Remember that links starting with git@ use the ssh protocol and are read-write; links starting with git:// are
read-only.

Your collaborators can then commit directly into that repo with the usual:

git commit —-am 'ENH - much better code'

git push origin master # pushes directly into your repo

Explore Your Repository

To see a graphical representation of the repository branches and commits:

4.1. Sage Notebook Developer Guide 133

http://github.com/guides/remove-a-remote-branch

Sage Developer’s Guide, Release 8.0

’gitk --all

To see a linear list of commits for this branch:

’git log

You can also look at the network graph visualizer for your github repo.

Finally the Fancy Log Output 1g alias will give you a reasonable text-based graph of the repository.

Rebasing on trunk

Let’s say you thought of some work you’d like to do. You Update the Mirror of trunk and Make a New Feature Branch
called cool-feature. At this stage trunk is at some commit, let’s call it E. Now you make some new commits on
your cool-feature branch, let’s call them A, B, C. Maybe your changes take a while, or you come back to them
after a while. In the meantime, trunk has progressed from commit E to commit (say) G:

A-—-B-—-C cool-feature
/
D-——E-——F-—--G trunk

At this stage you consider merging trunk into your feature branch, and you remember that this here page sternly
advises you not to do that, because the history will get messy. Most of the time you can just ask for a review, and not
worry that trunk has got a little ahead. But sometimes, the changes in trunk might affect your changes, and you need
to harmonize them. In this situation you may prefer to do a rebase.

rebase takes your changes (A, B, C) and replays them as if they had been made to the current state of t runk. In other
words, in this case, it takes the changes represented by A, B, C and replays them on top of G. After the rebase, your
history will look like this:

A'--B'--C' cool-feature
/
D-——E-—-F-—-G trunk

See rebase without tears for more detail.

To do a rebase on trunk:

Update the mirror of trunk

git fetch upstream

go to the feature branch

git checkout cool-feature

make a backup in case you mess up

git branch tmp cool-feature

rebase cool-feature onto trunk

git rebase —-onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last command can be written more succinctly
as:

’git rebase upstream/master

When all looks good you can delete your backup branch:

’qit branch -D tmp

134 Chapter 4. Sage Notebook Developer Guide

http://github.com/blog/39-say-hello-to-the-network-graph-visualizer
http://matthew-brett.github.com/pydagogue/rebase_without_tears.html

Sage Developer’s Guide, Release 8.0

If it doesn’t look good you may need to have a look at Recovering From Mess-Ups.

If you have made changes to files that have also changed in trunk, this may generate merge conflicts that you need
to resolve - see the git rebase man page for some instructions at the end of the “Description” section. There is some
related help on merging in the git user manual - see resolving a merge.

Recovering From Mess-Ups

Sometimes, you mess up merges or rebases. Luckily, in git it is relatively straightforward to recover from such
mistakes.

If you mess up during a rebase:

git rebase ——-abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset —-—-hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately

278dd2a cool-feature@{1l}: rebase finished: refs/heads/my-feature-branch onto,,
—~11ee694744£2552d

26aa2la cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj

reset the branch to where it was before the botched rebase
git reset —--hard cool-feature@{2}

Rewriting Commit History

Note: Do this only for your own feature branches.

There’s an embarassing typo in a commit you made? Or perhaps the you made several false starts you would like the
posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log —-oneline

eadc391 Fix some remaining bugs

a815645 Modify it so that it works

2declac Fix a few bugs + disable

13d7934 First implementation

6ad92e5 » masked is now an instance of a new object, MaskedConstant
2900led Add pre-nep for a copule of structured_array_extensions.

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we want to make the following changes:

4.1. Sage Notebook Developer Guide 135

http://schacon.github.com/git/git-rebase.html
http://schacon.github.com/git/user-manual.html#resolving-a-merge

Sage Developer’s Guide, Release 8.0

* Rewrite the commit message for 13d7934 to something more sensible.
* Combine the commits 2declac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD

interactive rebase

git rebase —-i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation

pick 2declac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92eb5..eadc391 onto 6ad92eb

Commands :

p, pick = use commit

r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

£, fixup = like "squash", but discard this commit's log message

If you remove a line here THAT COMMIT WILL BE LOST.
However, 1f you remove everything, the rebase will be aborted.

HH o W H HE W KW H R W W H

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation

pick 2declac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for 13d7934, and (ii) collapse the last three commits into
one. Now we save and quit the editor.

Git will then immediately bring up an editor for editing the commit message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation

2 files changed, 199 insertions(+), 66 deletions(-)

[detached HEAD 0£22701] Fix a few bugs + disable

1 files changed, 79 insertions(+), 61 deletions(-)
Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0£22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 x masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

136 Chapter 4. Sage Notebook Developer Guide

Sage Developer’s Guide, Release 8.0

Maintainer Workflow

This page is for maintainers — those of us who merge our own or other peoples’ changes into the upstream repository.
Being as how you’re a maintainer, you are completely on top of the basic stuff in Development Workflow.

The instructions in Linking Your Repository to the Upstream Repo add a remote that has read-only access to the
upstream repo. Being a maintainer, you’ve got read-write access.

It’s good to have your upstream remote have a scary name, to remind you that it’s a read-write remote:

git remote add upstream-rw git@github.com:sagemath/sagenb.git
git fetch upstream-rw

Integrating Changes

Let’s say you have some changes that need to go into trunk (upstream-rw/master).

The changes are in some branch that you are currently on. For example, you are looking at someone’s changes like
this:

git remote add someone git://github.com/someone/sagenb.git
git fetch someone

git branch cool-feature --track someone/cool-feature

git checkout cool-feature

So now you are on the branch with the changes to be incorporated upstream. The rest of this section assumes you are
on this branch.

A Few Commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes

git fetch upstream-rw

rebase

git rebase upstream-rw/master

Remember that, if you do a rebase, and push that, you’ll have to close any github pull requests manually, because
github will not be able to detect the changes have already been merged.

A Long Series of Commits

If there are a longer series of related commits, consider a merge instead:

git fetch upstream-rw
git merge ——no-ff upstream-rw/master

The merge will be detected by github, and should close any related pull requests automatically.

Note the ——no—-ff above. This forces git to make a merge commit, rather than doing a fast-forward, so that these
set of commits branch off trunk then rejoin the main history with a merge, rather than appearing to have been made
directly on top of trunk.

4.1. Sage Notebook Developer Guide 137

Sage Developer’s Guide, Release 8.0

Check the History

Now, in either case, you should check that the history is sensible and you have the right commits:

git log —-oneline —--graph
git log -p upstream-rw/master..

The first line above just shows the history in a compact way, with a text representation of the history graph. The
second line shows the log of commits excluding those that can be reached from trunk (upstream-rw/master),
and including those that can be reached from current HEAD (implied with the . . at the end). So, it shows the commits
unique to this branch compared to trunk. The —p option shows the diff for these commits in patch form.

Push to trunk

git push upstream-rw my-new-feature:master

This pushes the my—new-feature branch in this repository to the master branch in the upst ream-rw reposi-
tory.

138 Chapter 4. Sage Notebook Developer Guide

CHAPTER
FIVE

INDICES AND TABLES

* genindex
¢ modindex
e search

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

139

http://creativecommons.org/licenses/by-sa/3.0/

Sage Developer’s Guide, Release 8.0

140 Chapter 5. Indices and tables

BIBLIOGRAPHY

[WSblog] William Stein, How to Referee Sage Trac Tickets, http://sagemath.blogspot.com/2010/10/
how-to-referee-sage-trac-tickets.html (Caveat: mercurial was replaced with git)

[SageComponents] See http://www.sagemath.org/links-components.html for a list

14

http://sagemath.blogspot.com/2010/10/how-to-referee-sage-trac-tickets.html
http://sagemath.blogspot.com/2010/10/how-to-referee-sage-trac-tickets.html
http://www.sagemath.org/links-components.html

Sage Developer’s Guide, Release 8.0

142 Bibliography

E

environment variable
MAKE, 70
SAGE_ROOT, 5
UNAME, 122

M

MAKE, 70

S

SAGE_ROOT, 5

U

UNAME, 122

INDEX

143

	Git for Sage development
	First Steps with Git
	Setting Up Git
	Sage Development Process

	The git-trac command
	Collaborative Development with Git-Trac

	Git Tricks & Tips
	Git the Hard Way
	Tips and References
	Advanced Git
	Distributed Development

	Sage Trac and tickets
	The Sage Trac Server
	Obtaining an Account
	Trac authentication through SSH
	Reporting Bugs
	Guidelines for Opening Tickets
	The Ticket Fields
	The status of a ticket
	Stopgaps
	Working on Tickets
	Reviewing and closing Tickets
	Reasons to Invalidate Tickets

	Writing Code for Sage
	General Conventions
	Python Code Style
	Files and Directory Structure
	Learn by copy/paste
	Headings of Sage Library Code Files
	Documentation Strings
	Running Automated Doctests
	General Coding Style Regarding Whitespace
	The Pickle Jar
	Global Options
	Miscellanous minor things

	The reviewer's check list
	Running Sage's tests
	Running Sage's doctests

	Contributing to Manuals and Tutorials
	The Sage Manuals

	Sage Coding Details
	Coding in Python for Sage
	Coding in Cython
	Using External Libraries and Interfaces

	Packaging Third-Party Code
	Packaging Third-Party Code
	Packaging Old-Style SPKGs

	Sage Notebook Developer Guide
	Sage Notebook Developer Guide
	Following the Latest Source
	Making a Patch
	Git for Development

	Indices and tables
	Bibliography
	Index

