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Sage includes some tools for algebraic topology: from the algebraic side, chain complexes and their homology, and
from the topological side, simplicial complexes, ∆-complexes, cubical complexes, and simplicial sets. A class of
generic cell complexes is also available, mainly for developers who want to use it as a base for other types of cell
complexes.
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CHAPTER

ONE

CHAIN COMPLEXES

AUTHORS:

• John H. Palmieri (2009-04)

This module implements bounded chain complexes of free 𝑅-modules, for any commutative ring 𝑅 (although the
interesting things, like homology, only work if 𝑅 is the integers or a field).

Fix a ring 𝑅. A chain complex over 𝑅 is a collection of 𝑅-modules {𝐶𝑛} indexed by the integers, with 𝑅-module
maps 𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛+1 such that 𝑑𝑛+1 ∘ 𝑑𝑛 = 0 for all 𝑛. The maps 𝑑𝑛 are called differentials.

One can vary this somewhat: the differentials may decrease degree by one instead of increasing it: sometimes a chain
complex is defined with 𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛−1 for each 𝑛. Indeed, the differentials may change dimension by any fixed
integer.

Also, the modules may be indexed over an abelian group other than the integers, e.g., Z𝑚 for some integer 𝑚 ≥ 1,
in which case the differentials may change the grading by any element of that grading group. The elements of the
grading group are generally called degrees, so 𝐶𝑛 is the module in degree 𝑛 and so on.

In this implementation, the ring 𝑅 must be commutative and the modules 𝐶𝑛 must be free 𝑅-modules. As noted
above, homology calculations will only work if the ring 𝑅 is either Z or a field. The modules may be indexed by any
free abelian group. The differentials may increase degree by 1 or decrease it, or indeed change it by any fixed amount:
this is controlled by the degree_of_differential parameter used in defining the chain complex.

sage.homology.chain_complex.ChainComplex(data=None, base_ring=None, grad-
ing_group=None, degree_of_differential=1,
degree=1, check=True)

Define a chain complex.

INPUT:

•data – the data defining the chain complex; see below for more details.

The following keyword arguments are supported:

•base_ring – a commutative ring (optional), the ring over which the chain complex is defined. If this is
not specified, it is determined by the data defining the chain complex.

•grading_group – a additive free abelian group (optional, default ZZ), the group over which the chain
complex is indexed.

•degree_of_differential – element of grading_group (optional, default 1). The degree of the
differential.

•degree – alias for degree_of_differential.

•check – boolean (optional, default True). If True, check that each consecutive pair of differentials are
composable and have composite equal to zero.
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OUTPUT:

A chain complex.

Warning: Right now, homology calculations will only work if the base ring is either Z or a field, so please
take this into account when defining a chain complex.

Use data to define the chain complex. This may be in any of the following forms.

1.a dictionary with integers (or more generally, elements of grading_group) for keys, and with data[n] a
matrix representing (via left multiplication) the differential coming from degree 𝑛. (Note that the shape of
the matrix then determines the rank of the free modules 𝐶𝑛 and 𝐶𝑛+𝑑.)

2.a list/tuple/iterable of the form [𝐶0, 𝑑0, 𝐶1, 𝑑1, 𝐶2, 𝑑2, ...], where each 𝐶𝑖 is a free module and each 𝑑𝑖 is a
matrix, as above. This only makes sense if grading_group is Z and degree is 1.

3.a list/tuple/iterable of the form [𝑟0, 𝑑0, 𝑟1, 𝑑1, 𝑟2, 𝑑2, . . .], where 𝑟𝑖 is the rank of the free module 𝐶𝑖 and
each 𝑑𝑖 is a matrix, as above. This only makes sense if grading_group is Z and degree is 1.

4.a list/tuple/iterable of the form [𝑑0, 𝑑1, 𝑑2, . . .] where each 𝑑𝑖 is a matrix, as above. This only makes sense
if grading_group is Z and degree is 1.

Note: In fact, the free modules 𝐶𝑖 in case 2 and the ranks 𝑟𝑖 in case 3 are ignored: only the matrices are kept,
and from their shapes, the ranks of the modules are determined. (Indeed, if data is a list or tuple, then any
element which is not a matrix is discarded; thus the list may have any number of different things in it, and all of
the non-matrices will be ignored.) No error checking is done to make sure, for instance, that the given modules
have the appropriate ranks for the given matrices. However, as long as check is True, the code checks to see if
the matrices are composable and that each appropriate composite is zero.

If the base ring is not specified, then the matrices are examined to determine a ring over which they are all
naturally defined, and this becomes the base ring for the complex. If no such ring can be found, an error is
raised. If the base ring is specified, then the matrices are converted automatically to this ring when defining the
chain complex. If some matrix cannot be converted, then an error is raised.

EXAMPLES:

sage: ChainComplex()
Trivial chain complex over Integer Ring

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C
Chain complex with at most 2 nonzero terms over Integer Ring

sage: m = matrix(ZZ, 2, 2, [0, 1, 0, 0])
sage: D = ChainComplex([m, m], base_ring=GF(2)); D
Chain complex with at most 3 nonzero terms over Finite Field of size 2
sage: D == loads(dumps(D))
True
sage: D.differential(0)==m, m.is_immutable(), D.differential(0).is_immutable()
(True, False, True)

Note that when a chain complex is defined in Sage, new differentials may be created: every nonzero module in
the chain complex must have a differential coming from it, even if that differential is zero:

sage: IZ = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: IZ.differential() # the differentials in the chain complex

4 Chapter 1. Chain complexes
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{-1: [], 0: [1], 1: []}
sage: IZ.differential(1).parent()
Full MatrixSpace of 0 by 1 dense matrices over Integer Ring
sage: mat = ChainComplex({0: matrix(ZZ, 3, 4)}).differential(1)
sage: mat.nrows(), mat.ncols()
(0, 3)

Defining the base ring implicitly:

sage: ChainComplex([matrix(QQ, 3, 1), matrix(ZZ, 4, 3)])
Chain complex with at most 3 nonzero terms over Rational Field
sage: ChainComplex([matrix(GF(125, 'a'), 3, 1), matrix(ZZ, 4, 3)])
Chain complex with at most 3 nonzero terms over Finite Field in a of size 5^3

If the matrices are defined over incompatible rings, an error results:

sage: ChainComplex([matrix(GF(125, 'a'), 3, 1), matrix(QQ, 4, 3)])
Traceback (most recent call last):
...
TypeError: unable to find a common ring for all elements

If the base ring is given explicitly but is not compatible with the matrices, an error results:

sage: ChainComplex([matrix(GF(125, 'a'), 3, 1)], base_ring=QQ)
Traceback (most recent call last):
...
TypeError: unable to convert 0 to a rational

class sage.homology.chain_complex.ChainComplex_class(grading_group, de-
gree_of_differential, base_ring,
differentials)

Bases: sage.structure.parent.Parent

See ChainComplex() for full documentation.

The differentials are required to be in the following canonical form:

•All differentials that are not 0 × 0 must be specified (even if they have zero rows or zero columns), and

•Differentials that are 0 × 0 must not be specified.

•Immutable matrices over the base_ring

This and more is ensured by the assertions in the constructor. The ChainComplex() factory function must
ensure that only valid input is passed.

EXAMPLES:

sage: C = ChainComplex(); C
Trivial chain complex over Integer Ring

sage: D = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: D
Chain complex with at most 2 nonzero terms over Integer Ring

Element
alias of Chain_class

betti(deg=None, base_ring=None)
The Betti number the chain complex.
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That is, write the homology in this degree as a direct sum of a free module and a torsion module; the Betti
number is the rank of the free summand.

INPUT:

•deg – an element of the grading group for the chain complex or None (default None); if None, then
return every Betti number, as a dictionary indexed by degree, or if an element of the grading group,
then return the Betti number in that degree

•base_ring – a commutative ring (optional, default is the base ring for the chain complex); compute
homology with these coefficients – must be either the integers or a field

OUTPUT:

The Betti number in degree deg – the rank of the free part of the homology module in this degree.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.betti(0)
2
sage: [C.betti(n) for n in range(5)]
[2, 1, 0, 0, 0]
sage: C.betti()
{0: 2, 1: 1}

sage: D = ChainComplex({0:matrix(GF(5), [[3, 1],[1, 2]])})
sage: D.betti()
{0: 1, 1: 1}

cartesian_product(*factors, **kwds)
Return the direct sum (Cartesian product) of self with D.

Let 𝐶 and 𝐷 be two chain complexes with differentials 𝜕𝐶 and 𝜕𝐷, respectively, of the same degree (so
they must also have the same grading group). The direct sum 𝑆 = 𝐶 ⊕ 𝐷 is a chain complex given by
𝑆𝑖 = 𝐶𝑖 ⊕𝐷𝑖 with differential 𝜕 = 𝜕𝐶 ⊕ 𝜕𝐷.

INPUT:

•subdivide – (default: False) whether to subdivide the the differential matrices

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: C = ChainComplex([matrix([[-y],[x]]), matrix([[x, y]])])
sage: D = ChainComplex([matrix([[x-y]]), matrix([[0], [0]])])
sage: ascii_art(C.cartesian_product(D))

[x y 0] [ -y 0]
[0 0 0] [ x 0]
[0 0 0] [ 0 x - y]

0 <-- C_2 <-------- C_1 <-------------- C_0 <-- 0

sage: D = ChainComplex({1:matrix([[x-y]]), 4:matrix([[x], [y]])})
sage: ascii_art(D)

[x]
[y] [x - y]

0 <-- C_5 <---- C_4 <-- 0 <-- C_2 <-------- C_1 <-- 0
sage: ascii_art(cartesian_product([C, D]))

[-y]
[x] [ x y 0] [ x]
[y] [ 0 0 x - y] [ 0]

0 <-- C_5 <---- C_4 <-- 0 <-- C_2 <-------------------- C_1 <----- C_0 <-- 0

6 Chapter 1. Chain complexes
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The degrees of the differentials must agree:

sage: C = ChainComplex({1:matrix([[x]])}, degree_of_differential=-1)
sage: D = ChainComplex({1:matrix([[x]])}, degree_of_differential=1)
sage: C.cartesian_product(D)
Traceback (most recent call last):
...
ValueError: the degrees of the differentials must match

sage: R.<x,y,z> = QQ[]
sage: C1 = ChainComplex({1:matrix([[x]])})
sage: C2 = ChainComplex({1:matrix([[y]])})
sage: C3 = ChainComplex({1:matrix([[z]])})
sage: ascii_art(cartesian_product([C1, C2, C3]))

[x 0 0]
[0 y 0]
[0 0 z]

0 <-- C_2 <-------- C_1 <-- 0
sage: ascii_art(C1.cartesian_product([C2, C3], subdivide=True))

[x|0|0]
[-+-+-]
[0|y|0]
[-+-+-]
[0|0|z]

0 <-- C_2 <-------- C_1 <-- 0

sage: R.<x> = ZZ[]
sage: G = AdditiveAbelianGroup([0,7])
sage: d = {G(vector([1,1])):matrix([[x]])}
sage: C = ChainComplex(d, grading_group=G, degree=G(vector([2,1])))
sage: ascii_art(C.cartesian_product(C))

[x 0]
[0 x]

0 <-- C_(3, 2) <------ C_(1, 1) <-- 0

degree_of_differential()
Return the degree of the differentials of the complex

OUTPUT:

An element of the grading group.

EXAMPLES:

sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.degree_of_differential()
1

differential(dim=None)
The differentials which make up the chain complex.

INPUT:

•dim – element of the grading group (optional, default None); if this is None, return a dictionary of
all of the differentials, or if this is a single element, return the differential starting in that dimension

OUTPUT:

Either a dictionary of all of the differentials or a single differential (i.e., a matrix).
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EXAMPLES:

sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.differential()
{-1: [], 0: [1 0]
[0 2], 1: []}

sage: D.differential(0)
[1 0]
[0 2]
sage: C = ChainComplex({0: identity_matrix(ZZ, 40)})
sage: C.differential()
{-1: 40 x 0 dense matrix over Integer Ring,
0: 40 x 40 dense matrix over Integer Ring,
1: []}

dual()
The dual chain complex to self.

Since all modules in self are free of finite rank, the dual in dimension 𝑛 is isomorphic to the original
chain complex in dimension 𝑛, and the corresponding boundary matrix is the transpose of the matrix in
the original complex. This converts a chain complex to a cochain complex and vice versa.

EXAMPLES:

sage: C = ChainComplex({2: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.degree_of_differential()
1
sage: C.differential(2)
[3 0 0]
[0 0 0]
sage: C.dual().degree_of_differential()
-1
sage: C.dual().differential(3)
[3 0]
[0 0]
[0 0]

free_module(degree=None)
Return the free module at fixed degree, or their sum.

INPUT:

•degree – an element of the grading group or None (default).

OUTPUT:

The free module 𝐶𝑛 at the given degree 𝑛. If the degree is not specified, the sum
⨁︀

𝐶𝑛 is returned.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0]), 1: matrix(ZZ,
→˓ [[0, 1]])})
sage: C.free_module()
Ambient free module of rank 6 over the principal ideal domain Integer Ring
sage: C.free_module(0)
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: C.free_module(1)
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: C.free_module(2)
Ambient free module of rank 1 over the principal ideal domain Integer Ring

8 Chapter 1. Chain complexes
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free_module_rank(degree)
Return the rank of the free module at the given degree.

INPUT:

•degree – an element of the grading group

OUTPUT:

Integer. The rank of the free module 𝐶𝑛 at the given degree 𝑛.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0]), 1: matrix(ZZ,
→˓ [[0, 1]])})
sage: [C.free_module_rank(i) for i in range(-2, 5)]
[0, 0, 3, 2, 1, 0, 0]

grading_group()
Return the grading group.

OUTPUT:

The discrete abelian group that indexes the individual modules of the complex. Usually Z.

EXAMPLES:

sage: G = AdditiveAbelianGroup([0, 3])
sage: C = ChainComplex(grading_group=G, degree=G(vector([1,2])))
sage: C.grading_group()
Additive abelian group isomorphic to Z + Z/3
sage: C.degree_of_differential()
(1, 2)

homology(deg=None, base_ring=None, generators=False, verbose=False, algorithm=’pari’)
The homology of the chain complex.

INPUT:

•deg – an element of the grading group for the chain complex (default: None); the degree in which to
compute homology – if this is None, return the homology in every degree in which the chain complex
is possibly nonzero.

•base_ring – a commutative ring (optional, default is the base ring for the chain complex); must be
either the integers Z or a field

•generators – boolean (optional, default False); if True, return generators for the homology
groups along with the groups. See trac ticket #6100

•verbose - boolean (optional, default False); if True, print some messages as the homology is
computed

•algorithm - string (optional, default 'pari'); the options are:

–'auto'

–'chomp'

–'dhsw'

–'pari'

–'no_chomp'

9
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see below for descriptions

OUTPUT:

If the degree is specified, the homology in degree deg. Otherwise, the homology in every dimension as a
dictionary indexed by dimension.

ALGORITHM:

If algorithm is set to 'auto', then use CHomP if available. CHomP is available at the web page
http://chomp.rutgers.edu/. It is also an optional package for Sage. If algorithm is chomp, always use
chomp.

CHomP computes homology, not cohomology, and only works over the integers or finite prime fields.
Therefore if any of these conditions fails, or if CHomP is not present, or if algorithm is set to
‘no_chomp’, go to plan B: if self has a _homology method – each simplicial complex has this, for
example – then call that. Such a method implements specialized algorithms for the particular type of cell
complex.

Otherwise, move on to plan C: compute the chain complex of self and compute its homology groups. To
do this: over a field, just compute ranks and nullities, thus obtaining dimensions of the homology groups
as vector spaces. Over the integers, compute Smith normal form of the boundary matrices defining the
chain complex according to the value of algorithm. If algorithm is 'auto' or 'no_chomp',
then for each relatively small matrix, use the standard Sage method, which calls the Pari package. For
any large matrix, reduce it using the Dumas, Heckenbach, Saunders, and Welker elimination algorithm
[DHSW2003]: see dhsw_snf() for details.

Finally, algorithm may also be 'pari' or 'dhsw', which forces the named algorithm to be used
regardless of the size of the matrices and regardless of whether CHomP is available.

As of this writing, 'pari' is the fastest standard option. The optional CHomP package may be better
still.

Warning: This only works if the base ring is the integers or a field. Other values will return an error.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.homology()
{0: Z x Z, 1: Z x C3}
sage: C.homology(deg=1, base_ring = GF(3))
Vector space of dimension 2 over Finite Field of size 3
sage: D = ChainComplex({0: identity_matrix(ZZ, 4), 4: identity_matrix(ZZ, 30)}
→˓)
sage: D.homology()
{0: 0, 1: 0, 4: 0, 5: 0}

Generators: generators are given as a list of cycles, each of which is an element in the appropriate free
module, and hence is represented as a vector:

sage: C.homology(1, generators=True) # optional - CHomP
(Z x C3, [(0, 1), (1, 0)])

Tests for trac ticket #6100, the Klein bottle with generators:

sage: d0 = matrix(ZZ, 0,1)
sage: d1 = matrix(ZZ, 1,3, [[0,0,0]])
sage: d2 = matrix(ZZ, 3,2, [[1,1], [1,-1], [-1,1]])

10 Chapter 1. Chain complexes
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sage: C_k = ChainComplex({0:d0, 1:d1, 2:d2}, degree=-1)
sage: C_k.homology(generators=true) # optional - CHomP
{0: (Z, [(1)]), 1: (Z x C2, [(0, 0, 1), (0, 1, -1)]), 2: 0}

From a torus using a field:

sage: T = simplicial_complexes.Torus()
sage: C_t = T.chain_complex()
sage: C_t.homology(base_ring=QQ, generators=True)
{0: [(Vector space of dimension 1 over Rational Field,

Chain(0:(0, 0, 0, 0, 0, 0, 1)))],
1: [(Vector space of dimension 1 over Rational Field,

Chain(1:(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1))),
(Vector space of dimension 1 over Rational Field,
Chain(1:(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1,

→˓0)))],
2: [(Vector space of dimension 1 over Rational Field,

Chain(2:(1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1)))]}

nonzero_degrees()
Return the degrees in which the module is non-trivial.

See also ordered_degrees().

OUTPUT:

The tuple containing all degrees 𝑛 (grading group elements) such that the module 𝐶𝑛 of the chain is
non-trivial.

EXAMPLES:

sage: one = matrix(ZZ, [[1]])
sage: D = ChainComplex({0: one, 2: one, 6:one})
sage: ascii_art(D)

[1] [1] [0] [1]
0 <-- C_7 <---- C_6 <-- 0 ... 0 <-- C_3 <---- C_2 <---- C_1 <---- C_0 <-- 0
sage: D.nonzero_degrees()
(0, 1, 2, 3, 6, 7)

ordered_degrees(start=None, exclude_first=False)
Sort the degrees in the order determined by the differential

INPUT:

•start – (default: None) a degree (element of the grading group) or None

•exclude_first – boolean (optional; default: False); whether to exclude the lowest degree – this
is a handy way to just get the degrees of the non-zero modules, as the domain of the first differential
is zero.

OUTPUT:

If start has been specified, the longest tuple of degrees

•containing start (unless start would be the first and exclude_first=True),

•in ascending order relative to degree_of_differential(), and

•such that none of the corresponding differentials are 0 × 0.

If start has not been specified, a tuple of such tuples of degrees. One for each sequence of non-zero
differentials. They are returned in sort order.

11
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EXAMPLES:

sage: one = matrix(ZZ, [[1]])
sage: D = ChainComplex({0: one, 2: one, 6:one})
sage: ascii_art(D)

[1] [1] [0] [1]
0 <-- C_7 <---- C_6 <-- 0 ... 0 <-- C_3 <---- C_2 <---- C_1 <---- C_0 <-- 0
sage: D.ordered_degrees()
((-1, 0, 1, 2, 3), (5, 6, 7))
sage: D.ordered_degrees(exclude_first=True)
((0, 1, 2, 3), (6, 7))
sage: D.ordered_degrees(6)
(5, 6, 7)
sage: D.ordered_degrees(5, exclude_first=True)
(6, 7)

random_element()
Return a random element.

EXAMPLES:

sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.random_element() # random output
Chain with 1 nonzero terms over Integer Ring

rank(degree, ring=None)
Return the rank of a differential

INPUT:

•degree – an element 𝛿 of the grading group. Which differential 𝑑𝛿 we want to know the rank of

•ring – (optional) a commutative ring 𝑆; if specified, the rank is computed after changing to this ring

OUTPUT:

The rank of the differential 𝑑𝛿 ⊗𝑅 𝑆, where 𝑅 is the base ring of the chain complex.

EXAMPLES:

sage: C = ChainComplex({0:matrix(ZZ, [[2]])})
sage: C.differential(0)
[2]
sage: C.rank(0)
1
sage: C.rank(0, ring=GF(2))
0

shift(n=1)
Shift this chain complex 𝑛 times.

INPUT:

•n – an integer (optional, default 1)

The shift operation is also sometimes called translation or suspension.

To shift a chain complex by 𝑛, shift its entries up by 𝑛 (if it is a chain complex) or down by 𝑛 (if it is
a cochain complex); that is, shifting by 1 always shifts in the opposite direction of the differential. In
symbols, if 𝐶 is a chain complex and 𝐶[𝑛] is its 𝑛-th shift, then 𝐶[𝑛]𝑗 = 𝐶𝑗−𝑛. The differential in the
shift 𝐶[𝑛] is obtained by multiplying each differential in 𝐶 by (−1)𝑛.

12 Chapter 1. Chain complexes
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Caveat: different sources use different conventions for shifting: what we call 𝐶[𝑛] might be called 𝐶[−𝑛]
in some places. See for example. https://ncatlab.org/nlab/show/suspension+of+a+chain+complex (which
uses 𝐶[𝑛] as we do but acknowledges 𝐶[−𝑛]) or 1.2.8 in [Wei1994] (which uses 𝐶[−𝑛]).

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1).chain_complex()
sage: S1.shift(1).differential(2) == -S1.differential(1)
True
sage: S1.shift(2).differential(3) == S1.differential(1)
True
sage: S1.shift(3).homology(4)
Z

For cochain complexes, shifting goes in the other direction. Topologically, this makes sense if we grade
the cochain complex for a space negatively:

sage: T = simplicial_complexes.Torus()
sage: co_T = T.chain_complex()._flip_()
sage: co_T.homology()
{-2: Z, -1: Z x Z, 0: Z}
sage: co_T.degree_of_differential()
1
sage: co_T.shift(2).homology()
{-4: Z, -3: Z x Z, -2: Z}

You can achieve the same result by tensoring (on the left, to get the signs right) with a rank one free module
in degree -n * deg, if deg is the degree of the differential:

sage: C = ChainComplex({-2: matrix(ZZ, 0, 1)})
sage: C.tensor(co_T).homology()
{-4: Z, -3: Z x Z, -2: Z}

tensor(*factors, **kwds)
Return the tensor product of self with D.

Let 𝐶 and 𝐷 be two chain complexes with differentials 𝜕𝐶 and 𝜕𝐷, respectively, of the same degree (so
they must also have the same grading group). The tensor product 𝑆 = 𝐶 ⊗𝐷 is a chain complex given by

𝑆𝑖 =
⨁︁

𝑎+𝑏=𝑖

𝐶𝑎 ⊗𝐷𝑏

with differential

𝜕(𝑥⊗ 𝑦) = 𝜕𝐶𝑥⊗ 𝑦 + (−1)|𝑎|·|𝜕𝐷|𝑥⊗ 𝜕𝐷𝑦

for 𝑥 ∈ 𝐶𝑎 and 𝑦 ∈ 𝐷𝑏, where |𝑎| is the degree of 𝑎 and |𝜕𝐷| is the degree of 𝜕𝐷.

Warning: If the degree of the differential is even, then this may not result in a valid chain complex.

INPUT:

•subdivide – (default: False) whether to subdivide the the differential matrices

Todo

Make subdivision work correctly on multiple factors.
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EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: C1 = ChainComplex({1:matrix([[x]])}, degree_of_differential=-1)
sage: C2 = ChainComplex({1:matrix([[y]])}, degree_of_differential=-1)
sage: C3 = ChainComplex({1:matrix([[z]])}, degree_of_differential=-1)
sage: ascii_art(C1.tensor(C2))

[ x]
[y x] [-y]

0 <-- C_0 <------ C_1 <----- C_2 <-- 0
sage: ascii_art(C1.tensor(C2).tensor(C3))

[ y x 0] [ x]
[-z 0 x] [-y]

[z y x] [ 0 -z -y] [ z]
0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0

sage: C = ChainComplex({2:matrix([[-y],[x]]), 1:matrix([[x, y]])},
....: degree_of_differential=-1); ascii_art(C)

[-y]
[x y] [ x]

0 <-- C_0 <------ C_1 <----- C_2 <-- 0
sage: T = C.tensor(C)
sage: T.differential(1)
[x y x y]
sage: T.differential(2)
[-y x 0 y 0 0]
[ x 0 x 0 y 0]
[ 0 -x -y 0 0 -y]
[ 0 0 0 -x -y x]
sage: T.differential(3)
[ x y 0 0]
[ y 0 -y 0]
[-x 0 0 -y]
[ 0 y x 0]
[ 0 -x 0 x]
[ 0 0 x y]
sage: T.differential(4)
[-y]
[ x]
[-y]
[ x]

The degrees of the differentials must agree:

sage: C1p = ChainComplex({1:matrix([[x]])}, degree_of_differential=1)
sage: C1.tensor(C1p)
Traceback (most recent call last):
...
ValueError: the degrees of the differentials must match

sage: R.<x,y> = ZZ[]
sage: G = AdditiveAbelianGroup([0,7])
sage: d1 = {G(vector([1,1])):matrix([[x]])}
sage: C1 = ChainComplex(d1, grading_group=G, degree=G(vector([2,1])))
sage: d2 = {G(vector([3,0])):matrix([[y]])}
sage: C2 = ChainComplex(d2, grading_group=G, degree=G(vector([2,1])))
sage: ascii_art(C1.tensor(C2))

[y]
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[ x -y] [x]
0 <-- C_(8, 3) <-------- C_(6, 2) <---- C_(4, 1) <-- 0

Check that trac ticket #21760 is fixed:

sage: C = ChainComplex({0: matrix(ZZ, 0, 2)}, degree=-1)
sage: ascii_art(C)
0 <-- C_0 <-- 0

sage: T = C.tensor(C)
sage: ascii_art(T)
0 <-- C_0 <-- 0

sage: T.free_module_rank(0)
4

torsion_list(max_prime, min_prime=2)
Look for torsion in this chain complex by computing its mod 𝑝 homology for a range of primes 𝑝.

INPUT:

•max_prime – prime number; search for torsion mod 𝑝 for all 𝑝 strictly less than this number

•min_prime – prime (optional, default 2); search for torsion mod 𝑝 for primes at least as big as this

Return a list of pairs (𝑝, 𝑑) where 𝑝 is a prime at which there is torsion and 𝑑 is a list of dimensions in
which this torsion occurs.

The base ring for the chain complex must be the integers; if not, an error is raised.

ALGORITHM:

let 𝐶 denote the chain complex. Let 𝑃 equal max_prime. Compute the mod 𝑃 homology of 𝐶, and
use this as the base-line computation: the assumption is that this is isomorphic to the integral homology
tensored with F𝑃 . Then compute the mod 𝑝 homology for a range of primes 𝑝, and record whenever the
answer differs from the base-line answer.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.homology()
{0: Z x Z, 1: Z x C3}
sage: C.torsion_list(11)
[(3, [1])]
sage: C = ChainComplex([matrix(ZZ, 1, 1, [2]), matrix(ZZ, 1, 1), matrix(1, 1,
→˓[3])])
sage: C.homology(1)
C2
sage: C.homology(3)
C3
sage: C.torsion_list(5)
[(2, [1]), (3, [3])]

class sage.homology.chain_complex.Chain_class(parent, vectors, check=True)
Bases: sage.structure.element.ModuleElement

A Chain in a Chain Complex

A chain is collection of module elements for each module 𝐶𝑛 of the chain complex (𝐶𝑛, 𝑑𝑛). There is no
restriction on how the differentials 𝑑𝑛 act on the elements of the chain.
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Note: You must use the chain complex to construct chains.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}, base_ring=GF(7))
sage: C.category()
Category of chain complexes over Finite Field of size 7

is_boundary()
Return whether the chain is a boundary.

OUTPUT:

Boolean. Whether the elements of the chain are in the image of the differentials.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: c = C({0:vector([0, 1, 2]), 1:vector([3, 4])})
sage: c.is_boundary()
False
sage: z3 = C({1:(1, 0)})
sage: z3.is_cycle()
True
sage: (2*z3).is_boundary()
False
sage: (3*z3).is_boundary()
True

is_cycle()
Return whether the chain is a cycle.

OUTPUT:

Boolean. Whether the elements of the chain are in the kernel of the differentials.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: c = C({0:vector([0, 1, 2]), 1:vector([3, 4])})
sage: c.is_cycle()
True

vector(degree)
Return the free module element in degree.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: c = C({0:vector([1, 2, 3]), 1:vector([4, 5])})
sage: c.vector(0)
(1, 2, 3)
sage: c.vector(1)
(4, 5)
sage: c.vector(2)
()
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CHAPTER

TWO

CHAINS AND COCHAINS

This module implements formal linear combinations of cells of a given cell complex (Chains) and their dual
(Cochains). It is closely related to the sage.homology.chain_complex module. The main differences
are that chains and cochains here are of homogeneous dimension only, and that they reference their cell complex.

class sage.homology.chains.CellComplexReference(cell_complex, degree, cells=None)
Bases: object

Auxiliary base class for chains and cochains

INPUT:

•cell_complex – The cell complex to reference

•degree – integer. The degree of the (co)chains

•cells – tuple of cells or None. Does not necessarily have to be the cells in the given degree, for
computational purposes this could also be any collection that is in one-to-one correspondence with the
cells. If None, the cells of the complex in the given degree are used.

EXAMPLES:

sage: X = simplicial_complexes.Simplex(2)
sage: from sage.homology.chains import CellComplexReference
sage: c = CellComplexReference(X, 1)
sage: c.cell_complex() is X
True

cell_complex()
Return the underlying cell complex

OUTPUT:

A cell complex.

EXAMPLES:

sage: X = simplicial_complexes.Simplex(2)
sage: X.n_chains(1).cell_complex() is X
True

degree()
Return the dimension of the cells

OUTPUT:

Integer. The dimension of the cells.

EXAMPLES:
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sage: X = simplicial_complexes.Simplex(2)
sage: X.n_chains(1).degree()
1

class sage.homology.chains.Chains(cell_complex, degree, cells=None, base_ring=None)
Bases: sage.homology.chains.CellComplexReference, sage.combinat.free_module.
CombinatorialFreeModule

Class for the free module of chains in a given degree.

INPUT:

•n_cells – tuple of 𝑛-cells, which thus forms a basis for this module

•base_ring – optional (default Z)

One difference between chains and cochains is notation. In a simplicial complex, for example, a simplex (0,
1,2) is written as “(0,1,2)” in the group of chains but as “\chi_(0,1,2)” in the group of cochains.

Also, since the free modules of chains and cochains are dual, there is a pairing ⟨𝑐, 𝑧⟩, sending a cochain 𝑐 and a
chain 𝑧 to a scalar.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

boundary()
Return the boundary of the chain

OUTPUT:

The boundary as a chain in one degree lower.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.homology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - 2 * C1(Cube([[0, 1], [0, 0]]))
sage: chain
-2*[0,1] x [0,0] + [1,1] x [0,1]
sage: chain.boundary()
2*[0,0] x [0,0] - 3*[1,1] x [0,0] + [1,1] x [1,1]
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is_boundary()
Test whether the chain is a boundary

OUTPUT:

Boolean. Whether the chain is the boundary() of a chain in one degree higher.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.homology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: chain.is_boundary()
False

is_cycle()
Test whether the chain is a cycle

OUTPUT:

Boolean. Whether the boundary() vanishes.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.homology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: chain.is_cycle()
False

to_complex()
Return the corresponding chain complex element

OUTPUT:

An element of the chain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.homology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]]))
sage: chain.to_complex()
Chain(1:(0, 0, 0, 1))
sage: ascii_art(_)

d_0 [0] d_1 [0] d_2 d_3
0 <---- [0] <---- [0] <---- [0] <---- 0

[0] [0]
[0] [1]

Chains.chain_complex()
Return the chain complex.

OUTPUT:

Chain complex, see sage.homology.chain_complex.

EXAMPLES:
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sage: square = cubical_complexes.Cube(2)
sage: CC = square.n_chains(2, QQ).chain_complex(); CC
Chain complex with at most 3 nonzero terms over Rational Field
sage: ascii_art(CC)

[ 0 0 1 1] [-1]
[ 0 1 0 -1] [ 1]
[ 1 0 -1 0] [-1]
[-1 -1 0 0] [ 1]

0 <-- C_0 <-------------- C_1 <----- C_2 <-- 0

Chains.dual()
Return the cochains.

OUTPUT:

The cochains of the same cells with the same base ring.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: chains = square.n_chains(1, ZZ); chains
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1]
→˓x [0,1]} over Integer Ring
sage: chains.dual()
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1]
→˓x [0,1]} over Integer Ring
sage: type(chains)
<class 'sage.homology.chains.Chains_with_category'>
sage: type(chains.dual())
<class 'sage.homology.chains.Cochains_with_category'>

class sage.homology.chains.Cochains(cell_complex, degree, cells=None, base_ring=None)
Bases: sage.homology.chains.CellComplexReference, sage.combinat.free_module.
CombinatorialFreeModule

Class for the free module of cochains in a given degree.

INPUT:

•n_cells – tuple of 𝑛-cells, which thus forms a basis for this module

•base_ring – optional (default Z)

One difference between chains and cochains is notation. In a simplicial complex, for example, a simplex (0,
1,2) is written as “(0,1,2)” in the group of chains but as “\chi_(0,1,2)” in the group of cochains.

Also, since the free modules of chains and cochains are dual, there is a pairing ⟨𝑐, 𝑧⟩, sending a cochain 𝑐 and a
chain 𝑧 to a scalar.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
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(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

coboundary()
Return the coboundary of this cochain

OUTPUT:

The coboundary as a cochain in one degree higher.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.homology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - 2 * C1(Cube([[0, 1], [0,
→˓0]]))
sage: cochain
-2*\chi_[0,1] x [0,0] + \chi_[1,1] x [0,1]
sage: cochain.coboundary()
-\chi_[0,1] x [0,1]

cup_product(cochain)
Return the cup product with another cochain

INPUT:
•cochain – cochain over the same cell complex

EXAMPLES:

sage: T2 = simplicial_complexes.Torus()
sage: C1 = T2.n_chains(1, base_ring=ZZ, cochains=True)
sage: def l(i, j):
....: return C1(Simplex([i, j]))
sage: l1 = l(1, 3) + l(1, 4) + l(1, 6) + l(2, 4) - l(4, 5) + l(5, 6)
sage: l2 = l(1, 6) - l(2, 3) - l(2, 5) + l(3, 6) - l(4, 5) + l(5, 6)

The two one-cocycles are cohomology generators:

sage: l1.is_cocycle(), l1.is_coboundary()
(True, False)
sage: l2.is_cocycle(), l2.is_coboundary()
(True, False)

Their cup product is a two-cocycle that is again non-trivial in cohomology:

sage: l12 = l1.cup_product(l2)
sage: l12
\chi_(1, 3, 6) - \chi_(2, 4, 5) - \chi_(4, 5, 6)
sage: l1.parent().degree(), l2.parent().degree(), l12.parent().degree()
(1, 1, 2)
sage: l12.is_cocycle(), l12.is_coboundary()
(True, False)
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eval(other)
Evaluate this cochain on the chain other.

INPUT:
•other – a chain for the same cell complex in the same dimension with the same base ring

OUTPUT: scalar

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6

is_coboundary()
Test whether the cochain is a coboundary

OUTPUT:

Boolean. Whether the cochain is the coboundary() of a cochain in one degree lower.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.homology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: cochain.is_coboundary()
True

is_cocycle()
Test whether the cochain is a cocycle

OUTPUT:

Boolean. Whether the coboundary() vanishes.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.homology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: cochain.is_cocycle()
True

to_complex()
Return the corresponding cochain complex element

OUTPUT:
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An element of the cochain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.homology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]]))
sage: cochain.to_complex()
Chain(1:(0, 0, 0, 1))
sage: ascii_art(_)

d_2 d_1 [0] d_0 [0] d_-1
0 <---- [0] <---- [0] <---- [0] <----- 0

[0] [0]
[1] [0]

Cochains.cochain_complex()
Return the cochain complex.

OUTPUT:

Cochain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C2 = square.n_chains(2, QQ, cochains=True)
sage: C2.cochain_complex()
Chain complex with at most 3 nonzero terms over Rational Field
sage: ascii_art(C2.cochain_complex())

[ 0 0 1 -1]
[ 0 1 0 -1]
[ 1 0 -1 0]

[-1 1 -1 1] [ 1 -1 0 0]
0 <-- C_2 <-------------- C_1 <-------------- C_0 <-- 0

Cochains.dual()
Return the chains

OUTPUT:

The chains of the same cells with the same base ring.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: cochains = square.n_chains(1, ZZ, cochains=True); cochains
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1]
→˓x [0,1]} over Integer Ring
sage: cochains.dual()
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1]
→˓x [0,1]} over Integer Ring
sage: type(cochains)
<class 'sage.homology.chains.Cochains_with_category'>
sage: type(cochains.dual())
<class 'sage.homology.chains.Chains_with_category'>
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CHAPTER

THREE

MORPHISMS OF CHAIN COMPLEXES

AUTHORS:

• Benjamin Antieau <d.ben.antieau@gmail.com> (2009.06)

• Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to work with the homset cache.

This module implements morphisms of chain complexes. The input is a dictionary whose keys are in the grading
group of the chain complex and whose values are matrix morphisms.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: S
Minimal triangulation of the 1-sphere
sage: C = S.chain_complex()
sage: C.differential()
{0: [], 1: [-1 -1 0]
[ 1 0 -1]
[ 0 1 1], 2: []}

sage: f = {0:zero_matrix(ZZ,3,3),1:zero_matrix(ZZ,3,3)}
sage: G = Hom(C,C)
sage: x = G(f)
sage: x
Chain complex endomorphism of Chain complex with at most 2 nonzero terms over Integer
→˓Ring
sage: x._matrix_dictionary
{0: [0 0 0]
[0 0 0]
[0 0 0], 1: [0 0 0]
[0 0 0]
[0 0 0]}

class sage.homology.chain_complex_morphism.ChainComplexMorphism(matrices, C, D,
check=True)

Bases: sage.categories.morphism.Morphism

An element of this class is a morphism of chain complexes.

dual()
The dual chain map to this one.

That is, the map from the dual of the codomain of this one to the dual of its domain, represented in each
degree by the transpose of the corresponding matrix.

EXAMPLES:
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sage: X = simplicial_complexes.Simplex(1)
sage: Y = simplicial_complexes.Simplex(0)
sage: g = Hom(X,Y)({0:0, 1:0})
sage: f = g.associated_chain_complex_morphism()
sage: f.in_degree(0)
[1 1]
sage: f.dual()
Chain complex morphism:

From: Chain complex with at most 1 nonzero terms over Integer Ring
To: Chain complex with at most 2 nonzero terms over Integer Ring

sage: f.dual().in_degree(0)
[1]
[1]
sage: ascii_art(f.domain())

[-1]
[ 1]

0 <-- C_0 <----- C_1 <-- 0
sage: ascii_art(f.dual().codomain())

[-1 1]
0 <-- C_1 <-------- C_0 <-- 0

in_degree(n)
The matrix representing this morphism in degree n

INPUT:

•n – degree

EXAMPLES:

sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f.in_degree(0)
[1]

Note that if the matrix is not specified in the definition of the map, it is assumed to be zero:

sage: f.in_degree(2)
[]
sage: f.in_degree(2).nrows(), f.in_degree(2).ncols()
(1, 0)
sage: C.free_module(2)
Ambient free module of rank 0 over the principal ideal domain Integer Ring
sage: D.free_module(2)
Ambient free module of rank 1 over the principal ideal domain Integer Ring

is_identity()
True if this is the identity map.

EXAMPLES:

sage: S = SimplicialComplex(is_mutable=False)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism()
sage: x.is_identity()
True
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is_injective()
True if this map is injective.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.associated_chain_complex_morphism().is_injective()
True

sage: pt = simplicial_complexes.Simplex(0)
sage: inclusion = Hom(pt, S1)({0:2})
sage: inclusion.associated_chain_complex_morphism().is_injective()
True
sage: inclusion.associated_chain_complex_morphism(cochain=True).is_injective()
False

is_surjective()
True if this map is surjective.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.associated_chain_complex_morphism().is_surjective()
True

sage: pt = simplicial_complexes.Simplex(0)
sage: inclusion = Hom(pt, S1)({0:2})
sage: inclusion.associated_chain_complex_morphism().is_surjective()
False
sage: inclusion.associated_chain_complex_morphism(cochain=True).is_
→˓surjective()
True

to_matrix(deg=None)
The matrix representing this chain map.

If the degree deg is specified, return the matrix in that degree; otherwise, return the (block) matrix for the
whole chain map.

INPUT:

•deg – (optional, default None) the degree

EXAMPLES:

sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f.to_matrix(0)
[1]
sage: f.to_matrix()
[1|0|]
[-+-+]
[0|0|]
[-+-+]
[0|0|]

27



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage.homology.chain_complex_morphism.is_ChainComplexMorphism(x)
Returns True if and only if x is a chain complex morphism.

EXAMPLES:

sage: from sage.homology.chain_complex_morphism import is_ChainComplexMorphism
sage: S = simplicial_complexes.Sphere(14)
sage: H = Hom(S,S)
sage: i = H.identity() # long time (8s on sage.math, 2011)
sage: S = simplicial_complexes.Sphere(6)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism()
sage: x # indirect doctest
Chain complex morphism:
From: Chain complex with at most 7 nonzero terms over Integer Ring
To: Chain complex with at most 7 nonzero terms over Integer Ring

sage: is_ChainComplexMorphism(x)
True
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CHAPTER

FOUR

CHAIN HOMOTOPIES AND CHAIN CONTRACTIONS

Chain homotopies are standard constructions in homological algebra: given chain complexes 𝐶 and 𝐷 and chain
maps 𝑓, 𝑔 : 𝐶 → 𝐷, say with differential of degree −1, a chain homotopy 𝐻 between 𝑓 and 𝑔 is a collection of maps
𝐻𝑛 : 𝐶𝑛 → 𝐷𝑛+1 satisfying

𝜕𝐷𝐻 + 𝐻𝜕𝐶 = 𝑓 − 𝑔.

The presence of a chain homotopy defines an equivalence relation (chain homotopic) on chain maps. If 𝑓 and 𝑔 are
chain homotopic, then one can show that 𝑓 and 𝑔 induce the same map on homology.

Chain contractions are not as well known. The papers [MAR2009], [RMA2009], and [PR2015] provide some refer-
ences. Given two chain complexes 𝐶 and 𝐷, a chain contraction is a chain homotopy 𝐻 : 𝐶 → 𝐶 for which there are
chain maps 𝜋 : 𝐶 → 𝐷 (“projection”) and 𝜄 : 𝐷 → 𝐶 (“inclusion”) such that

• 𝐻 is a chain homotopy between 1𝐶 and 𝜄𝜋,

• 𝜋𝜄 = 1𝐷,

• 𝜋𝐻 = 0,

• 𝐻𝜄 = 0,

• 𝐻𝐻 = 0.

Such a chain homotopy provides a strong relation between the chain complexes 𝐶 and 𝐷; for example, their homology
groups are isomorphic.

class sage.homology.chain_homotopy.ChainContraction(matrices, pi, iota)
Bases: sage.homology.chain_homotopy.ChainHomotopy

A chain contraction.

An algebraic gradient vector field 𝐻 : 𝐶 → 𝐶 (that is a chain homotopy satisfying 𝐻𝐻 = 0) for which there
are chain maps 𝜋 : 𝐶 → 𝐷 (“projection”) and 𝜄 : 𝐷 → 𝐶 (“inclusion”) such that

•𝐻 is a chain homotopy between 1𝐶 and 𝜄𝜋,

•𝜋𝜄 = 1𝐷,

•𝜋𝐻 = 0,

•𝐻𝜄 = 0.

H is defined by a dictionary matrices of matrices.

INPUT:

•matrices – dictionary of matrices, keyed by dimension

•pi – a chain map 𝐶 → 𝐷

•iota – a chain map 𝐷 → 𝐶
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EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainContraction
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)})

The chain complex 𝐶 is chain homotopy equivalent to 𝐷, which is just a copy of Z in degree 0, and we construct
a chain contraction:

sage: pi = Hom(C,D)({0: identity_matrix(ZZ, 1)})
sage: iota = Hom(D,C)({0: identity_matrix(ZZ, 1)})
sage: H = ChainContraction({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2:
→˓identity_matrix(ZZ, 1)}, pi, iota)

dual()
The chain contraction dual to this one.

This is useful when switching from homology to cohomology.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: phi, M = S2.algebraic_topological_model(QQ)
sage: phi.iota()
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

Lifting the degree zero homology class gives a single vertex, but the degree zero cohomology class needs
to be detected on every vertex, and vice versa for degree 2:

sage: phi.iota().in_degree(0)
[0]
[0]
[0]
[1]
sage: phi.dual().iota().in_degree(0)
[1]
[1]
[1]
[1]
sage: phi.iota().in_degree(2)
[-1]
[ 1]
[-1]
[ 1]
sage: phi.dual().iota().in_degree(2)
[0]
[0]
[0]
[1]

iota()
The chain map 𝜄 associated to this chain contraction.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: phi, M = S2.algebraic_topological_model(QQ)
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sage: phi.iota()
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

Lifting the degree zero homology class gives a single vertex:

sage: phi.iota().in_degree(0)
[0]
[0]
[0]
[1]

Lifting the degree two homology class gives the signed sum of all of the 2-simplices:

sage: phi.iota().in_degree(2)
[-1]
[ 1]
[-1]
[ 1]

pi()
The chain map 𝜋 associated to this chain contraction.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: phi, M = S2.algebraic_topological_model(QQ)
sage: phi.pi()
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

sage: phi.pi().in_degree(0) # Every vertex represents a homology class.
[1 1 1 1]
sage: phi.pi().in_degree(1) # No homology in degree 1.
[]

The degree 2 homology generator is detected on a single simplex:

sage: phi.pi().in_degree(2)
[0 0 0 1]

class sage.homology.chain_homotopy.ChainHomotopy(matrices, f, g=None)
Bases: sage.categories.morphism.Morphism

A chain homotopy.

A chain homotopy 𝐻 between chain maps 𝑓, 𝑔 : 𝐶 → 𝐷 is a sequence of maps 𝐻𝑛 : 𝐶𝑛 → 𝐷𝑛+1 (if the chain
complexes are graded homologically) satisfying

𝜕𝐷𝐻 + 𝐻𝜕𝐶 = 𝑓 − 𝑔.

INPUT:

•matrices – dictionary of matrices, keyed by dimension

•f – chain map 𝐶 → 𝐷

•g (optional) – chain map 𝐶 → 𝐷
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The dictionary matrices defines H by specifying the matrix defining it in each degree: the entry 𝑚 corre-
sponding to key 𝑖 gives the linear transformation 𝐶𝑖 → 𝐷𝑖+1.

If 𝑓 is specified but not 𝑔, then 𝑔 can be recovered from the defining formula. That is, if 𝑔 is not specified, then
it is defined to be 𝑓 − 𝜕𝐷𝐻 −𝐻𝜕𝐶 .

Note that the degree of the differential on the chain complex 𝐶 must agree with that for 𝐷, and those degrees
determine the “degree” of the chain homotopy map: if the degree of the differential is 𝑑, then the chain homotopy
consists of a sequence of maps 𝐶𝑛 → 𝐶𝑛−𝑑. The keys in the dictionary matrices specify the starting degrees.

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: g = Hom(C,D)({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1)}, f,
→˓g)

Note that the maps 𝑓 and 𝑔 are stored in the attributes H._f and H._g:

sage: H._f
Chain complex morphism:
From: Chain complex with at most 2 nonzero terms over Integer Ring
To: Chain complex with at most 2 nonzero terms over Integer Ring

sage: H._f.in_degree(0)
[1]
sage: H._g.in_degree(0)
[0]

A non-example:

sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1)}, f, g)
Traceback (most recent call last):
...
ValueError: the data do not define a valid chain homotopy

dual()
Dual chain homotopy to this one.

That is, if this one is a chain homotopy between chain maps 𝑓, 𝑔 : 𝐶 → 𝐷, then its dual is a chain
homotopy between the dual of 𝑓 and the dual of 𝑔, from 𝐷* to 𝐶*. It is represented in each degree by the
transpose of the corresponding matrix.

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
sage: f = Hom(C, D)({})
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
sage: H.in_degree(1)
[3 1]
sage: H.dual().in_degree(0)
[3]
[1]

in_degree(n)
The matrix representing this chain homotopy in degree n.
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INPUT:

•n – degree

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
sage: f = Hom(C, D)({})
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
sage: H.in_degree(1)
[3 1]

This returns an appropriately sized zero matrix if the chain homotopy is not defined in degree n:

sage: H.in_degree(-3)
[]

is_algebraic_gradient_vector_field()
An algebraic gradient vector field is a linear map 𝐻 : 𝐶 → 𝐶 such that 𝐻𝐻 = 0.

(Some authors also require that 𝐻𝜕𝐻 = 𝐻 , whereas some make this part of the definition of “homology
gradient vector field. We have made the second choice.) See Molina-Abril and Réal [MAR2009] and Réal
and Molina-Abril [RMA2009] for this and related terminology.

See also is_homology_gradient_vector_field().

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})

The chain complex 𝐶 is chain homotopy equivalent to a copy of Z in degree 0. Two chain maps 𝐶 → 𝐶
will be chain homotopic as long as they agree in degree 0.

sage: f = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [3]), 2:
→˓matrix(ZZ, 1, 1, [3])})
sage: g = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [2]), 2:
→˓matrix(ZZ, 1, 1, [2])})
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2:
→˓identity_matrix(ZZ, 1)}, f, g)
sage: H.is_algebraic_gradient_vector_field()
True

A chain homotopy which is not an algebraic gradient vector field:

sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1),
→˓2: identity_matrix(ZZ, 1)}, f, g)
sage: H.is_algebraic_gradient_vector_field()
False

is_homology_gradient_vector_field()
A homology gradient vector field is an algebraic gradient vector field 𝐻 : 𝐶 → 𝐶 (i.e., a chain homotopy
satisfying 𝐻𝐻 = 0) such that 𝜕𝐻𝜕 = 𝜕 and 𝐻𝜕𝐻 = 𝐻 .

See Molina-Abril and Réal [MAR2009] and Réal and Molina-Abril [RMA2009] for this and related ter-
minology.

See also is_algebraic_gradient_vector_field().
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EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})

sage: f = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [3]), 2:
→˓matrix(ZZ, 1, 1, [3])})
sage: g = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [2]), 2:
→˓matrix(ZZ, 1, 1, [2])})
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2:
→˓identity_matrix(ZZ, 1)}, f, g)
sage: H.is_homology_gradient_vector_field()
True
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FIVE

HOMSPACES BETWEEN CHAIN COMPLEXES

Note that some significant functionality is lacking. Namely, the homspaces are not actually modules over the base
ring. It will be necessary to enrich some of the structure of chain complexes for this to be naturally available. On
other hand, there are various overloaded operators. __mul__ acts as composition. One can __add__, and one can
__mul__ with a ring element on the right.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: T = simplicial_complexes.Torus()
sage: C = S.chain_complex(augmented=True,cochain=True)
sage: D = T.chain_complex(augmented=True,cochain=True)
sage: G = Hom(C,D)
sage: G
Set of Morphisms from Chain complex with at most 4 nonzero terms over Integer Ring to
→˓Chain complex with at most 4 nonzero terms over Integer Ring in Category of chain
→˓complexes over Integer Ring

sage: S = simplicial_complexes.ChessboardComplex(3,3)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism(augmented=True)
sage: x
Chain complex morphism:

From: Chain complex with at most 4 nonzero terms over Integer Ring
To: Chain complex with at most 4 nonzero terms over Integer Ring

sage: x._matrix_dictionary
{-1: [1], 0: [1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1], 1: [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
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[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1], 2: [1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]}

sage: S = simplicial_complexes.Sphere(2)
sage: A = Hom(S,S)
sage: i = A.identity()
sage: x = i.associated_chain_complex_morphism()
sage: x
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: y = x*4
sage: z = y*y
sage: (y+z)
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: f = x._matrix_dictionary
sage: C = S.chain_complex()
sage: G = Hom(C,C)
sage: w = G(f)
sage: w == x
True

class sage.homology.chain_complex_homspace.ChainComplexHomspace(X, Y, cate-
gory=None,
base=None,
check=True)

Bases: sage.categories.homset.Homset

Class of homspaces of chain complex morphisms.

EXAMPLES:

sage: T = SimplicialComplex([[1,2,3,4],[7,8,9]])
sage: C = T.chain_complex(augmented=True, cochain=True)
sage: G = Hom(C,C)
sage: G
Set of Morphisms from Chain complex with at most 5 nonzero terms over Integer
→˓Ring to Chain complex with at most 5 nonzero terms over Integer Ring in
→˓Category of chain complexes over Integer Ring

sage.homology.chain_complex_homspace.is_ChainComplexHomspace(x)
Returns True if and only if x is a morphism of chain complexes.

EXAMPLES:

sage: from sage.homology.chain_complex_homspace import is_ChainComplexHomspace
sage: T = SimplicialComplex([[1,2,3,4],[7,8,9]])

36 Chapter 5. Homspaces between chain complexes



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: C = T.chain_complex(augmented=True, cochain=True)
sage: G = Hom(C,C)
sage: is_ChainComplexHomspace(G)
True
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CHAPTER

SIX

FINITE SIMPLICIAL COMPLEXES

AUTHORS:

• John H. Palmieri (2009-04)

• D. Benjamin Antieau (2009-06): added is_connected, generated_subcomplex, remove_facet, and
is_flag_complex methods; cached the output of the graph() method.

• Travis Scrimshaw (2012-08-17): Made SimplicialComplex have an immutable option, and added
__hash__() function which checks to make sure it is immutable. Made SimplicialComplex.
remove_face() into a mutator. Deprecated the vertex_set parameter.

• Christian Stump (2011-06): implementation of is_cohen_macaulay

• Travis Scrimshaw (2013-02-16): Allowed SimplicialComplex to make mutable copies.

• Simon King (2014-05-02): Let simplicial complexes be objects of the category of simplicial complexes.

This module implements the basic structure of finite simplicial complexes. Given a set 𝑉 of “vertices”, a simplicial
complex on 𝑉 is a collection 𝐾 of subsets of 𝑉 satisfying the condition that if 𝑆 is one of the subsets in 𝐾, then so is
every subset of 𝑆. The subsets 𝑆 are called the ‘simplices’ of 𝐾.

A simplicial complex 𝐾 can be viewed as a purely combinatorial object, as described above, but it also gives rise to
a topological space |𝐾| (its geometric realization) as follows: first, the points of 𝑉 should be in general position in
euclidean space. Next, if {𝑣} is in 𝐾, then the vertex 𝑣 is in |𝐾|. If {𝑣, 𝑤} is in 𝐾, then the line segment from 𝑣 to
𝑤 is in |𝐾|. If {𝑢, 𝑣, 𝑤} is in 𝐾, then the triangle with vertices 𝑢, 𝑣, and 𝑤 is in |𝐾|. In general, |𝐾| is the union of
the convex hulls of simplices of 𝐾. Frequently, one abuses notation and uses 𝐾 to denote both the simplicial complex
and the associated topological space.

For any simplicial complex 𝐾 and any commutative ring 𝑅 there is an associated chain complex, with differential of
degree −1. The 𝑛𝑡ℎ term is the free 𝑅-module with basis given by the 𝑛-simplices of 𝐾. The differential is determined
by its value on any simplex: on the 𝑛-simplex with vertices (𝑣0, 𝑣1, ..., 𝑣𝑛), the differential is the alternating sum with
𝑖𝑡ℎ summand (−1)𝑖 multiplied by the (𝑛− 1)-simplex obtained by omitting vertex 𝑣𝑖.

In the implementation here, the vertex set must be finite. To define a simplicial complex, specify its vertex set: this
should be a list, tuple, or set, or it can be a non-negative integer 𝑛, in which case the vertex set is (0, ..., 𝑛). Also
specify the facets: the maximal faces.
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Note: The elements of the vertex set are not automatically contained in the simplicial complex: each one is only
included if and only if it is a vertex of at least one of the specified facets.

Note: This class derives from GenericCellComplex, and so inherits its methods. Some of those methods are
not listed here; see the Generic Cell Complex page instead.

EXAMPLES:

sage: SimplicialComplex([[1], [3, 7]])
Simplicial complex with vertex set (1, 3, 7) and facets {(3, 7), (1,)}
sage: SimplicialComplex() # the empty simplicial complex
Simplicial complex with vertex set () and facets {()}
sage: X = SimplicialComplex([[0,1], [1,2], [2,3], [3,0]])
sage: X
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 2), (2, 3), (0, 3),
→˓(0, 1)}
sage: X.stanley_reisner_ring()
Quotient of Multivariate Polynomial Ring in x0, x1, x2, x3 over Integer Ring by the
→˓ideal (x1*x3, x0*x2)
sage: X.is_pure()
True

Sage can perform a number of operations on simplicial complexes, such as the join and the product, and it can also
compute homology:

sage: S = SimplicialComplex([[0,1], [1,2], [0,2]]) # circle
sage: T = S.product(S) # torus
sage: T
Simplicial complex with 9 vertices and 18 facets
sage: T.homology() # this computes reduced homology
{0: 0, 1: Z x Z, 2: Z}
sage: T.euler_characteristic()
0

Sage knows about some basic combinatorial data associated to a simplicial complex:

sage: X = SimplicialComplex([[0,1], [1,2], [2,3], [0,3]])
sage: X.f_vector()
[1, 4, 4]
sage: X.face_poset()
Finite poset containing 8 elements
sage: X.stanley_reisner_ring()
Quotient of Multivariate Polynomial Ring in x0, x1, x2, x3 over Integer Ring by the
→˓ideal (x1*x3, x0*x2)

Mutability (see trac ticket #12587):

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.add_face([1,3])
sage: S.remove_face([1,3]); S
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(2, 4), (1, 4), (3,)}
sage: hash(S)
Traceback (most recent call last):
...
ValueError: This simplicial complex must be immutable. Call set_immutable().
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sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.set_immutable()
sage: S.add_face([1,3])
Traceback (most recent call last):
...
ValueError: This simplicial complex is not mutable
sage: S.remove_face([1,3])
Traceback (most recent call last):
...
ValueError: This simplicial complex is not mutable
sage: hash(S) == hash(S)
True

sage: S2 = SimplicialComplex([[1,4], [2,4]], is_mutable=False)
sage: hash(S2) == hash(S)
True

We can also make mutable copies of an immutable simplicial complex (see trac ticket #14142):

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.set_immutable()
sage: T = copy(S)
sage: T.is_mutable()
True
sage: S == T
True

class sage.homology.simplicial_complex.Simplex(X)
Bases: sage.structure.sage_object.SageObject

Define a simplex.

Topologically, a simplex is the convex hull of a collection of vertices in general position. Combinatorially, it is
defined just by specifying a set of vertices. It is represented in Sage by the tuple of the vertices.

Parameters X (integer, list, other iterable) – set of vertices

Returns simplex with those vertices

X may be a non-negative integer 𝑛, in which case the simplicial complex will have 𝑛 + 1 vertices (0, 1, ..., 𝑛),
or it may be anything which may be converted to a tuple, in which case the vertices will be that tuple. In the
second case, each vertex must be hashable, so it should be a number, a string, or a tuple, for instance, but not a
list.

Warning: The vertices should be distinct, and no error checking is done to make sure this is the case.

EXAMPLES:

sage: Simplex(4)
(0, 1, 2, 3, 4)
sage: Simplex([3, 4, 1])
(3, 4, 1)
sage: X = Simplex((3, 'a', 'vertex')); X
(3, 'a', 'vertex')
sage: X == loads(dumps(X))
True
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Vertices may be tuples but not lists:

sage: Simplex([(1,2), (3,4)])
((1, 2), (3, 4))
sage: Simplex([[1,2], [3,4]])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

alexander_whitney(dim)
Subdivide this simplex into a pair of simplices.

If this simplex has vertices 𝑣0, 𝑣1, ..., 𝑣𝑛, then subdivide it into simplices (𝑣0, 𝑣1, ..., 𝑣𝑑𝑖𝑚) and
(𝑣𝑑𝑖𝑚, 𝑣𝑑𝑖𝑚+1, ..., 𝑣𝑛).

INPUT:

•dim – integer between 0 and one more than the dimension of this simplex

OUTPUT:

•a list containing just the triple (1, left, right), where left and right are the two simplices
described above.

This method allows one to construct a coproduct from the 𝑝 + 𝑞-chains to the tensor product of the 𝑝-
chains and the 𝑞-chains. The number 1 (a Sage integer) is the coefficient of left tensor right in
this coproduct. (The corresponding formula is more complicated for the cubes that make up a cubical
complex, and the output format is intended to be consistent for both cubes and simplices.)

Calling this method alexander_whitney is an abuse of notation, since the actual Alexander-Whitney
map goes from 𝐶(𝑋 × 𝑌 ) → 𝐶(𝑋) ⊗𝐶(𝑌 ), where 𝐶(−) denotes the chain complex of singular chains,
but this subdivision of simplices is at the heart of it.

EXAMPLES:

sage: s = Simplex((0,1,3,4))
sage: s.alexander_whitney(0)
[(1, (0,), (0, 1, 3, 4))]
sage: s.alexander_whitney(2)
[(1, (0, 1, 3), (3, 4))]

dimension()
The dimension of this simplex.

The dimension of a simplex is the number of vertices minus 1.

EXAMPLES:

sage: Simplex(5).dimension() == 5
True
sage: Simplex(5).face(1).dimension()
4

face(n)
The 𝑛-th face of this simplex.

Parameters n (integer) – an integer between 0 and the dimension of this simplex

Returns the simplex obtained by removing the 𝑛-th vertex from this simplex

EXAMPLES:
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sage: S = Simplex(4)
sage: S.face(0)
(1, 2, 3, 4)
sage: S.face(3)
(0, 1, 2, 4)

faces()
The list of faces (of codimension 1) of this simplex.

EXAMPLES:

sage: S = Simplex(4)
sage: S.faces()
[(1, 2, 3, 4), (0, 2, 3, 4), (0, 1, 3, 4), (0, 1, 2, 4), (0, 1, 2, 3)]
sage: len(Simplex(10).faces())
11

is_empty()
Return True iff this simplex is the empty simplex.

EXAMPLES:

sage: [Simplex(n).is_empty() for n in range(-1,4)]
[True, False, False, False, False]

is_face(other)
Return True iff this simplex is a face of other.

EXAMPLES:

sage: Simplex(3).is_face(Simplex(5))
True
sage: Simplex(5).is_face(Simplex(2))
False
sage: Simplex(['a', 'b', 'c']).is_face(Simplex(8))
False

join(right, rename_vertices=True)
The join of this simplex with another one.

The join of two simplices [𝑣0, ..., 𝑣𝑘] and [𝑤0, ..., 𝑤𝑛] is the simplex [𝑣0, ..., 𝑣𝑘, 𝑤0, ..., 𝑤𝑛].

Parameters

• right – the other simplex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True, the vertices in
the join will be renamed by this formula: vertex “v” in the left-hand factor –> vertex “Lv”
in the join, vertex “w” in the right-hand factor –> vertex “Rw” in the join. If this is false,
this tries to construct the join without renaming the vertices; this may cause problems if
the two factors have any vertices with names in common.

EXAMPLES:

sage: Simplex(2).join(Simplex(3))
('L0', 'L1', 'L2', 'R0', 'R1', 'R2', 'R3')
sage: Simplex(['a', 'b']).join(Simplex(['x', 'y', 'z']))
('La', 'Lb', 'Rx', 'Ry', 'Rz')
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sage: Simplex(['a', 'b']).join(Simplex(['x', 'y', 'z']), rename_
→˓vertices=False)
('a', 'b', 'x', 'y', 'z')

product(other, rename_vertices=True)
The product of this simplex with another one, as a list of simplices.

Parameters

• other – the other simplex

• rename_vertices (boolean; optional, default True) – If this is False, then the ver-
tices in the product are the set of ordered pairs (𝑣, 𝑤) where 𝑣 is a vertex in the left-hand
factor (self) and 𝑤 is a vertex in the right-hand factor (other). If this is True, then
the vertices are renamed as “LvRw” (e.g., the vertex (1,2) would become “L1R2”). This
is useful if you want to define the Stanley-Reisner ring of the complex: vertex names like
(0,1) are not suitable for that, while vertex names like “L0R1” are.

Algorithm: see Hatcher, p. 277-278 [Hat2002] (who in turn refers to Eilenberg-Steenrod, p. 68): given S
= Simplex(m) and T = Simplex(n), then 𝑆 × 𝑇 can be triangulated as follows: for each path 𝑓
from (0, 0) to (𝑚,𝑛) along the integer grid in the plane, going up or right at each lattice point, associate
an (𝑚 + 𝑛)-simplex with vertices 𝑣0, 𝑣1, ..., where 𝑣𝑘 is the 𝑘𝑡ℎ vertex in the path 𝑓 .

Note that there are 𝑚+𝑛 choose 𝑛 such paths. Note also that each vertex in the product is a pair of vertices
(𝑣, 𝑤) where 𝑣 is a vertex in the left-hand factor and 𝑤 is a vertex in the right-hand factor.

Note: This produces a list of simplices – not a Simplex, not a SimplicialComplex.

EXAMPLES:

sage: len(Simplex(2).product(Simplex(2)))
6
sage: Simplex(1).product(Simplex(1))
[('L0R0', 'L0R1', 'L1R1'), ('L0R0', 'L1R0', 'L1R1')]
sage: Simplex(1).product(Simplex(1), rename_vertices=False)
[((0, 0), (0, 1), (1, 1)), ((0, 0), (1, 0), (1, 1))]

set()
The frozenset attached to this simplex.

EXAMPLES:

sage: Simplex(3).set()
frozenset({0, 1, 2, 3})

tuple()
The tuple attached to this simplex.

EXAMPLES:

sage: Simplex(3).tuple()
(0, 1, 2, 3)

Although simplices are printed as if they were tuples, they are not the same type:

sage: type(Simplex(3).tuple())
<... 'tuple'>
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sage: type(Simplex(3))
<class 'sage.homology.simplicial_complex.Simplex'>

class sage.homology.simplicial_complex.SimplicialComplex(maximal_faces=None,
from_characteristic_function=None,
maximality_check=True,
sort_facets=True,
name_check=False,
is_mutable=True,
is_immutable=False, cate-
gory=None)

Bases: sage.structure.parent.Parent, sage.homology.cell_complex.
GenericCellComplex

Define a simplicial complex.

Parameters

• maximal_faces – set of maximal faces

• from_characteristic_function – see below

• maximality_check (boolean; optional, default True) – see below

• sort_facets (boolean; optional, default True) – see below

• name_check (boolean; optional, default False) – see below

• is_mutable (boolean; optional, default True) – Set to False to make this immutable

• category (category; optional, default finite simplicial
complexes) – the category of the simplicial complex

Returns a simplicial complex

maximal_faces should be a list or tuple or set (indeed, anything which may be converted to a set) whose
elements are lists (or tuples, etc.) of vertices. Maximal faces are also known as ‘facets’.

Alternatively, the maximal faces can be defined from a monotome boolean function on the subsets of a set 𝑋 .
While defining maximal_faces=None, you can thus set from_characteristic_function=(f,X)
where X is the set of points and f a boolean monotone hereditary function that accepts a list of elements from X
as input (see subsets_with_hereditary_property() for more information).

If maximality_check is True, check that each maximal face is, in fact, maximal. In this case, when pro-
ducing the internal representation of the simplicial complex, omit those that are not. It is highly recommended
that this be True; various methods for this class may fail if faces which are claimed to be maximal are in fact
not.

If sort_facets is True, sort the vertices in each facet. If the vertices in different facets are not ordered
compatibly (e.g., if you have facets (1, 3, 5) and (5, 3, 8)), then homology calculations may have
unpredictable results.

If name_check is True, check the names of the vertices to see if they can be easily converted to generators
of a polynomial ring – use this if you plan to use the Stanley-Reisner ring for the simplicial complex.

EXAMPLES:

sage: SimplicialComplex([[1,2], [1,4]])
Simplicial complex with vertex set (1, 2, 4) and facets {(1, 2), (1, 4)}
sage: SimplicialComplex([[0,2], [0,3], [0]])
Simplicial complex with vertex set (0, 2, 3) and facets {(0, 2), (0, 3)}
sage: SimplicialComplex([[0,2], [0,3], [0]], maximality_check=False)
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Simplicial complex with vertex set (0, 2, 3) and facets {(0, 2), (0, 3), (0,)}
sage: S = SimplicialComplex((('a', 'b'), ['a', 'c'], ('b', 'c')))
sage: S
Simplicial complex with vertex set ('a', 'b', 'c') and facets {('b', 'c'), ('a',
→˓'c'), ('a', 'b')}

Finally, if there is only one argument and it is a simplicial complex, return that complex. If it is an object with
a built-in conversion to simplicial complexes (via a _simplicial_ method), then the resulting simplicial
complex is returned:

sage: S = SimplicialComplex([[0,2], [0,3], [0,6]])
sage: SimplicialComplex(S) == S
True
sage: Tc = cubical_complexes.Torus(); Tc
Cubical complex with 16 vertices and 64 cubes
sage: Ts = SimplicialComplex(Tc); Ts
Simplicial complex with 16 vertices and 32 facets
sage: Ts.homology()
{0: 0, 1: Z x Z, 2: Z}

From a characteristic monotone boolean function, e.g. the simplicial complex of all subsets 𝑆 ⊆ {0, 1, 2, 3, 4}
such that 𝑠𝑢𝑚(𝑆) ≤ 4:

sage: SimplicialComplex(from_characteristic_function=(lambda x:sum(x)<=4,
→˓range(5)))
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 4), (0, 1, 2),
→˓(0, 1, 3)}

or e.g. the simplicial complex of all 168 hyperovals of the projective plane of order 4:

sage: l = designs.ProjectiveGeometryDesign(2,1,GF(4,name='a'))
sage: f = lambda S: not any(len(set(S).intersection(x))>2 for x in l)
sage: SimplicialComplex(from_characteristic_function=(f, l.ground_set()))
Simplicial complex with 21 vertices and 168 facets

Warning: Simplicial complexes are not proper parents as they do not possess element classes. In particular,
parents are assumed to be hashable (and hence immutable) by the coercion framework. However this is close
enough to being a parent with elements being the faces of self that we currently allow this abuse.

add_face(face)
Add a face to this simplicial complex.

Parameters face – a subset of the vertex set

This changes the simplicial complex, adding a new face and all of its subfaces.

EXAMPLES:

sage: X = SimplicialComplex([[0,1], [0,2]])
sage: X.add_face([0,1,2,]); X
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}
sage: Y = SimplicialComplex(); Y
Simplicial complex with vertex set () and facets {()}
sage: Y.add_face([0,1])
sage: Y.add_face([1,2,3])
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sage: Y
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 2, 3), (0, 1)}

If you add a face which is already present, there is no effect:

sage: Y.add_face([1,3]); Y
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 2, 3), (0, 1)}

alexander_dual(is_mutable=True)
The Alexander dual of this simplicial complex: according to the Macaulay2 documentation, this is the
simplicial complex whose faces are the complements of its nonfaces.

Thus find the minimal nonfaces and take their complements to find the facets in the Alexander dual.

Parameters is_mutable (boolean; optional, default True) – Determines if the output is mu-
table

EXAMPLES:

sage: Y = SimplicialComplex([[i] for i in range(5)]); Y
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(4,), (2,), (3,
→˓), (0,), (1,)}
sage: Y.alexander_dual()
Simplicial complex with vertex set (0, 1, 2, 3, 4) and 10 facets
sage: X = SimplicialComplex([[0,1], [1,2], [2,3], [3,0]])
sage: X.alexander_dual()
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 3), (0, 2)}

alexander_whitney(simplex, dim_left)
Subdivide this simplex into a pair of simplices.

If this simplex has vertices 𝑣0, 𝑣1, ..., 𝑣𝑛, then subdivide it into simplices (𝑣0, 𝑣1, ..., 𝑣𝑑𝑖𝑚) and
(𝑣𝑑𝑖𝑚, 𝑣𝑑𝑖𝑚+1, ..., 𝑣𝑛).

See Simplex.alexander_whitney() for more details. This method just calls that one.

INPUT:

•simplex – a simplex in this complex

•dim – integer between 0 and one more than the dimension of this simplex

OUTPUT: a list containing just the triple (1, left, right), where left and right are the two
simplices described above.

EXAMPLES:

sage: s = Simplex((0,1,3,4))
sage: X = SimplicialComplex([s])
sage: X.alexander_whitney(s, 0)
[(1, (0,), (0, 1, 3, 4))]
sage: X.alexander_whitney(s, 2)
[(1, (0, 1, 3), (3, 4))]

algebraic_topological_model(base_ring=None)
Algebraic topological model for this simplicial complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

•base_ring - coefficient ring (optional, default QQ). Must be a field.
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Denote by 𝐶 the chain complex associated to this simplicial complex. The algebraic topological model is a
chain complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀
and 𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

•𝜑𝜑 = 0,

•𝜋𝜑 = 0,

•𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

•chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

•the chain complex 𝑀

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.
pi().codomain(), respectively.

EXAMPLES:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}

sage: T = simplicial_complexes.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

automorphism_group()
Return the automorphism group of the simplicial complex.

This is done by creating a bipartite graph, whose vertices are vertices and facets of the simplicial complex,
and computing its automorphism group.

Warning: Since trac ticket #14319 the domain of the automorphism group is equal to the graph’s
vertex set, and the translation argument has become useless.

EXAMPLES:

sage: S = simplicial_complexes.Simplex(3)
sage: S.automorphism_group().is_isomorphic(SymmetricGroup(4))
True

sage: P = simplicial_complexes.RealProjectivePlane()
sage: P.automorphism_group().is_isomorphic(AlternatingGroup(5))
True

sage: Z = SimplicialComplex([['1','2'],['2','3','a']])
sage: Z.automorphism_group().is_isomorphic(CyclicPermutationGroup(2))
True
sage: group = Z.automorphism_group()
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sage: group.domain()
{'1', '2', '3', 'a'}

Check that trac ticket #17032 is fixed:

sage: s = SimplicialComplex([[(0,1),(2,3)]])
sage: s.automorphism_group().cardinality()
2

barycentric_subdivision()
The barycentric subdivision of this simplicial complex.

See http://en.wikipedia.org/wiki/Barycentric_subdivision for a definition.

EXAMPLES:

sage: triangle = SimplicialComplex([[0,1], [1,2], [0, 2]])
sage: hexagon = triangle.barycentric_subdivision()
sage: hexagon
Simplicial complex with 6 vertices and 6 facets
sage: hexagon.homology(1) == triangle.homology(1)
True

Barycentric subdivisions can get quite large, since each 𝑛-dimensional facet in the original complex pro-
duces (𝑛 + 1)! facets in the subdivision:

sage: S4 = simplicial_complexes.Sphere(4)
sage: S4
Minimal triangulation of the 4-sphere
sage: S4.barycentric_subdivision()
Simplicial complex with 62 vertices and 720 facets

cells(subcomplex=None)
The faces of this simplicial complex, in the form of a dictionary of sets keyed by dimension. If the optional
argument subcomplex is present, then return only the faces which are not in the subcomplex.

Parameters subcomplex (optional, default None) – a subcomplex of this simplicial complex.
Return faces which are not in this subcomplex.

EXAMPLES:

sage: Y = SimplicialComplex([[1,2], [1,4]])
sage: Y.faces()
{-1: {()}, 0: {(1,), (2,), (4,)}, 1: {(1, 2), (1, 4)}}
sage: L = SimplicialComplex([[1,2]])
sage: Y.faces(subcomplex=L)
{-1: set(), 0: {(4,)}, 1: {(1, 4)}}

chain_complex(subcomplex=None, augmented=False, verbose=False, check=False, dimen-
sions=None, base_ring=Integer Ring, cochain=False)

The chain complex associated to this simplicial complex.

Parameters

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple
of integers, compute the chain complex in those dimensions, setting the chain groups in
all other dimensions to zero.

• base_ring (optional, default ZZ) – commutative ring
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• subcomplex (optional, default empty) – a subcomplex of this simplicial
complex. Compute the chain complex relative to this subcomplex.

• augmented (boolean; optional, default False) – If True, return the augmented chain
complex (that is, include a class in dimension −1 corresponding to the empty cell). This
is ignored if dimensions is specified.

• cochain (boolean; optional, default False) – If True, return the cochain complex (that
is, the dual of the chain complex).

• verbose (boolean; optional, default False) – If True, print some messages as the
chain complex is computed.

• check (boolean; optional, default False) – If True, make sure that the chain complex
is actually a chain complex: the differentials are composable and their product is zero.

Note: If subcomplex is nonempty, then the argument augmented has no effect: the chain complex
relative to a nonempty subcomplex is zero in dimension −1.

The rows and columns of the boundary matrices are indexed by the lists given by the n_cells()method,
which by default are sorted.

EXAMPLES:

sage: circle = SimplicialComplex([[0,1], [1,2], [0, 2]])
sage: circle.chain_complex()
Chain complex with at most 2 nonzero terms over Integer Ring
sage: circle.chain_complex()._latex_()
'\Bold{Z}^{3} \xrightarrow{d_{1}} \Bold{Z}^{3}'
sage: circle.chain_complex(base_ring=QQ, augmented=True)
Chain complex with at most 3 nonzero terms over Rational Field

cone(is_mutable=True)
The cone on this simplicial complex.

Parameters is_mutable (boolean; optional, default True) – Determines if the output is mu-
table

The cone is the simplicial complex formed by adding a new vertex 𝐶 and simplices of the form
[𝐶, 𝑣0, ..., 𝑣𝑘] for every simplex [𝑣0, ..., 𝑣𝑘] in the original simplicial complex. That is, the cone is the
join of the original complex with a one-point simplicial complex.

EXAMPLES:

sage: S = SimplicialComplex([[0], [1]])
sage: S.cone()
Simplicial complex with vertex set ('L0', 'L1', 'R0') and facets {('L0', 'R0
→˓'), ('L1', 'R0')}

connected_component(simplex=None)
Return the connected component of this simplicial complex containing simplex. If simplex is omitted,
then return the connected component containing the zeroth vertex in the vertex list. (If the simplicial
complex is empty, raise an error.)

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1 == S1.connected_component()
True
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sage: X = S1.disjoint_union(S1)
sage: X == X.connected_component()
False
sage: v0 = X.vertices()[0]
sage: v1 = X.vertices()[-1]
sage: X.connected_component(Simplex([v0])) == X.connected_
→˓component(Simplex([v1]))
False

sage: S0 = simplicial_complexes.Sphere(0)
sage: S0.vertices()
(0, 1)
sage: S0.connected_component()
Simplicial complex with vertex set (0,) and facets {(0,)}
sage: S0.connected_component(Simplex((1,)))
Simplicial complex with vertex set (1,) and facets {(1,)}

sage: SimplicialComplex([[]]).connected_component()
Traceback (most recent call last):
...
ValueError: the empty simplicial complex has no connected components.

connected_sum(other, is_mutable=True)
The connected sum of this simplicial complex with another one.

Parameters

• other – another simplicial complex

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

Returns the connected sum self # other

Warning: This does not check that self and other are manifolds, only that their facets all have
the same dimension. Since a (more or less) random facet is chosen from each complex and then glued
together, this method may return random results if applied to non-manifolds, depending on which facet
is chosen.

Algorithm: a facet is chosen from each surface, and removed. The vertices of these two facets are relabeled
to (0,1,...,dim). Of the remaining vertices, the ones from the left-hand factor are renamed by
prepending an “L”, and similarly the remaining vertices in the right-hand factor are renamed by prepending
an “R”.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1.connected_sum(S1.connected_sum(S1)).homology()
{0: 0, 1: Z}
sage: P = simplicial_complexes.RealProjectivePlane(); P
Minimal triangulation of the real projective plane
sage: P.connected_sum(P) # the Klein bottle
Simplicial complex with 9 vertices and 18 facets

The notation ‘+’ may be used for connected sum, also:

sage: P + P # the Klein bottle
Simplicial complex with 9 vertices and 18 facets
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sage: (P + P).homology()[1]
Z x C2

delta_complex(sort_simplices=False)
Returns self as a ∆-complex. The ∆-complex is essentially identical to the simplicial complex: it has
same simplices with the same boundaries.

Parameters sort_simplices (boolean; optional, default False) – if True, sort the list of
simplices in each dimension

EXAMPLES:

sage: T = simplicial_complexes.Torus()
sage: Td = T.delta_complex()
sage: Td
Delta complex with 7 vertices and 43 simplices
sage: T.homology() == Td.homology()
True

disjoint_union(right, rename_vertices=True, is_mutable=True)
The disjoint union of this simplicial complex with another one.

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True,
the vertices in the disjoint union will be renamed by the formula: vertex “v” in the left-
hand factor –> vertex “Lv” in the disjoint union, vertex “w” in the right-hand factor –>
vertex “Rw” in the disjoint union. If this is false, this tries to construct the disjoint union
without renaming the vertices; this will cause problems if the two factors have any vertices
with names in common.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S2 = simplicial_complexes.Sphere(2)
sage: S1.disjoint_union(S2).homology()
{0: Z, 1: Z, 2: Z}

f_triangle()
Compute the 𝑓 -triangle of self.

The 𝑓 -triangle is given by 𝑓𝑖,𝑗 being the number of faces 𝐹 of size 𝑗 such that 𝑖 = max𝐺⊆𝐹 |𝐺|.

EXAMPLES:

sage: X = SimplicialComplex([[1,2,3], [3,4,5], [1,4], [1,5], [2,4], [2,5]])
sage: X.f_triangle() ## this complex is not pure
[[0],
[0, 0],
[0, 0, 4],
[1, 5, 6, 2]]

A complex is pure if and only if the last row is nonzero:

sage: X = SimplicialComplex([[1,2,3], [3,4,5], [1,4,5]])
sage: X.f_triangle()
[[0], [0, 0], [0, 0, 0], [1, 5, 8, 3]]
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face(simplex, i)
The 𝑖-th face of simplex in this simplicial complex

INPUT:

•simplex – a simplex in this simplicial complex

•i – integer

EXAMPLES:

sage: S = SimplicialComplex([[0,1,4], [0,1,2]])
sage: S.face(Simplex((0,2)), 0)
(2,)

sage: S.face(Simplex((0,3)), 0)
Traceback (most recent call last):
...
ValueError: this simplex is not in this simplicial complex

face_iterator(increasing=True)
An iterator for the faces in this simplicial complex.

INPUT:

•increasing – (optional, default True) if True, return faces in increasing order of dimension,
thus starting with the empty face. Otherwise it returns faces in decreasing order of dimension.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: [f for f in S1.face_iterator()]
[(), (2,), (0,), (1,), (1, 2), (0, 2), (0, 1)]

faces(subcomplex=None)
The faces of this simplicial complex, in the form of a dictionary of sets keyed by dimension. If the optional
argument subcomplex is present, then return only the faces which are not in the subcomplex.

Parameters subcomplex (optional, default None) – a subcomplex of this simplicial complex.
Return faces which are not in this subcomplex.

EXAMPLES:

sage: Y = SimplicialComplex([[1,2], [1,4]])
sage: Y.faces()
{-1: {()}, 0: {(1,), (2,), (4,)}, 1: {(1, 2), (1, 4)}}
sage: L = SimplicialComplex([[1,2]])
sage: Y.faces(subcomplex=L)
{-1: set(), 0: {(4,)}, 1: {(1, 4)}}

facets()
The maximal faces (a.k.a. facets) of this simplicial complex.

This just returns the set of facets used in defining the simplicial complex, so if the simplicial complex was
defined with no maximality checking, none is done here, either.

EXAMPLES:

sage: Y = SimplicialComplex([[0,2], [1,4]])
sage: Y.maximal_faces()
{(1, 4), (0, 2)}
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facets is a synonym for maximal_faces:

sage: S = SimplicialComplex([[0,1], [0,1,2]])
sage: S.facets()
{(0, 1, 2)}

fixed_complex(G)
Return the fixed simplicial complex 𝐹𝑖𝑥(𝐺) for a subgroup 𝐺.

INPUT:

•G – a subgroup of the automorphism group of the simplicial complex or a list of elements of the
automorphism group

OUTPUT:

•a simplicial complex 𝐹𝑖𝑥(𝐺)

Vertices in 𝐹𝑖𝑥(𝐺) are the orbits of 𝐺 (acting on vertices of self) that form a simplex in self. More
generally, simplices in 𝐹𝑖𝑥(𝐺) correspond to simplices in self that are union of such orbits.

A basic example:

sage: S4 = simplicial_complexes.Sphere(4)
sage: S3 = simplicial_complexes.Sphere(3)
sage: fix = S4.fixed_complex([S4.automorphism_group()([(0,1)])])
sage: fix
Simplicial complex with vertex set (0, 2, 3, 4, 5) and 5 facets
sage: fix.is_isomorphic(S3)
True

Another simple example:

sage: T = SimplicialComplex([[1,2,3],[2,3,4]])
sage: G = T.automorphism_group()
sage: T.fixed_complex([G([(1,4)])])
Simplicial complex with vertex set (2, 3) and facets {(2, 3)}

A more sophisticated example:

sage: RP2 = simplicial_complexes.ProjectivePlane()
sage: CP2 = simplicial_complexes.ComplexProjectivePlane()
sage: G = CP2.automorphism_group()
sage: H = G.subgroup([G([(2,3),(5,6),(8,9)])])
sage: CP2.fixed_complex(H).is_isomorphic(RP2)
True

flip_graph()
If self is pure, then it returns the flip graph of self, otherwise, it returns None.

The flip graph of a pure simplicial complex is the (undirected) graph with vertices being the facets, such
that two facets are joined by an edge if they meet in a codimension 1 face.

The flip graph is used to detect if self is a pseudomanifold.

EXAMPLES:

sage: S0 = simplicial_complexes.Sphere(0)
sage: G = S0.flip_graph()
sage: G.vertices(); G.edges(labels=False)
[(0,), (1,)]
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[((0,), (1,))]

sage: G = (S0.wedge(S0)).flip_graph()
sage: G.vertices(); G.edges(labels=False)
[(0,), ('L1',), ('R1',)]
[((0,), ('L1',)), ((0,), ('R1',)), (('L1',), ('R1',))]

sage: S1 = simplicial_complexes.Sphere(1)
sage: S2 = simplicial_complexes.Sphere(2)
sage: G = (S1.wedge(S1)).flip_graph()
sage: G.vertices(); G.edges(labels=False)
[(0, 'L1'), (0, 'L2'), (0, 'R1'), (0, 'R2'), ('L1', 'L2'), ('R1', 'R2')]
[((0, 'L1'), (0, 'L2')),
((0, 'L1'), (0, 'R1')),
((0, 'L1'), (0, 'R2')),
((0, 'L1'), ('L1', 'L2')),
((0, 'L2'), (0, 'R1')),
((0, 'L2'), (0, 'R2')),
((0, 'L2'), ('L1', 'L2')),
((0, 'R1'), (0, 'R2')),
((0, 'R1'), ('R1', 'R2')),
((0, 'R2'), ('R1', 'R2'))]

sage: (S1.wedge(S2)).flip_graph() is None
True

sage: G = S2.flip_graph()
sage: G.vertices(); G.edges(labels=False)
[(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]
[((0, 1, 2), (0, 1, 3)),
((0, 1, 2), (0, 2, 3)),
((0, 1, 2), (1, 2, 3)),
((0, 1, 3), (0, 2, 3)),
((0, 1, 3), (1, 2, 3)),
((0, 2, 3), (1, 2, 3))]

sage: T = simplicial_complexes.Torus()
sage: G = T.suspension(4).flip_graph()
sage: len(G.vertices()); len(G.edges(labels=False))
46
161

fundamental_group(base_point=None, simplify=True)
Return the fundamental group of this simplicial complex.

INPUT:

•base_point (optional, default None) – if this complex is not path-connected, then specify a vertex;
the fundamental group is computed with that vertex as a base point. If the complex is path-connected,
then you may specify a vertex or leave this as its default setting of None. (If this complex is path-
connected, then this argument is ignored.)

•simplify (bool, optional True) – if False, then return a presentation of the group in terms of gener-
ators and relations. If True, the default, simplify as much as GAP is able to.

Algorithm: we compute the edge-path group – see Wikipedia article Fundamental_group. Choose a span-
ning tree for the 1-skeleton, and then the group’s generators are given by the edges in the 1-skeleton; there
are two types of relations: 𝑒 = 1 if 𝑒 is in the spanning tree, and for every 2-simplex, if its edges are 𝑒0,
𝑒1, and 𝑒2, then we impose the relation 𝑒0𝑒

−1
1 𝑒2 = 1.
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EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1.fundamental_group()
Finitely presented group < e | >

If we pass the argument simplify=False, we get generators and relations in a form which is not
usually very helpful. Here is the cyclic group of order 2, for instance:

sage: RP2 = simplicial_complexes.RealProjectiveSpace(2)
sage: C2 = RP2.fundamental_group(simplify=False)
sage: C2
Finitely presented group < e0, e1, e2, e3, e4, e5, e6, e7, e8, e9 | e0, e3,
→˓e4, e7, e9, e5*e2^-1*e0, e7*e2^-1*e1, e8*e3^-1*e1, e8*e6^-1*e4, e9*e6^-1*e5
→˓>
sage: C2.simplified()
Finitely presented group < e1 | e1^2 >

This is the same answer given if the argument simplify is True (the default):

sage: RP2.fundamental_group()
Finitely presented group < e1 | e1^2 >

You must specify a base point to compute the fundamental group of a non-connected complex:

sage: K = S1.disjoint_union(RP2)
sage: K.fundamental_group()
Traceback (most recent call last):
...
ValueError: this complex is not connected, so you must specify a base point.
sage: v0 = list(K.vertices())[0]
sage: K.fundamental_group(base_point=v0)
Finitely presented group < e | >
sage: v1 = list(K.vertices())[-1]
sage: K.fundamental_group(base_point=v1)
Finitely presented group < e1 | e1^2 >

Some other examples:

sage: S1.wedge(S1).fundamental_group()
Finitely presented group < e0, e1 | >
sage: simplicial_complexes.Torus().fundamental_group()
Finitely presented group < e1, e4 | e4^-1*e1^-1*e4*e1 >
sage: simplicial_complexes.MooreSpace(5).fundamental_group()
Finitely presented group < e0 | e0^5 >

g_vector()
The 𝑔-vector of this simplicial complex.

If the ℎ-vector of the complex is (ℎ0, ℎ1, ..., ℎ𝑑, ℎ𝑑+1) – see h_vector() – then its 𝑔-vector
(𝑔0, 𝑔1, ..., 𝑔[(𝑑+1)/2]) is defined by 𝑔0 = 1 and 𝑔𝑖 = ℎ𝑖 − ℎ𝑖−1 for 𝑖 > 0.

EXAMPLES:

sage: S3 = simplicial_complexes.Sphere(3).barycentric_subdivision()
sage: S3.f_vector()
[1, 30, 150, 240, 120]
sage: S3.h_vector()
[1, 26, 66, 26, 1]
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sage: S3.g_vector()
[1, 25, 40]

generated_subcomplex(sub_vertex_set, is_mutable=True)
Returns the largest sub-simplicial complex of self containing exactly sub_vertex_set as vertices.

Parameters

• sub_vertex_set – The sub-vertex set.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: S
Minimal triangulation of the 2-sphere
sage: S.generated_subcomplex([0,1,2])
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}

graph()
The 1-skeleton of this simplicial complex, as a graph.

Warning: This may give the wrong answer if the simplicial complex was constructed with
maximality_check set to False.

EXAMPLES:

sage: S = SimplicialComplex([[0,1,2,3]])
sage: G = S.graph(); G
Graph on 4 vertices
sage: G.edges()
[(0, 1, None), (0, 2, None), (0, 3, None), (1, 2, None), (1, 3, None), (2, 3,
→˓None)]

h_triangle()
Compute the ℎ-triangle of self.

The ℎ-triangle of a simplicial complex ∆ is given by

ℎ𝑖,𝑗 =

𝑗∑︁
𝑘=0

(−1)𝑗−𝑘

(︂
𝑖− 𝑘

𝑗 − 𝑘

)︂
𝑓𝑖,𝑘,

where 𝑓𝑖,𝑘 is the 𝑓 -triangle of ∆.

EXAMPLES:

sage: X = SimplicialComplex([[1,2,3], [3,4,5], [1,4], [1,5], [2,4], [2,5]])
sage: X.h_triangle()
[[0],
[0, 0],
[0, 0, 4],
[1, 2, -1, 0]]

h_vector()
The ℎ-vector of this simplicial complex.
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If the complex has dimension 𝑑 and (𝑓−1, 𝑓0, 𝑓1, ..., 𝑓𝑑) is its 𝑓 -vector (with 𝑓−1 = 1, representing the
empty simplex), then the ℎ-vector (ℎ0, ℎ1, ..., ℎ𝑑, ℎ𝑑+1) is defined by

𝑑+1∑︁
𝑖=0

ℎ𝑖𝑥
𝑑+1−𝑖 =

𝑑+1∑︁
𝑖=0

𝑓𝑖−1(𝑥− 1)𝑑+1−𝑖.

Alternatively,

ℎ𝑗 =

𝑗−1∑︁
𝑖=−1

(−1)𝑗−𝑖−1

(︂
𝑑− 𝑖

𝑗 − 𝑖− 1

)︂
𝑓𝑖.

EXAMPLES:

The 𝑓 - and ℎ-vectors of the boundary of an octahedron are computed in Wikipedia’s page on simplicial
complexes, http://en.wikipedia.org/wiki/Simplicial_complex:

sage: square = SimplicialComplex([[0,1], [1,2], [2,3], [0,3]])
sage: S0 = SimplicialComplex([[0], [1]])
sage: octa = square.join(S0) # boundary of an octahedron
sage: octa.f_vector()
[1, 6, 12, 8]
sage: octa.h_vector()
[1, 3, 3, 1]

is_cohen_macaulay(base_ring=Rational Field, ncpus=0)
Return True if self is Cohen-Macaulay.

A simplicial complex ∆ is Cohen-Macaulay over 𝑅 iff 𝐻̃𝑖(lkΔ(𝐹 );𝑅) = 0 for all 𝐹 ∈ ∆ and 𝑖 <
dim lkΔ(𝐹 ). Here, ∆ is self and 𝑅 is base_ring, and lk denotes the link operator on self.

INPUT:

•base_ring – (default: QQ) the base ring.

•ncpus – (default: 0) number of cpus used for the computation. If this is 0, determine the number of
cpus automatically based on the hardware being used.

For finite simplicial complexes, this is equivalent to the statement that the Stanley-Reisner ring of self is
Cohen-Macaulay.

EXAMPLES:

Spheres are Cohen-Macaulay:

sage: S = SimplicialComplex([[1,2],[2,3],[3,1]])
sage: S.is_cohen_macaulay(ncpus=3)
True

The following example is taken from Bruns, Herzog - Cohen-Macaulay rings, Figure 5.3:

sage: S = SimplicialComplex([[1,2,3],[1,4,5]])
sage: S.is_cohen_macaulay(ncpus=3)
...
False

The choice of base ring can matter. The real projective plane R𝑃 2 has 𝐻1(R𝑃 2) = Z/2, hence is CM
over Q but not over Z.
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sage: X = simplicial_complexes.RealProjectivePlane()
sage: X.is_cohen_macaulay()
True
sage: X.is_cohen_macaulay(ZZ)
False

is_flag_complex()
Returns True if and only if self is a flag complex.

A flag complex is a simplicial complex that is the largest simplicial complex on its 1-skeleton. Thus a flag
complex is the clique complex of its graph.

EXAMPLES:

sage: h = Graph({0:[1,2,3,4],1:[2,3,4],2:[3]})
sage: x = h.clique_complex()
sage: x
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 4), (0,
→˓1, 2, 3)}
sage: x.is_flag_complex()
True

sage: X = simplicial_complexes.ChessboardComplex(3,3)
sage: X.is_flag_complex()
True

is_immutable()
Return True if immutable.

EXAMPLES:

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.is_immutable()
False
sage: S.set_immutable()
sage: S.is_immutable()
True

is_isomorphic(other, certificate=False)
Check whether two simplicial complexes are isomorphic.

INPUT:

•certificate – if True, then output is (a, b), where a is a boolean and b is either a map or
None

This is done by creating two graphs and checking whether they are isomorphic.

EXAMPLES:

sage: Z1 = SimplicialComplex([[0,1],[1,2],[2,3,4],[4,5]])
sage: Z2 = SimplicialComplex([['a','b'],['b','c'],['c','d','e'],['e','f']])
sage: Z3 = SimplicialComplex([[1,2,3]])
sage: Z1.is_isomorphic(Z2)
True
sage: Z1.is_isomorphic(Z2, certificate=True)
(True, {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f'})
sage: Z3.is_isomorphic(Z2)
False
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We check that trac ticket #20751 is fixed:

sage: C1 = SimplicialComplex([[1,2,3], [1,2,4], [1,3,4]])
sage: C2 = SimplicialComplex([['j','k','l'], ['j','l','m'], ['j','k','m']])
sage: C1.is_isomorphic(C2, certificate=True)
(True, {1: 'j', 2: 'k', 3: 'l', 4: 'm'})

is_mutable()
Return True if mutable.

EXAMPLES:

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.is_mutable()
True
sage: S.set_immutable()
sage: S.is_mutable()
False
sage: S2 = SimplicialComplex([[1,4], [2,4]], is_mutable=False)
sage: S2.is_mutable()
False
sage: S3 = SimplicialComplex([[1,4], [2,4]], is_mutable=False)
sage: S3.is_mutable()
False

is_pseudomanifold()
Return True if self is a pseudomanifold.

A pseudomanifold is a simplicial complex with the following properties:

•it is pure of some dimension 𝑑 (all of its facets are 𝑑-dimensional)

•every (𝑑− 1)-dimensional simplex is the face of exactly two facets

•for every two facets 𝑆 and 𝑇 , there is a sequence of facets

𝑆 = 𝑓0, 𝑓1, ..., 𝑓𝑛 = 𝑇

such that for each 𝑖, 𝑓𝑖 and 𝑓𝑖−1 intersect in a (𝑑− 1)-simplex.

By convention, 𝑆0 is the only 0-dimensional pseudomanifold.

EXAMPLES:

sage: S0 = simplicial_complexes.Sphere(0)
sage: S0.is_pseudomanifold()
True
sage: (S0.wedge(S0)).is_pseudomanifold()
False
sage: S1 = simplicial_complexes.Sphere(1)
sage: S2 = simplicial_complexes.Sphere(2)
sage: (S1.wedge(S1)).is_pseudomanifold()
False
sage: (S1.wedge(S2)).is_pseudomanifold()
False
sage: S2.is_pseudomanifold()
True
sage: T = simplicial_complexes.Torus()
sage: T.suspension(4).is_pseudomanifold()
True
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is_pure()
Return True iff this simplicial complex is pure.

A simplicial complex is pure if and only if all of its maximal faces have the same dimension.

Warning: This may give the wrong answer if the simplicial complex was constructed with
maximality_check set to False.

EXAMPLES:

sage: U = SimplicialComplex([[1,2], [1, 3, 4]])
sage: U.is_pure()
False
sage: X = SimplicialComplex([[0,1], [0,2], [1,2]])
sage: X.is_pure()
True

Demonstration of the warning:

sage: S = SimplicialComplex([[0,1], [0]], maximality_check=False)
sage: S.is_pure()
False

is_shellable(certificate=False)
Return if self is shellable.

A simplicial complex is shellable if there exists a shelling order.

Note:

1.This method can check all orderings of the facets by brute force, hence can be very slow.

2.This is shellability in the general (nonpure) sense of Bjorner and Wachs [BW1996]. This method does
not check purity.

See also:

is_shelling_order()

INPUT:

•certificate – (default: False) if True then returns the shelling order (if it exists)

EXAMPLES:

sage: X = SimplicialComplex([[1,2,5], [2,3,5], [3,4,5], [1,4,5]])
sage: X.is_shellable()
True
sage: order = X.is_shellable(True); order
((2, 3, 5), (1, 2, 5), (1, 4, 5), (3, 4, 5))
sage: X.is_shelling_order(order)
True

sage: X = SimplicialComplex([[1,2,3], [3,4,5]])
sage: X.is_shellable()
False

Examples from Figure 1 in [BW1996]:
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sage: X = SimplicialComplex([[1,2,3], [3,4], [4,5], [5,6], [4,6]])
sage: X.is_shellable()
True

sage: X = SimplicialComplex([[1,2,3], [3,4], [4,5,6]])
sage: X.is_shellable()
False

REFERENCES:

•Wikipedia article Shelling_(topology)

is_shelling_order(shelling_order, certificate=False)
Return if the order of the facets given by shelling_order is a shelling order for self.

A sequence of facets (𝐹𝑖)
𝑁
𝑖=1 of a simplicial complex of dimension 𝑑 is a shelling order if for all 𝑖 =

2, 3, 4, . . ., the complex

𝑋𝑖 =

⎛⎝𝑖−1⋃︁
𝑗=1

𝐹𝑗

⎞⎠ ∩ 𝐹𝑖

is pure and of dimension dim𝐹𝑖 − 1.

INPUT:

•shelling_order – an ordering of the facets of self

•certificate – (default: False) if True then returns the index of the first facet that violate the
condition

See also:

is_shellable()

EXAMPLES:

sage: facets = [[1,2,5],[2,3,5],[3,4,5],[1,4,5]]
sage: X = SimplicialComplex(facets)
sage: X.is_shelling_order(facets)
True

sage: b = [[1,2,5], [3,4,5], [2,3,5], [1,4,5]]
sage: X.is_shelling_order(b)
False
sage: X.is_shelling_order(b, True)
(False, 1)

A non-pure example:

sage: facets = [[1,2,3], [3,4], [4,5], [5,6], [4,6]]
sage: X = SimplicialComplex(facets)
sage: X.is_shelling_order(facets)
True

REFERENCES:

•[BW1996]

join(right, rename_vertices=True, is_mutable=True)
The join of this simplicial complex with another one.
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The join of two simplicial complexes 𝑆 and 𝑇 is the simplicial complex 𝑆 * 𝑇 with simplices of the form
[𝑣0, ..., 𝑣𝑘, 𝑤0, ..., 𝑤𝑛] for all simplices [𝑣0, ..., 𝑣𝑘] in 𝑆 and [𝑤0, ..., 𝑤𝑛] in 𝑇 .

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True, the vertices in
the join will be renamed by the formula: vertex “v” in the left-hand factor –> vertex “Lv”
in the join, vertex “w” in the right-hand factor –> vertex “Rw” in the join. If this is false,
this tries to construct the join without renaming the vertices; this will cause problems if
the two factors have any vertices with names in common.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

EXAMPLES:

sage: S = SimplicialComplex([[0], [1]])
sage: T = SimplicialComplex([[2], [3]])
sage: S.join(T)
Simplicial complex with vertex set ('L0', 'L1', 'R2', 'R3') and 4 facets
sage: S.join(T, rename_vertices=False)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 3), (1, 2),
→˓(0, 2), (0, 3)}

The notation ‘*’ may be used, as well:

sage: S * S
Simplicial complex with vertex set ('L0', 'L1', 'R0', 'R1') and 4 facets
sage: S * S * S * S * S * S * S * S
Simplicial complex with 16 vertices and 256 facets

link(simplex, is_mutable=True)
The link of a simplex in this simplicial complex.

The link of a simplex 𝐹 is the simplicial complex formed by all simplices 𝐺 which are disjoint from 𝐹 but
for which 𝐹 ∪𝐺 is a simplex.

Parameters

• simplex – a simplex in this simplicial complex.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

EXAMPLES:

sage: X = SimplicialComplex([[0,1,2], [1,2,3]])
sage: X.link(Simplex([0]))
Simplicial complex with vertex set (1, 2) and facets {(1, 2)}
sage: X.link([1,2])
Simplicial complex with vertex set (0, 3) and facets {(3,), (0,)}
sage: Y = SimplicialComplex([[0,1,2,3]])
sage: Y.link([1])
Simplicial complex with vertex set (0, 2, 3) and facets {(0, 2, 3)}

maximal_faces()
The maximal faces (a.k.a. facets) of this simplicial complex.

This just returns the set of facets used in defining the simplicial complex, so if the simplicial complex was
defined with no maximality checking, none is done here, either.

EXAMPLES:
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sage: Y = SimplicialComplex([[0,2], [1,4]])
sage: Y.maximal_faces()
{(1, 4), (0, 2)}

facets is a synonym for maximal_faces:

sage: S = SimplicialComplex([[0,1], [0,1,2]])
sage: S.facets()
{(0, 1, 2)}

minimal_nonfaces()
Set consisting of the minimal subsets of the vertex set of this simplicial complex which do not form faces.

Algorithm: Proceeds through the faces of the complex increasing the dimension, starting from dimension
0, and add the faces that are not contained in the complex and that are not already contained in a previously
seen minimal non-face.

This is used in computing the Stanley-Reisner ring and the Alexander dual.

EXAMPLES:

sage: X = SimplicialComplex([[1,3],[1,2]])
sage: X.minimal_nonfaces()
{(2, 3)}
sage: Y = SimplicialComplex([[0,1], [1,2], [2,3], [3,0]])
sage: Y.minimal_nonfaces()
{(1, 3), (0, 2)}

n_cells(n, subcomplex=None, sort=None)
List of cells of dimension n of this cell complex.

If the optional argument subcomplex is present, then return the n-dimensional faces which are not
in the subcomplex. Sort the list if the argument sort is True. If sort is None (the default), then
sort depending on the value of the sort_facets parameter (from the initialization of the simplicial
complex).

Note: This list is sorted to provide reliable indexing for the rows and columns of the matrices of differen-
tials in the associated chain complex.

EXAMPLES:

sage: S = Set(range(1,5))
sage: Z = SimplicialComplex(S.subsets())
sage: Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 2, 3, 4)}
sage: Z.n_cells(2)
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
sage: K = SimplicialComplex([[1,2,3], [2,3,4]])
sage: Z.n_cells(2, subcomplex=K)
[(1, 2, 4), (1, 3, 4)]
sage: S = SimplicialComplex([[complex(i), complex(1)]], sort_facets=False)
sage: S.n_cells(0)
[(1j,), ((1+0j),)]

n_faces(n, subcomplex=None)
The set of simplices of dimension n of this simplicial complex. If the optional argument subcomplex is
present, then return the n-dimensional faces which are not in the subcomplex.
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Parameters

• n – non-negative integer

• subcomplex (optional, default None) – a subcomplex of this simplicial complex. Re-
turn n-dimensional faces which are not in this subcomplex.

Note: This method is not used elsewhere in Sage. The current usage: if order doesn’t matter, for example
to test membership, use faces(). If the order of the cells matters, use n_cells().

EXAMPLES:

sage: S = Set(range(1,5))
sage: Z = SimplicialComplex(S.subsets())
sage: Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 2, 3, 4)}
sage: Z.n_faces(2)
{(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}
sage: K = SimplicialComplex([[1,2,3], [2,3,4]])
sage: Z.n_faces(2, subcomplex=K)
{(1, 2, 4), (1, 3, 4)}

n_skeleton(n)
The 𝑛-skeleton of this simplicial complex.

The 𝑛-skeleton of a simplicial complex is obtained by discarding all of the simplices in dimensions larger
than 𝑛.

Parameters n – non-negative integer

EXAMPLES:

sage: X = SimplicialComplex([[0,1], [1,2,3], [0,2,3]])
sage: X.n_skeleton(1)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(2, 3), (0, 2),
→˓(1, 3), (1, 2), (0, 3), (0, 1)}
sage: X.set_immutable()
sage: X.n_skeleton(2)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 2, 3), (1, 2,
→˓3), (0, 1)}
sage: X.n_skeleton(4)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 2, 3), (1, 2,
→˓3), (0, 1)}

product(right, rename_vertices=True, is_mutable=True)
The product of this simplicial complex with another one.

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is False, then the vertices
in the product are the set of ordered pairs (𝑣, 𝑤) where 𝑣 is a vertex in self and 𝑤 is a
vertex in right. If this is True, then the vertices are renamed as “LvRw” (e.g., the vertex
(1,2) would become “L1R2”). This is useful if you want to define the Stanley-Reisner ring
of the complex: vertex names like (0,1) are not suitable for that, while vertex names like
“L0R1” are.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable
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The vertices in the product will be the set of ordered pairs (𝑣, 𝑤) where 𝑣 is a vertex in self and 𝑤 is a
vertex in right.

Warning: If X and Y are simplicial complexes, then X*Y returns their join, not their product.

EXAMPLES:

sage: S = SimplicialComplex([[0,1], [1,2], [0,2]]) # circle
sage: K = SimplicialComplex([[0,1]]) # edge
sage: S.product(K).vertices() # cylinder
('L0R0', 'L0R1', 'L1R0', 'L1R1', 'L2R0', 'L2R1')
sage: S.product(K, rename_vertices=False).vertices()
((0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1))
sage: T = S.product(S) # torus
sage: T
Simplicial complex with 9 vertices and 18 facets
sage: T.homology()
{0: 0, 1: Z x Z, 2: Z}

These can get large pretty quickly:

sage: T = simplicial_complexes.Torus(); T
Minimal triangulation of the torus
sage: K = simplicial_complexes.KleinBottle(); K
Minimal triangulation of the Klein bottle
sage: T.product(K) # long time: 5 or 6 seconds
Simplicial complex with 56 vertices and 1344 facets

remove_face(face)
Remove a face from this simplicial complex and return the resulting simplicial complex.

Parameters face – a face of the simplicial complex

This changes the simplicial complex.

ALGORITHM:

The facets of the new simplicial complex are the facets of the original complex not containing face,
together with those of link(face)*boundary(face).

EXAMPLES:

sage: S = range(1,5)
sage: Z = SimplicialComplex([S]); Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 2, 3, 4)}
sage: Z.remove_face([1,2])
sage: Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 3, 4), (2, 3,
→˓4)}

sage: S = SimplicialComplex([[0,1,2],[2,3]])
sage: S
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (2, 3)}
sage: S.remove_face([0,1,2])
sage: S
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 2), (2, 3),
→˓(0, 2), (0, 1)}
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restriction_sets(order)
Return the restriction sets of the facets according to order.

A restriction set of a shelling order is the sequence of smallest new faces that are created during the shelling
order.

See also:

is_shelling_order()

EXAMPLES:

sage: facets = [[1,2,5], [2,3,5], [3,4,5], [1,4,5]]
sage: X = SimplicialComplex(facets)
sage: X.restriction_sets(facets)
[(), (3,), (4,), (1, 4)]

sage: b = [[1,2,5], [3,4,5], [2,3,5], [1,4,5]]
sage: X.restriction_sets(b)
Traceback (most recent call last):
...
ValueError: not a shelling order

set_immutable()
Make this simplicial complex immutable.

EXAMPLES:

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.is_mutable()
True
sage: S.set_immutable()
sage: S.is_mutable()
False

stanley_reisner_ring(base_ring=Integer Ring)
The Stanley-Reisner ring of this simplicial complex.

Parameters base_ring (optional, default ZZ) – a commutative ring

Returns a quotient of a polynomial algebra with coefficients in base_ring, with one generator
for each vertex in the simplicial complex, by the ideal generated by the products of those
vertices which do not form faces in it.

Thus the ideal is generated by the products corresponding to the minimal nonfaces of the simplicial com-
plex.

Warning: This may be quite slow!

Also, this may behave badly if the vertices have the ‘wrong’ names. To avoid this, define the simplicial
complex at the start with the flag name_check set to True.

More precisely, this is a quotient of a polynomial ring with one generator for each vertex. If the name of
a vertex is a non-negative integer, then the corresponding polynomial generator is named 'x' followed
by that integer (e.g., 'x2', 'x3', 'x5', ...). Otherwise, the polynomial generators are given the same
names as the vertices. Thus if the vertex set is (2, 'x2'), there will be problems.

EXAMPLES:
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sage: X = SimplicialComplex([[0,1], [1,2], [2,3], [0,3]])
sage: X.stanley_reisner_ring()
Quotient of Multivariate Polynomial Ring in x0, x1, x2, x3 over Integer Ring
→˓by the ideal (x1*x3, x0*x2)
sage: Y = SimplicialComplex([[0,1,2,3,4]]); Y
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 2, 3,
→˓4)}
sage: Y.add_face([0,1,2,3,4])
sage: Y.stanley_reisner_ring(base_ring=QQ)
Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Rational Field

star(simplex, is_mutable=True)
Return the star of a simplex in this simplicial complex.

The star of simplex is the simplicial complex formed by all simplices which contain simplex.

INPUT:

•simplex – a simplex in this simplicial complex

•is_mutable – (default: True) boolean; determines if the output is mutable

EXAMPLES:

sage: X = SimplicialComplex([[0,1,2], [1,2,3]])
sage: X.star(Simplex([0]))
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}
sage: X.star(Simplex([1]))
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (1, 2,
→˓3)}
sage: X.star(Simplex([1,2]))
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (1, 2,
→˓3)}
sage: X.star(Simplex([]))
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (1, 2,
→˓3)}

stellar_subdivision(simplex, inplace=False, is_mutable=True)
Return the stellar subdivision of a simplex in this simplicial complex.

The stellar subdivision of a face is obtained by adding a new vertex to the simplicial complex self joined
to the star of the face and then deleting the face simplex to the result.

INPUT:

•simplex – a simplex face of self

•inplace – (default: False) boolean; determines if the operation is done on self or on a copy

•is_mutable – (default: True) boolean; determines if the output is mutable

OUTPUT:

•A simplicial complex obtained by the stellar subdivision of the face simplex

EXAMPLES:

sage: SC = SimplicialComplex([[0,1,2],[1,2,3]])
sage: F1 = Simplex([1,2])
sage: F2 = Simplex([1,3])
sage: F3 = Simplex([1,2,3])
sage: SC.stellar_subdivision(F1)
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Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 4), (1,
→˓3, 4), (2, 3, 4), (0, 2, 4)}
sage: SC.stellar_subdivision(F2)
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 2), (2,
→˓3, 4), (1, 2, 4)}
sage: SC.stellar_subdivision(F3)
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(1, 3, 4), (0,
→˓1, 2), (2, 3, 4), (1, 2, 4)}
sage: SC.stellar_subdivision(F3, inplace=True);SC
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(1, 3, 4), (0,
→˓1, 2), (2, 3, 4), (1, 2, 4)}

The simplex to subdivide should be a face of self:

sage: SC = SimplicialComplex([[0,1,2],[1,2,3]])
sage: F4 = Simplex([3,4])
sage: SC.stellar_subdivision(F4)
Traceback (most recent call last):
...
ValueError: the face to subdivide is not a face of self

One can not modify an immutable simplicial complex:

sage: SC = SimplicialComplex([[0,1,2],[1,2,3]], is_mutable=False)
sage: SC.stellar_subdivision(F1, inplace=True)
Traceback (most recent call last):
...
ValueError: this simplicial complex is not mutable

suspension(n=1, is_mutable=True)
The suspension of this simplicial complex.

Parameters

• n (optional, default 1) – positive integer – suspend this many times.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

The suspension is the simplicial complex formed by adding two new vertices 𝑆0 and 𝑆1 and simplices of
the form [𝑆0, 𝑣0, ..., 𝑣𝑘] and [𝑆1, 𝑣0, ..., 𝑣𝑘] for every simplex [𝑣0, ..., 𝑣𝑘] in the original simplicial complex.
That is, the suspension is the join of the original complex with a two-point simplicial complex.

If the simplicial complex 𝑀 happens to be a pseudomanifold (see is_pseudomanifold()), then this
instead constructs Datta’s one-point suspension (see [Dat2007], p. 434): choose a vertex 𝑢 in 𝑀 and
choose a new vertex 𝑤 to add. Denote the join of simplices by “*”. The facets in the one-point suspension
are of the two forms

•𝑢 * 𝛼 where 𝛼 is a facet of 𝑀 not containing 𝑢

•𝑤 * 𝛽 where 𝛽 is any facet of 𝑀 .

EXAMPLES:

sage: S0 = SimplicialComplex([[0], [1]])
sage: S0.suspension() == simplicial_complexes.Sphere(1)
True
sage: S3 = S0.suspension(3) # the 3-sphere
sage: S3.homology()
{0: 0, 1: 0, 2: 0, 3: Z}
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For pseudomanifolds, the complex constructed here will be smaller than that obtained by taking the join
with the 0-sphere: the join adds two vertices, while this construction only adds one.

sage: T = simplicial_complexes.Torus()
sage: T.join(S0).vertices() # 9 vertices
('L0', 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'R0', 'R1')
sage: T.suspension().vertices() # 8 vertices
(0, 1, 2, 3, 4, 5, 6, 7)

vertices()
The vertex set, as a tuple, of this simplicial complex.

EXAMPLES:

sage: S = SimplicialComplex([[i] for i in range(16)] + [[0,1], [1,2]])
sage: S
Simplicial complex with 16 vertices and 15 facets
sage: S.vertices()
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

wedge(right, rename_vertices=True, is_mutable=True)
The wedge (one-point union) of this simplicial complex with another one.

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True, the vertices
in the wedge will be renamed by the formula: first vertex in each are glued together and
called “0”. Otherwise, each vertex “v” in the left-hand factor –> vertex “Lv” in the wedge,
vertex “w” in the right-hand factor –> vertex “Rw” in the wedge. If this is False, this
tries to construct the wedge without renaming the vertices; this will cause problems if the
two factors have any vertices with names in common.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

Note: This operation is not well-defined if self or other is not path-connected.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S2 = simplicial_complexes.Sphere(2)
sage: S1.wedge(S2).homology()
{0: 0, 1: Z, 2: Z}

sage.homology.simplicial_complex.facets_for_K3()
Returns the facets for a minimal triangulation of the K3 surface.

This is a pure simplicial complex of dimension 4 with 16 vertices and 288 facets. The facets are obtained by
constructing a few facets and a permutation group 𝐺, and then computing the 𝐺-orbit of those facets.

See Casella and Kühnel in [CK2001] and Spreer and Kühnel [SK2011]; the construction here uses the labeling
from Spreer and Kühnel.

EXAMPLES:

sage: from sage.homology.simplicial_complex import facets_for_K3
sage: A = facets_for_K3() # long time (a few seconds)
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sage: SimplicialComplex(A) == simplicial_complexes.K3Surface() # long time
True

sage.homology.simplicial_complex.facets_for_RP4()
Return the list of facets for a minimal triangulation of 4-dimensional real projective space.

We use vertices numbered 1 through 16, define two facets, and define a certain subgroup 𝐺 of the symmetric
group 𝑆16. Then the set of all facets is the 𝐺-orbit of the two given facets.

See the description in Example 3.12 in Datta [Dat2007].

EXAMPLES:

sage: from sage.homology.simplicial_complex import facets_for_RP4
sage: A = facets_for_RP4() # long time (1 or 2 seconds)
sage: SimplicialComplex(A) == simplicial_complexes.RealProjectiveSpace(4) # long
→˓time
True

sage.homology.simplicial_complex.lattice_paths(t1, t2, length=None)
Given lists (or tuples or ...) t1 and t2, think of them as labelings for vertices: t1 labeling points on the x-axis,
t2 labeling points on the y-axis, both increasing. Return the list of rectilinear paths along the grid defined by
these points in the plane, starting from (t1[0], t2[0]), ending at (t1[last], t2[last]), and at
each grid point, going either right or up. See the examples.

Parameters

• t1 (list, other iterable) – labeling for vertices

• t2 (list, other iterable) – labeling for vertices

• length (integer or None; optional, default None) – if not None, then an integer, the
length of the desired path.

Returns list of lists of vertices making up the paths as described above

Return type list of lists

This is used when triangulating the product of simplices. The optional argument length is used for ∆-
complexes, to specify all simplices in a product: in the triangulation of a product of two simplices, there is a
𝑑-simplex for every path of length 𝑑+ 1 in the lattice. The path must start at the bottom left and end at the upper
right, and it must use at least one point in each row and in each column, so if length is too small, there will
be no paths.

EXAMPLES:

sage: from sage.homology.simplicial_complex import lattice_paths
sage: lattice_paths([0,1,2], [0,1,2])
[[(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)],
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)],
[(0, 0), (1, 0), (1, 1), (1, 2), (2, 2)],
[(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)],
[(0, 0), (1, 0), (1, 1), (2, 1), (2, 2)],
[(0, 0), (1, 0), (2, 0), (2, 1), (2, 2)]]
sage: lattice_paths(('a', 'b', 'c'), (0, 3, 5))
[[('a', 0), ('a', 3), ('a', 5), ('b', 5), ('c', 5)],
[('a', 0), ('a', 3), ('b', 3), ('b', 5), ('c', 5)],
[('a', 0), ('b', 0), ('b', 3), ('b', 5), ('c', 5)],
[('a', 0), ('a', 3), ('b', 3), ('c', 3), ('c', 5)],
[('a', 0), ('b', 0), ('b', 3), ('c', 3), ('c', 5)],
[('a', 0), ('b', 0), ('c', 0), ('c', 3), ('c', 5)]]

71



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: lattice_paths(range(3), range(3), length=2)
[]
sage: lattice_paths(range(3), range(3), length=3)
[[(0, 0), (1, 1), (2, 2)]]
sage: lattice_paths(range(3), range(3), length=4)
[[(0, 0), (1, 1), (1, 2), (2, 2)],
[(0, 0), (0, 1), (1, 2), (2, 2)],
[(0, 0), (1, 1), (2, 1), (2, 2)],
[(0, 0), (1, 0), (2, 1), (2, 2)],
[(0, 0), (0, 1), (1, 1), (2, 2)],
[(0, 0), (1, 0), (1, 1), (2, 2)]]

sage.homology.simplicial_complex.rename_vertex(n, keep, left=True)
Rename a vertex: the vertices from the list keep get relabeled 0, 1, 2, ..., in order. Any other vertex (e.g. 4) gets
renamed to by prepending an ‘L’ or an ‘R’ (thus to either ‘L4’ or ‘R4’), depending on whether the argument left
is True or False.

Parameters

• n – a ‘vertex’: either an integer or a string

• keep – a list of three vertices

• left (boolean; optional, default True) – if True, rename for use in left factor

This is used by the connected_sum() method for simplicial complexes.

EXAMPLES:

sage: from sage.homology.simplicial_complex import rename_vertex
sage: rename_vertex(6, [5, 6, 7])
1
sage: rename_vertex(3, [5, 6, 7, 8, 9])
'L3'
sage: rename_vertex(3, [5, 6, 7], left=False)
'R3'
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CHAPTER

SEVEN

MORPHISMS OF SIMPLICIAL COMPLEXES

AUTHORS:

• Benjamin Antieau <d.ben.antieau@gmail.com> (2009.06)

• Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to work with the homset cache.

This module implements morphisms of simplicial complexes. The input is given by a dictionary on the vertex set of a
simplicial complex. The initialization checks that faces are sent to faces.

There is also the capability to create the fiber product of two morphisms with the same codomain.

EXAMPLES:

sage: S = SimplicialComplex([[0,2],[1,5],[3,4]], is_mutable=False)
sage: H = Hom(S,S.product(S, is_mutable=False))
sage: H.diagonal_morphism()
Simplicial complex morphism:

From: Simplicial complex with vertex set (0, 1, 2, 3, 4, 5) and facets {(3, 4), (1,
→˓5), (0, 2)}
To: Simplicial complex with 36 vertices and 18 facets
Defn: [0, 1, 2, 3, 4, 5] --> ['L0R0', 'L1R1', 'L2R2', 'L3R3', 'L4R4', 'L5R5']

sage: S = SimplicialComplex([[0,2],[1,5],[3,4]], is_mutable=False)
sage: T = SimplicialComplex([[0,2],[1,3]], is_mutable=False)
sage: f = {0:0,1:1,2:2,3:1,4:3,5:3}
sage: H = Hom(S,T)
sage: x = H(f)
sage: x.image()
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 3), (0, 2)}
sage: x.is_surjective()
True
sage: x.is_injective()
False
sage: x.is_identity()
False

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: i.image()
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 2, 3), (0, 1, 2), (1,
→˓2, 3), (0, 1, 3)}
sage: i.is_surjective()
True
sage: i.is_injective()
True
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sage: i.is_identity()
True

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: j = i.fiber_product(i)
sage: j
Simplicial complex morphism:

From: Simplicial complex with 4 vertices and 4 facets
To: Minimal triangulation of the 2-sphere
Defn: L1R1 |--> 1

L3R3 |--> 3
L2R2 |--> 2
L0R0 |--> 0

sage: S = simplicial_complexes.Sphere(2)
sage: T = S.product(SimplicialComplex([[0,1]]), rename_vertices = False, is_
→˓mutable=False)
sage: H = Hom(T,S)
sage: T
Simplicial complex with 8 vertices and 12 facets
sage: T.vertices()
((0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1))
sage: f = {(0, 0): 0, (0, 1): 0, (1, 0): 1, (1, 1): 1, (2, 0): 2, (2, 1): 2, (3, 0):
→˓3, (3, 1): 3}
sage: x = H(f)
sage: U = simplicial_complexes.Sphere(1)
sage: G = Hom(U,S)
sage: U
Minimal triangulation of the 1-sphere
sage: g = {0:0,1:1,2:2}
sage: y = G(g)
sage: z = y.fiber_product(x)
sage: z # this is the mapping path space
Simplicial complex morphism:

From: Simplicial complex with 6 vertices and 6 facets
To: Minimal triangulation of the 2-sphere
Defn: ['L2R(2, 0)', 'L2R(2, 1)', 'L0R(0, 0)', 'L0R(0, 1)', 'L1R(1, 0)', 'L1R(1, 1)

→˓'] --> [2, 2, 0, 0, 1, 1]

class sage.homology.simplicial_complex_morphism.SimplicialComplexMorphism(f,
X,
Y)

Bases: sage.categories.morphism.Morphism

An element of this class is a morphism of simplicial complexes.

associated_chain_complex_morphism(base_ring=Integer Ring, augmented=False,
cochain=False)

Returns the associated chain complex morphism of self.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: T = simplicial_complexes.Sphere(2)
sage: H = Hom(S,T)
sage: f = {0:0,1:1,2:2}
sage: x = H(f)
sage: x
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Simplicial complex morphism:
From: Minimal triangulation of the 1-sphere
To: Minimal triangulation of the 2-sphere
Defn: 0 |--> 0

1 |--> 1
2 |--> 2

sage: a = x.associated_chain_complex_morphism()
sage: a
Chain complex morphism:

From: Chain complex with at most 2 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: a._matrix_dictionary
{0: [1 0 0]
[0 1 0]
[0 0 1]
[0 0 0], 1: [1 0 0]
[0 1 0]
[0 0 0]
[0 0 1]
[0 0 0]
[0 0 0], 2: []}

sage: x.associated_chain_complex_morphism(augmented=True)
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 4 nonzero terms over Integer Ring

sage: x.associated_chain_complex_morphism(cochain=True)
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 2 nonzero terms over Integer Ring

sage: x.associated_chain_complex_morphism(augmented=True,cochain=True)
Chain complex morphism:

From: Chain complex with at most 4 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: x.associated_chain_complex_morphism(base_ring=GF(11))
Chain complex morphism:

From: Chain complex with at most 2 nonzero terms over Finite Field of size
→˓11
To: Chain complex with at most 3 nonzero terms over Finite Field of size

→˓11

Some simplicial maps which reverse the orientation of a few simplices:

sage: g = {0:1, 1:2, 2:0}
sage: H(g).associated_chain_complex_morphism()._matrix_dictionary
{0: [0 0 1]
[1 0 0]
[0 1 0]
[0 0 0], 1: [ 0 -1 0]
[ 0 0 -1]
[ 0 0 0]
[ 1 0 0]
[ 0 0 0]
[ 0 0 0], 2: []}

sage: X = SimplicialComplex([[0, 1]], is_mutable=False)
sage: Hom(X,X)({0:1, 1:0}).associated_chain_complex_morphism()._matrix_
→˓dictionary
{0: [0 1]
[1 0], 1: [-1]}
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fiber_product(other, rename_vertices=True)
Fiber product of self and other. Both morphisms should have the same codomain. The method returns
a morphism of simplicial complexes, which is the morphism from the space of the fiber product to the
codomain.

EXAMPLES:

sage: S = SimplicialComplex([[0,1],[1,2]], is_mutable=False)
sage: T = SimplicialComplex([[0,2],[1]], is_mutable=False)
sage: U = SimplicialComplex([[0,1],[2]], is_mutable=False)
sage: H = Hom(S,U)
sage: G = Hom(T,U)
sage: f = {0:0,1:1,2:0}
sage: g = {0:0,1:1,2:1}
sage: x = H(f)
sage: y = G(g)
sage: z = x.fiber_product(y)
sage: z
Simplicial complex morphism:

From: Simplicial complex with 4 vertices and facets {('L2R0',), ('L1R1',), (
→˓'L0R0', 'L1R2')}
To: Simplicial complex with vertex set (0, 1, 2) and facets {(2,), (0, 1)}
Defn: L1R2 |--> 1

L1R1 |--> 1
L2R0 |--> 0
L0R0 |--> 0

image()
Computes the image simplicial complex of 𝑓 .

EXAMPLES:

sage: S = SimplicialComplex([[0,1],[2,3]], is_mutable=False)
sage: T = SimplicialComplex([[0,1]], is_mutable=False)
sage: f = {0:0,1:1,2:0,3:1}
sage: H = Hom(S,T)
sage: x = H(f)
sage: x.image()
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}

sage: S = SimplicialComplex(is_mutable=False)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: i.image()
Simplicial complex with vertex set () and facets {()}
sage: i.is_surjective()
True
sage: S = SimplicialComplex([[0,1]], is_mutable=False)
sage: T = SimplicialComplex([[0,1], [0,2]], is_mutable=False)
sage: f = {0:0,1:1}
sage: g = {0:0,1:1}
sage: k = {0:0,1:2}
sage: H = Hom(S,T)
sage: x = H(f)
sage: y = H(g)
sage: z = H(k)
sage: x == y
True
sage: x == z
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False
sage: x.image()
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: y.image()
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: z.image()
Simplicial complex with vertex set (0, 2) and facets {(0, 2)}

induced_homology_morphism(base_ring=None, cohomology=False)
The map in (co)homology induced by this map

INPUT:

•base_ring – must be a field (optional, default QQ)

•cohomology – boolean (optional, default False). If True, the map induced in cohomology rather
than homology.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: T = S.product(S, is_mutable=False)
sage: H = Hom(S,T)
sage: diag = H.diagonal_morphism()
sage: h = diag.induced_homology_morphism(QQ)
sage: h
Graded vector space morphism:

From: Homology module of Minimal triangulation of the 1-sphere over
→˓Rational Field
To: Homology module of Simplicial complex with 9 vertices and 18 facets

→˓over Rational Field
Defn: induced by:
Simplicial complex morphism:
From: Minimal triangulation of the 1-sphere
To: Simplicial complex with 9 vertices and 18 facets
Defn: 0 |--> L0R0

1 |--> L1R1
2 |--> L2R2

We can view the matrix form for the homomorphism:

sage: h.to_matrix(0) # in degree 0
[1]
sage: h.to_matrix(1) # in degree 1
[1]
[0]
sage: h.to_matrix() # the entire homomorphism
[1|0]
[-+-]
[0|1]
[0|0]
[-+-]
[0|0]

We can evaluate it on (co)homology classes:

sage: coh = diag.induced_homology_morphism(QQ, cohomology=True)
sage: coh.to_matrix(1)
[1 0]
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sage: x,y = list(T.cohomology_ring(QQ).basis(1))
sage: coh(x)
h^{1,0}
sage: coh(2*x+3*y)
2*h^{1,0}

Note that the complexes must be immutable for this to work. Many, but not all, complexes are immutable
when constructed:

sage: S.is_immutable()
True
sage: S.barycentric_subdivision().is_immutable()
False
sage: S2 = S.suspension()
sage: S2.is_immutable()
False
sage: h = Hom(S,S2)({0: 0, 1:1, 2:2}).induced_homology_morphism()
Traceback (most recent call last):
...
ValueError: the domain and codomain complexes must be immutable
sage: S2.set_immutable(); S2.is_immutable()
True
sage: h = Hom(S,S2)({0: 0, 1:1, 2:2}).induced_homology_morphism()

is_contiguous_to(other)
Return True if self is contiguous to other.

Two morphisms 𝑓0, 𝑓1 : 𝐾 → 𝐿 are contiguous if for any simplex 𝜎 ∈ 𝐾, the union 𝑓0(𝜎) ∪ 𝑓1(𝜎) is a
simplex in 𝐿. This is not a transitive relation, but it induces an equivalence relation on simplicial maps: 𝑓
is equivalent to 𝑔 if there is a finite sequence 𝑓0 = 𝑓 , 𝑓1, ..., 𝑓𝑛 = 𝑔 such that 𝑓𝑖 and 𝑓𝑖+1 are contiguous
for each 𝑖.

This is related to maps being homotopic: if they are contiguous, then they induce homotopic maps on the
geometric realizations. Given two homotopic maps on the geometric realizations, then after barycentrically
subdividing 𝑛 times for some 𝑛, the maps have simplicial approximations which are in the same contiguity
class. (This last fact is only true if the domain is a finite simplicial complex, by the way.)

See Section 3.5 of Spanier [Spa1966] for details.

ALGORITHM:

It is enough to check when 𝜎 ranges over the facets.

INPUT:

•other – a simplicial complex morphism with the same domain and codomain as self

EXAMPLES:

sage: K = simplicial_complexes.Simplex(1)
sage: L = simplicial_complexes.Sphere(1)
sage: H = Hom(K, L)
sage: f = H({0: 0, 1: 1})
sage: g = H({0: 0, 1: 0})
sage: f.is_contiguous_to(f)
True
sage: f.is_contiguous_to(g)
True
sage: h = H({0: 1, 1: 2})
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sage: f.is_contiguous_to(h)
False

is_identity()
If self is an identity morphism, returns True. Otherwise, False.

EXAMPLES:

sage: T = simplicial_complexes.Sphere(1)
sage: G = Hom(T,T)
sage: T
Minimal triangulation of the 1-sphere
sage: j = G({0:0,1:1,2:2})
sage: j.is_identity()
True

sage: S = simplicial_complexes.Sphere(2)
sage: T = simplicial_complexes.Sphere(3)
sage: H = Hom(S,T)
sage: f = {0:0,1:1,2:2,3:3}
sage: x = H(f)
sage: x
Simplicial complex morphism:

From: Minimal triangulation of the 2-sphere
To: Minimal triangulation of the 3-sphere
Defn: 0 |--> 0

1 |--> 1
2 |--> 2
3 |--> 3

sage: x.is_identity()
False

is_injective()
Returns True if and only if self is injective.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: T = simplicial_complexes.Sphere(2)
sage: U = simplicial_complexes.Sphere(3)
sage: H = Hom(T,S)
sage: G = Hom(T,U)
sage: f = {0:0,1:1,2:0,3:1}
sage: x = H(f)
sage: g = {0:0,1:1,2:2,3:3}
sage: y = G(g)
sage: x.is_injective()
False
sage: y.is_injective()
True

is_surjective()
Returns True if and only if self is surjective.

EXAMPLES:

sage: S = SimplicialComplex([(0,1,2)], is_mutable=False)
sage: S
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}

79



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: T = SimplicialComplex([(0,1)], is_mutable=False)
sage: T
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: H = Hom(S,T)
sage: x = H({0:0,1:1,2:1})
sage: x.is_surjective()
True

sage: S = SimplicialComplex([[0,1],[2,3]], is_mutable=False)
sage: T = SimplicialComplex([[0,1]], is_mutable=False)
sage: f = {0:0,1:1,2:0,3:1}
sage: H = Hom(S,T)
sage: x = H(f)
sage: x.is_surjective()
True

mapping_torus()
The mapping torus of a simplicial complex endomorphism

The mapping torus is the simplicial complex formed by taking the product of the domain of self with a 4
point interval [𝐼0, 𝐼1, 𝐼2, 𝐼3] and identifying vertices of the form (𝐼0, 𝑣) with (𝐼3, 𝑤) where 𝑤 is the image
of 𝑣 under the given morphism.

See Wikipedia article Mapping torus

EXAMPLES:

sage: C = simplicial_complexes.Sphere(1) # Circle
sage: T = Hom(C,C).identity().mapping_torus() ; T # Torus
Simplicial complex with 9 vertices and 18 facets
sage: T.homology() == simplicial_complexes.Torus().homology()
True

sage: f = Hom(C,C)({0:0,1:2,2:1})
sage: K = f.mapping_torus() ; K # Klein Bottle
Simplicial complex with 9 vertices and 18 facets
sage: K.homology() == simplicial_complexes.KleinBottle().homology()
True

sage.homology.simplicial_complex_morphism.is_SimplicialComplexMorphism(x)
Returns True if and only if x is a morphism of simplicial complexes.

EXAMPLES:

sage: from sage.homology.simplicial_complex_morphism import is_
→˓SimplicialComplexMorphism
sage: S = SimplicialComplex([[0,1],[3,4]], is_mutable=False)
sage: H = Hom(S,S)
sage: f = {0:0,1:1,3:3,4:4}
sage: x = H(f)
sage: is_SimplicialComplexMorphism(x)
True
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CHAPTER

EIGHT

HOMSETS BETWEEN SIMPLICIAL COMPLEXES

AUTHORS:

• Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to work with the homset cache.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: T = simplicial_complexes.Sphere(2)
sage: H = Hom(S,T)
sage: f = {0:0,1:1,2:3}
sage: x = H(f)
sage: x
Simplicial complex morphism:

From: Minimal triangulation of the 1-sphere
To: Minimal triangulation of the 2-sphere
Defn: 0 |--> 0

1 |--> 1
2 |--> 3

sage: x.is_injective()
True
sage: x.is_surjective()
False
sage: x.image()
Simplicial complex with vertex set (0, 1, 3) and facets {(1, 3), (0, 3), (0, 1)}
sage: from sage.homology.simplicial_complex import Simplex
sage: s = Simplex([1,2])
sage: x(s)
(1, 3)

class sage.homology.simplicial_complex_homset.SimplicialComplexHomset(X,
Y, cate-
gory=None,
base=None,
check=True)

Bases: sage.categories.homset.Homset

an_element()
Return a (non-random) element of self.

EXAMPLES:

sage: S = simplicial_complexes.KleinBottle()
sage: T = simplicial_complexes.Sphere(5)
sage: H = Hom(S,T)
sage: x = H.an_element()
sage: x
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Simplicial complex morphism:
From: Minimal triangulation of the Klein bottle
To: Minimal triangulation of the 5-sphere
Defn: [0, 1, 2, 3, 4, 5, 6, 7] --> [0, 0, 0, 0, 0, 0, 0, 0]

diagonal_morphism(rename_vertices=True)
Return the diagonal morphism in 𝐻𝑜𝑚(𝑆, 𝑆 × 𝑆).

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S.product(S, is_mutable=False))
sage: d = H.diagonal_morphism()
sage: d
Simplicial complex morphism:

From: Minimal triangulation of the 2-sphere
To: Simplicial complex with 16 vertices and 96 facets
Defn: 0 |--> L0R0

1 |--> L1R1
2 |--> L2R2
3 |--> L3R3

sage: T = SimplicialComplex([[0], [1]], is_mutable=False)
sage: U = T.product(T,rename_vertices = False, is_mutable=False)
sage: G = Hom(T,U)
sage: e = G.diagonal_morphism(rename_vertices = False)
sage: e
Simplicial complex morphism:

From: Simplicial complex with vertex set (0, 1) and facets {(0,), (1,)}
To: Simplicial complex with 4 vertices and facets {((1, 1),), ((1, 0),),

→˓((0, 0),), ((0, 1),)}
Defn: 0 |--> (0, 0)

1 |--> (1, 1)

identity()
Return the identity morphism of 𝐻𝑜𝑚(𝑆, 𝑆).

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: i.is_identity()
True

sage: T = SimplicialComplex([[0,1]], is_mutable=False)
sage: G = Hom(T,T)
sage: G.identity()
Simplicial complex endomorphism of Simplicial complex with vertex set (0, 1)
→˓and facets {(0, 1)}
Defn: 0 |--> 0

1 |--> 1

sage.homology.simplicial_complex_homset.is_SimplicialComplexHomset(x)
Return True if and only if x is a simplicial complex homspace.

EXAMPLES:
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sage: S = SimplicialComplex(is_mutable=False)
sage: T = SimplicialComplex(is_mutable=False)
sage: H = Hom(S, T)
sage: H
Set of Morphisms from Simplicial complex with vertex set () and facets {()}
to Simplicial complex with vertex set () and facets {()}
in Category of finite simplicial complexes

sage: from sage.homology.simplicial_complex_homset import is_
→˓SimplicialComplexHomset
sage: is_SimplicialComplexHomset(H)
True
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CHAPTER

NINE

EXAMPLES OF SIMPLICIAL COMPLEXES

There are two main types: manifolds and examples related to graph theory.

For manifolds, there are functions defining the 𝑛-sphere for any 𝑛, the torus, 𝑛-dimensional real projective space for
any 𝑛, the complex projective plane, surfaces of arbitrary genus, and some other manifolds, all as simplicial complexes.

Aside from surfaces, this file also provides functions for constructing some other simplicial complexes: the sim-
plicial complex of not-𝑖-connected graphs on 𝑛 vertices, the matching complex on n vertices, the chessboard com-
plex for an 𝑛 by 𝑖 chessboard, and others. These provide examples of large simplicial complexes; for example,
simplicial_complexes.NotIConnectedGraphs(7,2) has over a million simplices.

All of these examples are accessible by typing simplicial_complexes.NAME, where NAME is the name of the
example.

• BarnetteSphere()

• BrucknerGrunbaumSphere()

• ChessboardComplex()

• ComplexProjectivePlane()

• DunceHat()

• K3Surface()

• KleinBottle()

• MatchingComplex()

• MooreSpace()

• NotIConnectedGraphs()

• PoincareHomologyThreeSphere()

• PseudoQuaternionicProjectivePlane()

• RandomComplex()

• RandomTwoSphere()

• RealProjectivePlane()

• RealProjectiveSpace()

• RudinBall()

• ShiftedComplex()

• Simplex()

• Sphere()

85



Sage Reference Manual: Cell complexes and their homology, Release 8.0

• SumComplex()

• SurfaceOfGenus()

• Torus()

• ZieglerBall()

You can also get a list by typing simplicial_complexes. and hitting the TAB key.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2) # the 2-sphere
sage: S.homology()
{0: 0, 1: 0, 2: Z}
sage: simplicial_complexes.SurfaceOfGenus(3)
Triangulation of an orientable surface of genus 3
sage: M4 = simplicial_complexes.MooreSpace(4)
sage: M4.homology()
{0: 0, 1: C4, 2: 0}
sage: simplicial_complexes.MatchingComplex(6).homology()
{0: 0, 1: Z^16, 2: 0}

sage.homology.examples.BarnetteSphere()
Returns Barnette’s triangulation of the 3-sphere.

This is a pure simplicial complex of dimension 3 with 8 vertices and 19 facets, which is a non-polytopal trian-
gulation of the 3-sphere. It was constructed by Barnette in [Bar1970]. The construction here uses the labeling
from De Loera, Rambau and Santos [DLRS2010]. Another reference is chapter III.4 of Ewald [Ewa1996].

EXAMPLES:

sage: BS = simplicial_complexes.BarnetteSphere() ; BS
Barnette's triangulation of the 3-sphere
sage: BS.f_vector()
[1, 8, 27, 38, 19]

sage.homology.examples.BrucknerGrunbaumSphere()
Returns Bruckner and Grunbaum’s triangulation of the 3-sphere.

This is a pure simplicial complex of dimension 3 with 8 vertices and 20 facets, which is a non-polytopal trian-
gulation of the 3-sphere. It appeared first in [Br1910] and was studied in [GrS1967].

It is defined here as the link of any vertex in the unique minimal triangulation of the complex projective plane,
see chapter 4 of [Kuh1995].

EXAMPLES:

sage: BGS = simplicial_complexes.BrucknerGrunbaumSphere() ; BGS
Bruckner and Grunbaum's triangulation of the 3-sphere
sage: BGS.f_vector()
[1, 8, 28, 40, 20]

sage.homology.examples.ChessboardComplex(n, i)
The chessboard complex for an 𝑛× 𝑖 chessboard.

Fix integers 𝑛, 𝑖 > 0 and consider sets 𝑉 of 𝑛 vertices and 𝑊 of 𝑖 vertices. A ‘partial matching’ between 𝑉 and
𝑊 is a graph formed by edges (𝑣, 𝑤) with 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 so that each vertex is in at most one edge. If 𝐺 is
a partial matching, then so is any graph obtained by deleting edges from 𝐺. Thus the set of all partial matchings
on 𝑉 and 𝑊 , viewed as a set of subsets of the 𝑛 + 𝑖 choose 2 possible edges, is closed under taking subsets,
and thus forms a simplicial complex called the ‘chessboard complex’. This function produces that simplicial
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complex. (It is called the chessboard complex because such graphs also correspond to ways of placing rooks on
an 𝑛 by 𝑖 chessboard so that none of them are attacking each other.)

INPUT:

•n, i – positive integers.

See Dumas et al. [DHSW2003] for information on computing its homology by computer, and see Wachs
[Wac2003] for an expository article about the theory.

EXAMPLES:

sage: C = simplicial_complexes.ChessboardComplex(5,5)
sage: C.f_vector()
[1, 25, 200, 600, 600, 120]
sage: simplicial_complexes.ChessboardComplex(3,3).homology()
{0: 0, 1: Z x Z x Z x Z, 2: 0}

sage.homology.examples.ComplexProjectivePlane()
A minimal triangulation of the complex projective plane.

This was constructed by Kühnel and Banchoff [KB1983].

EXAMPLES:

sage: C = simplicial_complexes.ComplexProjectivePlane()
sage: C.f_vector()
[1, 9, 36, 84, 90, 36]
sage: C.homology(2)
Z
sage: C.homology(4)
Z

sage.homology.examples.DunceHat()
Return the minimal triangulation of the dunce hat given by Hachimori [Hac2016].

This is a standard example of a space that is contractible but not collapsible.

EXAMPLES:

sage: D = simplicial_complexes.DunceHat(); D
Minimal triangulation of the dunce hat
sage: D.f_vector()
[1, 8, 24, 17]
sage: D.homology()
{0: 0, 1: 0, 2: 0}
sage: D.is_cohen_macaulay()
True

sage.homology.examples.K3Surface()
Returns a minimal triangulation of the K3 surface.

This is a pure simplicial complex of dimension 4 with 16 vertices and 288 facets. It was constructed by Casella
and Kühnel in [CK2001]. The construction here uses the labeling from Spreer and Kühnel [SK2011].

EXAMPLES:

sage: K3=simplicial_complexes.K3Surface() ; K3
Minimal triangulation of the K3 surface
sage: K3.f_vector()
[1, 16, 120, 560, 720, 288]
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This simplicial complex is implemented just by listing all 288 facets. The list of facets can be computed by the
function facets_for_K3(), but running the function takes a few seconds.

sage.homology.examples.KleinBottle()
A minimal triangulation of the Klein bottle, as presented for example in Davide Cervone’s thesis [Cer1994].

EXAMPLES:

sage: simplicial_complexes.KleinBottle()
Minimal triangulation of the Klein bottle

sage.homology.examples.MatchingComplex(n)
The matching complex of graphs on 𝑛 vertices.

Fix an integer 𝑛 > 0 and consider a set 𝑉 of 𝑛 vertices. A ‘partial matching’ on 𝑉 is a graph formed by edges so
that each vertex is in at most one edge. If 𝐺 is a partial matching, then so is any graph obtained by deleting edges
from 𝐺. Thus the set of all partial matchings on 𝑛 vertices, viewed as a set of subsets of the 𝑛 choose 2 possible
edges, is closed under taking subsets, and thus forms a simplicial complex called the ‘matching complex’. This
function produces that simplicial complex.

INPUT:

•n – positive integer.

See Dumas et al. [DHSW2003] for information on computing its homology by computer, and see Wachs
[Wac2003] for an expository article about the theory. For example, the homology of these complexes seems
to have only mod 3 torsion, and this has been proved for the bottom non-vanishing homology group for the
matching complex 𝑀𝑛.

EXAMPLES:

sage: M = simplicial_complexes.MatchingComplex(7)
sage: H = M.homology()
sage: H
{0: 0, 1: C3, 2: Z^20}
sage: H[2].ngens()
20
sage: simplicial_complexes.MatchingComplex(8).homology(2) # long time (6s on
→˓sage.math, 2012)
Z^132

sage.homology.examples.MooreSpace(q)
Triangulation of the mod 𝑞 Moore space.

INPUT:

•q -0 integer, at least 2

This is a simplicial complex with simplices of dimension 0, 1, and 2, such that its reduced homology is isomor-
phic to Z/𝑞Z in dimension 1, zero otherwise.

If 𝑞 = 2, this is the real projective plane. If 𝑞 > 2, then construct it as follows: start with a triangle with
vertices 1, 2, 3. We take a 3𝑞-gon forming a 𝑞-fold cover of the triangle, and we form the resulting complex
as an identification space of the 3𝑞-gon. To triangulate this identification space, put 𝑞 vertices 𝐴0, ..., 𝐴𝑞−1, in
the interior, each of which is connected to 1, 2, 3 (two facets each: [1, 2, 𝐴𝑖], [2, 3, 𝐴𝑖]). Put 𝑞 more vertices in
the interior: 𝐵0, ..., 𝐵𝑞−1, with facets [3, 1, 𝐵𝑖], [3, 𝐵𝑖, 𝐴𝑖], [1, 𝐵𝑖, 𝐴𝑖+1], [𝐵𝑖, 𝐴𝑖, 𝐴𝑖+1]. Then triangulate the
interior polygon with vertices 𝐴0, 𝐴1, ..., 𝐴𝑞−1.

EXAMPLES:
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sage: simplicial_complexes.MooreSpace(2)
Minimal triangulation of the real projective plane
sage: simplicial_complexes.MooreSpace(3).homology()[1]
C3
sage: simplicial_complexes.MooreSpace(4).suspension().homology()[2]
C4
sage: simplicial_complexes.MooreSpace(8)
Triangulation of the mod 8 Moore space

sage.homology.examples.NotIConnectedGraphs(n, i)
The simplicial complex of all graphs on 𝑛 vertices which are not 𝑖-connected.

Fix an integer 𝑛 > 0 and consider the set of graphs on 𝑛 vertices. View each graph as its set of edges, so it is a
subset of a set of size 𝑛 choose 2. A graph is 𝑖-connected if, for any 𝑗 < 𝑖, if any 𝑗 vertices are removed along
with the edges emanating from them, then the graph remains connected. Now fix 𝑖: it is clear that if 𝐺 is not
𝑖-connected, then the same is true for any graph obtained from 𝐺 by deleting edges. Thus the set of all graphs
which are not 𝑖-connected, viewed as a set of subsets of the 𝑛 choose 2 possible edges, is closed under taking
subsets, and thus forms a simplicial complex. This function produces that simplicial complex.

INPUT:

•n, i – non-negative integers with 𝑖 at most 𝑛

See Dumas et al. [DHSW2003] for information on computing its homology by computer, and see Babson et
al. [BBLSW1999] for theory. For example, Babson et al. show that when 𝑖 = 2, the reduced homology of this
complex is nonzero only in dimension 2𝑛− 5, where it is free abelian of rank (𝑛− 2)!.

EXAMPLES:

sage: simplicial_complexes.NotIConnectedGraphs(5,2).f_vector()
[1, 10, 45, 120, 210, 240, 140, 20]
sage: simplicial_complexes.NotIConnectedGraphs(5,2).homology(5).ngens()
6

sage.homology.examples.PoincareHomologyThreeSphere()
A triangulation of the Poincaré homology 3-sphere.

This is a manifold whose integral homology is identical to the ordinary 3-sphere, but it is not simply connected.
In particular, its fundamental group is the binary icosahedral group, which has order 120. The triangulation
given here has 16 vertices and is due to Björner and Lutz [BL2000].

EXAMPLES:

sage: S3 = simplicial_complexes.Sphere(3)
sage: Sigma3 = simplicial_complexes.PoincareHomologyThreeSphere()
sage: S3.homology() == Sigma3.homology()
True
sage: Sigma3.fundamental_group().cardinality() # long time
120

sage.homology.examples.ProjectivePlane()
A minimal triangulation of the real projective plane.

EXAMPLES:

sage: P = simplicial_complexes.RealProjectivePlane()
sage: Q = simplicial_complexes.ProjectivePlane()
sage: P == Q
True
sage: P.cohomology(1)
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0
sage: P.cohomology(2)
C2
sage: P.cohomology(1, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P.cohomology(2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2

sage.homology.examples.PseudoQuaternionicProjectivePlane()
Returns a pure simplicial complex of dimension 8 with 490 facets.

Warning: This is expected to be a triangulation of the projective plane 𝐻𝑃 2 over the ring of quaternions,
but this has not been proved yet.

This simplicial complex has the same homology as 𝐻𝑃 2. Its automorphism group is isomorphic to the alternat-
ing group 𝐴5 and acts transitively on vertices.

This is defined here using the description in [BK1992]. This article deals with three different triangulations.
This procedure returns the only one which has a transitive group of automorphisms.

EXAMPLES:

sage: HP2 = simplicial_complexes.PseudoQuaternionicProjectivePlane() ; HP2
Simplicial complex with 15 vertices and 490 facets
sage: HP2.f_vector()
[1, 15, 105, 455, 1365, 3003, 4515, 4230, 2205, 490]

Checking its automorphism group:

sage: HP2.automorphism_group().is_isomorphic(AlternatingGroup(5))
True

sage.homology.examples.RandomComplex(n, d, p=0.5)
A random d-dimensional simplicial complex on n vertices.

INPUT:

•n – number of vertices

•d – dimension of the complex

•p – floating point number between 0 and 1 (optional, default 0.5)

A random 𝑑-dimensional simplicial complex on 𝑛 vertices, as defined for example by Meshulam and Wallach
[MW2009], is constructed as follows: take 𝑛 vertices and include all of the simplices of dimension strictly less
than 𝑑, and then for each possible simplex of dimension 𝑑, include it with probability 𝑝.

EXAMPLES:

sage: X = simplicial_complexes.RandomComplex(6, 2); X
Random 2-dimensional simplicial complex on 6 vertices
sage: len(list(X.vertices()))
6

If 𝑑 is too large (if 𝑑 + 1 > 𝑛, so that there are no 𝑑-dimensional simplices), then return the simplicial complex
with a single (𝑛 + 1)-dimensional simplex:
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sage: simplicial_complexes.RandomComplex(6, 12)
The 5-simplex

sage.homology.examples.RandomTwoSphere(n)
Return a random triangulation of the 2-dimensional sphere with 𝑛 vertices.

INPUT:

𝑛 – an integer

OUTPUT:

A random triangulation of the sphere chosen uniformly among the rooted triangulations on 𝑛 vertices. Because
some triangulations have nontrivial automorphism groups, this may not be equal to the uniform distribution
among unrooted triangulations.

ALGORITHM:

The algorithm is taken from [PS2006], section 2.1.

Starting from a planar tree (represented by its contour as a sequence of vertices), one first performs local closures,
until no one is possible. A local closure amounts to replace in the cyclic contour word a sequence in1,
in2,in3,lf,in3 by in1,in3. After all local closures are done, one has reached the partial closure, as in
[PS2006], figure 5 (a).

Then one has to perform complete closure by adding two more vertices, in order to reach the situation of
[PS2006], figure 5 (b). For this, it is necessary to find inside the final contour one of the two subsequences
lf,in,lf.

At every step of the algorithm, newly created triangles are added in a simplicial complex.

This algorithm is implemented in RandomTriangulation(), which creates an embedded graph. The tri-
angles of the simplicial complex are recovered from this embedded graph.

EXAMPLES:

sage: G = simplicial_complexes.RandomTwoSphere(6); G
Simplicial complex with vertex set (0, 1, 2, 3, 'a', 'b')
and 8 facets
sage: G.homology()
{0: 0, 1: 0, 2: Z}
sage: G.is_pure()
True
sage: fg = G.flip_graph(); fg
Graph on 8 vertices
sage: fg.is_planar() and fg.is_regular(3)
True

sage.homology.examples.RealProjectivePlane()
A minimal triangulation of the real projective plane.

EXAMPLES:

sage: P = simplicial_complexes.RealProjectivePlane()
sage: Q = simplicial_complexes.ProjectivePlane()
sage: P == Q
True
sage: P.cohomology(1)
0
sage: P.cohomology(2)
C2
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sage: P.cohomology(1, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P.cohomology(2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2

sage.homology.examples.RealProjectiveSpace(n)
A triangulation of R𝑃𝑛 for any 𝑛 ≥ 0.

INPUT:

•n – integer, the dimension of the real projective space to construct

The first few cases are pretty trivial:

•R𝑃 0 is a point.

•R𝑃 1 is a circle, triangulated as the boundary of a single 2-simplex.

•R𝑃 2 is the real projective plane, here given its minimal triangulation with 6 vertices, 15 edges, and 10
triangles.

•R𝑃 3: any triangulation has at least 11 vertices by a result of Walkup [Wal1970]; this function returns a
triangulation with 11 vertices, as given by Lutz [Lut2005].

•R𝑃 4: any triangulation has at least 16 vertices by a result of Walkup; this function returns a triangulation
with 16 vertices as given by Lutz; see also Datta [Dat2007], Example 3.12.

•R𝑃𝑛: Lutz has found a triangulation of R𝑃 5 with 24 vertices, but it does not seem to have been published.
Kühnel [Kuh1987] has described a triangulation of R𝑃𝑛, in general, with 2𝑛+1−1 vertices; see also Datta,
Example 3.21. This triangulation is presumably not minimal, but it seems to be the best in the published
literature as of this writing. So this function returns it when 𝑛 > 4.

ALGORITHM: For 𝑛 < 4, these are constructed explicitly by listing the facets. For 𝑛 = 4, this is constructed
by specifying 16 vertices, two facets, and a certain subgroup 𝐺 of the symmetric group 𝑆16. Then the set of all
facets is the 𝐺-orbit of the two given facets. This is implemented here by explicitly listing all of the facets; the
facets can be computed by the function facets_for_RP4(), but running the function takes a few seconds.

For 𝑛 > 4, the construction is as follows: let 𝑆 denote the simplicial complex structure on the 𝑛-sphere given by
the first barycentric subdivision of the boundary of an (𝑛 + 1)-simplex. This has a simplicial antipodal action:
if 𝑉 denotes the vertices in the boundary of the simplex, then the vertices in its barycentric subdivision 𝑆
correspond to nonempty proper subsets 𝑈 of 𝑉 , and the antipodal action sends any subset 𝑈 to its complement.
One can show that modding out by this action results in a triangulation for R𝑃𝑛. To find the facets in this
triangulation, find the facets in 𝑆. These are identified in pairs to form R𝑃𝑛, so choose a representative from
each pair: for each facet in 𝑆, replace any vertex in 𝑆 containing 0 with its complement.

Of course these complexes increase in size pretty quickly as 𝑛 increases.

EXAMPLES:

sage: P3 = simplicial_complexes.RealProjectiveSpace(3)
sage: P3.f_vector()
[1, 11, 51, 80, 40]
sage: P3.homology()
{0: 0, 1: C2, 2: 0, 3: Z}
sage: P4 = simplicial_complexes.RealProjectiveSpace(4)
sage: P4.f_vector()
[1, 16, 120, 330, 375, 150]
sage: P4.homology() # long time
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0}
sage: P5 = simplicial_complexes.RealProjectiveSpace(5) # long time (44s on sage.
→˓math, 2012)
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sage: P5.f_vector() # long time
[1, 63, 903, 4200, 8400, 7560, 2520]

The following computation can take a long time – over half an hour – with Sage’s default computation of
homology groups, but if you have CHomP installed, Sage will use that and the computation should only take
a second or two. (You can download CHomP from http://chomp.rutgers.edu/, or you can install it as a Sage
package using sage -i chomp).

sage: P5.homology() # long time # optional - CHomP
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: Z}
sage: simplicial_complexes.RealProjectiveSpace(2).dimension()
2
sage: P3.dimension()
3
sage: P4.dimension() # long time
4
sage: P5.dimension() # long time
5

sage.homology.examples.RudinBall()
Return the non-shellable ball constructed by Rudin.

This complex is a non-shellable triangulation of the 3-ball with 14 vertices and 41 facets, constructed by Rudin
in [Rud1958].

EXAMPLES:

sage: R = simplicial_complexes.RudinBall(); R
Rudin ball
sage: R.f_vector()
[1, 14, 66, 94, 41]
sage: R.homology()
{0: 0, 1: 0, 2: 0, 3: 0}
sage: R.is_cohen_macaulay()
True

sage.homology.examples.ShiftedComplex(generators)
Return the smallest shifted simplicial complex containing generators as faces.

Let 𝑉 be a set of vertices equipped with a total order. The ‘componentwise partial ordering’ on k-subsets of 𝑉
is defined as follows: if 𝐴 = {𝑎1 < · · · < 𝑎𝑘} and 𝐵 = {𝑏1 < · · · < 𝑏𝑘}, then 𝐴 ≤𝐶 𝐵 iff 𝑎𝑖 ≤ 𝑏𝑖 for all
𝑖. A simplicial complex 𝑋 on vertex set [𝑛] is shifted if its faces form an order ideal under the componentwise
partial ordering, i.e., if 𝐵 ∈ 𝑋 and 𝐴 ≤𝐶 𝐵 then 𝐴 ∈ 𝑋 . Shifted complexes of dimension 1 are also known as
threshold graphs.

Note: This method assumes that 𝑉 consists of positive integers with the natural ordering.

INPUT:

•generators – a list of generators of the order ideal, which may be lists, tuples or simplices

EXAMPLES:

sage: X = simplicial_complexes.ShiftedComplex([ Simplex([1,6]), (2,4), [8] ])
sage: X.facets()
{(2, 4), (7,), (1, 2), (1, 5), (1, 4), (8,), (2, 3), (1, 6), (1, 3)}
sage: X = simplicial_complexes.ShiftedComplex([ [2,3,5] ])
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sage: X.facets()
{(1, 3, 4), (1, 3, 5), (2, 3, 5), (1, 2, 3), (2, 3, 4), (1, 2, 5), (1, 2, 4)}
sage: X = simplicial_complexes.ShiftedComplex([ [1,3,5], [2,6] ])
sage: X.facets()
{(1, 3, 4), (1, 3, 5), (1, 6), (2, 6), (1, 2, 3), (1, 2, 5), (1, 2, 4)}

sage.homology.examples.Simplex(n)
An 𝑛-dimensional simplex, as a simplicial complex.

INPUT:

•n – a non-negative integer

OUTPUT: the simplicial complex consisting of the 𝑛-simplex on vertices (0, 1, ..., 𝑛) and all of its faces.

EXAMPLES:

sage: simplicial_complexes.Simplex(3)
The 3-simplex
sage: simplicial_complexes.Simplex(5).euler_characteristic()
1

sage.homology.examples.Sphere(n)
A minimal triangulation of the 𝑛-dimensional sphere.

INPUT:

•n – positive integer

EXAMPLES:

sage: simplicial_complexes.Sphere(2)
Minimal triangulation of the 2-sphere
sage: simplicial_complexes.Sphere(5).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: Z}
sage: [simplicial_complexes.Sphere(n).euler_characteristic() for n in range(6)]
[2, 0, 2, 0, 2, 0]
sage: [simplicial_complexes.Sphere(n).f_vector() for n in range(6)]
[[1, 2],
[1, 3, 3],
[1, 4, 6, 4],
[1, 5, 10, 10, 5],
[1, 6, 15, 20, 15, 6],
[1, 7, 21, 35, 35, 21, 7]]

sage.homology.examples.SumComplex(n, A)
The sum complexes of Linial, Meshulam, and Rosenthal [LMR2010].

If 𝑘 + 1 is the cardinality of 𝐴, then this returns a 𝑘-dimensional simplicial complex 𝑋𝐴 with vertices Z/(𝑛),
and facets given by all 𝑘 + 1-tuples (𝑥0, 𝑥1, ..., 𝑥𝑘) such that the sum

∑︀
𝑥𝑖 is in 𝐴. See the paper by Linial,

Meshulam, and Rosenthal [LMR2010], in which they prove various results about these complexes; for example,
if 𝑛 is prime, then 𝑋𝐴 is rationally acyclic, and if in addition 𝐴 forms an arithmetic progression in Z/(𝑛), then
𝑋𝐴 is Z-acyclic. Throughout their paper, they assume that 𝑛 and 𝑘 are relatively prime, but the construction
makes sense in general.

In addition to the results from the cited paper, these complexes can have large torsion, given the number of
vertices; for example, if 𝑛 = 10, and 𝐴 = {0, 1, 2, 3, 6}, then 𝐻3(𝑋𝐴) is cyclic of order 2728, and there is a
4-dimensional complex on 13 vertices with 𝐻3 having a cyclic summand of order

706565607945 = 3 · 5 · 53 · 79 · 131 · 157 · 547.
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See the examples.

INPUT:

•n – a positive integer

•A – a subset of Z/(𝑛)

EXAMPLES:

sage: S = simplicial_complexes.SumComplex(10, [0,1,2,3,6]); S
Sum complex on vertices Z/10Z associated to {0, 1, 2, 3, 6}
sage: S.homology()
{0: 0, 1: 0, 2: 0, 3: C2728, 4: 0}
sage: factor(2728)
2^3 * 11 * 31

sage: S = simplicial_complexes.SumComplex(11, [0, 1, 3]); S
Sum complex on vertices Z/11Z associated to {0, 1, 3}
sage: S.homology(1)
C23
sage: S = simplicial_complexes.SumComplex(11, [0,1,2,3,4,7]); S
Sum complex on vertices Z/11Z associated to {0, 1, 2, 3, 4, 7}
sage: S.homology(algorithm='no_chomp') # long time
{0: 0, 1: 0, 2: 0, 3: 0, 4: C645679, 5: 0}
sage: factor(645679)
23 * 67 * 419

sage: S = simplicial_complexes.SumComplex(13, [0, 1, 3]); S
Sum complex on vertices Z/13Z associated to {0, 1, 3}
sage: S.homology(1)
C159
sage: factor(159)
3 * 53
sage: S = simplicial_complexes.SumComplex(13, [0,1,2,5]); S
Sum complex on vertices Z/13Z associated to {0, 1, 2, 5}
sage: S.homology(algorithm='no_chomp') # long time
{0: 0, 1: 0, 2: C146989209, 3: 0}
sage: factor(1648910295)
3^2 * 5 * 53 * 521 * 1327
sage: S = simplicial_complexes.SumComplex(13, [0,1,2,3,5]); S
Sum complex on vertices Z/13Z associated to {0, 1, 2, 3, 5}
sage: S.homology(algorithm='no_chomp') # long time
{0: 0, 1: 0, 2: 0, 3: C3 x C237 x C706565607945, 4: 0}
sage: factor(706565607945)
3 * 5 * 53 * 79 * 131 * 157 * 547

sage: S = simplicial_complexes.SumComplex(17, [0, 1, 4]); S
Sum complex on vertices Z/17Z associated to {0, 1, 4}
sage: S.homology(1, algorithm='no_chomp')
C140183
sage: factor(140183)
103 * 1361
sage: S = simplicial_complexes.SumComplex(19, [0, 1, 4]); S
Sum complex on vertices Z/19Z associated to {0, 1, 4}
sage: S.homology(1,algorithm='no_chomp')
C5670599
sage: factor(5670599)
11 * 191 * 2699
sage: S = simplicial_complexes.SumComplex(31, [0, 1, 4]); S
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Sum complex on vertices Z/31Z associated to {0, 1, 4}
sage: S.homology(1,algorithm='no_chomp') # long time
C5 x C5 x C5 x C5 x C26951480558170926865
sage: factor(26951480558170926865)
5 * 311 * 683 * 1117 * 11657 * 1948909

sage.homology.examples.SurfaceOfGenus(g, orientable=True)
A surface of genus 𝑔.

INPUT:

•g – a non-negative integer. The desired genus

•orientable – boolean (optional, default True). If True, return an orientable surface, and if False,
return a non-orientable surface.

In the orientable case, return a sphere if 𝑔 is zero, and otherwise return a 𝑔-fold connected sum of a torus with
itself.

In the non-orientable case, raise an error if 𝑔 is zero. If 𝑔 is positive, return a 𝑔-fold connected sum of a real
projective plane with itself.

EXAMPLES:

sage: simplicial_complexes.SurfaceOfGenus(2)
Triangulation of an orientable surface of genus 2
sage: simplicial_complexes.SurfaceOfGenus(1, orientable=False)
Triangulation of a non-orientable surface of genus 1

sage.homology.examples.Torus()
A minimal triangulation of the torus.

This is a simplicial complex with 7 vertices, 21 edges and 14 faces. It is the unique triangulation of the torus
with 7 vertices, and has been found by Möbius in 1861.

This is also the combinatorial structure of the Császár polyhedron (see Wikipedia article Császár_polyhedron).

EXAMPLES:

sage: T = simplicial_complexes.Torus(); T.homology(1)
Z x Z
sage: T.f_vector()
[1, 7, 21, 14]

REFERENCES:

•[Lut2002]

class sage.homology.examples.UniqueSimplicialComplex(maximal_faces=None,
name=None, **kwds)

Bases: sage.homology.simplicial_complex.SimplicialComplex, sage.structure.
unique_representation.UniqueRepresentation

This combines SimplicialComplex and UniqueRepresentation. It is intended to be used to make
standard examples of simplicial complexes unique. See trac ticket #13566.

INPUTS:

•the inputs are the same as for a SimplicialComplex, with one addition and two exceptions. The
exceptions are that is_mutable and is_immutable are ignored: all instances of this class are im-
mutable. The addition:

•name – string (optional), the string representation for this complex.
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EXAMPLES:

sage: from sage.homology.examples import UniqueSimplicialComplex
sage: SimplicialComplex([[0,1]]) is SimplicialComplex([[0,1]])
False
sage: UniqueSimplicialComplex([[0,1]]) is UniqueSimplicialComplex([[0,1]])
True
sage: UniqueSimplicialComplex([[0,1]])
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: UniqueSimplicialComplex([[0,1]], name='The 1-simplex')
The 1-simplex

sage.homology.examples.ZieglerBall()
Return the non-shellable ball constructed by Ziegler.

This complex is a non-shellable triangulation of the 3-ball with 10 vertices and 21 facets, constructed by Ziegler
in [Zie1998] and the smallest such complex known.

EXAMPLES:

sage: Z = simplicial_complexes.ZieglerBall(); Z
Ziegler ball
sage: Z.f_vector()
[1, 10, 38, 50, 21]
sage: Z.homology()
{0: 0, 1: 0, 2: 0, 3: 0}
sage: Z.is_cohen_macaulay()
True

sage.homology.examples.facets_for_K3()
Returns the facets for a minimal triangulation of the K3 surface.

This is a pure simplicial complex of dimension 4 with 16 vertices and 288 facets. The facets are obtained by
constructing a few facets and a permutation group 𝐺, and then computing the 𝐺-orbit of those facets.

See Casella and Kühnel in [CK2001] and Spreer and Kühnel [SK2011]; the construction here uses the labeling
from Spreer and Kühnel.

EXAMPLES:

sage: from sage.homology.examples import facets_for_K3
sage: A = facets_for_K3() # long time (a few seconds)
sage: SimplicialComplex(A) == simplicial_complexes.K3Surface() # long time
True

sage.homology.examples.facets_for_RP4()
Return the list of facets for a minimal triangulation of 4-dimensional real projective space.

We use vertices numbered 1 through 16, define two facets, and define a certain subgroup 𝐺 of the symmetric
group 𝑆16. Then the set of all facets is the 𝐺-orbit of the two given facets.

See the description in Example 3.12 in Datta [Dat2007].

EXAMPLES:

sage: from sage.homology.examples import facets_for_RP4
sage: A = facets_for_RP4() # long time (1 or 2 seconds)
sage: SimplicialComplex(A) == simplicial_complexes.RealProjectiveSpace(4) # long
→˓time
True
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sage.homology.examples.matching(A, B)
List of maximal matchings between the sets A and B.

A matching is a set of pairs (𝑎, 𝑏) ∈ 𝐴×𝐵 where each 𝑎 and 𝑏 appears in at most one pair. A maximal matching
is one which is maximal with respect to inclusion of subsets of 𝐴×𝐵.

INPUT:

•A, B – list, tuple, or indeed anything which can be converted to a set.

EXAMPLES:

sage: from sage.homology.examples import matching
sage: matching([1,2], [3,4])
[{(1, 3), (2, 4)}, {(1, 4), (2, 3)}]
sage: matching([0,2], [0])
[{(0, 0)}, {(2, 0)}]

98 Chapter 9. Examples of simplicial complexes



CHAPTER

TEN

FINITE DELTA-COMPLEXES

AUTHORS:

• John H. Palmieri (2009-08)

This module implements the basic structure of finite ∆-complexes. For full mathematical details, see Hatcher
[Hat2002], especially Section 2.1 and the Appendix on “Simplicial CW Structures”. As Hatcher points out, ∆-
complexes were first introduced by Eilenberg and Zilber [EZ1950], although they called them “semi-simplicial com-
plexes”.

A ∆-complex is a generalization of a simplicial complex; a ∆-complex 𝑋 consists of sets 𝑋𝑛 for each non-
negative integer 𝑛, the elements of which are called n-simplices, along with face maps between these sets of simplices:
for each 𝑛 and for all 0 ≤ 𝑖 ≤ 𝑛, there are functions 𝑑𝑖 from 𝑋𝑛 to 𝑋𝑛−1, with 𝑑𝑖(𝑠) equal to the 𝑖-th face of 𝑠 for
each simplex 𝑠 ∈ 𝑋𝑛. These maps must satisfy the simplicial identity

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 for all 𝑖 < 𝑗.

Given a ∆-complex, it has a geometric realization: a topological space built by taking one topological 𝑛-simplex for
each element of 𝑋𝑛, and gluing them together as determined by the face maps.

∆-complexes are an alternative to simplicial complexes. Every simplicial complex is automatically a ∆-complex; in
the other direction, though, it seems in practice that one can often construct ∆-complex representations for spaces with
many fewer simplices than in a simplicial complex representation. For example, the minimal triangulation of a torus
as a simplicial complex contains 14 triangles, 21 edges, and 7 vertices, while there is a ∆-complex representation of a
torus using only 2 triangles, 3 edges, and 1 vertex.

Note: This class derives from GenericCellComplex, and so inherits its methods. Some of those methods are
not listed here; see the Generic Cell Complex page instead.

class sage.homology.delta_complex.DeltaComplex(data=None, check_validity=True)
Bases: sage.homology.cell_complex.GenericCellComplex

Define a ∆-complex.

Parameters

• data – see below for a description of the options

• check_validity (boolean; optional, default True) – If True, check that
the simplicial identities hold.

Returns a ∆-complex

Use data to define a ∆-complex. It may be in any of three forms:
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•data may be a dictionary indexed by simplices. The value associated to a d-simplex 𝑆 can be any of:

–a list or tuple of (d-1)-simplices, where the ith entry is the ith face of S, given as a simplex,

–another d-simplex 𝑇 , in which case the ith face of 𝑆 is declared to be the same as the ith face of 𝑇 : 𝑆
and 𝑇 are glued along their entire boundary,

–None or True or False or anything other than the previous two options, in which case the faces are just
the ordinary faces of 𝑆.

For example, consider the following:

sage: n = 5
sage: S5 = DeltaComplex({Simplex(n):True, Simplex(range(1,n+2)): Simplex(n)})
sage: S5
Delta complex with 6 vertices and 65 simplices

The first entry in dictionary forming the argument to DeltaComplex says that there is an 𝑛-dimensional
simplex with its ordinary boundary. The second entry says that there is another simplex whose boundary
is glued to that of the first one. The resulting ∆-complex is, of course, homeomorphic to an 𝑛-sphere,
or actually a 5-sphere, since we defined 𝑛 to be 5. (Note that the second simplex here can be any 𝑛-
dimensional simplex, as long as it is distinct from Simplex(n).)

Let’s compute its homology, and also compare it to the simplicial version:

sage: S5.homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: Z}
sage: S5.f_vector() # number of simplices in each dimension
[1, 6, 15, 20, 15, 6, 2]
sage: simplicial_complexes.Sphere(5).f_vector()
[1, 7, 21, 35, 35, 21, 7]

Both contain a single (-1)-simplex, the empty simplex; other than that, the ∆-complex version contains
fewer simplices than the simplicial one in each dimension.

To construct a torus, use:

sage: torus_dict = {Simplex([0,1,2]): True,
....: Simplex([3,4,5]): (Simplex([0,1]), Simplex([0,2]), Simplex([1,
→˓2])),
....: Simplex([0,1]): (Simplex(0), Simplex(0)),
....: Simplex([0,2]): (Simplex(0), Simplex(0)),
....: Simplex([1,2]): (Simplex(0), Simplex(0)),
....: Simplex(0): ()}
sage: T = DeltaComplex(torus_dict); T
Delta complex with 1 vertex and 7 simplices
sage: T.cohomology(base_ring=QQ)
{0: Vector space of dimension 0 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

This ∆-complex consists of two triangles (given by Simplex([0,1,2]) and Simplex([3,4,5]));
the boundary of the first is just its usual boundary: the 0th face is obtained by omitting the lowest numbered
vertex, etc., and so the boundary consists of the edges [1,2], [0,2], and [0,1], in that order. The
boundary of the second is, on the one hand, computed the same way: the nth face is obtained by omitting
the nth vertex. On the other hand, the boundary is explicitly declared to be edges [0,1], [0,2], and
[1,2], in that order. This glues the second triangle to the first in the prescribed way. The three edges
each start and end at the single vertex, Simplex(0).
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•data may be nested lists or tuples. The nth entry in the list is a list of the n-simplices in the complex, and
each n-simplex is encoded as a list, the ith entry of which is its ith face. Each face is represented by an
integer, giving its index in the list of (n-1)-faces. For example, consider this:

sage: P = DeltaComplex( [ [(), ()], [(1,0), (1,0), (0,0)],
....: [(1,0,2), (0, 1, 2)] ])

The 0th entry in the list is [(), ()]: there are two 0-simplices, and their boundaries are empty.

The 1st entry in the list is [(1,0), (1,0), (0,0)]: there are three 1-simplices. Two of them have
boundary (1,0), which means that their 0th face is vertex 1 (in the list of vertices), and their 1st face is
vertex 0. The other edge has boundary (0,0), so it starts and ends at vertex 0.

The 2nd entry in the list is [(1,0,2), (0,1,2)]: there are two 2-simplices. The first 2-simplex has
boundary (1,0,2), meaning that its 0th face is edge 1 (in the list above), its 1st face is edge 0, and its
2nd face is edge 2; similarly for the 2nd 2-simplex.

If one draws two triangles and identifies them according to this description, the result is the real projective
plane.

sage: P.homology(1)
C2
sage: P.cohomology(2)
C2

Closely related to this form for data is X.cells() for a ∆-complex X: this is a dictionary, indexed by
dimension d, whose d-th entry is a list of the d-simplices, as a list:

sage: P.cells()
{-1: ((),),
0: ((), ()),
1: ((1, 0), (1, 0), (0, 0)),
2: ((1, 0, 2), (0, 1, 2))}
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•data may be a dictionary indexed by integers. For each integer 𝑛, the entry with key 𝑛 is the list of
𝑛-simplices: this is the same format as is output by the cells() method.

sage: P = DeltaComplex( [ [(), ()], [(1,0), (1,0), (0,0)],
....: [(1,0,2), (0, 1, 2)] ])
sage: cells_dict = P.cells()
sage: cells_dict
{-1: ((),),
0: ((), ()),
1: ((1, 0), (1, 0), (0, 0)),
2: ((1, 0, 2), (0, 1, 2))}

sage: DeltaComplex(cells_dict)
Delta complex with 2 vertices and 8 simplices
sage: P == DeltaComplex(cells_dict)
True

Since ∆-complexes are generalizations of simplicial complexes, any simplicial complex may be viewed as a
∆-complex:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: RP2_delta = RP2.delta_complex()
sage: RP2.f_vector()
[1, 6, 15, 10]
sage: RP2_delta.f_vector()
[1, 6, 15, 10]

Finally, ∆-complex constructions for several familiar spaces are available as follows:

sage: delta_complexes.Sphere(4) # the 4-sphere
Delta complex with 5 vertices and 33 simplices
sage: delta_complexes.KleinBottle()
Delta complex with 1 vertex and 7 simplices
sage: delta_complexes.RealProjectivePlane()
Delta complex with 2 vertices and 8 simplices

Type delta_complexes. and then hit the TAB key to get the full list.

alexander_whitney(cell, dim_left)
Subdivide cell in this ∆-complex into a pair of simplices.

For an abstract simplex with vertices 𝑣0, 𝑣1, ..., 𝑣𝑛, then subdivide it into simplices (𝑣0, 𝑣1, ..., 𝑣𝑑𝑖𝑚𝑙𝑒𝑓𝑡)
and (𝑣𝑑𝑖𝑚𝑙𝑒𝑓𝑡, 𝑣𝑑𝑖𝑚𝑙𝑒𝑓𝑡+1, ..., 𝑣𝑛). In a ∆-complex, instead take iterated faces: take top faces to get the
left factor, take bottom faces to get the right factor.

INPUT:

•cell – a simplex in this complex, given as a pair (idx, tuple), where idx is its index in the
list of cells in the given dimension, and tuple is the tuple of its faces

•dim_left – integer between 0 and one more than the dimension of this simplex

OUTPUT: a list containing just the triple (1, left, right), where left and right are the two
cells described above, each given as pairs (idx, tuple).

EXAMPLES:

sage: X = delta_complexes.Torus()
sage: X.n_cells(2)
[(1, 2, 0), (0, 2, 1)]
sage: X.alexander_whitney((0, (1, 2, 0)), 1)

102 Chapter 10. Finite Delta-complexes



Sage Reference Manual: Cell complexes and their homology, Release 8.0

[(1, (0, (0, 0)), (1, (0, 0)))]
sage: X.alexander_whitney((0, (1, 2, 0)), 0)
[(1, (0, ()), (0, (1, 2, 0)))]
sage: X.alexander_whitney((1, (0, 2, 1)), 2)
[(1, (1, (0, 2, 1)), (0, ()))]

algebraic_topological_model(base_ring=None)
Algebraic topological model for this ∆-complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

•base_ring - coefficient ring (optional, default QQ). Must be a field.

Denote by 𝐶 the chain complex associated to this ∆-complex. The algebraic topological model is a chain
complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀 and
𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

•𝜑𝜑 = 0,

•𝜋𝜑 = 0,

•𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

•chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

•the chain complex 𝑀

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.
pi().codomain(), respectively.

EXAMPLES:

sage: RP2 = delta_complexes.RealProjectivePlane()
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}

sage: T = delta_complexes.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

barycentric_subdivision()
Not implemented.

EXAMPLES:

sage: K = delta_complexes.KleinBottle()
sage: K.barycentric_subdivision()
Traceback (most recent call last):
...
NotImplementedError: Barycentric subdivisions are not implemented for Delta
→˓complexes.
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cells(subcomplex=None)
The cells of this ∆-complex.

Parameters subcomplex (optional, default None) – a subcomplex of this complex

The cells of this ∆-complex, in the form of a dictionary: the keys are integers, representing dimension,
and the value associated to an integer d is the list of d-cells. Each d-cell is further represented by a list, the
ith entry of which gives the index of its ith face in the list of (d-1)-cells.

If the optional argument subcomplex is present, then “return only the faces which are not in the subcom-
plex”. To preserve the indexing, which is necessary to compute the relative chain complex, this actually
replaces the faces in subcomplex with None.

EXAMPLES:

sage: S2 = delta_complexes.Sphere(2)
sage: S2.cells()
{-1: ((),),
0: ((), (), ()),
1: ((0, 1), (0, 2), (1, 2)),
2: ((0, 1, 2), (0, 1, 2))}

sage: A = S2.subcomplex({1: [0,2]}) # one edge
sage: S2.cells(subcomplex=A)
{-1: (None,),
0: (None, None, None),
1: (None, (0, 2), None),
2: ((0, 1, 2), (0, 1, 2))}

chain_complex(subcomplex=None, augmented=False, verbose=False, check=False, dimen-
sions=None, base_ring=Integer Ring, cochain=False)

The chain complex associated to this ∆-complex.

Parameters

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple
of integers, compute the chain complex in those dimensions, setting the chain groups in all
other dimensions to zero. NOT IMPLEMENTED YET: this function always returns the
entire chain complex

• base_ring (optional, default ZZ) – commutative ring

• subcomplex (optional, default empty) – a subcomplex of this simplicial
complex. Compute the chain complex relative to this subcomplex.

• augmented (boolean; optional, default False) – If True, return the aug-
mented chain complex (that is, include a class in dimension −1 corresponding to the empty
cell). This is ignored if dimensions is specified or if subcomplex is nonempty.

• cochain (boolean; optional, default False) – If True, return the cochain
complex (that is, the dual of the chain complex).

• verbose (boolean; optional, default False) – If True, print some mes-
sages as the chain complex is computed.

• check (boolean; optional, default False) – If True, make sure that the
chain complex is actually a chain complex: the differentials are composable and their
product is zero.
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Note: If subcomplex is nonempty, then the argument augmented has no effect: the chain complex
relative to a nonempty subcomplex is zero in dimension −1.

EXAMPLES:

sage: circle = delta_complexes.Sphere(1)
sage: circle.chain_complex()
Chain complex with at most 2 nonzero terms over Integer Ring
sage: circle.chain_complex()._latex_()
'\\Bold{Z}^{1} \\xrightarrow{d_{1}} \\Bold{Z}^{1}'
sage: circle.chain_complex(base_ring=QQ, augmented=True)
Chain complex with at most 3 nonzero terms over Rational Field
sage: circle.homology(dim=1)
Z
sage: circle.cohomology(dim=1)
Z
sage: T = delta_complexes.Torus()
sage: T.chain_complex(subcomplex=T)
Trivial chain complex over Integer Ring
sage: T.homology(subcomplex=T, algorithm='no_chomp')
{0: 0, 1: 0, 2: 0}
sage: A = T.subcomplex({2: [1]}) # one of the two triangles forming T
sage: T.chain_complex(subcomplex=A)
Chain complex with at most 1 nonzero terms over Integer Ring
sage: T.homology(subcomplex=A)
{0: 0, 1: 0, 2: Z}

cone()
The cone on this ∆-complex.

The cone is the complex formed by adding a new vertex 𝐶 and simplices of the form [𝐶, 𝑣0, ..., 𝑣𝑘] for
every simplex [𝑣0, ..., 𝑣𝑘] in the original complex. That is, the cone is the join of the original complex with
a one-point complex.

EXAMPLES:

sage: K = delta_complexes.KleinBottle()
sage: K.cone()
Delta complex with 2 vertices and 14 simplices
sage: K.cone().homology()
{0: 0, 1: 0, 2: 0, 3: 0}

connected_sum(other)
Return the connected sum of self with other.

Parameters other – another ∆-complex

Returns the connected sum self # other

Warning: This does not check that self and other are manifolds. It doesn’t even check that their facets
all have the same dimension. It just chooses top-dimensional simplices from each complex, checks that
they have the same dimension, removes them, and glues the remaining pieces together. Since a (more
or less) random facet is chosen from each complex, this method may return random results if applied
to non-manifolds, depending on which facet is chosen.

ALGORITHM:
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Pick a top-dimensional simplex from each complex. Check to see if there are any identifications on either
simplex, using the _is_glued() method. If there are no identifications, remove the simplices and glue
the remaining parts of complexes along their boundary. If there are identifications on a simplex, subdivide
it repeatedly (using elementary_subdivision()) until some piece has no identifications.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: S2 = delta_complexes.Sphere(2)
sage: T.connected_sum(S2).cohomology() == T.cohomology()
True
sage: RP2 = delta_complexes.RealProjectivePlane()
sage: T.connected_sum(RP2).homology(1)
Z x Z x C2
sage: T.connected_sum(RP2).homology(2)
0
sage: RP2.connected_sum(RP2).connected_sum(RP2).homology(1)
Z x Z x C2

disjoint_union(right)
The disjoint union of this ∆-complex with another one.

Parameters right – the other ∆-complex (the right-hand factor)

EXAMPLES:

sage: S1 = delta_complexes.Sphere(1)
sage: S2 = delta_complexes.Sphere(2)
sage: S1.disjoint_union(S2).homology()
{0: Z, 1: Z, 2: Z}

elementary_subdivision(idx=-1)
Perform an “elementary subdivision” on a top-dimensional simplex in this ∆-complex. If the optional
argument idx is present, it specifies the index (in the list of top-dimensional simplices) of the simplex to
subdivide. If not present, subdivide the last entry in this list.

Parameters idx (integer; optional, default -1) – index specifying which sim-
plex to subdivide

Returns ∆-complex with one simplex subdivided.

Elementary subdivision of a simplex means replacing that simplex with the cone on its boundary. That is,
given a ∆-complex containing an 𝑑-simplex 𝑆 with vertices 𝑣0, ..., 𝑣𝑑, form a new ∆-complex by

•removing 𝑆

•adding a vertex 𝑤 (thought of as being in the interior of 𝑆)

•adding all simplices with vertices 𝑣𝑖0 , ..., 𝑣𝑖𝑘 , 𝑤, preserving any identifications present along the
boundary of 𝑆

The algorithm for achieving this uses _epi_from_standard_simplex() to keep track of simplices
(with multiplicity) and what their faces are: this method defines a surjection 𝜋 from the standard 𝑑-simplex
to 𝑆. So first remove 𝑆 and add a new vertex 𝑤, say at the end of the old list of vertices. Then for each
vertex 𝑣 in the standard 𝑑-simplex, add an edge from 𝜋(𝑣) to 𝑤; for each edge (𝑣0, 𝑣1) in the standard
𝑑-simplex, add a triangle (𝜋(𝑣0), 𝜋(𝑣1), 𝑤), etc.

Note that given an 𝑛-simplex (𝑣0, 𝑣1, ..., 𝑣𝑛) in the standard 𝑑-simplex, the faces of the new (𝑛+1)-simplex
are given by removing vertices, one at a time, from (𝜋(𝑣0), ..., 𝜋(𝑣𝑛), 𝑤). These are either the image of
the old 𝑛-simplex (if 𝑤 is removed) or the various new 𝑛-simplices added in the previous dimension. So
keep track of what’s added in dimension 𝑛 for use in computing the faces in dimension 𝑛 + 1.
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In contrast with barycentric subdivision, note that only the interior of 𝑆 has been changed; this allows for
subdivision of a single top-dimensional simplex without subdividing every simplex in the complex.

The term “elementary subdivison” is taken from p. 112 in John M. Lee’s book [Lee2011].

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.n_cells(2)
[(1, 2, 0), (0, 2, 1)]
sage: T.elementary_subdivision(0) # subdivide first triangle
Delta complex with 2 vertices and 13 simplices
sage: X = T.elementary_subdivision(); X # subdivide last triangle
Delta complex with 2 vertices and 13 simplices
sage: X.elementary_subdivision()
Delta complex with 3 vertices and 19 simplices
sage: X.homology() == T.homology()
True

face_poset()
The face poset of this ∆-complex, the poset of nonempty cells, ordered by inclusion.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.face_poset()
Finite poset containing 6 elements

graph()
The 1-skeleton of this ∆-complex as a graph.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.graph()
Looped multi-graph on 1 vertex
sage: S = delta_complexes.Sphere(2)
sage: S.graph()
Graph on 3 vertices
sage: delta_complexes.Simplex(4).graph() == graphs.CompleteGraph(5)
True

join(other)
The join of this ∆-complex with another one.

Parameters other – another ∆-complex (the right-hand factor)

Returns the join self * other

The join of two ∆-complexes 𝑆 and 𝑇 is the ∆-complex 𝑆 * 𝑇 with simplices of the form
[𝑣0, ..., 𝑣𝑘, 𝑤0, ..., 𝑤𝑛] for all simplices [𝑣0, ..., 𝑣𝑘] in 𝑆 and [𝑤0, ..., 𝑤𝑛] in 𝑇 . The faces are computed
accordingly: the ith face of such a simplex is either (𝑑𝑖𝑆) * 𝑇 if 𝑖 ≤ 𝑘, or 𝑆 * (𝑑𝑖−𝑘−1𝑇 ) if 𝑖 > 𝑘.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: S0 = delta_complexes.Sphere(0)
sage: T.join(S0) # the suspension of T
Delta complex with 3 vertices and 21 simplices

Compare to simplicial complexes:
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sage: K = delta_complexes.KleinBottle()
sage: T_simp = simplicial_complexes.Torus()
sage: K_simp = simplicial_complexes.KleinBottle()
sage: T.join(K).homology()[3] == T_simp.join(K_simp).homology()[3] # long
→˓time (3 seconds)
True

The notation ‘*’ may be used, as well:

sage: S1 = delta_complexes.Sphere(1)
sage: X = S1 * S1 # X is a 3-sphere
sage: X.homology()
{0: 0, 1: 0, 2: 0, 3: Z}

n_chains(n, base_ring=None, cochains=False)
Return the free module of chains in degree n over base_ring.

INPUT:

•n – integer

•base_ring – ring (optional, default Z)

•cochains – boolean (optional, default False); if True, return cochains instead

Since the list of 𝑛-cells for a ∆-complex may have some ambiguity – for example, the list of edges may
look like [(0, 0), (0, 0), (0, 0)] if each edge starts and ends at vertex 0 – we record the
indices of the cells along with their tuples. So the basis of chains in such a case would look like [(0,
(0, 0)), (1, (0, 0)), (2, (0, 0))].

The only difference between chains and cochains is notation: the dual cochain to the chain basis element
b is written as \chi_b.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.n_chains(1, QQ)
Free module generated by {(0, (0, 0)), (1, (0, 0)), (2, (0, 0))} over
→˓Rational Field
sage: list(T.n_chains(1, QQ, cochains=False).basis())
[(0, (0, 0)), (1, (0, 0)), (2, (0, 0))]
sage: list(T.n_chains(1, QQ, cochains=True).basis())
[\chi_(0, (0, 0)), \chi_(1, (0, 0)), \chi_(2, (0, 0))]

n_skeleton(n)
The n-skeleton of this ∆-complex.

Parameters n (non-negative integer) – dimension

EXAMPLES:

sage: S3 = delta_complexes.Sphere(3)
sage: S3.n_skeleton(1) # 1-skeleton of a tetrahedron
Delta complex with 4 vertices and 11 simplices
sage: S3.n_skeleton(1).dimension()
1
sage: S3.n_skeleton(1).homology()
{0: 0, 1: Z x Z x Z}

product(other)
The product of this ∆-complex with another one.
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Parameters other – another ∆-complex (the right-hand factor)

Returns the product self x other

Warning: If X and Y are ∆-complexes, then X*Y returns their join, not their product.

EXAMPLES:

sage: K = delta_complexes.KleinBottle()
sage: X = K.product(K)
sage: X.homology(1)
Z x Z x C2 x C2
sage: X.homology(2)
Z x C2 x C2 x C2
sage: X.homology(3)
C2
sage: X.homology(4)
0
sage: X.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 4 over Finite Field of size 2,
2: Vector space of dimension 6 over Finite Field of size 2,
3: Vector space of dimension 4 over Finite Field of size 2,
4: Vector space of dimension 1 over Finite Field of size 2}

sage: S1 = delta_complexes.Sphere(1)
sage: K.product(S1).homology() == S1.product(K).homology()
True
sage: S1.product(S1) == delta_complexes.Torus()
True

subcomplex(data)
Create a subcomplex.

Parameters data – a dictionary indexed by dimension or a list (or tuple); in either case, data[n]
should be the list (or tuple or set) of the indices of the simplices to be included in the sub-
complex.

This automatically includes all faces of the simplices in data, so you only have to specify the simplices
which are maximal with respect to inclusion.

EXAMPLES:

sage: X = delta_complexes.Torus()
sage: A = X.subcomplex({2: [0]}) # one of the triangles of X
sage: X.homology(subcomplex=A)
{0: 0, 1: 0, 2: Z}

In the following, line is a line segment and ends is the complex consisting of its two endpoints, so the
relative homology of the two is isomorphic to the homology of a circle:

sage: line = delta_complexes.Simplex(1) # an edge
sage: line.cells()
{-1: ((),), 0: ((), ()), 1: ((0, 1),)}
sage: ends = line.subcomplex({0: (0, 1)})
sage: ends.cells()
{-1: ((),), 0: ((), ())}
sage: line.homology(subcomplex=ends)
{0: 0, 1: Z}
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suspension(n=1)
The suspension of this ∆-complex.

Parameters n (positive integer; optional, default 1) – suspend this many
times.

The suspension is the complex formed by adding two new vertices 𝑆0 and 𝑆1 and simplices of the form
[𝑆0, 𝑣0, ..., 𝑣𝑘] and [𝑆1, 𝑣0, ..., 𝑣𝑘] for every simplex [𝑣0, ..., 𝑣𝑘] in the original complex. That is, the sus-
pension is the join of the original complex with a two-point complex (the 0-sphere).

EXAMPLES:

sage: S = delta_complexes.Sphere(0)
sage: S3 = S.suspension(3) # the 3-sphere
sage: S3.homology()
{0: 0, 1: 0, 2: 0, 3: Z}

wedge(right)
The wedge (one-point union) of this ∆-complex with another one.

Parameters right – the other ∆-complex (the right-hand factor)

Note: This operation is not well-defined if self or other is not path-connected.

EXAMPLES:

sage: S1 = delta_complexes.Sphere(1)
sage: S2 = delta_complexes.Sphere(2)
sage: S1.wedge(S2).homology()
{0: 0, 1: Z, 2: Z}

class sage.homology.delta_complex.DeltaComplexExamples
Some examples of ∆-complexes.

Here are the available examples; you can also type delta_complexes. and hit TAB to get a list:

Sphere
Torus
RealProjectivePlane
KleinBottle
Simplex
SurfaceOfGenus

EXAMPLES:

sage: S = delta_complexes.Sphere(6) # the 6-sphere
sage: S.dimension()
6
sage: S.cohomology(6)
Z
sage: delta_complexes.Torus() == delta_complexes.Sphere(3)
False

KleinBottle()
A ∆-complex representation of the Klein bottle, consisting of one vertex, three edges, and two triangles.
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EXAMPLES:

sage: delta_complexes.KleinBottle()
Delta complex with 1 vertex and 7 simplices

RealProjectivePlane()
A ∆-complex representation of the real projective plane, consisting of two vertices, three edges, and two
triangles.

EXAMPLES:

sage: P = delta_complexes.RealProjectivePlane()
sage: P.cohomology(1)
0
sage: P.cohomology(2)
C2
sage: P.cohomology(dim=1, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P.cohomology(dim=2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2

Simplex(n)
A ∆-complex representation of an 𝑛-simplex, consisting of a single 𝑛-simplex and its faces. (This
is the same as the simplicial complex representation available by using simplicial_complexes.
Simplex(n).)

EXAMPLES:

sage: delta_complexes.Simplex(3)
Delta complex with 4 vertices and 16 simplices

Sphere(n)
A ∆-complex representation of the 𝑛-dimensional sphere, formed by gluing two 𝑛-simplices along their
boundary, except in dimension 1, in which case it is a single 1-simplex starting and ending at the same
vertex.
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Parameters n – dimension of the sphere

EXAMPLES:

sage: delta_complexes.Sphere(4).cohomology(4, base_ring=GF(3))
Vector space of dimension 1 over Finite Field of size 3

SurfaceOfGenus(g, orientable=True)
A surface of genus g as a ∆-complex.

Parameters

• g (non-negative integer) – the genus

• orientable (bool, optional, default True) – whether the surface should
be orientable

In the orientable case, return a sphere if 𝑔 is zero, and otherwise return a 𝑔-fold connected sum of a torus
with itself.

In the non-orientable case, raise an error if 𝑔 is zero. If 𝑔 is positive, return a 𝑔-fold connected sum of a
real projective plane with itself.

EXAMPLES:

sage: delta_complexes.SurfaceOfGenus(1, orientable=False)
Delta complex with 2 vertices and 8 simplices
sage: delta_complexes.SurfaceOfGenus(3, orientable=False).homology(1)
Z x Z x C2
sage: delta_complexes.SurfaceOfGenus(3, orientable=False).homology(2)
0

Compare to simplicial complexes:

sage: delta_g4 = delta_complexes.SurfaceOfGenus(4)
sage: delta_g4.f_vector()
[1, 5, 33, 22]
sage: simpl_g4 = simplicial_complexes.SurfaceOfGenus(4)
sage: simpl_g4.f_vector()
[1, 19, 75, 50]
sage: delta_g4.homology() == simpl_g4.homology()
True

Torus()
A ∆-complex representation of the torus, consisting of one vertex, three edges, and two triangles.

EXAMPLES:
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sage: delta_complexes.Torus().homology(1)
Z x Z

113



Sage Reference Manual: Cell complexes and their homology, Release 8.0

114 Chapter 10. Finite Delta-complexes



CHAPTER

ELEVEN

FINITE CUBICAL COMPLEXES

AUTHORS:

• John H. Palmieri (2009-08)

This module implements the basic structure of finite cubical complexes. For full mathematical details, see Kaczynski,
Mischaikow, and Mrozek [KMM2004], for example.

Cubical complexes are topological spaces built from gluing together cubes of various dimensions; the collection of
cubes must be closed under taking faces, just as with a simplicial complex. In this context, a “cube” means a product
of intervals of length 1 or length 0 (degenerate intervals), with integer endpoints, and its faces are obtained by using
the nondegenerate intervals: if 𝐶 is a cube – a product of degenerate and nondegenerate intervals – and if [𝑖, 𝑖 + 1] is
the 𝑘-th nondegenerate factor, then 𝐶 has two faces indexed by 𝑘: the cubes obtained by replacing [𝑖, 𝑖 + 1] with [𝑖, 𝑖]
or [𝑖 + 1, 𝑖 + 1].

So to construct a space homeomorphic to a circle as a cubical complex, we could take for example the four line
segments in the plane from (0, 2) to (0, 3) to (1, 3) to (1, 2) to (0, 2). In Sage, this is done with the following
command:

sage: S1 = CubicalComplex([([0,0], [2,3]), ([0,1], [3,3]), ([0,1], [2,2]), ([1,1], [2,
→˓3])]); S1
Cubical complex with 4 vertices and 8 cubes

The argument to CubicalComplex is a list of the maximal “cubes” in the complex. Each “cube” can be an instance
of the class Cube or a list (or tuple) of “intervals”, and an “interval” is a pair of integers, of one of the two forms [𝑖, 𝑖]
or [𝑖, 𝑖 + 1]. So the cubical complex S1 above has four maximal cubes:

sage: S1.maximal_cells()
{[0,0] x [2,3], [1,1] x [2,3], [0,1] x [3,3], [0,1] x [2,2]}

The first of these, for instance, is the product of the degenerate interval [0, 0] with the unit interval [2, 3]: this is the
line segment in the plane from (0, 2) to (0, 3). We could form a topologically equivalent space by inserting some
degenerate simplices:

sage: S1.homology()
{0: 0, 1: Z}
sage: X = CubicalComplex([([0,0], [2,3], [2]), ([0,1], [3,3], [2]), ([0,1], [2,2],
→˓[2]), ([1,1], [2,3], [2])])
sage: X.homology()
{0: 0, 1: Z}

Topologically, the cubical complex X consists of four edges of a square in R3: the same unit square as S1, but
embedded in R3 with 𝑧-coordinate equal to 2. Thus X is homeomorphic to S1 (in fact, they’re “cubically equivalent”),
and this is reflected in the fact that they have isomorphic homology groups.
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Note: This class derives from GenericCellComplex, and so inherits its methods. Some of those methods are
not listed here; see the Generic Cell Complex page instead.

class sage.homology.cubical_complex.Cube(data)
Bases: sage.structure.sage_object.SageObject

Define a cube for use in constructing a cubical complex.

“Elementary cubes” are products of intervals with integer endpoints, each of which is either a unit interval or a
degenerate (length 0) interval; for example,

[0, 1] × [3, 4] × [2, 2] × [1, 2]

is a 3-dimensional cube (since one of the intervals is degenerate) embedded in R4.

Parameters data – list or tuple of terms of the form (i,i+1) or (i,i) or (i,) – the last two
are degenerate intervals.

Returns an elementary cube

Each cube is stored in a standard form: a tuple of tuples, with a nondegenerate interval [j,j] represented by
(j,j), not (j,). (This is so that for any interval I, I[1] will produce a value, not an IndexError.)

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]]); C
[1,2] x [5,5] x [6,7] x [-1,0]
sage: C.dimension() # number of nondegenerate intervals
3
sage: C.nondegenerate_intervals() # indices of these intervals
[0, 2, 3]
sage: C.face(1, upper=False)
[1,2] x [5,5] x [6,6] x [-1,0]
sage: C.face(1, upper=True)
[1,2] x [5,5] x [7,7] x [-1,0]
sage: Cube(()).dimension() # empty cube has dimension -1
-1

alexander_whitney(dim)
Subdivide this cube into pairs of cubes.

This provides a cubical approximation for the diagonal map 𝐾 → 𝐾 ×𝐾.

INPUT:

•dim – integer between 0 and one more than the dimension of this cube

OUTPUT:

•a list containing triples (coeff, left, right)

This uses the algorithm described by Pilarczyk and Réal [PR2015] on p. 267; the formula is originally due
to Serre. Calling this method alexander_whitney is an abuse of notation, since the actual Alexander-
Whitney map goes from 𝐶(𝐾×𝐿) → 𝐶(𝐾)⊗𝐶(𝐿), where 𝐶(−) denotes the associated chain complex,
but this subdivision of cubes is at the heart of it.

EXAMPLES:
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sage: from sage.homology.cubical_complex import Cube
sage: C1 = Cube([[0,1], [3,4]])
sage: C1.alexander_whitney(0)
[(1, [0,0] x [3,3], [0,1] x [3,4])]
sage: C1.alexander_whitney(1)
[(1, [0,1] x [3,3], [1,1] x [3,4]), (-1, [0,0] x [3,4], [0,1] x [4,4])]
sage: C1.alexander_whitney(2)
[(1, [0,1] x [3,4], [1,1] x [4,4])]

dimension()
The dimension of this cube: the number of its nondegenerate intervals.

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C.dimension()
3
sage: C = Cube([[1,], [5,], [6,], [-1,]])
sage: C.dimension()
0
sage: Cube([]).dimension() # empty cube has dimension -1
-1

face(n, upper=True)
The nth primary face of this cube.

Parameters

• n – an integer between 0 and one less than the dimension of this cube

• upper (boolean; optional, default=True) – if True, return the “upper” nth
primary face; otherwise, return the “lower” nth primary face.

Returns the cube obtained by replacing the nth non-degenrate interval with either its upper or
lower endpoint.

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]]); C
[1,2] x [5,5] x [6,7] x [-1,0]
sage: C.face(0)
[2,2] x [5,5] x [6,7] x [-1,0]
sage: C.face(0, upper=False)
[1,1] x [5,5] x [6,7] x [-1,0]
sage: C.face(1)
[1,2] x [5,5] x [7,7] x [-1,0]
sage: C.face(2, upper=False)
[1,2] x [5,5] x [6,7] x [-1,-1]
sage: C.face(3)
Traceback (most recent call last):
...
ValueError: Can only compute the nth face if 0 <= n < dim.

faces()
The list of faces (of codimension 1) of this cube.

EXAMPLES:
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sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [3,4]])
sage: C.faces()
[[2,2] x [3,4], [1,2] x [4,4], [1,1] x [3,4], [1,2] x [3,3]]

faces_as_pairs()
The list of faces (of codimension 1) of this cube, as pairs (upper, lower).

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [3,4]])
sage: C.faces_as_pairs()
[([2,2] x [3,4], [1,1] x [3,4]), ([1,2] x [4,4], [1,2] x [3,3])]

is_face(other)
Return True iff this cube is a face of other.

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C1 = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C2 = Cube([[1,2], [5,], [6,], [-1, 0]])
sage: C1.is_face(C2)
False
sage: C1.is_face(C1)
True
sage: C2.is_face(C1)
True

nondegenerate_intervals()
The list of indices of nondegenerate intervals of this cube.

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C.nondegenerate_intervals()
[0, 2, 3]
sage: C = Cube([[1,], [5,], [6,], [-1,]])
sage: C.nondegenerate_intervals()
[]

product(other)
Cube obtained by concatenating the underlying tuples of the two arguments.

Parameters other – another cube

Returns the product of self and other, as a Cube

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [3,]])
sage: D = Cube([[4], [0,1]])
sage: C.product(D)
[1,2] x [3,3] x [4,4] x [0,1]

You can also use __add__ or + or __mul__ or *:
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sage: D * C
[4,4] x [0,1] x [1,2] x [3,3]
sage: D + C * C
[4,4] x [0,1] x [1,2] x [3,3] x [1,2] x [3,3]

tuple()
The tuple attached to this cube.

EXAMPLES:

sage: from sage.homology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C.tuple()
((1, 2), (5, 5), (6, 7), (-1, 0))

class sage.homology.cubical_complex.CubicalComplex(maximal_faces=[], maximal-
ity_check=True)

Bases: sage.homology.cell_complex.GenericCellComplex

Define a cubical complex.

Parameters

• maximal_faces – set of maximal faces

• maximality_check (boolean; optional, default True) – see below

Returns a cubical complex

maximal_faces should be a list or tuple or set (or anything which may be converted to a set) of “cubes”:
instances of the class Cube, or lists or tuples suitable for conversion to cubes. These cubes are the maximal
cubes in the complex.

In addition, maximal_faces may be a cubical complex, in which case that complex is returned. Also,
maximal_faces may instead be any object which has a _cubical_ method (e.g., a simplicial complex);
then that method is used to convert the object to a cubical complex.

If maximality_check is True, check that each maximal face is, in fact, maximal. In this case, when pro-
ducing the internal representation of the cubical complex, omit those that are not. It is highly recommended that
this be True; various methods for this class may fail if faces which are claimed to be maximal are in fact not.

EXAMPLES:

The empty complex, consisting of one cube, the empty cube:

sage: CubicalComplex()
Cubical complex with 0 vertices and 1 cube

A “circle” (four edges connecting the vertices (0,2), (0,3), (1,2), and (1,3)):

sage: S1 = CubicalComplex([([0,0], [2,3]), ([0,1], [3,3]), ([0,1], [2,2]), ([1,1],
→˓ [2,3])])
sage: S1
Cubical complex with 4 vertices and 8 cubes
sage: S1.homology()
{0: 0, 1: Z}

A set of five points and its product with S1:

sage: pts = CubicalComplex([([0],), ([3],), ([6],), ([-12],), ([5],)])
sage: pts
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Cubical complex with 5 vertices and 5 cubes
sage: pts.homology()
{0: Z x Z x Z x Z}
sage: X = S1.product(pts); X
Cubical complex with 20 vertices and 40 cubes
sage: X.homology()
{0: Z x Z x Z x Z, 1: Z^5}

Converting a simplicial complex to a cubical complex:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C2 = CubicalComplex(S2)
sage: all([C2.homology(n) == S2.homology(n) for n in range(3)])
True

You can get the set of maximal cells or a dictionary of all cells:

sage: X.maximal_cells()
{[0,0] x [2,3] x [-12,-12], [0,1] x [3,3] x [5,5], [0,1] x [2,2] x [3,3], [0,1] x
→˓[2,2] x [0,0], [0,1] x [3,3] x [6,6], [1,1] x [2,3] x [0,0], [0,1] x [2,2] x [-
→˓12,-12], [0,0] x [2,3] x [6,6], [1,1] x [2,3] x [-12,-12], [1,1] x [2,3] x [5,
→˓5], [0,1] x [2,2] x [5,5], [0,1] x [3,3] x [3,3], [1,1] x [2,3] x [3,3], [0,0]
→˓x [2,3] x [5,5], [0,1] x [3,3] x [0,0], [1,1] x [2,3] x [6,6], [0,1] x [2,2] x
→˓[6,6], [0,0] x [2,3] x [0,0], [0,0] x [2,3] x [3,3], [0,1] x [3,3] x [-12,-12]}
sage: S1.cells()
{-1: set(),
0: {[0,0] x [2,2], [0,0] x [3,3], [1,1] x [2,2], [1,1] x [3,3]},
1: {[0,0] x [2,3], [0,1] x [2,2], [0,1] x [3,3], [1,1] x [2,3]}}

Chain complexes, homology, and cohomology:

sage: T = S1.product(S1); T
Cubical complex with 16 vertices and 64 cubes
sage: T.chain_complex()
Chain complex with at most 3 nonzero terms over Integer Ring
sage: T.homology(base_ring=QQ)
{0: Vector space of dimension 0 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}
sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: RP2.cohomology(dim=[1, 2], base_ring=GF(2))
{1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}

Joins are not implemented:

sage: S1.join(S1)
Traceback (most recent call last):
...
NotImplementedError: Joins are not implemented for cubical complexes.

Therefore, neither are cones or suspensions.

alexander_whitney(cube, dim_left)
Subdivide cube in this cubical complex into pairs of cubes.

See Cube.alexander_whitney() for more details. This method just calls that one.

INPUT:
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•cube – a cube in this cubical complex

•dim – integer between 0 and one more than the dimension of this cube

OUTPUT: a list containing triples (coeff, left, right)

EXAMPLES:

sage: C = cubical_complexes.Cube(3)
sage: c = list(C.n_cubes(3))[0]; c
[0,1] x [0,1] x [0,1]
sage: C.alexander_whitney(c, 1)
[(1, [0,1] x [0,0] x [0,0], [1,1] x [0,1] x [0,1]),
(-1, [0,0] x [0,1] x [0,0], [0,1] x [1,1] x [0,1]),
(1, [0,0] x [0,0] x [0,1], [0,1] x [0,1] x [1,1])]

algebraic_topological_model(base_ring=None)
Algebraic topological model for this cubical complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

•base_ring - coefficient ring (optional, default QQ). Must be a field.

Denote by 𝐶 the chain complex associated to this cubical complex. The algebraic topological model is a
chain complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀
and 𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

•𝜑𝜑 = 0,

•𝜋𝜑 = 0,

•𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

•chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

•the chain complex 𝑀

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.
pi().codomain(), respectively.

EXAMPLES:

sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}

sage: T = cubical_complexes.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}
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cells(subcomplex=None)
The cells of this cubical complex, in the form of a dictionary: the keys are integers, representing dimension,
and the value associated to an integer d is the list of d-cells.

If the optional argument subcomplex is present, then return only the faces which are not in the subcom-
plex.

Parameters subcomplex (a cubical complex; optional, default None) – a
subcomplex of this cubical complex

Returns cells of this complex not contained in subcomplex

Return type dictionary

EXAMPLES:

sage: S2 = cubical_complexes.Sphere(2)
sage: sorted(S2.cells()[2])
[[0,0] x [0,1] x [0,1],
[0,1] x [0,0] x [0,1],
[0,1] x [0,1] x [0,0],
[0,1] x [0,1] x [1,1],
[0,1] x [1,1] x [0,1],
[1,1] x [0,1] x [0,1]]

chain_complex(subcomplex=None, augmented=False, verbose=False, check=False, dimen-
sions=None, base_ring=Integer Ring, cochain=False)

The chain complex associated to this cubical complex.

Parameters

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple
of integers, compute the chain complex in those dimensions, setting the chain groups in all
other dimensions to zero. NOT IMPLEMENTED YET: this function always returns the
entire chain complex

• base_ring (optional, default ZZ) – commutative ring

• subcomplex (optional, default empty) – a subcomplex of this cubical com-
plex. Compute the chain complex relative to this subcomplex.

• augmented (boolean; optional, default False) – If True, return the aug-
mented chain complex (that is, include a class in dimension −1 corresponding to the empty
cell). This is ignored if dimensions is specified.

• cochain (boolean; optional, default False) – If True, return the cochain
complex (that is, the dual of the chain complex).

• verbose (boolean; optional, default False) – If True, print some mes-
sages as the chain complex is computed.

• check (boolean; optional, default False) – If True, make sure that the
chain complex is actually a chain complex: the differentials are composable and their
product is zero.

Note: If subcomplex is nonempty, then the argument augmented has no effect: the chain complex
relative to a nonempty subcomplex is zero in dimension −1.

EXAMPLES:
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sage: S2 = cubical_complexes.Sphere(2)
sage: S2.chain_complex()
Chain complex with at most 3 nonzero terms over Integer Ring
sage: Prod = S2.product(S2); Prod
Cubical complex with 64 vertices and 676 cubes
sage: Prod.chain_complex()
Chain complex with at most 5 nonzero terms over Integer Ring
sage: Prod.chain_complex(base_ring=QQ)
Chain complex with at most 5 nonzero terms over Rational Field
sage: C1 = cubical_complexes.Cube(1)
sage: S0 = cubical_complexes.Sphere(0)
sage: C1.chain_complex(subcomplex=S0)
Chain complex with at most 1 nonzero terms over Integer Ring
sage: C1.homology(subcomplex=S0)
{0: 0, 1: Z}

cone()
The cone on this cubical complex.

NOT IMPLEMENTED

The cone is the complex formed by taking the join of the original complex with a one-point complex (that
is, a 0-dimensional cube). Since joins are not implemented for cubical complexes, neither are cones.

EXAMPLES:

sage: C1 = cubical_complexes.Cube(1)
sage: C1.cone()
Traceback (most recent call last):
...
NotImplementedError: Cones are not implemented for cubical complexes.

connected_sum(other)
Return the connected sum of self with other.

Parameters other – another cubical complex

Returns the connected sum self # other

Warning: This does not check that self and other are manifolds, only that their facets all have the
same dimension. Since a (more or less) random facet is chosen from each complex and then glued
together, this method may return random results if applied to non-manifolds, depending on which facet
is chosen.

EXAMPLES:

sage: T = cubical_complexes.Torus()
sage: S2 = cubical_complexes.Sphere(2)
sage: T.connected_sum(S2).cohomology() == T.cohomology()
True
sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: T.connected_sum(RP2).homology(1)
Z x Z x C2
sage: RP2.connected_sum(RP2).connected_sum(RP2).homology(1)
Z x Z x C2

disjoint_union(other)
The disjoint union of this cubical complex with another one.
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Parameters right – the other cubical complex (the right-hand factor)

Algorithm: first embed both complexes in d-dimensional Euclidean space. Then embed in (1+d)-
dimensional space, calling the new axis 𝑥, and putting the first complex at 𝑥 = 0, the second at 𝑥 = 1.

EXAMPLES:

sage: S1 = cubical_complexes.Sphere(1)
sage: S2 = cubical_complexes.Sphere(2)
sage: S1.disjoint_union(S2).homology()
{0: Z, 1: Z, 2: Z}

graph()
The 1-skeleton of this cubical complex, as a graph.

EXAMPLES:

sage: cubical_complexes.Sphere(2).graph()
Graph on 8 vertices

is_pure()
True iff this cubical complex is pure: that is, all of its maximal faces have the same dimension.

Warning: This may give the wrong answer if the cubical complex was constructed with
maximality_check set to False.

EXAMPLES:

sage: S4 = cubical_complexes.Sphere(4)
sage: S4.is_pure()
True
sage: C = CubicalComplex([([0,0], [3,3]), ([1,2], [4,5])])
sage: C.is_pure()
False

is_subcomplex(other)
Return True if self is a subcomplex of other.

Parameters other – a cubical complex

Each maximal cube of self must be a face of a maximal cube of other for this to be True.

EXAMPLES:

sage: S1 = cubical_complexes.Sphere(1)
sage: C0 = cubical_complexes.Cube(0)
sage: C1 = cubical_complexes.Cube(1)
sage: cyl = S1.product(C1)
sage: end = S1.product(C0)
sage: end.is_subcomplex(cyl)
True
sage: cyl.is_subcomplex(end)
False

The embedding of the cubical complex is important here:

sage: C2 = cubical_complexes.Cube(2)
sage: C1.is_subcomplex(C2)
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False
sage: C1.product(C0).is_subcomplex(C2)
True

C1 is not a subcomplex of C2 because it’s not embedded in R2. On the other hand, C1 x C0 is a face of
C2. Look at their maximal cells:

sage: C1.maximal_cells()
{[0,1]}
sage: C2.maximal_cells()
{[0,1] x [0,1]}
sage: C1.product(C0).maximal_cells()
{[0,1] x [0,0]}

join(other)
The join of this cubical complex with another one.

NOT IMPLEMENTED.

Parameters other – another cubical complex

EXAMPLES:

sage: C1 = cubical_complexes.Cube(1)
sage: C1.join(C1)
Traceback (most recent call last):
...
NotImplementedError: Joins are not implemented for cubical complexes.

maximal_cells()
The set of maximal cells (with respect to inclusion) of this cubical complex.

Returns Set of maximal cells

This just returns the set of cubes used in defining the cubical complex, so if the complex was defined with
no maximality checking, none is done here, either.

EXAMPLES:

sage: interval = cubical_complexes.Cube(1)
sage: interval
Cubical complex with 2 vertices and 3 cubes
sage: interval.maximal_cells()
{[0,1]}
sage: interval.product(interval).maximal_cells()
{[0,1] x [0,1]}

n_cubes(n, subcomplex=None)
The set of cubes of dimension n of this cubical complex. If the optional argument subcomplex is present,
then return the n-dimensional cubes which are not in the subcomplex.

Parameters

• n (integer) – dimension

• subcomplex (a cubical complex; optional, default None) – a sub-
complex of this cubical complex

Returns cells in dimension n

Return type set
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EXAMPLES:

sage: C = cubical_complexes.Cube(3)
sage: C.n_cubes(3)
{[0,1] x [0,1] x [0,1]}
sage: sorted(C.n_cubes(2))
[[0,0] x [0,1] x [0,1],
[0,1] x [0,0] x [0,1],
[0,1] x [0,1] x [0,0],
[0,1] x [0,1] x [1,1],
[0,1] x [1,1] x [0,1],
[1,1] x [0,1] x [0,1]]

n_skeleton(n)
The n-skeleton of this cubical complex.

Parameters n (non-negative integer) – dimension

Returns cubical complex

EXAMPLES:

sage: S2 = cubical_complexes.Sphere(2)
sage: C3 = cubical_complexes.Cube(3)
sage: S2 == C3.n_skeleton(2)
True

product(other)
The product of this cubical complex with another one.

Parameters other – another cubical complex

EXAMPLES:

sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: S1 = cubical_complexes.Sphere(1)
sage: RP2.product(S1).homology()[1] # long time: 5 seconds
Z x C2

suspension(n=1)
The suspension of this cubical complex.

NOT IMPLEMENTED

Parameters n (positive integer; optional, default 1) – suspend this many
times

The suspension is the complex formed by taking the join of the original complex with a two-point complex
(the 0-sphere). Since joins are not implemented for cubical complexes, neither are suspensions.

EXAMPLES:

sage: C1 = cubical_complexes.Cube(1)
sage: C1.suspension()
Traceback (most recent call last):
...
NotImplementedError: Suspensions are not implemented for cubical complexes.

wedge(other)
The wedge (one-point union) of this cubical complex with another one.

Parameters right – the other cubical complex (the right-hand factor)
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Algorithm: if self is embedded in 𝑑 dimensions and other in 𝑛 dimensions, embed them in 𝑑 + 𝑛
dimensions: self using the first 𝑑 coordinates, other using the last 𝑛, translating them so that they have
the origin as a common vertex.

Note: This operation is not well-defined if self or other is not path-connected.

EXAMPLES:

sage: S1 = cubical_complexes.Sphere(1)
sage: S2 = cubical_complexes.Sphere(2)
sage: S1.wedge(S2).homology()
{0: 0, 1: Z, 2: Z}

class sage.homology.cubical_complex.CubicalComplexExamples
Some examples of cubical complexes.

Here are the available examples; you can also type “cubical_complexes.” and hit TAB to get a list:

Sphere
Torus
RealProjectivePlane
KleinBottle
SurfaceOfGenus
Cube

EXAMPLES:

sage: cubical_complexes.Torus() # indirect doctest
Cubical complex with 16 vertices and 64 cubes
sage: cubical_complexes.Cube(7)
Cubical complex with 128 vertices and 2187 cubes
sage: cubical_complexes.Sphere(7)
Cubical complex with 256 vertices and 6560 cubes

Cube(n)
A cubical complex representation of an 𝑛-dimensional cube.

Parameters n (non-negative integer) – the dimension

EXAMPLES:

sage: cubical_complexes.Cube(0)
Cubical complex with 1 vertex and 1 cube
sage: cubical_complexes.Cube(3)
Cubical complex with 8 vertices and 27 cubes

KleinBottle()
A cubical complex representation of the Klein bottle, formed by taking the connected sum of the real
projective plane with itself.

EXAMPLES:

sage: cubical_complexes.KleinBottle()
Cubical complex with 42 vertices and 168 cubes

RealProjectivePlane()
A cubical complex representation of the real projective plane. This is taken from the examples from
CHomP, the Computational Homology Project: http://chomp.rutgers.edu/.
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EXAMPLES:

sage: cubical_complexes.RealProjectivePlane()
Cubical complex with 21 vertices and 81 cubes

Sphere(n)
A cubical complex representation of the 𝑛-dimensional sphere, formed by taking the boundary of an (𝑛 +
1)-dimensional cube.

Parameters n (non-negative integer) – the dimension of the sphere

EXAMPLES:

sage: cubical_complexes.Sphere(7)
Cubical complex with 256 vertices and 6560 cubes

SurfaceOfGenus(g, orientable=True)
A surface of genus g as a cubical complex.

Parameters

• g (non-negative integer) – the genus

• orientable (bool, optional, default True) – whether the surface should
be orientable

In the orientable case, return a sphere if 𝑔 is zero, and otherwise return a 𝑔-fold connected sum of a torus
with itself.

In the non-orientable case, raise an error if 𝑔 is zero. If 𝑔 is positive, return a 𝑔-fold connected sum of a
real projective plane with itself.

EXAMPLES:

sage: cubical_complexes.SurfaceOfGenus(2)
Cubical complex with 32 vertices and 134 cubes
sage: cubical_complexes.SurfaceOfGenus(1, orientable=False)
Cubical complex with 21 vertices and 81 cubes

Torus()
A cubical complex representation of the torus, obtained by taking the product of the circle with itself.

EXAMPLES:

sage: cubical_complexes.Torus()
Cubical complex with 16 vertices and 64 cubes

128 Chapter 11. Finite cubical complexes



CHAPTER

TWELVE

SIMPLICIAL SETS

AUTHORS:

• John H. Palmieri (2016-07)

This module implements simplicial sets.

A simplicial set 𝑋 is a collection of sets 𝑋𝑛 indexed by the non-negative integers; the set 𝑋𝑛 is called the set of
𝑛-simplices. These sets are connected by maps

𝑑𝑖 : 𝑋𝑛 → 𝑋𝑛−1, 0 ≤ 𝑖 ≤ 𝑛 (face maps)
𝑠𝑗 : 𝑋𝑛 → 𝑋𝑛+1, 0 ≤ 𝑗 ≤ 𝑛 (degeneracy maps)

satisfying the simplicial identities:

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑗𝑠𝑗 = 1 = 𝑑𝑗+1𝑠𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗𝑑𝑖−1 if 𝑖 > 𝑗 + 1

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 < 𝑗 + 1

See Wikipedia article Simplicial_set, Peter May’s seminal book [May1967], or Greg Friedman’s “Illustrated introduc-
tion” Arxiv 0809.4221 for more information.

Several simplicial sets are predefined, and users can construct others either by hand (using
SimplicialSet_finite) or from existing ones using pushouts, pullbacks, etc.

EXAMPLES:

Some of the predefined simplicial sets:

sage: simplicial_sets.Torus()
Torus
sage: simplicial_sets.RealProjectiveSpace(7)
RP^7
sage: S5 = simplicial_sets.Sphere(5)
sage: S5
S^5
sage: S5.nondegenerate_simplices()
[v_0, sigma_5]

One class of infinite simplicial sets is available: classifying spaces of groups, or more generally, nerves of finite
monoids:

sage: Sigma4 = groups.permutation.Symmetric(4)
sage: Sigma4.nerve()
Nerve of Symmetric group of order 4! as a permutation group
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The same simplicial set (albeit with a different name) can also be constructed as

sage: simplicial_sets.ClassifyingSpace(Sigma4)
Classifying space of Symmetric group of order 4! as a permutation group

Type simplicial_sets. and hit the TAB key to get a full list of the predefined simplicial sets.

You can construct new simplicial sets from old by taking quotients, subsimplicial sets, disjoint unions, wedges (if they
are pointed), smash products (if they are pointed and finite), products, pushouts, pullbacks, cones, and suspensions,
most of which also have maps associated with them. Wedges, for example:

sage: T = simplicial_sets.Torus()
sage: S3 = simplicial_sets.Sphere(3)
sage: T.is_pointed() and S3.is_pointed()
True
sage: T.wedge(S3)
Wedge: (Torus v S^3)
sage: T.disjoint_union(S3) == T.coproduct(S3)
False

sage: W = T.wedge(S3)
sage: W.inclusion_map(0).domain()
Torus
sage: W.projection_map(1).codomain()
Quotient: (Wedge: (Torus v S^3)/Simplicial set with 6 non-degenerate simplices)

If the 1-sphere were not already available via simplicial_sets.Sphere(1), you could construct it as follows:

sage: pt = simplicial_sets.Simplex(0)
sage: edge = pt.cone()
sage: S1 = edge.quotient(edge.n_skeleton(0))
sage: S1
Quotient: (Cone of 0-simplex/Simplicial set with 2 non-degenerate simplices)

At this point, S1 is pointed: every quotient is automatically given a base point, namely the image of the subcomplex.
So its suspension is the reduced suspension, and therefore is small:

sage: S5 = S1.suspension(4)
sage: S5
Sigma^4(Quotient: (Cone of 0-simplex/Simplicial set with 2 non-degenerate simplices))
sage: S5.f_vector()
[1, 0, 0, 0, 0, 1]

If we forget about the base point in S1, we would get the unreduced suspension instead:

sage: Z1 = S1.unset_base_point()
sage: Z1.suspension(4).f_vector()
[2, 2, 2, 2, 1, 1]

The cone on a pointed simplicial set is the reduced cone. The 𝑛-simplex in Sage is not pointed, but the simplicial set
Point is.

sage: simplicial_sets.Simplex(0).cone().f_vector()
[2, 1]
sage: simplicial_sets.Point().cone().f_vector()
[1]

For most simplicial sets (the Point is the main exception), each time it is constructed, it gives a distinct copy, and
two distinct simplicial sets are never equal:
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sage: T = simplicial_sets.Torus()
sage: T == simplicial_sets.Torus()
False
sage: T == T
True
sage: simplicial_sets.Torus() == simplicial_sets.Torus()
False
sage: simplicial_sets.Point() == simplicial_sets.Point()
True

You can construct subsimplicial sets by specifying a list of simplices, and then you can define the quotient simplicial
set:

sage: X = simplicial_sets.Simplex(2)
sage: e,f,g = X.n_cells(1)
sage: Y = X.subsimplicial_set([e,f,g])
sage: Z = X.quotient(Y)

Or equivalently:

sage: Y = X.n_skeleton(1)
sage: Z = X.quotient(Y)
sage: Z
Quotient: (2-simplex/Simplicial set with 6 non-degenerate simplices)

Note that subsimplicial sets and quotients come equipped with inclusion and quotient morphisms:

sage: inc = Y.inclusion_map()
sage: inc.domain() == Y and inc.codomain() == X
True
sage: quo = Z.quotient_map()
sage: quo.domain()
2-simplex
sage: quo.codomain() == Z
True

You can compute homology groups and the fundamental group of any simplicial set:

sage: S1 = simplicial_sets.Sphere(1)
sage: eight = S1.wedge(S1)
sage: eight.fundamental_group()
Finitely presented group < e0, e1 | >

sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = Sigma3.nerve()
sage: pi = BSigma3.fundamental_group(); pi
Finitely presented group < e0, e1 | e0^2, e1^3, (e0*e1^-1)^2 >
sage: pi.order()
6
sage: pi.is_abelian()
False

sage: RP6 = simplicial_sets.RealProjectiveSpace(6)
sage: RP6.homology(reduced=False, base_ring=GF(2))
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2,
3: Vector space of dimension 1 over Finite Field of size 2,
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4: Vector space of dimension 1 over Finite Field of size 2,
5: Vector space of dimension 1 over Finite Field of size 2,
6: Vector space of dimension 1 over Finite Field of size 2}

sage: RP6.homology(reduced=False, base_ring=QQ)
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 0 over Rational Field,
2: Vector space of dimension 0 over Rational Field,
3: Vector space of dimension 0 over Rational Field,
4: Vector space of dimension 0 over Rational Field,
5: Vector space of dimension 0 over Rational Field,
6: Vector space of dimension 0 over Rational Field}

When infinite simplicial sets are involved, most computations are done by taking an 𝑛-skeleton for an appropriate 𝑛,
either implicitly or explicitly:

sage: B3 = simplicial_sets.ClassifyingSpace(groups.misc.MultiplicativeAbelian([3]))
sage: B3.disjoint_union(B3).n_skeleton(3)
Disjoint union: (Simplicial set with 15 non-degenerate simplices u Simplicial set
→˓with 15 non-degenerate simplices)
sage: S1 = simplicial_sets.Sphere(1)
sage: B3.product(S1).homology(range(4))
{0: 0, 1: Z x C3, 2: C3, 3: C3}

Without the range argument, this would raise an error, since B3 is infinite:

sage: B3.product(S1).homology()
Traceback (most recent call last):
...
NotImplementedError: this simplicial set may be infinite, so specify dimensions when
→˓computing homology

It should be easy to construct many simplicial sets from the predefined ones using pushouts, pullbacks, etc., but they
can also be constructed “by hand”: first define some simplices, then define a simplicial set by specifying their faces:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v,w), f: (w,w)})

Now 𝑒 is an edge from 𝑣 to 𝑤 and 𝑓 is an edge starting and ending at 𝑤. Therefore the first homology group of 𝑋
should be a copy of the integers:

sage: X.homology(1)
Z

sage.homology.simplicial_set.AbstractSimplex(dim, degeneracies=(), underlying=None,
name=None, latex_name=None)

An abstract simplex, a building block of a simplicial set.

In a simplicial set, a simplex either is non-degenerate or is obtained by applying degeneracy maps to a non-
degenerate simplex.

INPUT:

•dim – a non-negative integer, the dimension of the underlying non-degenerate simplex.
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•degeneracies (optional, default None) – a list or tuple of non-negative integers, the degeneracies to
be applied.

•underlying (optional) – a non-degenerate simplex to which the degeneracies are being applied.

•name (optional) – string, a name for this simplex.

•latex_name (optional) – string, a name for this simplex to use in the LaTeX representation.

So to define a simplex formed by applying the degeneracy maps 𝑠2𝑠1 to a 1-simplex, call
AbstractSimplex(1, (2, 1)).

Specify underlying if you need to keep explicit track of the underlying non-degenerate simplex,
for example when computing faces of another simplex. This is mainly for use by the method
AbstractSimplex_class.apply_degeneracies().

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (3, 1))
s_3 s_1 Delta^3
sage: AbstractSimplex(3, None)
Delta^3
sage: AbstractSimplex(3)
Delta^3

Simplices may be named (or renamed), affecting how they are printed:

sage: AbstractSimplex(0)
Delta^0
sage: v = AbstractSimplex(0, name='v')
sage: v
v
sage: v.rename('w_0')
sage: v
w_0
sage: latex(v)
w_0
sage: latex(AbstractSimplex(0, latex_name='\sigma'))
\sigma

The simplicial identities are used to put the degeneracies in standard decreasing form:

sage: x = AbstractSimplex(0, (0, 0, 0))
sage: x
s_2 s_1 s_0 Delta^0
sage: x.degeneracies()
[2, 1, 0]

Use of the underlying argument:

sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(0, (0,), underlying=v)
sage: e
s_0 v
sage: e.nondegenerate() is v
True

sage: e.dimension()
1
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sage: e.is_degenerate()
True

Distinct non-degenerate simplices are never equal:

sage: AbstractSimplex(0, None) == AbstractSimplex(0, None)
False
sage: AbstractSimplex(0, (2,1,0)) == AbstractSimplex(0, (2,1,0))
False

sage: e = AbstractSimplex(0, ((0,)))
sage: f = AbstractSimplex(0, ((0,)))
sage: e == f
False
sage: e.nondegenerate() == f.nondegenerate()
False

This means that if, when defining a simplicial set, you specify the faces of a 2-simplex as:

(e, e, e)

then the faces are the same degenerate vertex, but if you specify the faces as:

(AbstractSimplex(0, ((0,))), AbstractSimplex(0, ((0,))), AbstractSimplex(0, ((0,
→˓))))

then the faces are three different degenerate vertices.

View a command like AbstractSimplex(0, (2,1,0)) as first constructing AbstractSimplex(0)
and then applying degeneracies to it, and you always get distinct simplices from different calls to
AbstractSimplex(0). On the other hand, if you apply degeneracies to the same non-degenerate simplex,
the resulting simplices are equal:

sage: v = AbstractSimplex(0)
sage: v.apply_degeneracies(1, 0) == v.apply_degeneracies(1, 0)
True
sage: AbstractSimplex(1, (0,), underlying=v) == AbstractSimplex(1, (0,),
→˓underlying=v)
True

class sage.homology.simplicial_set.AbstractSimplex_class(dim, degeneracies=(), under-
lying=None, name=None,
latex_name=None)

Bases: sage.structure.sage_object.SageObject

A simplex of dimension dim.

INPUT:

•dim – integer, the dimension

•degeneracies (optional) – iterable, the indices of the degeneracy maps

•underlying (optional) – a non-degenerate simplex

•name (optional) – string

•latex_name (optional) – string

Users should not call this directly, but instead use AbstractSimplex(). See that function for more docu-
mentation.
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apply_degeneracies(*args)
Apply the degeneracies given by the arguments args to this simplex.

INPUT:

•args – integers

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: v = AbstractSimplex(0)
sage: e = v.apply_degeneracies(0)
sage: e.nondegenerate() == v
True
sage: f = e.apply_degeneracies(0)
sage: f
s_1 s_0 Delta^0
sage: f.degeneracies()
[1, 0]
sage: f.nondegenerate() == v
True
sage: v.apply_degeneracies(1, 0)
s_1 s_0 Delta^0

degeneracies()
Return the list of indices for the degeneracy maps for this simplex.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(4, (0,0,0)).degeneracies()
[2, 1, 0]
sage: AbstractSimplex(4, None).degeneracies()
[]

dimension()
The dimension of this simplex.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (2,1)).dimension()
5
sage: AbstractSimplex(3, None).dimension()
3
sage: AbstractSimplex(7).dimension()
7

is_degenerate()
True if this simplex is degenerate.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (2,1)).is_degenerate()
True
sage: AbstractSimplex(3, None).is_degenerate()
False

is_nondegenerate()
True if this simplex is non-degenerate.
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EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (2,1)).is_nondegenerate()
False
sage: AbstractSimplex(3, None).is_nondegenerate()
True
sage: AbstractSimplex(5).is_nondegenerate()
True

nondegenerate()
The non-degenerate simplex underlying this one.

Therefore return itself if this simplex is non-degenerate.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: v = AbstractSimplex(0, name='v')
sage: sigma = v.apply_degeneracies(1, 0)
sage: sigma.nondegenerate()
v
sage: tau = AbstractSimplex(1, (3,2,1))
sage: x = tau.nondegenerate(); x
Delta^1
sage: x == tau.nondegenerate()
True

sage: AbstractSimplex(1, None)
Delta^1
sage: AbstractSimplex(1, None) == x
False
sage: AbstractSimplex(1, None) == tau.nondegenerate()
False

class sage.homology.simplicial_set.NonDegenerateSimplex(dim, name=None, la-
tex_name=None)

Bases: sage.homology.simplicial_set.AbstractSimplex_class, sage.misc.
fast_methods.WithEqualityById

A nondegenerate simplex.

INPUT:

•dim – non-negative integer, the dimension

•name (optional) – string, a name for this simplex.

•latex_name (optional) – string, a name for this simplex to use in the LaTeX representation.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex
sage: v = AbstractSimplex(0, name='v')
sage: v
v
sage: type(v)
<class 'sage.homology.simplicial_set.NonDegenerateSimplex'>

Distinct non-degenerate simplices should never be equal, even if they have the same starting data.
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sage: v == AbstractSimplex(0, name='v')
False
sage: AbstractSimplex(3) == AbstractSimplex(3)
False

sage: from sage.homology.simplicial_set import NonDegenerateSimplex
sage: x = NonDegenerateSimplex(0, name='x')
sage: x == NonDegenerateSimplex(0, name='x')
False

sage.homology.simplicial_set.SimplicialSet
alias of SimplicialSet_finite

class sage.homology.simplicial_set.SimplicialSet_arbitrary
Bases: sage.structure.parent.Parent

A simplicial set.

A simplicial set 𝑋 is a collection of sets 𝑋𝑛, the n-simplices, indexed by the non-negative integers, together
with maps

𝑑𝑖 : 𝑋𝑛 → 𝑋𝑛−1, 0 ≤ 𝑖 ≤ 𝑛 (face maps)
𝑠𝑗 : 𝑋𝑛 → 𝑋𝑛+1, 0 ≤ 𝑗 ≤ 𝑛 (degeneracy maps)

satisfying the simplicial identities:

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑗𝑠𝑗 = 1 = 𝑑𝑗+1𝑠𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗𝑑𝑖−1 if 𝑖 > 𝑗 + 1

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 < 𝑗 + 1

This class is not fully implemented and is not intended to be called directly by users. It is intended instead
to be used by other classes which inherit from this one. See SimplicialSet_finite and Nerve for
two examples. In particular, any such class must implement a method n_skeleton – without this, most
computations will be impossible. It must also implement an __init__ method which should also set the
category, so that methods defined at the category level, like is_pointed and is_finite, work correctly.

Note that the method subsimplicial_set() calls n_skeleton(), so to avoid circularity, the
n_skeleton() method should call simplicial_set_constructions.SubSimplicialSet di-
rectly, not subsimplicial_set().

alexander_whitney(simplex, dim_left)
Return the ‘subdivision’ of simplex in this simplicial set into a pair of simplices.

The left factor should have dimension dim_left, so the right factor should have dimension dim -
dim_left, if dim is the dimension of the starting simplex. The results are obtained by applying iterated
face maps to simplex. Writing 𝑑 for dim and 𝑗 for dim_left: apply 𝑑𝑗+1𝑑𝑗+2...𝑑𝑑 to get the left
factor, 𝑑0...𝑑0 to get the right factor.

INPUT:

•dim_left – integer, the dimension of the left-hand factor

OUTPUT: a list containing the triple (c, left, right), where left and right are the two sim-
plices described above. If either left or right is degenerate, c is 0; otherwise, c is 1. This is so that,
when used to compute cup products, it is easy to ignore terms which have degenerate factors.

EXAMPLES:
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sage: S2 = simplicial_sets.Sphere(2)
sage: sigma = S2.n_cells(2)[0]
sage: S2.alexander_whitney(sigma, 0)
[(1, v_0, sigma_2)]
sage: S2.alexander_whitney(sigma, 1)
[(0, s_0 v_0, s_0 v_0)]

all_n_simplices(n)
Return a list of all simplices, non-degenerate and degenerate, in dimension n.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: degen = v.apply_degeneracies(0)
sage: tau = AbstractSimplex(2, name='tau')
sage: Y = SimplicialSet({tau: (degen, degen, degen), w: None})

Y is the disjoint union of a 2-sphere, with vertex v and non-degenerate 2-simplex tau, and a point w.

sage: Y.all_n_simplices(0)
[v, w]
sage: Y.all_n_simplices(1)
[s_0 v, s_0 w]
sage: Y.all_n_simplices(2)
[tau, s_1 s_0 v, s_1 s_0 w]

An example involving an infinite simplicial set:

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.all_n_simplices(2)
[f * f,
f * f^2,
f^2 * f,
f^2 * f^2, s_0 f, s_0 f^2, s_1 f, s_1 f^2, s_1 s_0 1]

betti(dim=None, subcomplex=None)
The Betti numbers of this simplicial complex as a dictionary (or a single Betti number, if only one dimen-
sion is given): the ith Betti number is the rank of the ith homology group.

INPUT:

•dim (optional, default None – If None, then return the homology in every dimension. If dim is an
integer or list, return the homology in the given dimensions. (Actually, if dim is a list, return the
homology in the range from min(dim) to max(dim).)

•subcomplex (optional, default None) – a subcomplex of this cell complex. Compute the Betti
numbers of the homology relative to this subcomplex.

Note: If this simplicial set is not finite, you must specify dimensions in which to compute Betti numbers
via the argument dim.

EXAMPLES:

Build the two-sphere as a three-fold join of a two-point space with itself:

138 Chapter 12. Simplicial sets



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: simplicial_sets.Sphere(5).betti()
{0: 1, 1: 0, 2: 0, 3: 0, 4: 0, 5: 1}

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.betti(range(4))
{0: 1, 1: 0, 2: 0, 3: 0}

cartesian_product(*others)
Return the product of this simplicial set with others.

INPUT:

•others – one or several simplicial sets

If 𝑋 and 𝑌 are simplicial sets, then their product 𝑋 × 𝑌 is defined to be the simplicial set with 𝑛-
simplices 𝑋𝑛×𝑌𝑛. See simplicial_set_constructions.ProductOfSimplicialSets for
more information.

If a simplicial set is constructed as a product, the factors are recorded and are accessible via the method
simplicial_set_constructions.Factors.factors(). If each factor is finite, then you can
also construct the projection maps onto each factor, the wedge as a subcomplex, and the fat wedge as a
subcomplex.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, w)})
sage: square = X.product(X)

square is now the standard triangulation of the square: 4 vertices, 5 edges (the four on the border and
the diagonal), 2 triangles:

sage: square.f_vector()
[4, 5, 2]

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

Since S1 is pointed, so is T:

sage: S1.is_pointed()
True
sage: S1.base_point()
v_0
sage: T.is_pointed()
True
sage: T.base_point()
(v_0, v_0)

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2xS3 = S2.product(S3)
sage: S2xS3.homology(reduced=False)
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{0: Z, 1: 0, 2: Z, 3: Z, 4: 0, 5: Z}

sage: S2xS3.factors() == (S2, S3)
True
sage: S2xS3.factors() == (S3, S2)
False

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.rename('RP^oo')
sage: X = B.product(B, S2)
sage: X
RP^oo x RP^oo x S^2
sage: X.factor(1)
RP^oo
sage: X.factors()
(RP^oo, RP^oo, S^2)

Projection maps and wedges:

sage: S2xS3.projection_map(0)
Simplicial set morphism:

From: S^2 x S^3
To: S^2
Defn: ...

sage: S2xS3.wedge_as_subset().homology()
{0: 0, 1: 0, 2: Z, 3: Z}

In the case of pointed simplicial sets, there is an inclusion of each factor into the product. These are not
automatically defined in Sage, but they are easy to construct using identity maps and constant maps and
the universal property of the product:

sage: one = S2.identity()
sage: const = S2.constant_map(codomain=S3)
sage: S2xS3.universal_property(one, const)
Simplicial set morphism:

From: S^2
To: S^2 x S^3
Defn: [v_0, sigma_2] --> [(v_0, v_0), (sigma_2, s_1 s_0 v_0)]

cells(subcomplex=None, max_dim=None)
Return a dictionary of all non-degenerate simplices.

INPUT:

•subcomplex (optional) – a subsimplicial set of this simplicial set. If subcomplex is specified,
then return the simplices in the quotient by the subcomplex.

•max_dim – optional, default None. If specified, return the non-degenerate simplices of this dimen-
sion or smaller. This argument is required if this simplicial set is infinite.

Each key is a dimension, and the corresponding value is the list of simplices in that dimension.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: S0 = SimplicialSet({v: None, w: None})
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sage: S0.cells()
{0: [Delta^0, Delta^0]}

sage: v.rename('v')
sage: w.rename('w')
sage: S0.cells()
{0: [v, w]}

sage: e = AbstractSimplex(1, name='e')
sage: S1 = SimplicialSet({e: (v, v)})
sage: S1.cells()
{0: [v], 1: [e]}

sage: S0.cells(S0.subsimplicial_set([v, w]))
{0: [*]}

sage: X = SimplicialSet({e: (v,w)})
sage: X.cells(X.subsimplicial_set([v, w]))
{0: [*], 1: [e]}

Test an infinite example:

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.cells(max_dim=2)
{0: [1], 1: [f, f^2], 2: [f * f, f * f^2, f^2 * f, f^2 * f^2]}
sage: BC3.cells()
Traceback (most recent call last):
...
NotImplementedError: this simplicial set may be infinite, so specify max_dim

chain_complex(dimensions=None, base_ring=Integer Ring, augmented=False, cochain=False, ver-
bose=False, subcomplex=None, check=False)

Return the normalized chain complex.

INPUT:

•dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of integers,
compute the chain complex in those dimensions, setting the chain groups in all other dimensions to
zero.

•base_ring (optional, default ZZ) – commutative ring

•augmented (optional, default False) – if True, return the augmented chain complex (that is,
include a class in dimension −1 corresponding to the empty cell).

•cochain (optional, default False) – if True, return the cochain complex (that is, the dual of the
chain complex).

•verbose (optional, default False) – ignored.

•subcomplex (optional, default None) – if present, compute the chain complex relative to this sub-
complex.

•check (optional, default False) – If True, make sure that the chain complex is actually a chain
complex: the differentials are composable and their product is zero.

Note: If this simplicial set is not finite, you must specify dimensions in which to compute its chain
complex via the argument dimensions.
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EXAMPLES:

sage: simplicial_sets.Sphere(5).chain_complex()
Chain complex with at most 3 nonzero terms over Integer Ring

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.chain_complex(range(4), base_ring=GF(3))
Chain complex with at most 4 nonzero terms over Finite Field of size 3

cohomology(dim=None, **kwds)
Return the cohomology of this simplicial set.

INPUT:

•dim (optional, default None – If None, then return the homology in every dimension. If dim is an
integer or list, return the homology in the given dimensions. (Actually, if dim is a list, return the
homology in the range from min(dim) to max(dim).)

•base_ring (optional, default ZZ) – commutative ring, must be ZZ or a field.

Other arguments are also allowed, the same as for the homology() method – see cell_complex.
GenericCellComplex.homology() for complete documentation – except that homology() ac-
cepts a cohomology key word, while this function does not: cohomology is automatically true here.
Indeed, this function just calls homology() with argument cohomology=True.

Note: If this simplicial set is not finite, you must specify dimensions in which to compute homology via
the argument dim.

EXAMPLES:

sage: simplicial_sets.KleinBottle().homology(1)
Z x C2
sage: simplicial_sets.KleinBottle().cohomology(1)
Z
sage: simplicial_sets.KleinBottle().cohomology(2)
C2

cone()
Return the (reduced) cone on this simplicial set.

If this simplicial set 𝑋 is not pointed, construct the ordinary cone: add a point 𝑣 (which will become the
base point) and for each simplex 𝜎 in 𝑋 , add both 𝜎 and a simplex made up of 𝑣 and 𝜎 (topologically,
form the join of 𝑣 and 𝜎).

If this simplicial set is pointed, then construct the reduced cone: take the quotient of the unreduced cone
by the 1-simplex connecting the old base point to the new one.

In either case, as long as the simplicial set is finite, it comes equipped in Sage with a map from it into the
cone.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: CX = X.cone() # unreduced cone, since X not pointed
sage: CX.nondegenerate_simplices()
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[*, v, (v,*), e, (e,*)]
sage: CX.base_point()

*

𝑋 as a subset of the cone, and also the map from 𝑋 , in the unreduced case:

sage: CX.base_as_subset()
Simplicial set with 2 non-degenerate simplices
sage: CX.map_from_base()
Simplicial set morphism:
From: Simplicial set with 2 non-degenerate simplices

To: Cone of Simplicial set with 2 non-degenerate simplices
Defn: [v, e] --> [v, e]

In the reduced case, only the map from 𝑋 is available:

sage: X = X.set_base_point(v)
sage: CX = X.cone() # reduced cone
sage: CX.nondegenerate_simplices()
[*, e, (e,*)]
sage: CX.map_from_base()
Simplicial set morphism:

From: Simplicial set with 2 non-degenerate simplices
To: Reduced cone of Simplicial set with 2 non-degenerate simplices
Defn: [v, e] --> [*, e]

constant_map(codomain=None, point=None)
Return a constant map with this simplicial set as its domain.

INPUT:

•codomain – optional, default None. If None, the codomain is the standard one-point space con-
structed by Point(). Otherwise, either the codomain must be a pointed simplicial set, in which case
the map is constant at the base point, or point must be specified.

•point – optional, default None. If specified, it must be a 0-simplex in the codomain, and it will be
the target of the constant map.

EXAMPLES:

sage: S4 = simplicial_sets.Sphere(4)
sage: S4.constant_map()
Simplicial set morphism:

From: S^4
To: Point
Defn: Constant map at *

sage: S0 = simplicial_sets.Sphere(0)
sage: S4.constant_map(codomain=S0)
Simplicial set morphism:

From: S^4
To: S^0
Defn: Constant map at v_0

sage: Sigma3 = groups.permutation.Symmetric(3)
sage: Sigma3.nerve().constant_map()
Simplicial set morphism:

From: Nerve of Symmetric group of order 3! as a permutation group
To: Point
Defn: Constant map at *
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coproduct(*others)
Return the coproduct of this simplicial set with others.

INPUT:

•others – one or several simplicial sets

If these simplicial sets are pointed, return their wedge sum; if they are not, return their disjoint union. If
some are pointed and some are not, raise an error: it is not clear in which category to work.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: K = simplicial_sets.KleinBottle()
sage: D3 = simplicial_sets.Simplex(3)
sage: Y = S2.unset_base_point()
sage: Z = K.unset_base_point()

sage: S2.coproduct(K).is_pointed()
True
sage: S2.coproduct(K)
Wedge: (S^2 v Klein bottle)
sage: D3.coproduct(Y, Z).is_pointed()
False
sage: D3.coproduct(Y, Z)
Disjoint union: (3-simplex u Simplicial set with 2 non-degenerate simplices u
→˓Simplicial set with 6 non-degenerate simplices)

The coproduct comes equipped with an inclusion map from each summand, as long as the summands are
all finite:

sage: S2.coproduct(K).inclusion_map(0)
Simplicial set morphism:

From: S^2
To: Wedge: (S^2 v Klein bottle)
Defn: [v_0, sigma_2] --> [*, sigma_2]

sage: D3.coproduct(Y, Z).inclusion_map(2)
Simplicial set morphism:

From: Simplicial set with 6 non-degenerate simplices
To: Disjoint union: (3-simplex u Simplicial set with 2 non-degenerate

→˓simplices u Simplicial set with 6 non-degenerate simplices)
Defn: [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0},

→˓Delta_{2,1}] --> [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_
→˓{2,0}, Delta_{2,1}]

disjoint_union(*others)
Return the disjoint union of this simplicial set with others.

INPUT:

•others – one or several simplicial sets

As long as the factors are all finite, the inclusion map from each factor is available.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
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sage: X = SimplicialSet({e: (v, v)})
sage: Y = SimplicialSet({f: (v, w)})
sage: Z = X.disjoint_union(Y)

Since X and Y have simplices in common, Sage uses a copy of Y when constructing the disjoint union.
Note the name conflict in the list of simplices: v appears twice:

sage: Z = X.disjoint_union(Y)
sage: Z.nondegenerate_simplices()
[v, v, w, e, f]

Factors and inclusion maps:

sage: T = simplicial_sets.Torus()
sage: S2 = simplicial_sets.Sphere(2)
sage: A = T.disjoint_union(S2)
sage: A.factors()
(Torus, S^2)
sage: i = A.inclusion_map(0)
sage: i.domain()
Torus
sage: i.codomain()
Disjoint union: (Torus u S^2)

face(simplex, i)
Return the 𝑖-th face of simplex in this simplicial set.

INPUT:

•simplex – a simplex in this simplicial set

•i – integer

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: sigma = S2.n_cells(2)[0]
sage: v_0 = S2.n_cells(0)[0]
sage: S2.face(sigma, 0)
s_0 v_0
sage: S2.face(sigma, 0) == v_0.apply_degeneracies(0)
True
sage: S2.face(S2.face(sigma, 0), 0) == v_0
True

faces(simplex)
Return the list of faces of simplex in this simplicial set.

INPUT:

•simplex – a simplex in this simplicial set, either degenerate or not

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: sigma = S2.n_cells(2)[0]
sage: S2.faces(sigma)
(s_0 v_0, s_0 v_0, s_0 v_0)
sage: S2.faces(sigma.apply_degeneracies(0))
[sigma_2, sigma_2, s_1 s_0 v_0, s_1 s_0 v_0]
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sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: f2 = BC3.n_cells(1)[1]; f2
f^2
sage: BC3.faces(f2)
(1, 1)

graph()
Return the 1-skeleton of this simplicial set, as a graph.

EXAMPLES:

sage: Delta3 = simplicial_sets.Simplex(3)
sage: G = Delta3.graph()
sage: G.edges()
[((0,), (1,), (0, 1)),
((0,), (2,), (0, 2)),
((0,), (3,), (0, 3)),
((1,), (2,), (1, 2)),
((1,), (3,), (1, 3)),
((2,), (3,), (2, 3))]

sage: T = simplicial_sets.Torus()
sage: T.graph()
Looped multi-graph on 1 vertex
sage: len(T.graph().edges())
3

sage: CP3 = simplicial_sets.ComplexProjectiveSpace(3)
sage: G = CP3.graph()
sage: len(G.vertices())
1
sage: len(G.edges())
0

sage: Sigma3 = groups.permutation.Symmetric(3)
sage: Sigma3.nerve().is_connected()
True

homology(dim=None, **kwds)
Return the (reduced) homology of this simplicial set.

INPUT:

•dim (optional, default None – If None, then return the homology in every dimension. If dim is an
integer or list, return the homology in the given dimensions. (Actually, if dim is a list, return the
homology in the range from min(dim) to max(dim).)

•base_ring (optional, default ZZ) – commutative ring, must be ZZ or a field.

Other arguments are also allowed: see the documentation for cell_complex.
GenericCellComplex.homology().

Note: If this simplicial set is not finite, you must specify dimensions in which to compute homology via
the argument dim.

EXAMPLES:
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sage: simplicial_sets.Sphere(5).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: Z}

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.homology(range(4), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
1: Vector space of dimension 1 over Finite Field of size 3,
2: Vector space of dimension 1 over Finite Field of size 3,
3: Vector space of dimension 1 over Finite Field of size 3}

sage: BC2 = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: BK = BC2.product(BC2)
sage: BK.homology(range(4))
{0: 0, 1: C2 x C2, 2: C2, 3: C2 x C2 x C2}

identity()
Return the identity map on this simplicial set.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: S3.identity()
Simplicial set endomorphism of S^3

Defn: Identity map

sage: BC3 = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([3]))
sage: one = BC3.identity()
sage: [(sigma, one(sigma)) for sigma in BC3.n_cells(2)]
[(f * f, f * f),
(f * f^2, f * f^2),
(f^2 * f, f^2 * f),
(f^2 * f^2, f^2 * f^2)]

is_connected()
Return True if this simplicial set is connected.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: X = T.disjoint_union(K)
sage: T.is_connected()
True
sage: K.is_connected()
True
sage: X.is_connected()
False
sage: simplicial_sets.Sphere(0).is_connected()
False

is_reduced()
Return True if this simplicial set has only one vertex.

EXAMPLES:
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sage: simplicial_sets.Sphere(0).is_reduced()
False
sage: simplicial_sets.Sphere(3).is_reduced()
True

join(*others)
The join of this simplicial set with others.

Not implemented. See https://ncatlab.org/nlab/show/join+of+simplicial+sets for a few descriptions, for
anyone interested in implementing this. See also P. J. Ehlers and Tim Porter, Joins for (Augmented)
Simplicial Sets, Jour. Pure Applied Algebra, 145 (2000) 37-44 Arxiv 9904039.

•others – one or several simplicial sets

EXAMPLES:

sage: K = simplicial_sets.Simplex(2)
sage: K.join(K)
Traceback (most recent call last):
...
NotImplementedError: joins are not implemented for simplicial sets

n_cells(n, subcomplex=None)
Return the list of cells of dimension n of this cell complex. If the optional argument subcomplex is
present, then return the n-dimensional faces in the quotient by this subcomplex.

INPUT:

•n – the dimension

•subcomplex (optional, default None) – a subcomplex of this cell complex. Return the cells which
are in the quotient by this subcomplex.

EXAMPLES:

sage: simplicial_sets.Sphere(3).n_cells(3)
[sigma_3]
sage: simplicial_sets.Sphere(3).n_cells(2)
[]
sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = C2.nerve()
sage: BC2.n_cells(3)
[f * f * f]

n_chains(n, base_ring=Integer Ring, cochains=False)
Return the free module of (normalized) chains in degree n over base_ring.

This is the free module on the nondegenerate simplices in the given dimension.

INPUT:

•n – integer

•base_ring – ring (optional, default Z)

•cochains – boolean (optional, default False); if True, return cochains instead

The only difference between chains and cochains is notation: the generator corresponding to the dual of a
simplex sigma is written as "\chi_sigma" in the group of cochains.

EXAMPLES:
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sage: S3 = simplicial_sets.Sphere(3)
sage: C = S3.n_chains(3, cochains=True)
sage: list(C.basis())
[\chi_sigma_3]
sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = simplicial_sets.ClassifyingSpace(Sigma3)
sage: list(BSigma3.n_chains(1).basis())
[(1,2), (1,2,3), (1,3), (1,3,2), (2,3)]
sage: list(BSigma3.n_chains(1, cochains=True).basis())
[\chi_(1,2), \chi_(1,2,3), \chi_(1,3), \chi_(1,3,2), \chi_(2,3)]

nondegenerate_simplices(max_dim=None)
Return the sorted list of non-degenerate simplices in this simplicial set.

INPUT:

•max_dim – optional, default None. If specified, return the non-degenerate simplices of this dimen-
sion or smaller. This argument is required if this simplicial set is infinite.

The sorting is in increasing order of dimension, and within each dimension, by the name (if present) of
each simplex.

Note: The sorting is done when the simplicial set is constructed, so changing the name of a simplex after
construction will not affect the ordering.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: S0 = SimplicialSet({v: None, w: None})
sage: S0.nondegenerate_simplices()
[Delta^0, Delta^0]

Name the vertices and reconstruct the simplicial set: they should be ordered alphabetically:

sage: v.rename('v')
sage: w.rename('w')
sage: S0 = SimplicialSet({v: None, w: None})
sage: S0.nondegenerate_simplices()
[v, w]

Rename but do not reconstruct the set; the ordering does not take the new names into account:

sage: v.rename('z')
sage: S0.nondegenerate_simplices() # old ordering is used
[z, w]

sage: X0 = SimplicialSet({v: None, w: None})
sage: X0.nondegenerate_simplices() # new ordering is used
[w, z]

Test an infinite example:

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.nondegenerate_simplices(2)
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[1, f, f^2, f * f, f * f^2, f^2 * f, f^2 * f^2]
sage: BC3.nondegenerate_simplices()
Traceback (most recent call last):
...
NotImplementedError: this simplicial set may be infinite, so specify max_dim

product(*others)
Return the product of this simplicial set with others.

INPUT:

•others – one or several simplicial sets

If 𝑋 and 𝑌 are simplicial sets, then their product 𝑋 × 𝑌 is defined to be the simplicial set with 𝑛-
simplices 𝑋𝑛×𝑌𝑛. See simplicial_set_constructions.ProductOfSimplicialSets for
more information.

If a simplicial set is constructed as a product, the factors are recorded and are accessible via the method
simplicial_set_constructions.Factors.factors(). If each factor is finite, then you can
also construct the projection maps onto each factor, the wedge as a subcomplex, and the fat wedge as a
subcomplex.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, w)})
sage: square = X.product(X)

square is now the standard triangulation of the square: 4 vertices, 5 edges (the four on the border and
the diagonal), 2 triangles:

sage: square.f_vector()
[4, 5, 2]

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

Since S1 is pointed, so is T:

sage: S1.is_pointed()
True
sage: S1.base_point()
v_0
sage: T.is_pointed()
True
sage: T.base_point()
(v_0, v_0)

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2xS3 = S2.product(S3)
sage: S2xS3.homology(reduced=False)
{0: Z, 1: 0, 2: Z, 3: Z, 4: 0, 5: Z}
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sage: S2xS3.factors() == (S2, S3)
True
sage: S2xS3.factors() == (S3, S2)
False

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.rename('RP^oo')
sage: X = B.product(B, S2)
sage: X
RP^oo x RP^oo x S^2
sage: X.factor(1)
RP^oo
sage: X.factors()
(RP^oo, RP^oo, S^2)

Projection maps and wedges:

sage: S2xS3.projection_map(0)
Simplicial set morphism:

From: S^2 x S^3
To: S^2
Defn: ...

sage: S2xS3.wedge_as_subset().homology()
{0: 0, 1: 0, 2: Z, 3: Z}

In the case of pointed simplicial sets, there is an inclusion of each factor into the product. These are not
automatically defined in Sage, but they are easy to construct using identity maps and constant maps and
the universal property of the product:

sage: one = S2.identity()
sage: const = S2.constant_map(codomain=S3)
sage: S2xS3.universal_property(one, const)
Simplicial set morphism:

From: S^2
To: S^2 x S^3
Defn: [v_0, sigma_2] --> [(v_0, v_0), (sigma_2, s_1 s_0 v_0)]

pullback(*maps)
Return the pullback obtained from given maps.

INPUT:

•maps – several maps of simplicial sets, each of which has this simplicial set as its codomain

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑋 . If more than one map is given, say 𝑓𝑖 : 𝑋𝑖 → 𝑌
for 0 ≤ 𝑖 ≤ 𝑚, then return the pullback defined by those maps. If no maps are given, return the one-point
simplicial set.

In addition to the defining maps 𝑓𝑖 used to construct the pullback 𝑃 , there are also maps 𝑓𝑖 : 𝑃 → 𝑋𝑖,
which we refer to as structure maps or projection maps. The pullback also has a universal property: given
maps 𝑔𝑖 : 𝑍 → 𝑋𝑖 such that 𝑓𝑖𝑔𝑖 = 𝑓𝑗𝑔𝑗 for all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑍 → 𝑃 making
the appropriate diagram commute: that is, 𝑓𝑖𝑔 = 𝑔𝑖 for all 𝑖. For example, given maps 𝑓 : 𝑋 → 𝑌 and
𝑔 : 𝑋 → 𝑍, there is an induced map 𝑔 : 𝑋 → 𝑌 × 𝑍.

In Sage, a pullback is equipped with its defining maps, and as long as the simplicial sets involved are finite,
you can also access the structure maps and the universal property.

EXAMPLES:
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Construct a product as a pullback:

sage: S2 = simplicial_sets.Sphere(2)
sage: pt = simplicial_sets.Point()
sage: P = pt.pullback(S2.constant_map(), S2.constant_map())
sage: P.homology(2)
Z x Z

If the pullback is defined via maps 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then there are structure maps 𝑓𝑖 : 𝑌𝑖 → 𝑃 . The structure
maps are only available in Sage when all of the maps involved have finite domains.

sage: S2 = simplicial_sets.Sphere(2)
sage: one = S2.Hom(S2).identity()
sage: P = S2.pullback(one, one)
sage: P.homology()
{0: 0, 1: 0, 2: Z}

sage: P.defining_map(0) == one
True
sage: P.structure_map(1)
Simplicial set morphism:

From: Pullback of maps:
Simplicial set endomorphism of S^2
Defn: Identity map

Simplicial set endomorphism of S^2
Defn: Identity map

To: S^2
Defn: [(v_0, v_0), (sigma_2, sigma_2)] --> [v_0, sigma_2]

sage: P.structure_map(0).domain() == P
True
sage: P.structure_map(0).codomain() == S2
True

The universal property:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})
sage: D = S1.cone() # the cone C(S^1)
sage: g = D.map_from_base() # map from S^1 to C(S^1)
sage: P = T.product(D)
sage: h = P.universal_property(f, g)
sage: h.domain() == S1
True
sage: h.codomain() == P
True

pushout(*maps)
Return the pushout obtained from given maps.

INPUT:

•maps – several maps of simplicial sets, each of which has this simplicial set as its domain

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑌 . If more than one map is given, say 𝑓𝑖 : 𝑋 → 𝑌𝑖

for 0 ≤ 𝑖 ≤ 𝑚, then return the pushout defined by those maps. If no maps are given, return the empty
simplicial set.
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In addition to the defining maps 𝑓𝑖 used to construct the pushout 𝑃 , there are also maps 𝑓𝑖 : 𝑌𝑖 → 𝑃 ,
which we refer to as structure maps. The pushout also has a universal property: given maps 𝑔𝑖 : 𝑌𝑖 → 𝑍
such that 𝑔𝑖𝑓𝑖 = 𝑔𝑗𝑓𝑗 for all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑃 → 𝑍 making the appropriate diagram
commute: that is, 𝑔𝑓𝑖 = 𝑔𝑖 for all 𝑖.

In Sage, a pushout is equipped with its defining maps, and as long as the simplicial sets involved are finite,
you can also access the structure maps and the universal property.

EXAMPLES:

Construct the 4-sphere as a quotient of a 4-simplex:

sage: K = simplicial_sets.Simplex(4)
sage: L = K.n_skeleton(3)
sage: S4 = L.pushout(L.constant_map(), L.inclusion_map())
sage: S4
Pushout of maps:

Simplicial set morphism:
From: Simplicial set with 30 non-degenerate simplices
To: Point
Defn: Constant map at *

Simplicial set morphism:
From: Simplicial set with 30 non-degenerate simplices
To: 4-simplex
Defn: [(0,), (1,), (2,), (3,), (4,), (0, 1), (0, 2), (0, 3), (0, 4), (1,

→˓2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (0, 1, 2), (0, 1, 3), (0, 1, 4),
→˓ (0, 2, 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3,
→˓4), (0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4), (0, 2, 3, 4), (1, 2, 3, 4)] --
→˓> [(0,), (1,), (2,), (3,), (4,), (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1,
→˓ 3), (1, 4), (2, 3), (2, 4), (3, 4), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2,
→˓ 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), (0,
→˓1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4), (0, 2, 3, 4), (1, 2, 3, 4)]
sage: len(S4.nondegenerate_simplices())
2
sage: S4.homology(4)
Z

The associated maps:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: W = S1.wedge(T) # wedge, constructed as a pushout
sage: W.defining_map(1)
Simplicial set morphism:

From: Point
To: S^1 x S^1
Defn: Constant map at (v_0, v_0)

sage: W.structure_map(0)
Simplicial set morphism:

From: S^1
To: Wedge: (S^1 v S^1 x S^1)
Defn: [v_0, sigma_1] --> [*, sigma_1]

sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})

The maps 𝑓 : 𝑆1 → 𝑇 and 1 : 𝑇 → 𝑇 induce a map 𝑆1 ∨ 𝑇 → 𝑇 :
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sage: g = W.universal_property(f, Hom(T,T).identity())
sage: g.domain() == W
True
sage: g.codomain() == T
True

quotient(subcomplex, vertex_name=’*’)
Return the quotient of this simplicial set by subcomplex.

That is, subcomplex is replaced by a vertex.

INPUT:

•subcomplex – subsimplicial set of this simplicial set, or a list, tuple, or set of simplices defining a
subsimplicial set.

•vertex_name (optional) – string, name to be given to the new vertex. By default, use '*'.

In Sage, from a quotient simplicial set, you can recover the ambient space, the subcomplex, and (if the
ambient space is finite) the quotient map.

Base points: if the original simplicial set has a base point not contained in subcomplex and if the original
simplicial set is finite, then use its image as the base point for the quotient. In all other cases, * is the base
point.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, w), f: (v, w)})
sage: Y = X.quotient([f])
sage: Y.nondegenerate_simplices()
[*, e]
sage: Y.homology(1)
Z

sage: E = SimplicialSet({e: (v, w)})
sage: Z = E.quotient([v, w])
sage: Z.nondegenerate_simplices()
[*, e]
sage: Z.homology(1)
Z

sage: F = E.quotient([v])
sage: F.nondegenerate_simplices()
[*, w, e]
sage: F.base_point()

*

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 0 over Finite Field of size 2,
2: Vector space of dimension 0 over Finite Field of size 2,
3: Vector space of dimension 1 over Finite Field of size 2,
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4: Vector space of dimension 1 over Finite Field of size 2,
5: Vector space of dimension 1 over Finite Field of size 2}

sage: RP5_2.ambient()
RP^5
sage: RP5_2.subcomplex()
Simplicial set with 3 non-degenerate simplices
sage: RP5_2.quotient_map()
Simplicial set morphism:

From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*, s_

→˓0 *, s_1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]

Behavior of base points:

sage: K = simplicial_sets.Simplex(3)
sage: K.is_pointed()
False
sage: L = K.subsimplicial_set([K.n_cells(1)[-1]])
sage: L.nondegenerate_simplices()
[(2,), (3,), (2, 3)]
sage: K.quotient([K.n_cells(1)[-1]]).base_point()

*

sage: K = K.set_base_point(K.n_cells(0)[0])
sage: K.base_point()
(0,)
sage: L = K.subsimplicial_set([K.n_cells(1)[-1]])
sage: L.nondegenerate_simplices()
[(2,), (3,), (2, 3)]
sage: K.quotient(L).base_point()
(0,)

reduce()
Reduce this simplicial set.

That is, take the quotient by a spanning tree of the 1-skeleton, so that the resulting simplicial set has only
one vertex. This only makes sense if the simplicial set is connected, so raise an error if not. If already
reduced, return itself.

EXAMPLES:

sage: K = simplicial_sets.Simplex(2)
sage: K.is_reduced()
False
sage: X = K.reduce()
sage: X.is_reduced()
True

X is reduced, so calling reduce on it again returns X itself:

sage: X is X.reduce()
True
sage: K is K.reduce()
False

Raise an error for disconnected simplicial sets:
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sage: S0 = simplicial_sets.Sphere(0)
sage: S0.reduce()
Traceback (most recent call last):
...
ValueError: this simplicial set is not connected

rename_latex(s)
Rename or set the LaTeX name for this simplicial set.

INPUT:

•s – string, the LaTeX representation. Or s can be None, in which case the LaTeX name is unset.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: X = SimplicialSet({v: None}, latex_name='*')
sage: latex(X)

*
sage: X.rename_latex('x_0')
sage: latex(X)
x_0

subsimplicial_set(simplices)
Return the sub-simplicial set of this simplicial set determined by simplices, a set of nondegenerate
simplices.

INPUT:

•simplices – set, list, or tuple of nondegenerate simplices in this simplicial set, or a simplicial
complex – see below.

Each sub-simplicial set comes equipped with an inclusion map to its ambient space, and you can easily
recover its ambient space.

If simplices is a simplicial complex, then the original simplicial set should itself have been converted
from a simplicial complex, and simplices should be a subcomplex of that.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')

sage: X = SimplicialSet({e: (v, w), f: (w, v)})
sage: Y = X.subsimplicial_set([e])
sage: Y
Simplicial set with 3 non-degenerate simplices
sage: Y.nondegenerate_simplices()
[v, w, e]

sage: S3 = simplicial_complexes.Sphere(3)
sage: K = SimplicialSet(S3)
sage: tau = K.n_cells(3)[0]
sage: tau.dimension()
3
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sage: K.subsimplicial_set([tau])
Simplicial set with 15 non-degenerate simplices

A subsimplicial set knows about its ambient space and the inclusion map into it:

sage: RP4 = simplicial_sets.RealProjectiveSpace(4)
sage: M = RP4.n_skeleton(2)
sage: M
Simplicial set with 3 non-degenerate simplices
sage: M.ambient_space()
RP^4
sage: M.inclusion_map()
Simplicial set morphism:

From: Simplicial set with 3 non-degenerate simplices
To: RP^4
Defn: [1, f, f * f] --> [1, f, f * f]

An infinite ambient simplicial set:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: BxB = B.product(B)
sage: BxB.n_cells(2)[5:]
[(s_0 f, s_1 f), (s_1 f, f * f), (s_1 f, s_0 f), (s_1 s_0 1, f * f)]
sage: BxB.subsimplicial_set(BxB.n_cells(2)[5:])
Simplicial set with 8 non-degenerate simplices

suspension(n=1)
Return the (reduced) 𝑛-th suspension of this simplicial set.

INPUT:

•n (optional, default 1) – integer, suspend this many times.

If this simplicial set 𝑋 is not pointed, return the suspension: the quotient 𝐶𝑋/𝑋 , where 𝐶𝑋 is the
(ordinary, unreduced) cone on 𝑋 . If 𝑋 is pointed, then use the reduced cone instead, and so return the
reduced suspension.

EXAMPLES:

sage: RP4 = simplicial_sets.RealProjectiveSpace(4)
sage: S1 = simplicial_sets.Sphere(1)
sage: SigmaRP4 = RP4.suspension()
sage: S1_smash_RP4 = S1.smash_product(RP4)
sage: SigmaRP4.homology() == S1_smash_RP4.homology()
True

The version of the suspension obtained by the smash product is typically less efficient than the reduced
suspension produced here:

sage: SigmaRP4.f_vector()
[1, 0, 1, 1, 1, 1]
sage: S1_smash_RP4.f_vector()
[1, 1, 4, 6, 8, 5]

wedge(*others)
Return the wedge sum of this pointed simplicial set with others.

•others – one or several simplicial sets
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This constructs the quotient of the disjoint union in which the base points of all of the simplicial sets have
been identified. This is the coproduct in the category of pointed simplicial sets.

This raises an error if any of the factors is not pointed.

From the wedge, you can access the factors, and if the simplicial sets involved are all finite, you can also
access the inclusion map of each factor into the wedge, as well as the projection map onto each factor.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: w = AbstractSimplex(0, name='w')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, v)}, base_point=v)
sage: Y = SimplicialSet({f: (w, w)}, base_point=w)
sage: W = X.wedge(Y)
sage: W.nondegenerate_simplices()
[*, e, f]
sage: W.homology()
{0: 0, 1: Z x Z}
sage: S2 = simplicial_sets.Sphere(2)
sage: X.wedge(S2).homology(reduced=False)
{0: Z, 1: Z, 2: Z}
sage: X.wedge(X).nondegenerate_simplices()
[*, e, e]

sage: S3 = simplicial_sets.Sphere(3)
sage: W = S2.wedge(S3, S2)
sage: W.inclusion_map(2)
Simplicial set morphism:

From: S^2
To: Wedge: (S^2 v S^3 v S^2)
Defn: [v_0, sigma_2] --> [*, sigma_2]

sage: W.projection_map(1)
Simplicial set morphism:

From: Wedge: (S^2 v S^3 v S^2)
To: Quotient: (Wedge: (S^2 v S^3 v S^2)/Simplicial set with 3 non-

→˓degenerate simplices)
Defn: [*, sigma_2, sigma_2, sigma_3] --> [*, s_1 s_0 *, s_1 s_0 *, sigma_3]

Note that the codomain of the projection map is not identical to the original S2, but is instead a quotient
of the wedge which is isomorphic to S2:

sage: S2.f_vector()
[1, 0, 1]
sage: W.projection_map(2).codomain().f_vector()
[1, 0, 1]
sage: (W.projection_map(2) * W.inclusion_map(2)).is_bijective()
True

class sage.homology.simplicial_set.SimplicialSet_finite(data, base_point=None,
name=None, check=True,
category=None, la-
tex_name=None)

Bases: sage.homology.simplicial_set.SimplicialSet_arbitrary , sage.homology.
cell_complex.GenericCellComplex

A finite simplicial set.
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A simplicial set 𝑋 is a collection of sets 𝑋𝑛, the n-simplices, indexed by the non-negative integers, together
with face maps 𝑑𝑖 and degeneracy maps 𝑠𝑗 . A simplex is degenerate if it is in the image of some 𝑠𝑗 , and a
simplicial set is finite if there are only finitely many non-degenerate simplices.

INPUT:

•data – the data defining the simplicial set. See below for details.

•base_point (optional, default None) – 0-simplex in this simplicial set, its base point

•name (optional, defaul None) – string, the name of the simplicial set

•check (optional, default True) – boolean. If True, check the simplicial identity on the face maps when
defining the simplicial set.

•category (optional, default None) – the category in which to define this simplicial set. The default is
either finite simplicial sets or finite pointed simplicial sets, depending on whether a base point is defined.

•latex_name (optional, default None) – string, the LaTeX representation of the simplicial set.

data should have one of the following forms: it could be a simplicial complex or ∆-complex, in case it is
converted to a simplicial set. Alternatively, it could be a dictionary. The keys are the nondegenerate simplices of
the simplicial set, and the value corresponding to a simplex 𝜎 is a tuple listing the faces of 𝜎. The 0-dimensional
simplices may be omitted from data if they (or their degeneracies) are faces of other simplices; otherwise they
must be included with value None.

See simplicial_set and the methods for simplicial sets for more information and examples.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: u = AbstractSimplex(0, name='u')
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')

In the following simplicial set, u is an isolated vertex:

sage: X = SimplicialSet({e: (v,w), f: (w,w), u: None})
sage: X
Simplicial set with 5 non-degenerate simplices
sage: X.rename('X')
sage: X
X
sage: X = SimplicialSet({e: (v,w), f: (w,w), u: None}, name='Y')
sage: X
Y

algebraic_topological_model(base_ring=None)
Return the algebraic topological model for this simplicial set with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

•base_ring - coefficient ring (optional, default QQ). Must be a field.

Denote by 𝐶 the chain complex associated to this simplicial set. The algebraic topological model is a chain
complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀 and
𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

•𝜑𝜑 = 0,
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•𝜋𝜑 = 0,

•𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

•chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

•the chain complex 𝑀

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.
pi().codomain(), respectively.

EXAMPLES:

sage: RP2 = simplicial_sets.RealProjectiveSpace(2)
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}

sage: T = simplicial_sets.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

chain_complex(dimensions=None, base_ring=Integer Ring, augmented=False, cochain=False, ver-
bose=False, subcomplex=None, check=False)

Return the normalized chain complex.

INPUT:

•dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of integers,
compute the chain complex in those dimensions, setting the chain groups in all other dimensions to
zero.

•base_ring (optional, default ZZ) – commutative ring

•augmented (optional, default False) – if True, return the augmented chain complex (that is,
include a class in dimension −1 corresponding to the empty cell).

•cochain (optional, default False) – if True, return the cochain complex (that is, the dual of the
chain complex).

•verbose (optional, default False) – ignored.

•subcomplex (optional, default None) – if present, compute the chain complex relative to this sub-
complex.

•check (optional, default False) – If True, make sure that the chain complex is actually a chain
complex: the differentials are composable and their product is zero.

The normalized chain complex of a simplicial set is isomorphic to the chain complex obtained by modding
out by degenerate simplices, and the latter is what is actually constructed here.

EXAMPLES:

160 Chapter 12. Simplicial sets



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: degen = v.apply_degeneracies(1, 0) # s_1 s_0 applied to v
sage: sigma = AbstractSimplex(3)
sage: S3 = SimplicialSet({sigma: (degen, degen, degen, degen)}) # the 3-sphere
sage: S3.chain_complex().homology()
{0: Z, 3: Z}
sage: S3.chain_complex(augmented=True).homology()
{-1: 0, 0: 0, 3: Z}
sage: S3.chain_complex(dimensions=range(3), base_ring=QQ).homology()
{0: Vector space of dimension 1 over Rational Field}

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5.chain_complex(subcomplex=RP2).homology()
{0: Z, 3: C2, 4: 0, 5: Z}

euler_characteristic()
Return the Euler characteristic of this simplicial set: the alternating sum over 𝑛 ≥ 0 of the number of
nondegenerate 𝑛-simplices.

EXAMPLES:

sage: simplicial_sets.RealProjectiveSpace(4).euler_characteristic()
1
sage: simplicial_sets.Sphere(6).euler_characteristic()
2
sage: simplicial_sets.KleinBottle().euler_characteristic()
0

f_vector()
Return the list of the number of non-degenerate simplices in each dimension.

Unlike for some other cell complexes in Sage, this does not include the empty simplex in dimension −1;
thus its 𝑖-th entry is the number of 𝑖-dimensional simplices.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: S0 = SimplicialSet({v: None, w: None})
sage: S0.f_vector()
[2]

sage: e = AbstractSimplex(1)
sage: S1 = SimplicialSet({e: (v, v)})
sage: S1.f_vector()
[1, 1]
sage: simplicial_sets.Sphere(3).f_vector()
[1, 0, 0, 1]

face_data()
Return the face-map data – a dictionary – defining this simplicial set.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
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sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, w)})
sage: X.face_data()[e]
(v, w)

sage: Y = SimplicialSet({v: None, w: None})
sage: v in Y.face_data()
True
sage: Y.face_data()[v] is None
True

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the subsimplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: degen = v.apply_degeneracies(0)
sage: tau = AbstractSimplex(2, name='tau')
sage: Y = SimplicialSet({tau: (degen, degen, degen), w: None})

Y is the disjoint union of a 2-sphere, with vertex v and non-degenerate 2-simplex tau, and a point w.

sage: Y.nondegenerate_simplices()
[v, w, tau]
sage: Y.n_skeleton(1).nondegenerate_simplices()
[v, w]
sage: Y.n_skeleton(2).nondegenerate_simplices()
[v, w, tau]

sage.homology.simplicial_set.all_degeneracies(n, l=1)
Return list of all composites of degeneracies (written in “admissible” form, i.e., as a strictly decreasing sequence)
of length 𝑙 on an 𝑛-simplex.

INPUT:

•n, l – integers

On an 𝑛-simplex, one may apply the degeneracies 𝑠𝑖 for 0 ≤ 𝑖 ≤ 𝑛. Then on the resulting 𝑛 + 1-simplex, one
may apply 𝑠𝑖 for 0 ≤ 𝑖 ≤ 𝑛 + 1, and so on. But one also has to take into account the simplicial identity

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 ≤ 𝑗.

There are
(︀
𝑙+𝑛
𝑛

)︀
such composites: each non-degenerate 𝑛-simplex leads to

(︀
𝑙+𝑛
𝑛

)︀
degenerate 𝑙 + 𝑛 simplices.

EXAMPLES:

sage: from sage.homology.simplicial_set import all_degeneracies
sage: all_degeneracies(0, 3)
{(2, 1, 0)}
sage: all_degeneracies(1, 1)
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{(0,), (1,)}
sage: all_degeneracies(1, 3)
{(2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1)}

sage.homology.simplicial_set.face_degeneracies(m, I)
Return the result of applying the face map 𝑑𝑚 to the iterated degeneracy 𝑠𝐼 = 𝑠𝑖1𝑠𝑖2 ...𝑠𝑖𝑛 .

INPUT:

•m – integer

•I – tuple (i_1, i_2, ..., i_n) of integers. We assume that this sequence is strictly decreasing.

Using the simplicial identities (see simplicial_set), we can rewrite

𝑑𝑚𝑠𝑖1𝑠𝑖2 ...𝑠𝑖𝑛

in one of the forms

𝑠𝑗1𝑠𝑗2 ...𝑠𝑗𝑛𝑑𝑡, 𝑠𝑗1𝑠𝑗2 ...𝑠𝑗𝑛−1 .

OUTPUT: the pair (J, t) or (J, None). J is returned as a list.

EXAMPLES:

sage: from sage.homology.simplicial_set import face_degeneracies
sage: face_degeneracies(0, (1, 0))
([0], None)
sage: face_degeneracies(1, (1, 0))
([0], None)
sage: face_degeneracies(2, (1, 0))
([0], None)
sage: face_degeneracies(3, (1, 0))
([1, 0], 1)
sage: face_degeneracies(3, ())
([], 3)

sage.homology.simplicial_set.shrink_simplicial_complex(K)
Convert the simplicial complex K to a “small” simplicial set.

First convert K naively, then mod out by a large contractible subcomplex, as found by
simplicial_complex.SimplicialComplex._contractible_subcomplex(). This will
produce a simplicial set no larger than, and sometimes much smaller than, the initial simplicial complex.

EXAMPLES:

sage: from sage.homology.simplicial_set import shrink_simplicial_complex
sage: K = simplicial_complexes.Simplex(3)
sage: X = shrink_simplicial_complex(K)
sage: X.f_vector()
[1]

sage: Y = simplicial_complexes.Sphere(2)
sage: S2 = shrink_simplicial_complex(Y)
sage: S2
Quotient: (Simplicial set with 14 non-degenerate simplices/Simplicial set with 13
→˓non-degenerate simplices)
sage: S2.f_vector()
[1, 0, 1]
sage: S2.homology()
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{0: 0, 1: 0, 2: Z}

sage: Z = simplicial_complexes.SurfaceOfGenus(3)
sage: Z.f_vector()
[1, 15, 57, 38]
sage: Z.homology()
{0: 0, 1: Z^6, 2: Z}
sage: M = shrink_simplicial_complex(Z)
sage: M.f_vector()
[1, 32, 27]
sage: M.homology()
{0: 0, 1: Z^6, 2: Z}

sage.homology.simplicial_set.standardize_degeneracies(*L)
Return list of indices of degeneracy maps in standard (decreasing) order.

INPUT:

•L – list of integers, representing a composition of degeneracies in a simplicial set.

OUTPUT: an equivalent list of degeneracies, standardized to be written in decreasing order, using the simplicial
identity

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 ≤ 𝑗.

For example, 𝑠0𝑠2 = 𝑠3𝑠0 and 𝑠0𝑠0 = 𝑠1𝑠0.

EXAMPLES:

sage: from sage.homology.simplicial_set import standardize_degeneracies
sage: standardize_degeneracies(0, 0)
(1, 0)
sage: standardize_degeneracies(0, 0, 0, 0)
(3, 2, 1, 0)
sage: standardize_degeneracies(1, 2)
(3, 1)

sage.homology.simplicial_set.standardize_face_maps(*L)
Return list of indices of face maps in standard (non-increasing) order.

INPUT:

•L – list of integers, representing a composition of face maps in a simplicial set.

OUTPUT: an equivalent list of face maps, standardized to be written in non-increasing order, using the simplicial
identity

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗.

For example, 𝑑0𝑑2 = 𝑑1𝑑0 and 𝑑0𝑑1 = 𝑑0𝑑0.

EXAMPLES:

sage: from sage.homology.simplicial_set import standardize_face_maps
sage: standardize_face_maps(0, 1)
(0, 0)
sage: standardize_face_maps(0, 2)
(1, 0)
sage: standardize_face_maps(1, 3, 5)
(3, 2, 1)
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CHAPTER

THIRTEEN

METHODS OF CONSTRUCTING SIMPLICIAL SETS

This implements various constructions on simplicial sets: subsimplicial sets, pullbacks, products, pushouts, quotients,
wedges, disjoint unions, smash products, cones, and suspensions. The best way to access these is with methods
attached to simplicial sets themselves, as in the following.

EXAMPLES:

sage: K = simplicial_sets.Simplex(1)
sage: square = K.product(K)

sage: K = simplicial_sets.Simplex(1)
sage: endpoints = K.n_skeleton(0)
sage: circle = K.quotient(endpoints)

The mapping cone of a morphism of simplicial sets is constructed as a pushout:

sage: eta = simplicial_sets.HopfMap()
sage: CP2 = eta.mapping_cone()
sage: type(CP2)
<class 'sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets_finite_
→˓with_category'>

See the main documentation for simplicial sets, as well as for the classes for pushouts, pullbacks, etc., for more details.

Many of the classes defined here inherit from sage.structure.unique_representation.
UniqueRepresentation. This means that they produce identical output if given the same input, so for
example, if K is a simplicial set, calling K.suspension() twice returns the same result both times:

sage: CP2.suspension() is CP2.suspension()
True

So on one hand, a command like simplicial_sets.Sphere(2) constructs a distinct copy of a 2-sphere each
time it is called; on the other, once you have constructed a 2-sphere, then constructing its cone, its suspension, its
product with another simplicial set, etc., will give you the same result each time:

sage: simplicial_sets.Sphere(2) == simplicial_sets.Sphere(2)
False
sage: S2 = simplicial_sets.Sphere(2)
sage: S2.product(S2) == S2.product(S2)
True
sage: S2.disjoint_union(CP2, S2) == S2.disjoint_union(CP2, S2)
True

AUTHORS:

• John H. Palmieri (2016-07)
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class sage.homology.simplicial_set_constructions.ConeOfSimplicialSet(base)
Bases: sage.homology.simplicial_set.SimplicialSet_arbitrary , sage.structure.
unique_representation.UniqueRepresentation

Return the unreduced cone on a finite simplicial set.

INPUT:

•base – return the cone on this simplicial set.

Add a point * (which will become the base point) and for each simplex 𝜎 in base, add both 𝜎 and a simplex
made up of * and 𝜎 (topologically, form the join of * and 𝜎).

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, v, (v,*), e, (e,*)]
sage: CX.base_point()

*

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

In the case when the cone is infinite, the 𝑛-skeleton of the cone is computed as the 𝑛-skeleton of the cone
of the 𝑛-skeleton.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.disjoint_union(B)
sage: CX = B.cone()
sage: CX.n_skeleton(3).homology()
{0: 0, 1: 0, 2: 0, 3: Z}

class sage.homology.simplicial_set_constructions.ConeOfSimplicialSet_finite(base)
Bases: sage.homology.simplicial_set_constructions.ConeOfSimplicialSet, sage.
homology.simplicial_set.SimplicialSet_finite

Return the unreduced cone on a finite simplicial set.

INPUT:

•base – return the cone on this simplicial set.

Add a point * (which will become the base point) and for each simplex 𝜎 in base, add both 𝜎 and a simplex
made up of * and 𝜎 (topologically, form the join of * and 𝜎).

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
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sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, v, (v,*), e, (e,*)]
sage: CX.base_point()

*

base_as_subset()
If this is the cone 𝐶𝑋 on 𝑋 , return 𝑋 as a subsimplicial set.

EXAMPLES:

sage: X = simplicial_sets.RealProjectiveSpace(4).unset_base_point()
sage: Y = X.cone()
sage: Y.base_as_subset()
Simplicial set with 5 non-degenerate simplices
sage: Y.base_as_subset() == X
True

map_from_base()
If this is the cone 𝐶𝑋 on 𝑋 , return the inclusion map from 𝑋 .

EXAMPLES:

sage: X = simplicial_sets.Simplex(2).n_skeleton(1)
sage: Y = X.cone()
sage: Y.map_from_base()
Simplicial set morphism:

From: Simplicial set with 6 non-degenerate simplices
To: Cone of Simplicial set with 6 non-degenerate simplices
Defn: [(0,), (1,), (2,), (0, 1), (0, 2), (1, 2)] --> [(0,), (1,), (2,), (0,

→˓1), (0, 2), (1, 2)]

class sage.homology.simplicial_set_constructions.DisjointUnionOfSimplicialSets(factors=None)
Bases: sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets,
sage.homology.simplicial_set_constructions.Factors

Return the disjoint union of simplicial sets.

INPUT:

•factors – a list or tuple of simplicial sets

Return the disjoint union of the simplicial sets in factors. The disjoint union comes equipped with a map
from each factor, as long as all of the factors are finite.

EXAMPLES:

sage: CP2 = simplicial_sets.ComplexProjectiveSpace(2)
sage: K = simplicial_sets.KleinBottle()
sage: W = CP2.disjoint_union(K)
sage: W.homology()
{0: Z, 1: Z x C2, 2: Z, 3: 0, 4: Z}

sage: W.inclusion_map(1)
Simplicial set morphism:
From: Klein bottle
To: Disjoint union: (CP^2 u Klein bottle)
Defn: [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_

→˓{2,1}] --> [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0},
→˓Delta_{2,1}]
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n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

The 𝑛-skeleton of the disjoint union is computed as the disjoint union of the 𝑛-skeleta of the component
simplicial sets.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: T = simplicial_sets.Torus()
sage: X = B.disjoint_union(T)
sage: X.n_skeleton(3).homology()
{0: Z, 1: Z x Z x C2, 2: Z, 3: Z}

summand(i)
Return the 𝑖-th factor of this construction of simplicial sets.

INPUT:

•i – integer, the index of the factor

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: K = S2.disjoint_union(S3)
sage: K.factor(0)
S^2
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.wedge(S3, B)
sage: X.factor(1)
S^3
sage: X.factor(2)
Classifying space of Multiplicative Abelian group isomorphic to C2

summands()
Return the factors involved in this construction of simplicial sets.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.wedge(S3).factors() == (S2, S3)
True
sage: S2.product(S3).factors()[0]
S^2

class sage.homology.simplicial_set_constructions.DisjointUnionOfSimplicialSets_finite(factors=None)
Bases: sage.homology.simplicial_set_constructions.DisjointUnionOfSimplicialSets,
sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets_finite

The disjoint union of finite simplicial sets.
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inclusion_map(i)
Return the inclusion map of the 𝑖-th factor.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
sage: W = S1.disjoint_union(S2, S1)
sage: W.inclusion_map(1)
Simplicial set morphism:

From: S^2
To: Disjoint union: (S^1 u S^2 u S^1)
Defn: [v_0, sigma_2] --> [v_0, sigma_2]

sage: W.inclusion_map(0).domain()
S^1
sage: W.inclusion_map(2).domain()
S^1

class sage.homology.simplicial_set_constructions.Factors
Bases: object

Classes which inherit from this should define a _factors attribute for their instances, and this class ac-
cesses that attribute. This is used by ProductOfSimplicialSets, WedgeOfSimplicialSets, and
DisjointUnionOfSimplicialSets.

factor(i)
Return the 𝑖-th factor of this construction of simplicial sets.

INPUT:

•i – integer, the index of the factor

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: K = S2.disjoint_union(S3)
sage: K.factor(0)
S^2
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.wedge(S3, B)
sage: X.factor(1)
S^3
sage: X.factor(2)
Classifying space of Multiplicative Abelian group isomorphic to C2

factors()
Return the factors involved in this construction of simplicial sets.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.wedge(S3).factors() == (S2, S3)
True
sage: S2.product(S3).factors()[0]
S^2

class sage.homology.simplicial_set_constructions.ProductOfSimplicialSets(factors=None)
Bases: sage.homology.simplicial_set_constructions.PullbackOfSimplicialSets,
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sage.homology.simplicial_set_constructions.Factors

Return the product of simplicial sets.

INPUT:

•factors – a list or tuple of simplicial sets

Return the product of the simplicial sets in factors.

If 𝑋 and 𝑌 are simplicial sets, then their product 𝑋 × 𝑌 is defined to be the simplicial set with 𝑛-simplices
𝑋𝑛 × 𝑌𝑛. Therefore the simplices in the product have the form (𝑠𝐼𝜎, 𝑠𝐽𝜏), where 𝑠𝐼 = 𝑠𝑖1 ...𝑠𝑖𝑝 and 𝑠𝐽 =
𝑠𝑗1 ...𝑠𝑗𝑞 are composites of degeneracy maps, written in decreasing order. Such a simplex is nondegenerate if
the indices 𝐼 and 𝐽 are disjoint. Therefore if 𝜎 and 𝜏 are nondegenerate simplices of dimensions 𝑚 and 𝑛, in
the product they will lead to nondegenerate simplices up to dimension 𝑚 + 𝑛, and no further.

This extends in the more or less obvious way to products with more than two factors: with three factors, a
simplex (𝑠𝐼𝜎, 𝑠𝐽𝜏, 𝑠𝐾𝜌) is nondegenerate if 𝐼 ∩ 𝐽 ∩𝐾 is empty, etc.

If a simplicial set is constructed as a product, the factors are recorded and are accessible via the method
Factors.factors(). If it is constructed as a product and then copied, this information is lost.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, w)})
sage: square = X.product(X)

square is now the standard triangulation of the square: 4 vertices, 5 edges (the four on the border plus the
diagonal), 2 triangles:

sage: square.f_vector()
[4, 5, 2]

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

Since S1 is pointed, so is T:

sage: S1.is_pointed()
True
sage: S1.base_point()
v_0
sage: T.is_pointed()
True
sage: T.base_point()
(v_0, v_0)

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: Z = S2.product(S3)
sage: Z.homology()
{0: 0, 1: 0, 2: Z, 3: Z, 4: 0, 5: Z}

Products involving infinite simplicial sets:
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sage: B = simplicial_sets.ClassifyingSpace(groups.misc.MultiplicativeAbelian([2]))
sage: B.rename('RP^oo')
sage: X = B.product(B)
sage: X
RP^oo x RP^oo
sage: X.n_cells(1)
[(f, f), (f, s_0 1), (s_0 1, f)]
sage: X.homology(range(3), base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 2 over Finite Field of size 2,
2: Vector space of dimension 3 over Finite Field of size 2}

sage: Y = B.product(S2)
sage: Y.homology(range(5), base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 2 over Finite Field of size 2,
3: Vector space of dimension 2 over Finite Field of size 2,
4: Vector space of dimension 2 over Finite Field of size 2}

factor(i, as_subset=False)
Return the 𝑖-th factor of the product.

INPUT:

•i – integer, the index of the factor

•as_subset – boolean, optional (default False)

If as_subset is True, return the 𝑖-th factor as a subsimplicial set of the product, identifying it with
its product with the base point in each other factor. As a subsimplicial set, it comes equipped with an
inclusion map. This option will raise an error if any factor does not have a base point.

If as_subset is False, return the 𝑖-th factor in its original form as a simplicial set.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: K = S2.product(S3)
sage: K.factor(0)
S^2

sage: K.factor(0, as_subset=True)
Simplicial set with 2 non-degenerate simplices
sage: K.factor(0, as_subset=True).homology()
{0: 0, 1: 0, 2: Z}

sage: K.factor(0) is S2
True
sage: K.factor(0, as_subset=True) is S2
False

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension
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In the finite case, this returns the ordinary 𝑛-skeleton. In the infinite case, it computes the 𝑛-skeleton of
the product of the 𝑛-skeleta of the factors.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.product(S3).n_skeleton(2)
Simplicial set with 2 non-degenerate simplices
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.product(B)
sage: X.n_skeleton(2)
Simplicial set with 13 non-degenerate simplices

class sage.homology.simplicial_set_constructions.ProductOfSimplicialSets_finite(factors=None)
Bases: sage.homology.simplicial_set_constructions.ProductOfSimplicialSets,
sage.homology.simplicial_set_constructions.PullbackOfSimplicialSets_finite

The product of finite simplicial sets.

When the factors are all finite, there are more methods available for the resulting product, as compared to
products with infinite factors: projection maps, the wedge as a subcomplex, and the fat wedge as a subcomplex.
See projection_map(), wedge_as_subset(), and fat_wedge_as_subset()

fat_wedge_as_subset()
Return the fat wedge as a subsimplicial set of this product of pointed simplicial sets.

The fat wedge consists of those terms where at least one factor is the base point. Thus with two factors
this is the ordinary wedge, but with more factors, it is larger.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: X = S1.product(S1, S1)
sage: W = X.fat_wedge_as_subset()
sage: W.homology()
{0: 0, 1: Z x Z x Z, 2: Z x Z x Z}

projection_map(i)
Return the map projecting onto the 𝑖-th factor.

INPUT:

•i – integer, the index of the projection map

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: f_0 = T.projection_map(0)
sage: f_1 = T.projection_map(1)
sage: m_0 = f_0.induced_homology_morphism().to_matrix(1) # matrix in dim 1
sage: m_1 = f_1.induced_homology_morphism().to_matrix(1)
sage: m_0.rank()
1
sage: m_0 == m_1
False

wedge_as_subset()
Return the wedge as a subsimplicial set of this product of pointed simplicial sets.
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This will raise an error if any factor is not pointed.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: w = AbstractSimplex(0, name='w')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, v)}, base_point=v)
sage: Y = SimplicialSet({f: (w, w)}, base_point=w)
sage: P = X.product(Y)
sage: W = P.wedge_as_subset()
sage: W.nondegenerate_simplices()
[(v, w), (e, s_0 w), (s_0 v, f)]
sage: W.homology()
{0: 0, 1: Z x Z}

class sage.homology.simplicial_set_constructions.PullbackOfSimplicialSets(maps=None)
Bases: sage.homology.simplicial_set.SimplicialSet_arbitrary , sage.structure.
unique_representation.UniqueRepresentation

Return the pullback obtained from the morphisms maps.

INPUT:

•maps – a list or tuple of morphisms of simplicial sets

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑋 . If no maps are given, return the one-point simplicial
set. Otherwise, given a simplicial set 𝑌 and maps 𝑓𝑖 : 𝑋𝑖 → 𝑌 for 0 ≤ 𝑖 ≤ 𝑚, construct the pullback
𝑃 : see Wikipedia article Pullback_(category_theory). This is constructed as pullbacks of sets for each set of
𝑛-simplices, so 𝑃𝑛 is the subset of the product

∏︀
(𝑋𝑖)𝑛 consisting of those elements (𝑥𝑖) for which 𝑓𝑖(𝑥𝑖) =

𝑓𝑗(𝑥𝑗) for all 𝑖, 𝑗.

This is pointed if the maps 𝑓𝑖 are.

EXAMPLES:

The pullback of a quotient map by a subsimplicial set and the base point map gives a simplicial set isomorphic
to the original subcomplex:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: X = K.pullback(K.quotient_map(), K.base_point_map())
sage: X.homology() == RP5.n_skeleton(2).homology()
True

Pullbacks of identity maps:

sage: S2 = simplicial_sets.Sphere(2)
sage: one = S2.Hom(S2).identity()
sage: P = S2.pullback(one, one)
sage: P.homology()
{0: 0, 1: 0, 2: Z}

The pullback is constructed in terms of the product – of course, the product is a special case of the pullback –
and the simplices are named appropriately:

sage: P.nondegenerate_simplices()
[(v_0, v_0), (sigma_2, sigma_2)]
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defining_map(i)
Return the 𝑖-th map defining the pullback.

INPUT:

•i – integer

If this pullback was constructed as Y.pullback(f_0, f_1, ...), this returns 𝑓𝑖.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: Y = K.pullback(K.quotient_map(), K.base_point_map())
sage: Y.defining_map(1)
Simplicial set morphism:

From: Point
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: Constant map at *

sage: Y.defining_map(0).domain()
RP^5

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

The 𝑛-skeleton of the pullback is computed as the pullback of the 𝑛-skeleta of the component simplicial
sets.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: one = Hom(B,B).identity()
sage: c = Hom(B,B).constant_map()
sage: P = B.pullback(one, c)
sage: P.n_skeleton(2)
Pullback of maps:

Simplicial set endomorphism of Simplicial set with 3 non-degenerate
→˓simplices

Defn: Identity map
Simplicial set endomorphism of Simplicial set with 3 non-degenerate

→˓simplices
Defn: Constant map at 1

sage: P.n_skeleton(3).homology()
{0: 0, 1: C2, 2: 0, 3: Z}

class sage.homology.simplicial_set_constructions.PullbackOfSimplicialSets_finite(maps=None)
Bases: sage.homology.simplicial_set_constructions.PullbackOfSimplicialSets,
sage.homology.simplicial_set.SimplicialSet_finite

The pullback of finite simplicial sets obtained from maps.

When the simplicial sets involved are all finite, there are more methods available to the resulting pullback, as
compared to case when some of the components are infinite: the structure maps from the pullback and the
pullback’s universal property: see structure_map() and universal_property().
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projection_map(i)
Return the 𝑖-th projection map of the pullback.

INPUT:

•i – integer

If this pullback 𝑃 was constructed as Y.pullback(f_0, f_1, ...), where 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then
there are structure maps 𝑓𝑖 : 𝑃 → 𝑋𝑖. This method constructs 𝑓𝑖.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: Y = K.pullback(K.quotient_map(), K.base_point_map())
sage: Y.structure_map(0)
Simplicial set morphism:

From: Pullback of maps:
Simplicial set morphism:
From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*,

→˓s_0 *, s_1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]
Simplicial set morphism:
From: Point
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: Constant map at *

To: RP^5
Defn: [(1, *), (f, s_0 *), (f * f, s_1 s_0 *)] --> [1, f, f * f]

sage: Y.structure_map(1).codomain()
Point

These maps are also accessible via projection_map:

sage: Y.projection_map(1).codomain()
Point

structure_map(i)
Return the 𝑖-th projection map of the pullback.

INPUT:

•i – integer

If this pullback 𝑃 was constructed as Y.pullback(f_0, f_1, ...), where 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then
there are structure maps 𝑓𝑖 : 𝑃 → 𝑋𝑖. This method constructs 𝑓𝑖.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: Y = K.pullback(K.quotient_map(), K.base_point_map())
sage: Y.structure_map(0)
Simplicial set morphism:

From: Pullback of maps:
Simplicial set morphism:
From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*,

→˓s_0 *, s_1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]
Simplicial set morphism:
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From: Point
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: Constant map at *

To: RP^5
Defn: [(1, *), (f, s_0 *), (f * f, s_1 s_0 *)] --> [1, f, f * f]

sage: Y.structure_map(1).codomain()
Point

These maps are also accessible via projection_map:

sage: Y.projection_map(1).codomain()
Point

universal_property(*maps)
Return the map induced by maps.

INPUT:

•maps – maps from a simplicial set 𝑍 to the “factors” 𝑋𝑖 forming the pullback.

If the pullback 𝑃 is formed by maps 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then given maps 𝑔𝑖 : 𝑍 → 𝑋𝑖 such that 𝑓𝑖𝑔𝑖 = 𝑓𝑗𝑔𝑗 for
all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑍 → 𝑃 making the appropriate diagram commute. This constructs
that map.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})
sage: P = S1.product(T)
sage: P.universal_property(S1.Hom(S1).identity(), f)
Simplicial set morphism:

From: S^1
To: S^1 x S^1 x S^1
Defn: [v_0, sigma_1] --> [(v_0, (v_0, v_0)), (sigma_1, (sigma_1, s_0 v_0))]

class sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets(maps=None,
ver-
tex_name=None)

Bases: sage.homology.simplicial_set.SimplicialSet_arbitrary , sage.structure.
unique_representation.UniqueRepresentation

Return the pushout obtained from the morphisms maps.

INPUT:

•maps – a list or tuple of morphisms of simplicial sets

•vertex_name – optional, default None

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑌 . If no maps are given, return the empty simplicial
set. Otherwise, given a simplicial set 𝑋 and maps 𝑓𝑖 : 𝑋 → 𝑌𝑖 for 0 ≤ 𝑖 ≤ 𝑚, construct the pushout 𝑃 : see
Wikipedia article Pushout_(category_theory). This is constructed as pushouts of sets for each set of 𝑛-simplices,
so 𝑃𝑛 is the disjoint union of the sets (𝑌𝑖)𝑛, with elements 𝑓𝑖(𝑥) identified for 𝑛-simplex 𝑥 in 𝑋 .

Simplices in the pushout are given names as follows: if a simplex comes from a single 𝑌𝑖, it inherits its name.
Otherwise it must come from a simplex (or several) in 𝑋 , and then it inherits one of those names, and it should
be the first alphabetically. For example, if vertices 𝑣, 𝑤, and 𝑧 in 𝑋 are glued together, then the resulting vertex
in the pushout will be called 𝑣.
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Base points are taken care of automatically: if each of the maps 𝑓𝑖 is pointed, so is the pushout. If 𝑋 is a point
or if 𝑋 is nonempty and any of the spaces 𝑌𝑖 is a point, use those for the base point. In all of these cases, if
vertex_name is None, generate the name of the base point automatically; otherwise, use vertex_name
for its name.

In all other cases, the pushout is not pointed.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: a = AbstractSimplex(0, name='a')
sage: b = AbstractSimplex(0, name='b')
sage: c = AbstractSimplex(0, name='c')
sage: e0 = AbstractSimplex(1, name='e_0')
sage: e1 = AbstractSimplex(1, name='e_1')
sage: e2 = AbstractSimplex(1, name='e_2')
sage: X = SimplicialSet({e2: (b, a)})
sage: Y0 = SimplicialSet({e2: (b,a), e0: (c,b), e1: (c,a)})
sage: Y1 = simplicial_sets.Simplex(0)
sage: f0_data = {a:a, b:b, e2: e2}
sage: v = Y1.n_cells(0)[0]
sage: f1_data = {a:v, b:v, e2:v.apply_degeneracies(0)}
sage: f0 = X.Hom(Y0)(f0_data)
sage: f1 = X.Hom(Y1)(f1_data)
sage: P = X.pushout(f0, f1)
sage: P.nondegenerate_simplices()
[a, c, e_0, e_1]

There are defining maps 𝑓𝑖 : 𝑋 → 𝑌𝑖 and structure maps 𝑓𝑖 : 𝑌𝑖 → 𝑃 ; the latter are only implemented in Sage
when each 𝑌𝑖 is finite.

sage: P.defining_map(0) == f0
True
sage: P.structure_map(1)
Simplicial set morphism:
From: 0-simplex
To: Pushout of maps:
Simplicial set morphism:

From: Simplicial set with 3 non-degenerate simplices
To: Simplicial set with 6 non-degenerate simplices
Defn: [a, b, e_2] --> [a, b, e_2]

Simplicial set morphism:
From: Simplicial set with 3 non-degenerate simplices
To: 0-simplex
Defn: Constant map at (0,)

Defn: Constant map at a
sage: P.structure_map(0).domain() == Y0
True
sage: P.structure_map(0).codomain() == P
True

An inefficient way of constructing a suspension for an unpointed set: take the pushout of two copies of the
inclusion map 𝑋 → 𝐶𝑋:

sage: T = simplicial_sets.Torus()
sage: T = T.unset_base_point()
sage: CT = T.cone()
sage: inc = CT.base_as_subset().inclusion_map()
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sage: P = T.pushout(inc, inc)
sage: P.homology()
{0: 0, 1: 0, 2: Z x Z, 3: Z}
sage: len(P.nondegenerate_simplices())
20

It is more efficient to construct the suspension as the quotient 𝐶𝑋/𝑋:

sage: len(CT.quotient(CT.base_as_subset()).nondegenerate_simplices())
8

It is more efficient still if the original simplicial set has a base point:

sage: T = simplicial_sets.Torus()
sage: len(T.suspension().nondegenerate_simplices())
6

sage: S1 = simplicial_sets.Sphere(1)
sage: pt = simplicial_sets.Point()
sage: bouquet = pt.pushout(S1.base_point_map(), S1.base_point_map(), S1.base_
→˓point_map())
sage: bouquet.homology(1)
Z x Z x Z

defining_map(i)
Return the 𝑖-th map defining the pushout.

INPUT:

•i – integer

If this pushout was constructed as X.pushout(f_0, f_1, ...), this returns 𝑓𝑖.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = simplicial_sets.Torus()
sage: X = S1.wedge(T) # a pushout
sage: X.defining_map(0)
Simplicial set morphism:

From: Point
To: S^1
Defn: Constant map at v_0

sage: X.defining_map(1).domain()
Point
sage: X.defining_map(1).codomain()
Torus

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

The 𝑛-skeleton of the pushout is computed as the pushout of the 𝑛-skeleta of the component simplicial
sets.

EXAMPLES:

178 Chapter 13. Methods of constructing simplicial sets



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: K = B.n_skeleton(3)
sage: Q = K.pushout(K.inclusion_map(), K.constant_map())
sage: Q.n_skeleton(5).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: Z, 5: Z}

Of course, computing the 𝑛-skeleton and then taking homology need not yield the same answer as asking
for homology through dimension 𝑛, since the latter computation will use the (𝑛 + 1)-skeleton:

sage: Q.homology(range(6))
{0: 0, 1: 0, 2: 0, 3: 0, 4: Z, 5: C2}

class sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets_finite(maps=None,
ver-
tex_name=None)

Bases: sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets,
sage.homology.simplicial_set.SimplicialSet_finite

The pushout of finite simplicial sets obtained from maps.

When the simplicial sets involved are all finite, there are more methods available to the resulting pushout, as
compared to case when some of the components are infinite: the structure maps to the pushout and the pushout’s
universal property: see structure_map() and universal_property().

structure_map(i)
Return the 𝑖-th structure map of the pushout.

INPUT:

•i – integer

If this pushout 𝑍 was constructed as X.pushout(f_0, f_1, ...), where 𝑓𝑖 : 𝑋 → 𝑌𝑖, then there
are structure maps 𝑓𝑖 : 𝑌𝑖 → 𝑍. This method constructs 𝑓𝑖.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = simplicial_sets.Torus()
sage: X = S1.disjoint_union(T) # a pushout
sage: X.structure_map(0)
Simplicial set morphism:

From: S^1
To: Disjoint union: (S^1 u Torus)
Defn: [v_0, sigma_1] --> [v_0, sigma_1]

sage: X.structure_map(1).domain()
Torus
sage: X.structure_map(1).codomain()
Disjoint union: (S^1 u Torus)

universal_property(*maps)
Return the map induced by maps

INPUT:

•maps – maps “factors” 𝑌𝑖 forming the pushout to a fixed simplicial set 𝑍.

If the pushout 𝑃 is formed by maps 𝑓𝑖 : 𝑋 → 𝑌𝑖, then given maps 𝑔𝑖 : 𝑌𝑖 → 𝑍 such that 𝑔𝑖𝑓𝑖 = 𝑔𝑗𝑓𝑗 for
all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑃 → 𝑍 making the appropriate diagram commute. This constructs
that map.
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EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: x = AbstractSimplex(0, name='x')
sage: evw = AbstractSimplex(1, name='vw')
sage: evx = AbstractSimplex(1, name='vx')
sage: ewx = AbstractSimplex(1, name='wx')
sage: X = SimplicialSet({evw: (w, v), evx: (x, v)})
sage: Y_0 = SimplicialSet({evw: (w, v), evx: (x, v), ewx: (x, w)})
sage: Y_1 = SimplicialSet({evx: (x, v)})

sage: f_0 = Hom(X, Y_0)({v:v, w:w, x:x, evw:evw, evx:evx})
sage: f_1 = Hom(X, Y_1)({v:v, w:v, x:x, evw:v.apply_degeneracies(0), evx:evx})
sage: P = X.pushout(f_0, f_1)

sage: one = Hom(Y_1, Y_1).identity()
sage: g = Hom(Y_0, Y_1)({v:v, w:v, x:x, evw:v.apply_degeneracies(0), evx:evx,
→˓ewx:evx})
sage: P.universal_property(g, one)
Simplicial set morphism:

From: Pushout of maps:
Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 6 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [v, w, x, vw, vx]

Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 3 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [v, v, x, s_0 v, vx]

To: Simplicial set with 3 non-degenerate simplices
Defn: [v, x, vx, wx] --> [v, x, vx, vx]

class sage.homology.simplicial_set_constructions.QuotientOfSimplicialSet(inclusion,
ver-
tex_name=’*’)

Bases: sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets

Return the quotient of a simplicial set by a subsimplicial set.

INPUT:

•inclusion – inclusion map of a subcomplex (= subsimplicial set) of a simplicial set

•vertex_name – optional, default '*'

A subcomplex 𝐴 comes equipped with the inclusion map 𝐴 → 𝑋 to its ambient complex 𝑋 , and this constructs
the quotient 𝑋/𝐴, collapsing 𝐴 to a point. The resulting point is called vertex_name, which is '*' by
default.

When the simplicial sets involved are finite, there is a QuotientOfSimplicialSet_finite.
quotient_map() method available.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2
Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
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sage: RP5_2.quotient_map()
Simplicial set morphism:
From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*, s_0 *,

→˓s_1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]

ambient()
Return the ambient space.

That is, if this quotient is 𝐾/𝐿, return 𝐾.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.ambient()
RP^5

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: K = B.n_skeleton(3)
sage: Q = B.quotient(K)
sage: Q.ambient()
Classifying space of Multiplicative Abelian group isomorphic to C2

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

The 𝑛-skeleton of the quotient is computed as the quotient of the 𝑛-skeleta.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: K = B.n_skeleton(3)
sage: Q = B.quotient(K)
sage: Q.n_skeleton(6)
Quotient: (Simplicial set with 7 non-degenerate simplices/Simplicial set with
→˓4 non-degenerate simplices)
sage: Q.n_skeleton(6).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: Z, 5: C2, 6: 0}

subcomplex()
Return the subcomplex space associated to this quotient.

That is, if this quotient is 𝐾/𝐿, return 𝐿.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.subcomplex()
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Simplicial set with 3 non-degenerate simplices

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: K = B.n_skeleton(3)
sage: Q = B.quotient(K)
sage: Q.subcomplex()
Simplicial set with 4 non-degenerate simplices

class sage.homology.simplicial_set_constructions.QuotientOfSimplicialSet_finite(inclusion,
ver-
tex_name=’*’)

Bases: sage.homology.simplicial_set_constructions.QuotientOfSimplicialSet,
sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets_finite

The quotient of finite simplicial sets.

When the simplicial sets involved are finite, there is a quotient_map() method available.

quotient_map()
Return the quotient map from the original simplicial set to the quotient.

EXAMPLES:

sage: K = simplicial_sets.Simplex(1)
sage: S1 = K.quotient(K.n_skeleton(0))
sage: q = S1.quotient_map()
sage: q
Simplicial set morphism:

From: 1-simplex
To: Quotient: (1-simplex/Simplicial set with 2 non-degenerate simplices)
Defn: [(0,), (1,), (0, 1)] --> [*, *, (0, 1)]

sage: q.domain() == K
True
sage: q.codomain() == S1
True

class sage.homology.simplicial_set_constructions.ReducedConeOfSimplicialSet(base)
Bases: sage.homology.simplicial_set_constructions.QuotientOfSimplicialSet

Return the reduced cone on a simplicial set.

INPUT:

•base – return the cone on this simplicial set.

Start with the unreduced cone: take base and add a point * (which will become the base point) and for each
simplex 𝜎 in base, add both 𝜎 and a simplex made up of * and 𝜎 (topologically, form the join of * and 𝜎).

Now reduce: take the quotient by the 1-simplex connecting the old base point to the new one.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: X = X.set_base_point(v)
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, e, (e,*)]
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n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

In the case when the cone is infinite, the 𝑛-skeleton of the cone is computed as the 𝑛-skeleton of the cone
of the 𝑛-skeleton.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.cone().n_skeleton(3).homology()
{0: 0, 1: 0, 2: 0, 3: Z}

class sage.homology.simplicial_set_constructions.ReducedConeOfSimplicialSet_finite(base)
Bases: sage.homology.simplicial_set_constructions.ReducedConeOfSimplicialSet,
sage.homology.simplicial_set_constructions.QuotientOfSimplicialSet_finite

Return the reduced cone on a simplicial set.

INPUT:

•base – return the cone on this simplicial set.

Start with the unreduced cone: take base and add a point * (which will become the base point) and for each
simplex 𝜎 in base, add both 𝜎 and a simplex made up of * and 𝜎 (topologically, form the join of * and 𝜎).

Now reduce: take the quotient by the 1-simplex connecting the old base point to the new one.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: X = X.set_base_point(v)
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, e, (e,*)]

map_from_base()
If this is the cone 𝐶𝑋 on 𝑋 , return the map from 𝑋 .

The map is defined to be the composite 𝑋 → 𝐶𝑋 → 𝐶𝑋 . This is used by the
SuspensionOfSimplicialSet_finite class to construct the reduced suspension: take the quo-
tient of the reduced cone by the image of 𝑋 therein.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: CS3 = S3.cone()
sage: CS3.map_from_base()
Simplicial set morphism:

From: S^3
To: Reduced cone of S^3
Defn: [v_0, sigma_3] --> [*, sigma_3]
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class sage.homology.simplicial_set_constructions.SmashProductOfSimplicialSets_finite(factors=None)
Bases: sage.homology.simplicial_set_constructions.QuotientOfSimplicialSet_finite,
sage.homology.simplicial_set_constructions.Factors

Return the smash product of finite pointed simplicial sets.

INPUT:

•factors – a list or tuple of simplicial sets

Return the smash product of the simplicial sets in factors: the smash product 𝑋 ∧ 𝑌 is defined to be the
quotient (𝑋 × 𝑌 )/(𝑋 ∨ 𝑌 ), where 𝑋 ∨ 𝑌 is the wedge sum.

Each element of factorsmust be finite and pointed. (As of July 2016, constructing the wedge as a subcomplex
of the product is only possible in Sage for finite simplicial sets.)

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: S2 = simplicial_sets.Sphere(2)
sage: T.smash_product(S2).homology() == T.suspension(2).homology()
True

class sage.homology.simplicial_set_constructions.SubSimplicialSet(data, ambi-
ent=None)

Bases: sage.homology.simplicial_set.SimplicialSet_finite, sage.structure.
unique_representation.UniqueRepresentation

Return a finite simplicial set as a subsimplicial set of another simplicial set.

This keeps track of the ambient simplicial set and the inclusion map from the subcomplex into it.

INPUT:

•data – the data defining the subset: a dictionary where the keys are simplices from the ambient simplicial
set and the values are their faces.

•ambient – the ambient simplicial set. If omitted, use the same simplicial set as the subset and the ambient
complex.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: K = simplicial_sets.KleinBottle()
sage: X = S3.disjoint_union(K)
sage: Y = X.structure_map(0).image() # the S3 summand
sage: Y.inclusion_map()
Simplicial set morphism:
From: Simplicial set with 2 non-degenerate simplices
To: Disjoint union: (S^3 u Klein bottle)
Defn: [v_0, sigma_3] --> [v_0, sigma_3]

sage: Y.ambient_space()
Disjoint union: (S^3 u Klein bottle)

ambient_space()
Return the simplicial set of which this is a subsimplicial set.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: eight = T.wedge_as_subset()
sage: eight
Simplicial set with 3 non-degenerate simplices
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sage: eight.fundamental_group()
Finitely presented group < e0, e1 | >
sage: eight.ambient_space()
Torus

inclusion_map()
Return the inclusion map from this subsimplicial set into its ambient space.

EXAMPLES:

sage: RP6 = simplicial_sets.RealProjectiveSpace(6)
sage: K = RP6.n_skeleton(2)
sage: K.inclusion_map()
Simplicial set morphism:

From: Simplicial set with 3 non-degenerate simplices
To: RP^6
Defn: [1, f, f * f] --> [1, f, f * f]

𝑅𝑃 6 itself is constructed as a subsimplicial set of 𝑅𝑃∞:

sage: latex(RP6.inclusion_map())
RP^{6} \to RP^{\infty}

class sage.homology.simplicial_set_constructions.SuspensionOfSimplicialSet(base)
Bases: sage.homology.simplicial_set.SimplicialSet_arbitrary , sage.structure.
unique_representation.UniqueRepresentation

Return the (reduced) suspension of a simplicial set.

INPUT:

•base – return the suspension of this simplicial set.

If this simplicial set X=base is not pointed, or if it is itself an unreduced suspension, return the unreduced
suspension: the quotient 𝐶𝑋/𝑋 , where 𝐶𝑋 is the (ordinary, unreduced) cone on 𝑋 . If 𝑋 is pointed, then use
the reduced cone instead, and so return the reduced suspension.

We use 𝑆 to denote unreduced suspension, Σ for reduced suspension.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.MultiplicativeAbelian([2]))
sage: B.suspension()
Sigma(Classifying space of Multiplicative Abelian group isomorphic to C2)
sage: B.suspension().n_skeleton(3).homology()
{0: 0, 1: 0, 2: C2, 3: 0}

If X is finite, the suspension comes with a quotient map from the cone:

sage: S3 = simplicial_sets.Sphere(3)
sage: S4 = S3.suspension()
sage: S4.quotient_map()
Simplicial set morphism:
From: Reduced cone of S^3
To: Sigma(S^3)
Defn: [*, sigma_3, (sigma_3,*)] --> [*, s_2 s_1 s_0 *, (sigma_3,*)]

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.
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That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

In the case when the suspension is infinite, the 𝑛-skeleton of the suspension is computed as the 𝑛-skeleton
of the suspension of the 𝑛-skeleton.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: SigmaB = B.suspension()
sage: SigmaB.n_skeleton(4).homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 0 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2,
3: Vector space of dimension 1 over Finite Field of size 2,
4: Vector space of dimension 1 over Finite Field of size 2}

class sage.homology.simplicial_set_constructions.SuspensionOfSimplicialSet_finite(base)
Bases: sage.homology.simplicial_set_constructions.SuspensionOfSimplicialSet,
sage.homology.simplicial_set_constructions.QuotientOfSimplicialSet_finite

The (reduced) suspension of a finite simplicial set.

See SuspensionOfSimplicialSet for more information.

class sage.homology.simplicial_set_constructions.WedgeOfSimplicialSets(factors=None)
Bases: sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets,
sage.homology.simplicial_set_constructions.Factors

Return the wedge sum of pointed simplicial sets.

INPUT:

•factors – a list or tuple of simplicial sets

Return the wedge of the simplicial sets in factors: the wedge sum 𝑋 ∨𝑌 is the formed by taking the disjoint
union of 𝑋 and 𝑌 and identifying their base points. In this construction, the new base point is renamed ‘*’.

The wedge comes equipped with maps to and from each factor, or actually, maps from each factor, and maps
to simplicial sets isomorphic to each factor. The codomains of the latter maps are quotients of the wedge, not
identical to the original factors.

EXAMPLES:

sage: CP2 = simplicial_sets.ComplexProjectiveSpace(2)
sage: K = simplicial_sets.KleinBottle()
sage: W = CP2.wedge(K)
sage: W.homology()
{0: 0, 1: Z x C2, 2: Z, 3: 0, 4: Z}

sage: W.inclusion_map(1)
Simplicial set morphism:
From: Klein bottle
To: Wedge: (CP^2 v Klein bottle)
Defn: [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_

→˓{2,1}] --> [*, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_{2,1}]

sage: W.projection_map(0).domain()
Wedge: (CP^2 v Klein bottle)
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sage: W.projection_map(0).codomain() # copy of CP^2
Quotient: (Wedge: (CP^2 v Klein bottle)/Simplicial set with 6 non-degenerate
→˓simplices)
sage: W.projection_map(0).codomain().homology()
{0: 0, 1: 0, 2: Z, 3: 0, 4: Z}

An error occurs if any of the factors is not pointed:

sage: CP2.wedge(simplicial_sets.Simplex(1))
Traceback (most recent call last):
...
ValueError: the simplicial sets must be pointed

summand(i)
Return the 𝑖-th factor of this construction of simplicial sets.

INPUT:

•i – integer, the index of the factor

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: K = S2.disjoint_union(S3)
sage: K.factor(0)
S^2
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.wedge(S3, B)
sage: X.factor(1)
S^3
sage: X.factor(2)
Classifying space of Multiplicative Abelian group isomorphic to C2

summands()
Return the factors involved in this construction of simplicial sets.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.wedge(S3).factors() == (S2, S3)
True
sage: S2.product(S3).factors()[0]
S^2

class sage.homology.simplicial_set_constructions.WedgeOfSimplicialSets_finite(factors=None)
Bases: sage.homology.simplicial_set_constructions.WedgeOfSimplicialSets,
sage.homology.simplicial_set_constructions.PushoutOfSimplicialSets_finite

The wedge sum of finite pointed simplicial sets.

inclusion_map(i)
Return the inclusion map of the 𝑖-th factor.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
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sage: W = S1.wedge(S2, S1)
sage: W.inclusion_map(1)
Simplicial set morphism:

From: S^2
To: Wedge: (S^1 v S^2 v S^1)
Defn: [v_0, sigma_2] --> [*, sigma_2]

sage: W.inclusion_map(0).domain()
S^1
sage: W.inclusion_map(2).domain()
S^1

projection_map(i)
Return the projection map onto the 𝑖-th factor.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
sage: W = S1.wedge(S2, S1)
sage: W.projection_map(1)
Simplicial set morphism:

From: Wedge: (S^1 v S^2 v S^1)
To: Quotient: (Wedge: (S^1 v S^2 v S^1)/Simplicial set with 3 non-

→˓degenerate simplices)
Defn: [*, sigma_1, sigma_1, sigma_2] --> [*, s_0 *, s_0 *, sigma_2]

sage: W.projection_map(1).image().homology(1)
0
sage: W.projection_map(1).image().homology(2)
Z
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FOURTEEN

EXAMPLES OF SIMPLICIAL SETS.

These are accessible via simplicial_sets.Sphere(3), simplicial_sets.Torus(), etc. Type
simplicial_sets.[TAB] to see a complete list.

AUTHORS:

• John H. Palmieri (2016-07)

sage.homology.simplicial_set_examples.ClassifyingSpace(group)
Return the classifying space of group, as a simplicial set.

INPUT:

•group – a finite group or finite monoid

See sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve() for
more details and more examples.

EXAMPLES:

sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = simplicial_sets.ClassifyingSpace(C2)
sage: H = BC2.homology(range(9), base_ring=GF(2))
sage: [H[i].dimension() for i in range(9)]
[0, 1, 1, 1, 1, 1, 1, 1, 1]

sage: Klein4 = groups.misc.MultiplicativeAbelian([2, 2])
sage: BK = simplicial_sets.ClassifyingSpace(Klein4)
sage: BK
Classifying space of Multiplicative Abelian group isomorphic to C2 x C2
sage: BK.homology(range(5), base_ring=GF(2)) # long time (1 second)
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 2 over Finite Field of size 2,
2: Vector space of dimension 3 over Finite Field of size 2,
3: Vector space of dimension 4 over Finite Field of size 2,
4: Vector space of dimension 5 over Finite Field of size 2}

sage.homology.simplicial_set_examples.ComplexProjectiveSpace(n)
Return complex 𝑛-dimensional projective space, as a simplicial set.

This is only defined when 𝑛 is at most 4. It is constructed using the simplicial set decomposition provided by
Kenzo, as described by Sergeraert [Ser2010]

EXAMPLES:

sage: simplicial_sets.ComplexProjectiveSpace(2).homology(reduced=False)
{0: Z, 1: 0, 2: Z, 3: 0, 4: Z}
sage: CP3 = simplicial_sets.ComplexProjectiveSpace(3)
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sage: CP3
CP^3
sage: latex(CP3)
CP^{3}
sage: CP3.f_vector()
[1, 0, 3, 10, 25, 30, 15]

sage: K = CP3.suspension() # long time (1 second)
sage: R = K.cohomology_ring(GF(2)) # long time
sage: R.gens() # long time
(h^{0,0}, h^{3,0}, h^{5,0}, h^{7,0})
sage: x = R.gens()[1] # long time
sage: x.Sq(2) # long time
h^{5,0}

sage: simplicial_sets.ComplexProjectiveSpace(4).f_vector()
[1, 0, 4, 22, 97, 255, 390, 315, 105]

sage: simplicial_sets.ComplexProjectiveSpace(5)
Traceback (most recent call last):
...
ValueError: complex projective spaces are only available in dimensions between 0
→˓and 4

sage.homology.simplicial_set_examples.Empty()
Return the empty simplicial set.

This should return the same simplicial set each time it is called.

EXAMPLES:

sage: from sage.homology.simplicial_set_examples import Empty
sage: E = Empty()
sage: E
Empty simplicial set
sage: E.nondegenerate_simplices()
[]
sage: E is Empty()
True

sage.homology.simplicial_set_examples.HopfMap()
Return a simplicial model of the Hopf map 𝑆3 → 𝑆2

This is taken from Exemple II.1.19 in the thesis of Clemens Berger [Ber1991].

The Hopf map is a fibration 𝑆3 → 𝑆2. If it is viewed as attaching a 4-cell to the 2-sphere, the resulting
adjunction space is 2-dimensional complex projective space. The resulting model is a bit larger than the one
obtained from simplicial_sets.ComplexProjectiveSpace(2).

EXAMPLES:

sage: g = simplicial_sets.HopfMap()
sage: g.domain()
Simplicial set with 20 non-degenerate simplices
sage: g.codomain()
S^2

Using the Hopf map to attach a cell:
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sage: X = g.mapping_cone()
sage: CP2 = simplicial_sets.ComplexProjectiveSpace(2)
sage: X.homology() == CP2.homology()
True

sage: X.f_vector()
[1, 0, 5, 9, 6]
sage: CP2.f_vector()
[1, 0, 2, 3, 3]

sage.homology.simplicial_set_examples.Horn(n, k)
Return the horn Λ𝑛

𝑘 .

This is the subsimplicial set of the 𝑛-simplex obtained by removing its 𝑘-th face.

EXAMPLES:

sage: L = simplicial_sets.Horn(3, 0)
sage: L
(3, 0)-Horn
sage: L.n_cells(3)
[]
sage: L.n_cells(2)
[(0, 1, 2), (0, 1, 3), (0, 2, 3)]

sage: L20 = simplicial_sets.Horn(2, 0)
sage: latex(L20)
\Lambda^{2}_{0}
sage: L20.inclusion_map()
Simplicial set morphism:
From: (2, 0)-Horn
To: 2-simplex
Defn: [(0,), (1,), (2,), (0, 1), (0, 2)] --> [(0,), (1,), (2,), (0, 1), (0, 2)]

sage.homology.simplicial_set_examples.KleinBottle()
Return the Klein bottle as a simplicial set.

This converts the ∆-complex version to a simplicial set. It has one 0-simplex, three 1-simplices, and two 2-
simplices.

EXAMPLES:

sage: K = simplicial_sets.KleinBottle()
sage: K.f_vector()
[1, 3, 2]
sage: K.homology(reduced=False)
{0: Z, 1: Z x C2, 2: 0}
sage: K
Klein bottle

class sage.homology.simplicial_set_examples.Nerve(monoid)
Bases: sage.homology.simplicial_set.SimplicialSet_arbitrary

The nerve of a multiplicative monoid.

INPUT:

•monoid – a multiplicative monoid

See sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve() for full
documentation.
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EXAMPLES:

sage: M = FiniteMonoids().example()
sage: M
An example of a finite multiplicative monoid: the integers modulo 12
sage: X = M.nerve()
sage: list(M)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
sage: X.n_cells(0)
[1]
sage: X.n_cells(1)
[0, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9]

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

•n – the dimension

EXAMPLES:

sage: K4 = groups.misc.MultiplicativeAbelian([2,2])
sage: BK4 = simplicial_sets.ClassifyingSpace(K4)
sage: BK4.n_skeleton(3)
Simplicial set with 40 non-degenerate simplices
sage: BK4.n_cells(1) == BK4.n_skeleton(3).n_cells(1)
True
sage: BK4.n_cells(3) == BK4.n_skeleton(1).n_cells(3)
False

sage.homology.simplicial_set_examples.Point()
Return a single point called “*” as a simplicial set.

This should return the same simplicial set each time it is called.

EXAMPLES:

sage: P = simplicial_sets.Point()
sage: P.is_pointed()
True
sage: P.nondegenerate_simplices()
[*]

sage: Q = simplicial_sets.Point()
sage: P is Q
True
sage: P == Q
True

sage.homology.simplicial_set_examples.RealProjectiveSpace(n)
Return real 𝑛-dimensional projective space, as a simplicial set.

This is constructed as the 𝑛-skeleton of the nerve of the group of order 2, and therefore has a single non-
degenerate simplex in each dimension up to 𝑛.

EXAMPLES:
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sage: simplicial_sets.RealProjectiveSpace(7)
RP^7
sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP5.homology()
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: Z}
sage: RP5
RP^5
sage: latex(RP5)
RP^{5}

sage: BC2 = simplicial_sets.RealProjectiveSpace(Infinity)
sage: latex(BC2)
RP^{\infty}

sage.homology.simplicial_set_examples.Simplex(n)
Return the 𝑛-simplex as a simplicial set.

EXAMPLES:

sage: K = simplicial_sets.Simplex(2)
sage: K
2-simplex
sage: latex(K)
\Delta^{2}
sage: K.n_cells(0)
[(0,), (1,), (2,)]
sage: K.n_cells(1)
[(0, 1), (0, 2), (1, 2)]
sage: K.n_cells(2)
[(0, 1, 2)]

sage.homology.simplicial_set_examples.Sphere(n)
Return the 𝑛-sphere as a simplicial set.

It is constructed with two non-degenerate simplices: a vertex 𝑣0 (which is the base point) and an 𝑛-simplex 𝜎𝑛.

INPUT:

•n – integer

EXAMPLES:

sage: S0 = simplicial_sets.Sphere(0)
sage: S0
S^0
sage: S0.nondegenerate_simplices()
[v_0, w_0]
sage: S0.is_pointed()
True
sage: simplicial_sets.Sphere(4)
S^4
sage: latex(simplicial_sets.Sphere(4))
S^{4}
sage: simplicial_sets.Sphere(4).nondegenerate_simplices()
[v_0, sigma_4]

sage.homology.simplicial_set_examples.Torus()
Return the torus as a simplicial set.
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This computes the product of the circle with itself, where the circle is represented using a single 0-simplex and
a single 1-simplex. Thus it has one 0-simplex, three 1-simplices, and two 2-simplices.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: T.f_vector()
[1, 3, 2]
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

sage.homology.simplicial_set_examples.simplicial_data_from_kenzo_output(filename)
Return data to construct a simplicial set, given Kenzo output.

INPUT:

•filename – name of file containing the output from Kenzo’s show-structure() function

OUTPUT: data to construct a simplicial set from the Kenzo output

Several files with Kenzo output are in the directory SAGE_ROOT/src/ext/kenzo/.

EXAMPLES:

sage: from sage.homology.simplicial_set_examples import simplicial_data_from_
→˓kenzo_output
sage: from sage.homology.simplicial_set import SimplicialSet
sage: sphere = os.path.join(SAGE_ENV['SAGE_EXTCODE'], 'kenzo', 'S4.txt')
sage: S4 = SimplicialSet(simplicial_data_from_kenzo_output(sphere))
sage: S4.homology(reduced=False)
{0: Z, 1: 0, 2: 0, 3: 0, 4: Z}
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FIFTEEN

CATALOG OF SIMPLICIAL SETS

This provides pre-built simplicial sets:

• the 𝑛-sphere and 𝑛-dimensional real projective space, both (in theory) for any positive integer 𝑛. In practice, as
𝑛 increases, it takes longer to construct these simplicial sets.

• the 𝑛-simplex and the horns obtained from it. As 𝑛 increases, it takes much longer to construct these simplicial
sets, because the number of nondegenerate simplices increases exponentially in 𝑛. For example, it is feasible to
do simplicial_sets.RealProjectiveSpace(100) since it only has 101 nondegenerate simplices,
but simplicial_sets.Simplex(20) is probably a bad idea.

• 𝑛-dimensional complex projective space for 𝑛 ≤ 4

• the classifying space of a finite multiplicative group or monoid

• the torus and the Klein bottle

• the point

• the Hopf map: this is a pre-built morphism, from which one can extract its domain, codomain, mapping cone,
etc.

All of these examples are accessible by typing simplicial_sets.NAME, where NAME is the name of the example.
Type simplicial_sets.[TAB] for a complete list.

EXAMPLES:

sage: RP10 = simplicial_sets.RealProjectiveSpace(8)
sage: RP10.homology()
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: C2, 6: 0, 7: C2, 8: 0}

sage: eta = simplicial_sets.HopfMap()
sage: S3 = eta.domain()
sage: S2 = eta.codomain()
sage: S3.wedge(S2).homology()
{0: 0, 1: 0, 2: Z, 3: Z}
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CHAPTER

SIXTEEN

MORPHISMS AND HOMSETS FOR SIMPLICIAL SETS

Note: Morphisms with infinite domain are not implemented in general: only constant maps and identity maps are
currently implemented.

AUTHORS:

• John H. Palmieri (2016-07)

This module implements morphisms and homsets of simplicial sets.

class sage.homology.simplicial_set_morphism.SimplicialSetHomset(X, Y, cate-
gory=None,
base=None,
check=True)

Bases: sage.categories.homset.Homset

A set of morphisms between simplicial sets.

Once a homset has been constructed in Sage, typically via Hom(X,Y) or X.Hom(Y), one can use it to construct
a morphism 𝑓 by specifying a dictionary, the keys of which are the nondegenerate simplices in the domain, and
the value corresponding to 𝜎 is the simplex 𝑓(𝜎) in the codomain.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, w), f: (w, v)})
sage: Y = SimplicialSet({e: (v, v)})

Define the homset:

sage: H = Hom(X, Y)

Now define a morphism by specifying a dictionary:

sage: H({v: v, w: v, e: e, f: e})
Simplicial set morphism:
From: Simplicial set with 4 non-degenerate simplices
To: Simplicial set with 2 non-degenerate simplices
Defn: [v, w, e, f] --> [v, v, e, e]

an_element()
Return an element of this homset: a constant map.
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EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
sage: Hom(S2, S1).an_element()
Simplicial set morphism:

From: S^2
To: S^1
Defn: Constant map at v_0

sage: K = simplicial_sets.Simplex(3)
sage: L = simplicial_sets.Simplex(4)
sage: d = {K.n_cells(3)[0]: L.n_cells(0)[0].apply_degeneracies(2, 1, 0)}
sage: Hom(K,L)(d) == Hom(K,L).an_element()
True

constant_map(point=None)
Return the constant map in this homset.

INPUT:

•point – optional, default None. If specified, it must be a 0-simplex in the codomain, and it will be
the target of the constant map.

If point is specified, it is the target of the constant map. Otherwise, if the codomain is pointed, the target
is its base point. If the codomain is not pointed and point is not specified, raise an error.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: T = simplicial_sets.Torus()
sage: T.n_cells(0)[0].rename('w')
sage: Hom(S3,T).constant_map()
Simplicial set morphism:

From: S^3
To: Torus
Defn: Constant map at w

sage: S0 = simplicial_sets.Sphere(0)
sage: v, w = S0.n_cells(0)
sage: Hom(S3, S0).constant_map(v)
Simplicial set morphism:

From: S^3
To: S^0
Defn: Constant map at v_0

sage: Hom(S3, S0).constant_map(w)
Simplicial set morphism:

From: S^3
To: S^0
Defn: Constant map at w_0

This constant map is not pointed, since it doesn’t send the base point of 𝑆3 to the base point of 𝑆0:

sage: Hom(S3, S0).constant_map(w).is_pointed()
False

diagonal_morphism()
Return the diagonal morphism in Hom(𝑆, 𝑆 × 𝑆).

EXAMPLES:
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sage: RP2 = simplicial_sets.RealProjectiveSpace(2)
sage: Hom(RP2, RP2.product(RP2)).diagonal_morphism()
Simplicial set morphism:

From: RP^2
To: RP^2 x RP^2
Defn: [1, f, f * f] --> [(1, 1), (f, f), (f * f, f * f)]

identity()
Return the identity morphism in Hom(𝑆, 𝑆).

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: Hom(S1, S1).identity()
Simplicial set endomorphism of S^1

Defn: Identity map
sage: T = simplicial_sets.Torus()
sage: Hom(S1, T).identity()
Traceback (most recent call last):
...
TypeError: identity map is only defined for endomorphism sets

class sage.homology.simplicial_set_morphism.SimplicialSetMorphism(data=None,
domain=None,
codomain=None,
con-
stant=None,
identity=False,
check=True)

Bases: sage.categories.morphism.Morphism

Return a morphism of simplicial sets.

INPUTS:

•data – optional. Dictionary defining the map.

•domain – simplicial set

•codomain – simplicial set

•constant – optional: if not None, then this should be a vertex in the codomain, in which case return the
constant map with this vertex as the target.

•identity – optional: if True, return the identity morphism.

•check – optional, default True. If True, check that this is actually a morphism: it commutes with the
face maps.

So to define a map, you must specify domain and codomain. If the map is constant, specify the target (a
vertex in the codomain) as constant. If the map is the identity map, specify identity=True. Other-
wise, pass a dictionary, data. The keys of the dictionary are the nondegenerate simplices of the domain, the
corresponding values are simplices in the codomain.

In fact, the keys in data do not need to include all of the nondegenerate simplices, only those which are not
faces of other nondegenerate simplices: if 𝜎 is a face of 𝜏 , then the image of 𝜎 need not be specified.

EXAMPLES:

sage: from sage.homology.simplicial_set_morphism import SimplicialSetMorphism
sage: K = simplicial_sets.Simplex(1)
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sage: S1 = simplicial_sets.Sphere(1)
sage: v0 = K.n_cells(0)[0]
sage: v1 = K.n_cells(0)[1]
sage: e01 = K.n_cells(1)[0]
sage: w = S1.n_cells(0)[0]
sage: sigma = S1.n_cells(1)[0]

sage: f = {v0: w, v1: w, e01: sigma}
sage: SimplicialSetMorphism(f, K, S1)
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: [(0,), (1,), (0, 1)] --> [v_0, v_0, sigma_1]

The same map can be defined as follows:

sage: H = Hom(K, S1)
sage: H(f)
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: [(0,), (1,), (0, 1)] --> [v_0, v_0, sigma_1]

Also, this map can be defined by specifying where the 1-simplex goes; the vertices then go where they have to,
to satisfy the condition 𝑑𝑖 ∘ 𝑓 = 𝑓 ∘ 𝑑𝑖:

sage: H = Hom(K, S1)
sage: H({e01: sigma})
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: [(0,), (1,), (0, 1)] --> [v_0, v_0, sigma_1]

A constant map:

sage: g = {e01: w.apply_degeneracies(0)}
sage: SimplicialSetMorphism(g, K, S1)
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: Constant map at v_0

The same constant map:

sage: SimplicialSetMorphism(domain=K, codomain=S1, constant=w)
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: Constant map at v_0

An identity map:

sage: SimplicialSetMorphism(domain=K, codomain=K, identity=True)
Simplicial set endomorphism of 1-simplex
Defn: Identity map

Defining a map by specifying it on only some of the simplices in the domain:
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sage: S5 = simplicial_sets.Sphere(5)
sage: s = S5.n_cells(5)[0]
sage: one = S5.Hom(S5)({s: s})
sage: one
Simplicial set endomorphism of S^5
Defn: Identity map

sage: one._dictionary
{v_0: v_0, sigma_5: sigma_5}

associated_chain_complex_morphism(base_ring=Integer Ring, augmented=False,
cochain=False)

Return the associated chain complex morphism of self.

INPUT:

•base_ring – default ZZ

•augmented – boolean, default False. If True, return the augmented complex.

•cochain – boolean, default False. If True, return the cochain complex.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: v0 = S1.n_cells(0)[0]
sage: e = S1.n_cells(1)[0]
sage: f = {v0: v0, e: v0.apply_degeneracies(0)} # constant map
sage: g = Hom(S1, S1)(f)
sage: g.associated_chain_complex_morphism().to_matrix()
[1|0]
[-+-]
[0|0]

coequalizer(other)
Return the coequalizer of this map with other.

INPUT:

•other – a morphism with the same domain and codomain as this map

If the two maps are 𝑓, 𝑔 : 𝑋 → 𝑌 , then the coequalizer 𝑃 is constructed as the pushout

X v Y --> Y
| |
V V
Y ----> P

where the upper left corner is the coproduct of 𝑋 and 𝑌 (the wedge if they are pointed, the disjoint union
otherwise), and the two maps 𝑋 ⨿ 𝑌 → 𝑌 are 𝑓 ⨿ 1 and 𝑔 ⨿ 1.

EXAMPLES:

sage: L = simplicial_sets.Simplex(2)
sage: pt = L.n_cells(0)[0]
sage: e = L.n_cells(1)[0]
sage: K = L.subsimplicial_set([e])
sage: f = K.inclusion_map()
sage: v,w = K.n_cells(0)
sage: g = Hom(K,L)({v:pt, w:pt, e:pt.apply_degeneracies(0)})
sage: P = f.coequalizer(g)
sage: P
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Pushout of maps:
Simplicial set morphism:
From: Disjoint union: (Simplicial set with 3 non-degenerate simplices u 2-

→˓simplex)
To: 2-simplex
Defn: ...

Simplicial set morphism:
From: Disjoint union: (Simplicial set with 3 non-degenerate simplices u 2-

→˓simplex)
To: 2-simplex
Defn: ...

coproduct(*others)
Return the coproduct of this map with others.

•others – morphisms of simplicial sets.

If the relevant maps are 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖, this returns the natural map ⨿𝑋𝑖 → ⨿𝑌𝑖.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: f = Hom(S1,S1).identity()
sage: f.coproduct(f).is_bijective()
True
sage: g = S1.constant_map(S1)
sage: g.coproduct(g).is_bijective()
False

equalizer(other)
Return the equalizer of this map with other.

INPUT:

•other – a morphism with the same domain and codomain as this map

If the two maps are 𝑓, 𝑔 : 𝑋 → 𝑌 , then the equalizer 𝑃 is constructed as the pullback

P ----> X
| |
V V
X --> X x Y

where the two maps 𝑋 → 𝑋 × 𝑌 are (1, 𝑓) and (1, 𝑔).

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: x = AbstractSimplex(0, name='x')
sage: evw = AbstractSimplex(1, name='vw')
sage: evx = AbstractSimplex(1, name='vx')
sage: ewx = AbstractSimplex(1, name='wx')
sage: X = SimplicialSet({evw: (w, v), evx: (x, v)})
sage: Y = SimplicialSet({evw: (w, v), evx: (x, v), ewx: (x, w)})

Here 𝑋 is a wedge of two 1-simplices (a horn, that is), and 𝑌 is the boundary of a 2-simplex. The map 𝑓
includes the two 1-simplices into 𝑌 , while the map 𝑔 maps both 1-simplices to the same edge in 𝑌 .

202 Chapter 16. Morphisms and homsets for simplicial sets



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: f = Hom(X, Y)({v:v, w:w, x:x, evw:evw, evx:evx})
sage: g = Hom(X, Y)({v:v, w:x, x:x, evw:evx, evx:evx})
sage: P = f.equalizer(g)
sage: P
Pullback of maps:

Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 5 non-degenerate simplices x Simplicial set

→˓with 6 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [(v, v), (w, w), (x, x), (vw, vw), (vx, vx)]

Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 5 non-degenerate simplices x Simplicial set

→˓with 6 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [(v, v), (w, x), (x, x), (vw, vx), (vx, vx)]

image()
Return the image of this morphism as a subsimplicial set of the codomain.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})
sage: f
Simplicial set morphism:

From: S^1
To: S^1 x S^1
Defn: [v_0, sigma_1] --> [(v_0, v_0), (sigma_1, s_0 v_0)]

sage: f.image()
Simplicial set with 2 non-degenerate simplices
sage: f.image().homology()
{0: 0, 1: Z}

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.constant_map().image()
Point
sage: Hom(B,B).identity().image() == B
True

induced_homology_morphism(base_ring=None, cohomology=False)
Return the map in (co)homology induced by this map

INPUT:

•base_ring – must be a field (optional, default QQ)

•cohomology – boolean (optional, default False). If True, the map induced in cohomology rather
than homology.

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')

203



Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, w), f: (w, v)})
sage: Y = SimplicialSet({e: (v, v)})
sage: H = Hom(X, Y)
sage: f = H({v: v, w: v, e: e, f: e})
sage: g = f.induced_homology_morphism()
sage: g.to_matrix()
[1|0]
[-+-]
[0|2]
sage: g3 = f.induced_homology_morphism(base_ring=GF(3), cohomology=True)
sage: g3.to_matrix()
[2|0]
[-+-]
[0|1]

is_bijective()
Return True if this map is surjective.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP2.inclusion_map().is_bijective()
False

sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.quotient_map().is_bijective()
False

sage: K = RP5_2.pullback(RP5_2.quotient_map(), RP5_2.base_point_map())
sage: f = K.universal_property(RP2.inclusion_map(), RP2.constant_map())
sage: f.is_bijective()
True

is_constant()
Return True if this morphism is a constant map.

EXAMPLES:

sage: K = simplicial_sets.KleinBottle()
sage: S4 = simplicial_sets.Sphere(4)
sage: c = Hom(K, S4).constant_map()
sage: c.is_constant()
True
sage: X = S4.n_skeleton(3) # a point
sage: X.inclusion_map().is_constant()
True
sage: eta = simplicial_sets.HopfMap()
sage: eta.is_constant()
False

is_identity()
Return True if this morphism is an identity map.

EXAMPLES:

sage: K = simplicial_sets.Simplex(1)
sage: v0 = K.n_cells(0)[0]
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sage: v1 = K.n_cells(0)[1]
sage: e01 = K.n_cells(1)[0]
sage: L = simplicial_sets.Simplex(2).n_skeleton(1)
sage: w0 = L.n_cells(0)[0]
sage: w1 = L.n_cells(0)[1]
sage: w2 = L.n_cells(0)[2]
sage: f01 = L.n_cells(1)[0]
sage: f02 = L.n_cells(1)[1]
sage: f12 = L.n_cells(1)[2]

sage: d = {v0:w0, v1:w1, e01:f01}
sage: f = K.Hom(L)(d)
sage: f.is_identity()
False
sage: d = {w0:v0, w1:v1, w2:v1, f01:e01, f02:e01, f12: v1.apply_
→˓degeneracies(0,)}
sage: g = L.Hom(K)(d)
sage: (g*f).is_identity()
True
sage: (f*g).is_identity()
False
sage: (f*g).induced_homology_morphism().to_matrix(1)
[0]

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP5.n_skeleton(2).inclusion_map().is_identity()
False
sage: RP5.n_skeleton(5).inclusion_map().is_identity()
True

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: Hom(B,B).identity().is_identity()
True
sage: Hom(B,B).constant_map().is_identity()
False

is_injective()
Return True if this map is surjective.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP2.inclusion_map().is_injective()
True

sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.quotient_map().is_injective()
False

sage: K = RP5_2.pullback(RP5_2.quotient_map(), RP5_2.base_point_map())
sage: f = K.universal_property(RP2.inclusion_map(), RP2.constant_map())
sage: f.is_injective()
True

is_pointed()
Return True if this is a pointed map.

205



Sage Reference Manual: Cell complexes and their homology, Release 8.0

That is, return True if the domain and codomain are pointed and this morphism preserves the base point.

EXAMPLES:

sage: S0 = simplicial_sets.Sphere(0)
sage: f = Hom(S0,S0).identity()
sage: f.is_pointed()
True
sage: v = S0.n_cells(0)[0]
sage: w = S0.n_cells(0)[1]
sage: g = Hom(S0,S0)({v:v, w:v})
sage: g.is_pointed()
True
sage: t = Hom(S0,S0)({v:w, w:v})
sage: t.is_pointed()
False

is_surjective()
Return True if this map is surjective.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP2.inclusion_map().is_surjective()
False

sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.quotient_map().is_surjective()
True

sage: K = RP5_2.pullback(RP5_2.quotient_map(), RP5_2.base_point_map())
sage: f = K.universal_property(RP2.inclusion_map(), RP2.constant_map())
sage: f.is_surjective()
True

mapping_cone()
Return the mapping cone defined by this map.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: v_0, sigma_1 = S1.nondegenerate_simplices()
sage: K = simplicial_sets.Simplex(2).n_skeleton(1)

The mapping cone will be a little smaller if we use only pointed simplicial sets. 𝑆1 is already pointed, but
not 𝐾.

sage: L = K.set_base_point(K.n_cells(0)[0])
sage: u,v,w = L.n_cells(0)
sage: e,f,g = L.n_cells(1)
sage: h = L.Hom(S1)({u:v_0, v:v_0, w:v_0, e:sigma_1, f:v_0.apply_
→˓degeneracies(0), g:sigma_1})
sage: h
Simplicial set morphism:

From: Simplicial set with 6 non-degenerate simplices
To: S^1
Defn: [(0,), (1,), (2,), (0, 1), (0, 2), (1, 2)] --> [v_0, v_0, v_0, sigma_

→˓1, s_0 v_0, sigma_1]
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sage: h.induced_homology_morphism().to_matrix()
[1|0]
[-+-]
[0|2]
sage: X = h.mapping_cone()
sage: X.homology() == simplicial_sets.RealProjectiveSpace(2).homology()
True

n_skeleton(n, domain=None, codomain=None)
Return the restriction of this morphism to the n-skeleta of the domain and codomain

INPUT:

•n – the dimension

•domain – optional, the domain. Specify this to explicitly specify the domain; otherwise, Sage will
attempt to compute it. Specifying this can be useful if the domain is built as a pushout or pullback,
so trying to compute it may lead to computing the 𝑛-skeleton of a map, causing an infinite recursion.
(Users should not have to specify this, but it may be useful for developers.)

•codomain – optional, the codomain.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: one = Hom(B,B).identity()
sage: one.n_skeleton(3)
Simplicial set endomorphism of Simplicial set with 4 non-degenerate simplices

Defn: Identity map
sage: c = Hom(B,B).constant_map()
sage: c.n_skeleton(3)
Simplicial set endomorphism of Simplicial set with 4 non-degenerate simplices

Defn: Constant map at 1

sage: K = simplicial_sets.Simplex(2)
sage: L = K.subsimplicial_set(K.n_cells(0)[:2])
sage: L.nondegenerate_simplices()
[(0,), (1,)]
sage: L.inclusion_map()
Simplicial set morphism:

From: Simplicial set with 2 non-degenerate simplices
To: 2-simplex
Defn: [(0,), (1,)] --> [(0,), (1,)]

sage: L.inclusion_map().n_skeleton(1)
Simplicial set morphism:

From: Simplicial set with 2 non-degenerate simplices
To: Simplicial set with 6 non-degenerate simplices
Defn: [(0,), (1,)] --> [(0,), (1,)]

product(*others)
Return the product of this map with others.

•others – morphisms of simplicial sets.

If the relevant maps are 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖, this returns the natural map
∏︀

𝑋𝑖 →
∏︀

𝑌𝑖.

EXAMPLES:
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sage: S1 = simplicial_sets.Sphere(1)
sage: f = Hom(S1,S1).identity()
sage: f.product(f).is_bijective()
True
sage: g = S1.constant_map(S1)
sage: g.product(g).is_bijective()
False

pullback(*others)
Return the pullback of this morphism along with others.

INPUT:

•others – morphisms of simplicial sets, the codomains of which must all equal that of self.

This returns the pullback as a simplicial set. See sage.homology.
simplicial_set_constructions.PullbackOfSimplicialSets for more documentation
and examples.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: term_T = T.constant_map()
sage: term_K = K.constant_map()
sage: P = term_T.pullback(term_K) # the product as a pullback
sage: P
Pullback of maps:

Simplicial set morphism:
From: Torus
To: Point
Defn: Constant map at *

Simplicial set morphism:
From: Klein bottle
To: Point
Defn: Constant map at *

pushout(*others)
Return the pushout of this morphism along with others.

INPUT:

•others – morphisms of simplicial sets, the domains of which must all equal that of self.

This returns the pushout as a simplicial set. See sage.homology.
simplicial_set_constructions.PushoutOfSimplicialSets for more documentation
and examples.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: init_T = T._map_from_empty_set()
sage: init_K = K._map_from_empty_set()
sage: D = init_T.pushout(init_K) # the disjoint union as a pushout
sage: D
Pushout of maps:

Simplicial set morphism:
From: Empty simplicial set
To: Torus
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Defn: [] --> []
Simplicial set morphism:
From: Empty simplicial set
To: Klein bottle
Defn: [] --> []

suspension(n=1)
Return the 𝑛-th suspension of this morphism of simplicial sets.

INPUT:

•n (optional) – non-negative integer, default 1

EXAMPLES:

sage: eta = simplicial_sets.HopfMap()
sage: susp_eta = eta.suspension()
sage: susp_eta.mapping_cone().homology() == eta.mapping_cone().suspension().
→˓homology()
True

This uses reduced suspensions if the original morphism is pointed, unreduced otherwise. So for example,
if a constant map is not pointed, its suspension is not a constant map:

sage: L = simplicial_sets.Simplex(1)
sage: L.constant_map().is_pointed()
False
sage: f = L.constant_map().suspension()
sage: f.is_constant()
False

sage: K = simplicial_sets.Sphere(3)
sage: K.constant_map().is_pointed()
True
sage: g = K.constant_map().suspension()
sage: g.is_constant()
True

sage: h = K.identity().suspension()
sage: h.is_identity()
True
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CHAPTER

SEVENTEEN

GENERIC CELL COMPLEXES

AUTHORS:

• John H. Palmieri (2009-08)

This module defines a class of abstract finite cell complexes. This is meant as a base class from which other classes
(like SimplicialComplex, CubicalComplex, and DeltaComplex) should derive. As such, most of its
properties are not implemented. It is meant for use by developers producing new classes, not casual users.

Note: Keywords for chain_complex(), homology(), etc.: any keywords given to the homology() method
get passed on to the chain_complex() method and also to the constructor for chain complexes in sage.
homology.chain_complex.ChainComplex_class, as well as its associated homology() method. This
means that those keywords should have consistent meaning in all of those situations. It also means that it is
easy to implement new keywords: for example, if you implement a new keyword for the sage.homology.
chain_complex.ChainComplex_class.homology() method, then it will be automatically accessible
through the homology() method for cell complexes – just make sure it gets documented.

class sage.homology.cell_complex.GenericCellComplex
Bases: sage.structure.sage_object.SageObject

Class of abstract cell complexes.

This is meant to be used by developers to produce new classes, not by casual users. Classes which derive from
this are SimplicialComplex, DeltaComplex, and CubicalComplex.

Most of the methods here are not implemented, but probably should be implemented in a derived class. Most of
the other methods call a non-implemented one; their docstrings contain examples from derived classes in which
the various methods have been defined. For example, homology() calls chain_complex(); the class
DeltaComplex implements chain_complex(), and so the homology() method here is illustrated with
examples involving ∆-complexes.

EXAMPLES:

It’s hard to give informative examples of the base class, since essentially nothing is implemented.

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()

alexander_whitney(cell, dim_left)
The decomposition of cell in this complex into left and right factors, suitable for computing cup products.
This should provide a cellular approximation for the diagonal map 𝐾 → 𝐾 ×𝐾.

This method is not implemented for generic cell complexes, but must be implemented for any derived class
to make cup products work in self.cohomology_ring().

INPUT:
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•cell – a cell in this complex

•dim_left – the dimension of the left-hand factors in the decomposition

OUTPUT: a list containing triples (c, left, right). left and right should be cells in this
complex, and c an integer. In the cellular approximation of the diagonal map, the chain represented by
cell should get sent to the sum of terms 𝑐(𝑙𝑒𝑓𝑡⊗𝑟𝑖𝑔ℎ𝑡) in the tensor product 𝐶(𝐾)⊗𝐶(𝐾) of the chain
complex for this complex with itself.

This gets used in the method product_on_basis() for the class of cohomology rings.

For simplicial and cubical complexes, the decomposition can be done at the level of individual cells: see
alexander_whitney() and alexander_whitney(). Then the method for simplicial complexes
just calls the method for individual simplices, and similarly for cubical complexes. For ∆-complexes and
simplicial sets, the method is instead defined at the level of the cell complex.

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.alexander_whitney(None, 2)
Traceback (most recent call last):
...
NotImplementedError: <abstract method alexander_whitney at ...>

algebraic_topological_model(base_ring=Rational Field)
Algebraic topological model for this cell complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

This is not implemented for generic cell complexes. For any classes deriving from this one, when this
method is implemented, it should essentially just call either algebraic_topological_model() or
algebraic_topological_model_delta_complex().

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.algebraic_topological_model(QQ)
Traceback (most recent call last):
...
NotImplementedError

betti(dim=None, subcomplex=None)
The Betti numbers of this simplicial complex as a dictionary (or a single Betti number, if only one dimen-
sion is given): the ith Betti number is the rank of the ith homology group.

Parameters

• dim (integer or list of integers or None; optional, default None) – If None, then return
every Betti number, as a dictionary with keys the non-negative integers. If dim is an
integer or list, return the Betti number for each given dimension. (Actually, if dim is a
list, return the Betti numbers, as a dictionary, in the range from min(dim) to max(dim).
If dim is a number, return the Betti number in that dimension.)

• subcomplex (optional, default None) – a subcomplex of this cell complex. Compute
the Betti numbers of the homology relative to this subcomplex.

EXAMPLES:

Build the two-sphere as a three-fold join of a two-point space with itself:
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sage: S = SimplicialComplex([[0], [1]])
sage: (S*S*S).betti()
{0: 1, 1: 0, 2: 1}
sage: (S*S*S).betti([1,2])
{1: 0, 2: 1}
sage: (S*S*S).betti(2)
1

Or build the two-sphere as a ∆-complex:

sage: S2 = delta_complexes.Sphere(2)
sage: S2.betti([1,2])
{1: 0, 2: 1}

Or as a cubical complex:

sage: S2c = cubical_complexes.Sphere(2)
sage: S2c.betti(2)
1

cells(subcomplex=None)
The cells of this cell complex, in the form of a dictionary: the keys are integers, representing dimension,
and the value associated to an integer 𝑑 is the set of 𝑑-cells. If the optional argument subcomplex is
present, then return only the faces which are not in the subcomplex.

Parameters subcomplex (optional, default None) – a subcomplex of this cell com-
plex. Return the cells which are not in this subcomplex.

This is not implemented in general; it should be implemented in any derived class. When implementing,
see the warning in the dimension() method.

This method is used by various other methods, such as n_cells() and f_vector().

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.cells()
Traceback (most recent call last):
...
NotImplementedError: <abstract method cells at ...>

chain_complex(subcomplex=None, augmented=False, verbose=False, check=True, dimen-
sions=None, base_ring=’ZZ’, cochain=False)

This is not implemented for general cell complexes.

Some keywords to possibly implement in a derived class:

•subcomplex – a subcomplex: compute the relative chain complex

•augmented – a bool: whether to return the augmented complex

•verbose – a bool: whether to print informational messages as the chain complex is being computed

•check – a bool: whether to check that the each composite of two consecutive differentials is zero

•dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of inte-
gers, compute the chain complex in those dimensions, setting the chain groups in all other dimen-
sions to zero.

Definitely implement the following:
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•base_ring – commutative ring (optional, default ZZ)

•cochain – a bool: whether to return the cochain complex

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.chain_complex()
Traceback (most recent call last):
...
NotImplementedError: <abstract method chain_complex at ...>

cohomology(dim=None, base_ring=Integer Ring, subcomplex=None, generators=False, algo-
rithm=’pari’, verbose=False, reduced=True)

The reduced cohomology of this cell complex.

The arguments are the same as for the homology() method, except that homology() accepts a
cohomology key word, while this function does not: cohomology is automatically true here. Indeed,
this function just calls homology() with cohomology set to True.

Parameters

• dim –

• base_ring –

• subcomplex –

• algorithm –

• verbose –

• reduced –

EXAMPLES:

sage: circle = SimplicialComplex([[0,1], [1,2], [0, 2]])
sage: circle.cohomology(0)
0
sage: circle.cohomology(1)
Z
sage: P2 = SimplicialComplex([[0,1,2], [0,2,3], [0,1,5], [0,4,5], [0,3,4], [1,
→˓2,4], [1,3,4], [1,3,5], [2,3,5], [2,4,5]]) # projective plane
sage: P2.cohomology(2)
C2
sage: P2.cohomology(2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P2.cohomology(2, base_ring=GF(3))
Vector space of dimension 0 over Finite Field of size 3

sage: cubical_complexes.KleinBottle().cohomology(2)
C2

Relative cohomology:

sage: T = SimplicialComplex([[0,1]])
sage: U = SimplicialComplex([[0], [1]])
sage: T.cohomology(1, subcomplex=U)
Z

A ∆-complex example:
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sage: s5 = delta_complexes.Sphere(5)
sage: s5.cohomology(base_ring=GF(7))[5]
Vector space of dimension 1 over Finite Field of size 7

cohomology_ring(base_ring=Rational Field)
Return the unreduced cohomology with coefficients in base_ring with a chosen basis.

This is implemented for simplicial, cubical, and ∆-complexes, not for arbitrary generic cell complexes.
The resulting elements are suitable for computing cup products. For simplicial complexes, they should
be suitable for computing cohomology operations; so far, only mod 2 cohomology operations have been
implemented.

INPUT:

•base_ring – coefficient ring (optional, default QQ); must be a field

The basis elements in dimension dim are named ‘h^{dim,i}’ where 𝑖 ranges between 0 and 𝑟 − 1, if 𝑟 is
the rank of the cohomology group.

Note: For all but the smallest complexes, this is likely to be slower than cohomology() (with field coef-
ficients), possibly by several orders of magnitute. This and its companion homology_with_basis()
carry extra information which allows computation of cup products, for example, but because of speed
issues, you may only wish to use these if you need that extra information.

EXAMPLES:

sage: K = simplicial_complexes.KleinBottle()
sage: H = K.cohomology_ring(QQ); H
Cohomology ring of Minimal triangulation of the Klein bottle
over Rational Field

sage: sorted(H.basis(), key=str)
[h^{0,0}, h^{1,0}]
sage: H = K.cohomology_ring(GF(2)); H
Cohomology ring of Minimal triangulation of the Klein bottle
over Finite Field of size 2

sage: sorted(H.basis(), key=str)
[h^{0,0}, h^{1,0}, h^{1,1}, h^{2,0}]

sage: X = delta_complexes.SurfaceOfGenus(2)
sage: H = X.cohomology_ring(QQ); H
Cohomology ring of Delta complex with 3 vertices and 29 simplices
over Rational Field

sage: sorted(H.basis(1), key=str)
[h^{1,0}, h^{1,1}, h^{1,2}, h^{1,3}]

sage: H = simplicial_complexes.Torus().cohomology_ring(QQ); H
Cohomology ring of Minimal triangulation of the torus
over Rational Field

sage: x = H.basis()[1,0]; x
h^{1,0}
sage: y = H.basis()[1,1]; y
h^{1,1}

You can compute cup products of cohomology classes:

sage: x.cup_product(y)
-h^{2,0}
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sage: x * y # alternate notation
-h^{2,0}
sage: y.cup_product(x)
h^{2,0}
sage: x.cup_product(x)
0

Cohomology operations:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: K = RP2.suspension()
sage: K.set_immutable()
sage: y = K.cohomology_ring(GF(2)).basis()[2,0]; y
h^{2,0}
sage: y.Sq(1)
h^{3,0}

To compute the cohomology ring, the complex must be “immutable”. This is only relevant for simplicial
complexes, and most simplicial complexes are immutable, but certain constructions make them mutable.
The suspension is one example, and this is the reason for calling K.set_immutable() above. Another
example:

sage: S1 = simplicial_complexes.Sphere(1)
sage: T = S1.product(S1)
sage: T.is_immutable()
False
sage: T.cohomology_ring()
Traceback (most recent call last):
...
ValueError: This simplicial complex must be immutable. Call set_immutable().
sage: T.set_immutable()
sage: T.cohomology_ring()
Cohomology ring of Simplicial complex with 9 vertices and
18 facets over Rational Field

dimension()
The dimension of this cell complex: the maximum dimension of its cells.

Warning: If the cells() method calls dimension(), then you’ll get an infinite loop. So either
don’t use dimension() or override dimension().

EXAMPLES:

sage: simplicial_complexes.RandomComplex(d=5, n=8).dimension()
5
sage: delta_complexes.Sphere(3).dimension()
3
sage: T = cubical_complexes.Torus()
sage: T.product(T).dimension()
4

disjoint_union(right)
The disjoint union of this cell complex with another one.

Parameters right – the other cell complex (the right-hand factor)
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Disjoint unions are not implemented for general cell complexes.

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.disjoint_union(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method disjoint_union at ...>

euler_characteristic()
The Euler characteristic of this cell complex: the alternating sum over 𝑛 ≥ 0 of the number of 𝑛-cells.

EXAMPLES:

sage: simplicial_complexes.Simplex(5).euler_characteristic()
1
sage: delta_complexes.Sphere(6).euler_characteristic()
2
sage: cubical_complexes.KleinBottle().euler_characteristic()
0

f_vector()
The 𝑓 -vector of this cell complex: a list whose 𝑛𝑡ℎ item is the number of (𝑛− 1)-cells. Note that, like all
lists in Sage, this is indexed starting at 0: the 0th element in this list is the number of (−1)-cells (which is
1: the empty cell is the only (−1)-cell).

EXAMPLES:

sage: simplicial_complexes.KleinBottle().f_vector()
[1, 8, 24, 16]
sage: delta_complexes.KleinBottle().f_vector()
[1, 1, 3, 2]
sage: cubical_complexes.KleinBottle().f_vector()
[1, 42, 84, 42]

face_poset()
The face poset of this cell complex, the poset of nonempty cells, ordered by inclusion.

This uses the cells() method, and also assumes that for each cell f, all of f.faces(), tuple(f),
and f.dimension() make sense. (If this is not the case in some derived class, as happens with ∆-
complexes, then override this method.)

EXAMPLES:

sage: P = SimplicialComplex([[0, 1], [1,2], [2,3]]).face_poset(); P
Finite poset containing 7 elements
sage: P.list()
[(3,), (2,), (2, 3), (1,), (1, 2), (0,), (0, 1)]

sage: S2 = cubical_complexes.Sphere(2)
sage: S2.face_poset()
Finite poset containing 26 elements

graph()
The 1-skeleton of this cell complex, as a graph.

This is not implemented for general cell complexes.
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EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.graph()
Traceback (most recent call last):
...
NotImplementedError

homology(dim=None, base_ring=Integer Ring, subcomplex=None, generators=False, cohomol-
ogy=False, algorithm=’pari’, verbose=False, reduced=True, **kwds)

The (reduced) homology of this cell complex.

Parameters

• dim (integer or list of integers or None; optional, default
None) – If None, then return the homology in every dimension. If dim is an integer or
list, return the homology in the given dimensions. (Actually, if dim is a list, return the
homology in the range from min(dim) to max(dim).)

• base_ring (optional, default ZZ) – commutative ring, must be ZZ or a field.

• subcomplex (optional, default empty) – a subcomplex of this simplicial
complex. Compute homology relative to this subcomplex.

• generators (boolean; optional, default False) – If True, return gen-
erators for the homology groups along with the groups. NOTE: Since trac ticket #6100,
the result may not be what you expect when not using CHomP since its return is in terms
of the chain complex.

• cohomology (boolean; optional, default False) – If True, compute co-
homology rather than homology.

• algorithm (string; optional, default 'pari') – The options are ‘auto’,
‘dhsw’, ‘pari’ or ‘no_chomp’. See below for a description of what they mean.

• verbose (boolean; optional, default False) – If True, print some mes-
sages as the homology is computed.

• reduced (boolean; optional, default True) – If True, return the reduced homology.

ALGORITHM:

If algorithm is set to ‘auto’, then use CHomP if available. (CHomP is available at the web page
http://chomp.rutgers.edu/. It is also an optional package for Sage.)

CHomP computes homology, not cohomology, and only works over the integers or finite prime fields.
Therefore if any of these conditions fails, or if CHomP is not present, or if algorithm is set to
‘no_chomp’, go to plan B: if this complex has a _homology method – each simplicial complex has
this, for example – then call that. Such a method implements specialized algorithms for the particular type
of cell complex.

Otherwise, move on to plan C: compute the chain complex of this complex and compute its homology
groups. To do this: over a field, just compute ranks and nullities, thus obtaining dimensions of the ho-
mology groups as vector spaces. Over the integers, compute Smith normal form of the boundary ma-
trices defining the chain complex according to the value of algorithm. If algorithm is ‘auto’ or
‘no_chomp’, then for each relatively small matrix, use the standard Sage method, which calls the Pari
package. For any large matrix, reduce it using the Dumas, Heckenbach, Saunders, and Welker elimination
algorithm: see sage.homology.matrix_utils.dhsw_snf() for details.

Finally, algorithmmay also be ‘pari’ or ‘dhsw’, which forces the named algorithm to be used regardless
of the size of the matrices and regardless of whether CHomP is available.
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As of this writing, 'pari' is the fastest standard option. The optional CHomP package may be better
still.

EXAMPLES:

sage: P = delta_complexes.RealProjectivePlane()
sage: P.homology()
{0: 0, 1: C2, 2: 0}
sage: P.homology(reduced=False)
{0: Z, 1: C2, 2: 0}
sage: P.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}

sage: S7 = delta_complexes.Sphere(7)
sage: S7.homology(7)
Z
sage: cubical_complexes.KleinBottle().homology(1, base_ring=GF(2))
Vector space of dimension 2 over Finite Field of size 2

If CHomP is installed, Sage can compute generators of homology groups:

sage: S2 = simplicial_complexes.Sphere(2)
sage: S2.homology(dim=2, generators=True, base_ring=GF(2)) # optional - CHomP
(Vector space of dimension 1 over Finite Field of size 2, [(0, 1, 2) + (0, 1,
→˓3) + (0, 2, 3) + (1, 2, 3)])

When generators are computed, Sage returns a pair for each dimension: the group and the list of generators.
For simplicial complexes, each generator is represented as a linear combination of simplices, as above, and
for cubical complexes, each generator is a linear combination of cubes:

sage: S2_cub = cubical_complexes.Sphere(2)
sage: S2_cub.homology(dim=2, generators=True) # optional - CHomP
(Z, [-[[0,1] x [0,1] x [0,0]] + [[0,1] x [0,1] x [1,1]] - [[0,0] x [0,1] x [0,
→˓1]] - [[0,1] x [1,1] x [0,1]] + [[0,1] x [0,0] x [0,1]] + [[1,1] x [0,1] x
→˓[0,1]]])

homology_with_basis(base_ring=Rational Field, cohomology=False)
Return the unreduced homology of this complex with coefficients in base_ring with a chosen basis.

This is implemented for simplicial, cubical, and ∆-complexes, not for arbitrary generic cell complexes.

INPUT:

•base_ring – coefficient ring (optional, default QQ); must be a field

•cohomology – boolean (optional, default False); if True, return cohomology instead of homol-
ogy

Homology basis elements are named ‘h_{dim,i}’ where i ranges between 0 and 𝑟 − 1, if 𝑟 is the rank of
the homology group. Cohomology basis elements are denoted ℎ𝑑𝑖𝑚,𝑖 instead.

See also:

If cohomology is True, this returns the cohomology as a graded module. For the ring structure, use
cohomology_ring().

EXAMPLES:

sage: K = simplicial_complexes.KleinBottle()
sage: H = K.homology_with_basis(QQ); H
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Homology module of Minimal triangulation of the Klein bottle
over Rational Field

sage: sorted(H.basis(), key=str)
[h_{0,0}, h_{1,0}]
sage: H = K.homology_with_basis(GF(2)); H
Homology module of Minimal triangulation of the Klein bottle
over Finite Field of size 2

sage: sorted(H.basis(), key=str)
[h_{0,0}, h_{1,0}, h_{1,1}, h_{2,0}]

The homology is constructed as a graded object, so for example, you can ask for the basis in a single
degree:

sage: H.basis(1)
Finite family {(1, 0): h_{1,0}, (1, 1): h_{1,1}}
sage: S3 = delta_complexes.Sphere(3)
sage: H = S3.homology_with_basis(QQ, cohomology=True)
sage: list(H.basis(3))
[h^{3,0}]

is_acyclic(base_ring=Integer Ring)
True if the reduced homology with coefficients in base_ring of this cell complex is zero.

INPUT:

•base_ring – optional, default ZZ. Compute homology with coefficients in this ring.

EXAMPLES:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: RP2.is_acyclic()
False
sage: RP2.is_acyclic(QQ)
True

This first computes the Euler characteristic: if it is not 1, the complex cannot be acyclic. So this should
return False reasonably quickly on complexes with Euler characteristic not equal to 1:

sage: K = cubical_complexes.KleinBottle()
sage: C = cubical_complexes.Cube(2)
sage: P = K.product(C)
sage: P
Cubical complex with 168 vertices and 1512 cubes
sage: P.euler_characteristic()
0
sage: P.is_acyclic()
False

is_connected()
True if this cell complex is connected.

EXAMPLES:

sage: V = SimplicialComplex([[0,1,2],[3]])
sage: V
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (3,)}
sage: V.is_connected()
False
sage: X = SimplicialComplex([[0,1,2]])
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sage: X.is_connected()
True
sage: U = simplicial_complexes.ChessboardComplex(3,3)
sage: U.is_connected()
True
sage: W = simplicial_complexes.Sphere(3)
sage: W.is_connected()
True
sage: S = SimplicialComplex([[0,1],[2,3]])
sage: S.is_connected()
False

sage: cubical_complexes.Sphere(0).is_connected()
False
sage: cubical_complexes.Sphere(2).is_connected()
True

join(right)
The join of this cell complex with another one.

Parameters right – the other cell complex (the right-hand factor)

Joins are not implemented for general cell complexes. They may be implemented in some derived classes
(like simplicial complexes).

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.join(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method join at ...>

n_cells(n, subcomplex=None)
List of cells of dimension n of this cell complex. If the optional argument subcomplex is present, then
return the n-dimensional faces which are not in the subcomplex.

Parameters

• n (non-negative integer) – the dimension

• subcomplex (optional, default None) – a subcomplex of this cell complex. Return the
cells which are not in this subcomplex.

EXAMPLES:

sage: delta_complexes.Torus().n_cells(1)
[(0, 0), (0, 0), (0, 0)]
sage: cubical_complexes.Cube(1).n_cells(0)
[[1,1], [0,0]]

n_chains(n, base_ring=Integer Ring, cochains=False)
Return the free module of chains in degree n over base_ring.

INPUT:

•n – integer

•base_ring – ring (optional, default Z)
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•cochains – boolean (optional, default False); if True, return cochains instead

The only difference between chains and cochains is notation. In a simplicial complex, for example, a
simplex (0,1,2) is written as “(0,1,2)” in the group of chains but as “chi_(0,1,2)” in the group of
cochains.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: S2.n_chains(1, QQ)
Free module generated by {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
→˓over Rational Field
sage: list(simplicial_complexes.Sphere(2).n_chains(1, QQ, cochains=False).
→˓basis())
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: list(simplicial_complexes.Sphere(2).n_chains(1, QQ, cochains=True).
→˓basis())
[\chi_(0, 1), \chi_(0, 2), \chi_(0, 3), \chi_(1, 2), \chi_(1, 3), \chi_(2, 3)]

n_skeleton(n)
The 𝑛-skeleton of this cell complex: the cell complex obtained by discarding all of the simplices in dimen-
sions larger than 𝑛.

Parameters n – non-negative integer

This is not implemented for general cell complexes.

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.n_skeleton(3)
Traceback (most recent call last):
...
NotImplementedError: <abstract method n_skeleton at ...>

product(right, rename_vertices=True)
The (Cartesian) product of this cell complex with another one.

Products are not implemented for general cell complexes. They may be implemented in some derived
classes (like simplicial complexes).

EXAMPLES:

sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.product(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method product at ...>

wedge(right)
The wedge (one-point union) of this cell complex with another one.

Parameters right – the other cell complex (the right-hand factor)

Wedges are not implemented for general cell complexes.

EXAMPLES:
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sage: from sage.homology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.wedge(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method wedge at ...>
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CHAPTER

EIGHTEEN

KOSZUL COMPLEXES

class sage.homology.koszul_complex.KoszulComplex(R, elements)
Bases: sage.homology.chain_complex.ChainComplex_class, sage.structure.
unique_representation.UniqueRepresentation

A Koszul complex.

Let 𝑅 be a ring and consider 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑅. The Koszul complex 𝐾*(𝑥1, . . . , 𝑥𝑛) is given by defining a
chain complex structure on the exterior algebra

⋀︀𝑛
𝑅 with the basis 𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑎 . The differential is given by

𝜕(𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑎) =

𝑎∑︁
𝑟=1

(−1)𝑟−1𝑥𝑖𝑟𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑟 ∧ · · · ∧ 𝑒𝑖𝑎 ,

where 𝑒𝑖𝑟 denotes the omitted factor.

Alternatively we can describe the Koszul complex by considering the basic complex 𝐾𝑥𝑖

0 → 𝑅
𝑥𝑖−→ 𝑅 → 0.

Then the Koszul complex is given by 𝐾*(𝑥1, . . . , 𝑥𝑛) =
⨂︀

𝑖 𝐾𝑥𝑖
.

INPUT:

•R – the base ring

•elements – a tuple of elements of R

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: K = KoszulComplex(R, [x,y])
sage: ascii_art(K)

[-y]
[x y] [ x]

0 <-- C_0 <------ C_1 <----- C_2 <-- 0
sage: K = KoszulComplex(R, [x,y,z])
sage: ascii_art(K)

[-y -z 0] [ z]
[ x 0 -z] [-y]

[x y z] [ 0 x y] [ x]
0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0
sage: K = KoszulComplex(R, [x+y*z,x+y-z])
sage: ascii_art(K)

[-x - y + z]
[ y*z + x x + y - z] [ y*z + x]

0 <-- C_0 <---------------------- C_1 <------------- C_2 <-- 0

REFERENCES:
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•Wikipedia article Koszul_complex
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NINETEEN

HOCHSCHILD COMPLEXES

class sage.homology.hochschild_complex.HochschildComplex(A, M)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.
structure.parent.Parent

The Hochschild complex.

Let 𝐴 be an algebra over a commutative ring 𝑅 such that 𝐴 a projective 𝑅-module, and 𝑀 an 𝐴-bimodule. The
Hochschild complex is the chain complex given by

𝐶𝑛(𝐴,𝑀) := 𝑀 ⊗𝐴⊗𝑛

with the boundary operators given as follows. For fixed 𝑛, define the face maps

𝑓𝑛,𝑖(𝑚⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛) =

⎧⎪⎨⎪⎩
𝑚𝑎1 ⊗ · · · ⊗ 𝑎𝑛 if 𝑖 = 0,

𝑎𝑛𝑚⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛−1 if 𝑖 = 𝑛,

𝑚⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑖𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛 otherwise.

We define the boundary operators as

𝑑𝑛 =

𝑛∑︁
𝑖=0

(−1)𝑖𝑓𝑛,𝑖.

The Hochschild homology of 𝐴 is the homology of this complex. Alternatively, the Hochschild homology can
be described by 𝐻𝐻𝑛(𝐴,𝑀) = Tor𝐴

𝑒

𝑛 (𝐴,𝑀), where 𝐴𝑒 = 𝐴 ⊗ 𝐴𝑜 (𝐴𝑜 is the opposite algebra of 𝐴) is the
enveloping algebra of 𝐴.

Hochschild cohomology is the homology of the dual complex and can be described by 𝐻𝐻𝑛(𝐴,𝑀) =
Ext𝑛𝐴𝑒(𝐴,𝑀).

Another perspective on Hochschild homology is that 𝑓𝑛,𝑖 make the family 𝐶𝑛(𝐴,𝑀) a simplicial object in the
category of 𝑅-modules, and the degeneracy maps are

𝑠𝑖(𝑎0 ⊗ · · · ⊗ 𝑎𝑛) = 𝑎0 ⊗ · · · ⊗ 𝑎𝑖 ⊗ 1 ⊗ 𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛

The Hochschild homology can also be constructed as the homology of this simplicial module.

REFERENCES:

•Wikipedia article Hochschild_homology

•https://ncatlab.org/nlab/show/Hochschild+cohomology

•[Red2001]
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class Element(parent, vectors)
Bases: sage.structure.element.ModuleElement

A chain of the Hochschild complex.

INPUT:

Can be one of the following:

•A dictionary whose keys are the degree and whose 𝑑-th value is an element in the degree 𝑑 module.

•An element in the coefficient module 𝑀 .

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H(T.an_element())
Chain(0: 2*B['v'])
sage: H({0: T.an_element()})
Chain(0: 2*B['v'])
sage: H({1: H.module(1).an_element()})
Chain(1: 2*B['v'] # [1, 2, 3] + 2*B['v'] # [1, 3, 2] + 3*B['v'] # [2, 1, 3])
sage: H({0: H.module(0).an_element(), 3: H.module(3).an_element()})
Chain with 2 nonzero terms over Rational Field

sage: F.<x,y> = FreeAlgebra(ZZ)
sage: H = F.hochschild_complex(F)
sage: H(x + 2*y^2)
Chain(0: F[x] + 2*F[y^2])
sage: H({0: x*y - x})
Chain(0: -F[x] + F[x*y])
sage: H(2)
Chain(0: 2*F[1])
sage: H({0: x-y, 2: H.module(2).basis().an_element()})
Chain with 2 nonzero terms over Integer Ring

vector(degree)
Return the free module element in degree.

EXAMPLES:

sage: F.<x,y> = FreeAlgebra(ZZ)
sage: H = F.hochschild_complex(F)
sage: a = H({0: x-y, 2: H.module(2).basis().an_element()})
sage: [a.vector(i) for i in range(3)]
[F[x] - F[y], 0, F[1] # F[1] # F[1]]

HochschildComplex.algebra()
Return the defining algebra of self.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.algebra()
Symmetric group algebra of order 3 over Rational Field
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HochschildComplex.boundary(d)
Return the boundary operator in degree d.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: d1 = H.boundary(1)
sage: z = d1.domain().an_element(); z
2*1 # 1 + 2*1 # x + 3*1 # y
sage: d1(z)
0
sage: d1.matrix()
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 2 0 0 -2 0 0 0 0 0 0]

sage: s = SymmetricFunctions(QQ).s()
sage: H = s.hochschild_complex(s)
sage: d1 = H.boundary(1)
sage: x = d1.domain().an_element(); x
2*s[] # s[] + 2*s[] # s[1] + 3*s[] # s[2]
sage: d1(x)
0
sage: y = tensor([s.an_element(), s.an_element()])
sage: d1(y)
0
sage: z = tensor([s[2,1] + s[3], s.an_element()])
sage: d1(z)
0

HochschildComplex.coboundary(d)
Return the coboundary morphism of degree d.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: del1 = H.coboundary(1)
sage: z = del1.domain().an_element(); z
2 + 2*x + 3*y
sage: del1(z)
0
sage: del1.matrix()
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 2]
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 -2]
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 0]
[ 0 0 0 0]
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[ 0 0 0 0]
[ 0 0 0 0]

HochschildComplex.coefficients()
Return the coefficients of self.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.coefficients()
Trivial representation of Standard permutations of 3 over Rational Field

HochschildComplex.cohomology(d)
Return the d-th cohomology group.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.cohomology(0)
Vector space of dimension 3 over Rational Field
sage: H.cohomology(1)
Vector space of dimension 4 over Rational Field
sage: H.cohomology(2)
Vector space of dimension 6 over Rational Field

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.cohomology(0)
Vector space of dimension 1 over Rational Field
sage: H.cohomology(1)
Vector space of dimension 0 over Rational Field
sage: H.cohomology(2)
Vector space of dimension 0 over Rational Field

When working over general rings (except Z) and we can construct a unitriangular basis for the image
quotient, we fallback to a slower implementation using (combinatorial) free modules:

sage: R.<x,y> = QQ[]
sage: SGA = SymmetricGroupAlgebra(R, 2)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.cohomology(1)
Free module generated by {} over Multivariate Polynomial Ring in x, y over
→˓Rational Field

HochschildComplex.free_module(*args, **kwds)
Deprecated: Use module() instead. See trac ticket #21386 for details.

HochschildComplex.homology(d)
Return the d-th homology group.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)

230 Chapter 19. Hochschild Complexes

https://trac.sagemath.org/21386


Sage Reference Manual: Cell complexes and their homology, Release 8.0

sage: H.homology(0)
Vector space of dimension 3 over Rational Field
sage: H.homology(1)
Vector space of dimension 4 over Rational Field
sage: H.homology(2)
Vector space of dimension 6 over Rational Field

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.homology(0)
Vector space of dimension 1 over Rational Field
sage: H.homology(1)
Vector space of dimension 0 over Rational Field
sage: H.homology(2)
Vector space of dimension 0 over Rational Field

When working over general rings (except Z) and we can construct a unitriangular basis for the image
quotient, we fallback to a slower implementation using (combinatorial) free modules:

sage: R.<x,y> = QQ[]
sage: SGA = SymmetricGroupAlgebra(R, 2)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.homology(1)
Free module generated by {} over Multivariate Polynomial Ring in x, y over
→˓Rational Field

HochschildComplex.module(d)
Return the module in degree d.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.module(0)
Trivial representation of Standard permutations of 3 over Rational Field
sage: H.module(1)
Trivial representation of Standard permutations of 3 over Rational Field
# Symmetric group algebra of order 3 over Rational Field

sage: H.module(2)
Trivial representation of Standard permutations of 3 over Rational Field
# Symmetric group algebra of order 3 over Rational Field
# Symmetric group algebra of order 3 over Rational Field

HochschildComplex.trivial_module()
Return the trivial module of self.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.trivial_module()
Free module generated by {} over Rational Field
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CHAPTER

TWENTY

HOMOLOGY GROUPS

This module defines a HomologyGroup() class which is an abelian group that prints itself in a way that is suitable
for homology groups.

sage.homology.homology_group.HomologyGroup(n, base_ring, invfac=None)
Abelian group on 𝑛 generators which represents a homology group in a fixed degree.

INPUT:

•n – integer; the number of generators

•base_ring – ring; the base ring over which the homology is computed

•inv_fac – list of integers; the invariant factors – ignored if the base ring is a field

OUTPUT:

A class that can represent the homology group in a fixed homological degree.

EXAMPLES:

sage: from sage.homology.homology_group import HomologyGroup
sage: G = AbelianGroup(5, [5,5,7,8,9]); G
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: H = HomologyGroup(5, ZZ, [5,5,7,8,9]); H
C5 x C5 x C7 x C8 x C9
sage: AbelianGroup(4)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z
sage: HomologyGroup(4, ZZ)
Z x Z x Z x Z
sage: HomologyGroup(100, ZZ)
Z^100

class sage.homology.homology_group.HomologyGroup_class(n, invfac)
Bases: sage.groups.additive_abelian.additive_abelian_group.
AdditiveAbelianGroup_fixed_gens

Discrete Abelian group on 𝑛 generators. This class inherits from AdditiveAbelianGroup_fixed_gens;
see sage.groups.additive_abelian.additive_abelian_group for more documentation. The
main difference between the classes is in the print representation.

EXAMPLES:

sage: from sage.homology.homology_group import HomologyGroup
sage: G = AbelianGroup(5, [5,5,7,8,9]); G
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: H = HomologyGroup(5, ZZ, [5,5,7,8,9]); H
C5 x C5 x C7 x C8 x C9
sage: G == loads(dumps(G))
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True
sage: AbelianGroup(4)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z
sage: HomologyGroup(4, ZZ)
Z x Z x Z x Z
sage: HomologyGroup(100, ZZ)
Z^100
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CHAPTER

TWENTYONE

HOMOLOGY AND COHOMOLOGY WITH A BASIS

This module provides homology and cohomology vector spaces suitable for computing cup products and cohomology
operations.

REFERENCES:

• [GDR2003]

• [GDR1999]

AUTHORS:

• John H. Palmieri, Travis Scrimshaw (2015-09)

class sage.homology.homology_vector_space_with_basis.CohomologyRing(base_ring,
cell_complex)

Bases: sage.homology.homology_vector_space_with_basis.
HomologyVectorSpaceWithBasis

The cohomology ring.

Note: This is not intended to be created directly by the user, but instead via the cohomology ring of a
cell complex.

INPUT:

•base_ring – must be a field

•cell_complex – the cell complex whose homology we are computing

EXAMPLES:

sage: CP2 = simplicial_complexes.ComplexProjectivePlane()
sage: H = CP2.cohomology_ring(QQ)
sage: H.basis(2)
Finite family {(2, 0): h^{2,0}}
sage: x = H.basis(2)[2,0]

The product structure is the cup product:

sage: x.cup_product(x)
-h^{4,0}
sage: x * x
-h^{4,0}

There are mod 2 cohomology operations defined, also, for simplicial complexes and simplicial sets:
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sage: Hmod2 = CP2.cohomology_ring(GF(2))
sage: y = Hmod2.basis(2)[2,0]
sage: y.Sq(2)
h^{4,0}

sage: Y = simplicial_sets.RealProjectiveSpace(6).suspension()
sage: H_Y = Y.cohomology_ring(GF(2))
sage: b = H_Y.basis()[2,0]
sage: b.Sq(1)
h^{3,0}
sage: b.Sq(2)
0
sage: c = H_Y.basis()[4,0]
sage: c.Sq(1)
h^{5,0}
sage: c.Sq(2)
h^{6,0}
sage: c.Sq(3)
h^{7,0}
sage: c.Sq(4)
0

class Element
Bases: sage.homology.homology_vector_space_with_basis.
HomologyVectorSpaceWithBasis.Element

Sq(i)
Return the result of applying 𝑆𝑞𝑖 to this element.

INPUT:
•i – nonnegative integer

Warning: This is only implemented for simplicial complexes.

This cohomology operation is only defined in characteristic 2.

Algorithm: see González-Díaz and Réal [GDR1999], Corollary 3.2.

EXAMPLES:

sage: RP2 = simplicial_complexes.RealProjectiveSpace(2)
sage: x = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: x.Sq(1)
h^{2,0}

sage: K = RP2.suspension()
sage: K.set_immutable()
sage: y = K.cohomology_ring(GF(2)).basis()[2,0]
sage: y.Sq(1)
h^{3,0}

sage: RP4 = simplicial_complexes.RealProjectiveSpace(4)
sage: H = RP4.cohomology_ring(GF(2))
sage: x = H.basis()[1,0]
sage: y = H.basis()[2,0]
sage: z = H.basis()[3,0]
sage: x.Sq(1) == y
True
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sage: z.Sq(1) # long time
h^{4,0}

This calculation is much faster with simplicial sets (on one machine, 20 seconds with a simplicial
complex, 4 ms with a simplicial set).

sage: RP4_ss = simplicial_sets.RealProjectiveSpace(4)
sage: z_ss = RP4_ss.cohomology_ring(GF(2)).basis()[3,0]
sage: z_ss.Sq(1)
h^{4,0}

cup_product(other)
Return the cup product of this element and other.

Algorithm: see González-Díaz and Réal [GDR2003], p. 88. Given two cohomology classes, lift them
to cocycle representatives via the chain contraction for this complex, using to_cycle(). In the sum
of their dimensions, look at all of the homology classes 𝛾: lift each of those to a cycle representative,
apply the Alexander-Whitney diagonal map to each cell in the cycle, evaluate the two cocycles on
these factors, and multiply. The result is the value of the cup product cocycle on this homology class.
After this has been done for all homology classes, since homology and cohomology are dual, one can
tell which cohomology class corresponds to the cup product.

See also:

CohomologyRing.product_on_basis()

EXAMPLES:

sage: RP3 = simplicial_complexes.RealProjectiveSpace(3)
sage: H = RP3.cohomology_ring(GF(2))
sage: c = H.basis()[1,0]
sage: c.cup_product(c)
h^{2,0}
sage: c * c * c
h^{3,0}

We can also take powers:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: a = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: a**0
h^{0,0}
sage: a**1
h^{1,0}
sage: a**2
h^{2,0}
sage: a**3
0

A non-connected example:

sage: K = cubical_complexes.Torus().disjoint_union(cubical_complexes.
→˓Sphere(2))
sage: a,b = K.cohomology_ring(QQ).basis(2)
sage: a**0
h^{0,0} + h^{0,1}

CohomologyRing.one()
The multiplicative identity element.
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EXAMPLES:

sage: H = simplicial_complexes.Torus().cohomology_ring(QQ)
sage: H.one()
h^{0,0}
sage: all(H.one() * x == x == x * H.one() for x in H.basis())
True

CohomologyRing.product_on_basis(li, ri)
The cup product of the basis elements indexed by li and ri in this cohomology ring.

INPUT:

•li, ri – index of a cohomology class

See also:

CohomologyRing.Element.cup_product() – the documentation for this method describes the
algorithm.

EXAMPLES:

sage: RP3 = simplicial_complexes.RealProjectiveSpace(3)
sage: H = RP3.cohomology_ring(GF(2))
sage: c = H.basis()[1,0]
sage: c.cup_product(c).cup_product(c) # indirect doctest
h^{3,0}

sage: T = simplicial_complexes.Torus()
sage: x,y = T.cohomology_ring(QQ).basis(1)
sage: x.cup_product(y)
-h^{2,0}
sage: x.cup_product(x)
0

sage: one = T.cohomology_ring(QQ).basis()[0,0]
sage: x.cup_product(one)
h^{1,0}
sage: one.cup_product(y) == y
True
sage: one.cup_product(one)
h^{0,0}
sage: x.cup_product(y) + y.cup_product(x)
0

This also works with cubical complexes:

sage: T = cubical_complexes.Torus()
sage: x,y = T.cohomology_ring(QQ).basis(1)
sage: x.cup_product(y)
-h^{2,0}
sage: x.cup_product(x)
0

∆-complexes:

sage: T_d = delta_complexes.Torus()
sage: a,b = T_d.cohomology_ring(QQ).basis(1)
sage: a.cup_product(b)
h^{2,0}
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sage: b.cup_product(a)
-h^{2,0}
sage: RP2 = delta_complexes.RealProjectivePlane()
sage: w = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: w.cup_product(w)
h^{2,0}

and simplicial sets:

sage: from sage.homology.simplicial_set_examples import RealProjectiveSpace
sage: RP5 = RealProjectiveSpace(5)
sage: x = RP5.cohomology_ring(GF(2)).basis()[1,0]
sage: x**4
h^{4,0}

A non-connected example:

sage: K = cubical_complexes.Torus().disjoint_union(cubical_complexes.Torus())
sage: a,b,c,d = K.cohomology_ring(QQ).basis(1)
sage: x,y = K.cohomology_ring(QQ).basis(0)
sage: a.cup_product(x) == a
True
sage: a.cup_product(y)
0

class sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis(base_ring,
cell_complex,
co-
ho-
mol-
ogy=False,
cat-
e-
gory=None)

Bases: sage.combinat.free_module.CombinatorialFreeModule

Homology (or cohomology) vector space.

This provides enough structure to allow the computation of cup products and cohomology operations. See the
class CohomologyRing (which derives from this) for examples.

It also requires field coefficients (hence the “VectorSpace” in the name of the class).

Note: This is not intended to be created directly by the user, but instead via the methods
homology_with_basis() and cohomology_ring() for the class of cell complexes.

INPUT:

•base_ring – must be a field

•cell_complex – the cell complex whose homology we are computing

•cohomology – (default: False) if True, return the cohomology as a module

•category – (optional) a subcategory of modules with basis

EXAMPLES:
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Homology classes are denoted by h_{d,i} where d is the degree of the homology class and i is their index
in the list of basis elements in that degree. Cohomology classes are denoted h^{1,0}:

sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: RP2.homology_with_basis(GF(2))
Homology module of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
sage: RP2.cohomology_ring(GF(2))
Cohomology ring of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
sage: simplicial_complexes.Torus().homology_with_basis(QQ)
Homology module of Minimal triangulation of the torus
over Rational Field

To access a basis element, use its degree and index (0 or 1 in the 1st cohomology group of a torus):

sage: H = simplicial_complexes.Torus().cohomology_ring(QQ)
sage: H.basis(1)
Finite family {(1, 0): h^{1,0}, (1, 1): h^{1,1}}
sage: x = H.basis()[1,0]; x
h^{1,0}
sage: y = H.basis()[1,1]; y
h^{1,1}
sage: 2*x-3*y
2*h^{1,0} - 3*h^{1,1}

You can compute cup products of cohomology classes:

sage: x.cup_product(y)
-h^{2,0}
sage: y.cup_product(x)
h^{2,0}
sage: x.cup_product(x)
0

This works with simplicial, cubical, and ∆-complexes, and also simplicial sets:

sage: Klein_c = cubical_complexes.KleinBottle()
sage: H = Klein_c.cohomology_ring(GF(2))
sage: x,y = H.basis(1)
sage: x.cup_product(x)
h^{2,0}
sage: x.cup_product(y)
0
sage: y.cup_product(y)
h^{2,0}

sage: Klein_d = delta_complexes.KleinBottle()
sage: H = Klein_d.cohomology_ring(GF(2))
sage: u,v = H.basis(1)
sage: u.cup_product(u)
h^{2,0}
sage: u.cup_product(v)
0
sage: v.cup_product(v)
h^{2,0}

sage: X = simplicial_sets.RealProjectiveSpace(6)
sage: H_X = X.cohomology_ring(GF(2))
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sage: a = H_X.basis()[1,0]
sage: a**6
h^{6,0}
sage: a**7
0

All products of positive-dimensional elements in a suspension should be zero:

sage: Y = X.suspension()
sage: H_Y = Y.cohomology_ring(GF(2))
sage: b = H_Y.basis()[2,0]
sage: b**2
0
sage: B = sorted(H_Y.basis())[1:]
sage: B
[h^{2,0}, h^{3,0}, h^{4,0}, h^{5,0}, h^{6,0}, h^{7,0}]
sage: import itertools
sage: [a*b for (a,b) in itertools.combinations(B, 2)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The basis elements in the simplicial complex case have been chosen differently; apply the change of basis
𝑥 ↦→ 𝑎 + 𝑏, 𝑦 ↦→ 𝑏 to see the same product structure.

sage: Klein_s = simplicial_complexes.KleinBottle()
sage: H = Klein_s.cohomology_ring(GF(2))
sage: a,b = H.basis(1)
sage: a.cup_product(a)
0
sage: a.cup_product(b)
h^{2,0}
sage: (a+b).cup_product(a+b)
h^{2,0}
sage: b.cup_product(b)
h^{2,0}

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

to_cycle()
(Co)cycle representative of this homogeneous (co)homology class.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: H = S2.homology_with_basis(QQ)
sage: h20 = H.basis()[2,0]; h20
h_{2,0}
sage: h20.to_cycle()
-(0, 1, 2) + (0, 1, 3) - (0, 2, 3) + (1, 2, 3)

Chains are written as linear combinations of simplices 𝜎. Cochains are written as linear combinations
of characteristic functions 𝜒𝜎 for those simplices:

sage: S2.cohomology_ring(QQ).basis()[2,0].to_cycle()
\chi_(1, 2, 3)
sage: S2.cohomology_ring(QQ).basis()[0,0].to_cycle()
\chi_(0,) + \chi_(1,) + \chi_(2,) + \chi_(3,)
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HomologyVectorSpaceWithBasis.basis(d=None)
Return (the degree d homogeneous component of) the basis of this graded vector space.

INPUT:

•d – (optional) the degree

EXAMPLES:

sage: RP2 = simplicial_complexes.ProjectivePlane()
sage: H = RP2.homology_with_basis(QQ)
sage: H.basis()
Finite family {(0, 0): h_{0,0}}
sage: H.basis(0)
Finite family {(0, 0): h_{0,0}}
sage: H.basis(1)
Finite family {}
sage: H.basis(2)
Finite family {}

HomologyVectorSpaceWithBasis.complex()
The cell complex whose homology is being computed.

EXAMPLES:

sage: H = simplicial_complexes.Simplex(2).homology_with_basis(QQ)
sage: H.complex()
The 2-simplex

HomologyVectorSpaceWithBasis.contraction()
The chain contraction associated to this homology computation.

That is, to work with chain representatives of homology classes, we need the chain complex 𝐶 associated
to the cell complex, the chain complex 𝐻 of its homology (with trivial differential), chain maps 𝜋 : 𝐶 → 𝐻
and 𝜄 : 𝐻 → 𝐶, and a chain contraction 𝜑 giving a chain homotopy between 1𝐶 and 𝜄 ∘ 𝜋.

OUTPUT: 𝜑

See ChainContraction for information about chain contractions, and see
algebraic_topological_model() for the construction of this particular chain contraction
𝜑.

EXAMPLES:

sage: H = simplicial_complexes.Simplex(2).homology_with_basis(QQ)
sage: H.contraction()
Chain homotopy between:

Chain complex endomorphism of Chain complex with at most 3 nonzero terms
→˓over Rational Field
and Chain complex endomorphism of Chain complex with at most 3 nonzero

→˓terms over Rational Field

From the chain contraction, one can also recover the maps 𝜋 and 𝜄:

sage: phi = H.contraction()
sage: phi.pi()
Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 1 nonzero terms over Rational Field

sage: phi.iota()
Chain complex morphism:
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From: Chain complex with at most 1 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

HomologyVectorSpaceWithBasis.degree_on_basis(i)
Return the degree of the basis element indexed by i.

EXAMPLES:

sage: H = simplicial_complexes.Torus().homology_with_basis(GF(7))
sage: H.degree_on_basis((2,0))
2

sage.homology.homology_vector_space_with_basis.sum_indices(k, i_k_plus_one,
S_k_plus_one)

This is a recursive function for computing the indices for the nested sums in González-Díaz and Réal
[GDR1999], Corollary 3.2.

In the paper, given indices 𝑖𝑛, 𝑖𝑛−1, ..., 𝑖𝑘+1, given 𝑘, and given 𝑆(𝑘 + 1), the number 𝑆(𝑘) is defined to be

𝑆(𝑘) = −𝑆(𝑘 + 1) + 𝑓𝑙𝑜𝑜𝑟(𝑘/2) + 𝑓𝑙𝑜𝑜𝑟((𝑘 + 1)/2) + 𝑖𝑘+1,

and 𝑖𝑘 ranges from 𝑆(𝑘) to 𝑖𝑘+1 − 1. There are two special cases: if 𝑘 = 0, then 𝑖0 = 𝑆(0). Also, the initial
case of 𝑆(𝑘) is 𝑆(𝑛), which is set in the method Sq() before calling this function. For this function, given 𝑘,
𝑖𝑘+1, and 𝑆(𝑘 + 1), return a list consisting of the allowable possible indices [𝑖𝑘, 𝑖𝑘−1, ..., 𝑖1, 𝑖0] given by the
above formula.

INPUT:

•k – non-negative integer

•i_k_plus_one – the positive integer 𝑖𝑘+1

•S_k_plus_one – the integer 𝑆(𝑘 + 1)

EXAMPLES:

sage: from sage.homology.homology_vector_space_with_basis import sum_indices
sage: sum_indices(1, 3, 3)
[[1, 0], [2, 1]]
sage: sum_indices(0, 4, 2)
[[2]]
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CHAPTER

TWENTYTWO

ALGEBRAIC TOPOLOGICAL MODEL FOR A CELL COMPLEX

This file contains two functions, algebraic_topological_model() and
algebraic_topological_model_delta_complex(). The second works more generally: for all
simplicial, cubical, and ∆-complexes. The first only works for simplicial and cubical complexes, but it is faster in
those case.

AUTHORS:

• John H. Palmieri (2015-09)

sage.homology.algebraic_topological_model.algebraic_topological_model(K,
base_ring=None)

Algebraic topological model for cell complex K with coefficients in the field base_ring.

INPUT:

•K – either a simplicial complex or a cubical complex

•base_ring – coefficient ring; must be a field

OUTPUT: a pair (phi, M) consisting of

•chain contraction phi

•chain complex 𝑀

This construction appears in a paper by Pilarczyk and Réal [PR2015]. Given a cell complex 𝐾 and a field 𝐹 ,
there is a chain complex 𝐶 associated to 𝐾 with coefficients in 𝐹 . The algebraic topological model for 𝐾 is a
chain complex 𝑀 with trivial differential, along with chain maps 𝜋 : 𝐶 → 𝑀 and 𝜄 : 𝑀 → 𝐶 such that

•𝜋𝜄 = 1𝑀 , and

•there is a chain homotopy 𝜑 between 1𝐶 and 𝜄𝜋.

In particular, 𝜋 and 𝜄 induce isomorphisms on homology, and since 𝑀 has trivial differential, it is its own
homology, and thus also the homology of 𝐶. Thus 𝜄 lifts homology classes to their cycle representatives.

The chain homotopy 𝜑 satisfies some additional properties, making it a chain contraction:

•𝜑𝜑 = 0,

•𝜋𝜑 = 0,

•𝜑𝜄 = 0.

Given an algebraic topological model for 𝐾, it is then easy to compute cup products and cohomology operations
on the cohomology of 𝐾, as described in [GDR2003] and [PR2015].

Implementation details: the cell complex 𝐾 must have an n_cells() method from which we can extract a
list of cells in each dimension. Combining the lists in increasing order of dimension then defines a filtration of
the complex: a list of cells in which the boundary of each cell consists of cells earlier in the list. This is required
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by Pilarczyk and Réal’s algorithm. There must also be a chain_complex() method, to construct the chain
complex 𝐶 associated to this chain complex.

In particular, this works for simplicial complexes and cubical complexes. It doesn’t work for ∆-complexes,
though: the list of their 𝑛-cells has the wrong format.

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and phi.
iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.pi().
codomain(), respectively.

EXAMPLES:

sage: from sage.homology.algebraic_topological_model import algebraic_topological_
→˓model
sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: phi, M = algebraic_topological_model(RP2, GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = cubical_complexes.Torus()
sage: phi, M = algebraic_topological_model(T, QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

If you want to work with cohomology rather than homology, just dualize the outputs of this function:

sage: M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}
sage: M.dual().degree_of_differential()
1
sage: phi.dual()
Chain homotopy between:
Chain complex endomorphism of Chain complex with at most 3 nonzero terms over

→˓Rational Field
and Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

In degree 0, the inclusion of the homology 𝑀 into the chain complex 𝐶 sends the homology generator to a
single vertex:

sage: K = simplicial_complexes.Simplex(2)
sage: phi, M = algebraic_topological_model(K, QQ)
sage: phi.iota().in_degree(0)
[0]
[0]
[1]

In cohomology, though, one needs the dual of every degree 0 cell to detect the degree 0 cohomology generator:

sage: phi.dual().iota().in_degree(0)
[1]
[1]
[1]
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sage.homology.algebraic_topological_model.algebraic_topological_model_delta_complex(K,
base_ring=None)

Algebraic topological model for cell complex K with coefficients in the field base_ring.

This has the same basic functionality as algebraic_topological_model(), but it also works for ∆-
complexes. For simplicial and cubical complexes it is somewhat slower, though.

INPUT:

•K – a simplicial complex, a cubical complex, or a ∆-complex

•base_ring – coefficient ring; must be a field

OUTPUT: a pair (phi, M) consisting of

•chain contraction phi

•chain complex 𝑀

See algebraic_topological_model() for the main documentation. The difference in implementation
between the two: this uses matrix and vector algebra. The other function does more of the computations “by
hand” and uses cells (given as simplices or cubes) to index various dictionaries. Since the cells in ∆-complexes
are not as nice, the other function does not work for them, while this function relies almost entirely on the
structure of the associated chain complex.

EXAMPLES:

sage: from sage.homology.algebraic_topological_model import algebraic_topological_
→˓model_delta_complex as AT_model
sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: phi, M = AT_model(RP2, GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = delta_complexes.Torus()
sage: phi, M = AT_model(T, QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

If you want to work with cohomology rather than homology, just dualize the outputs of this function:

sage: M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}
sage: M.dual().degree_of_differential()
1
sage: phi.dual()
Chain homotopy between:
Chain complex endomorphism of Chain complex with at most 3 nonzero terms over

→˓Rational Field
and Chain complex morphism:

From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

In degree 0, the inclusion of the homology 𝑀 into the chain complex 𝐶 sends the homology generator to a
single vertex:
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sage: K = delta_complexes.Simplex(2)
sage: phi, M = AT_model(K, QQ)
sage: phi.iota().in_degree(0)
[0]
[0]
[1]

In cohomology, though, one needs the dual of every degree 0 cell to detect the degree 0 cohomology generator:

sage: phi.dual().iota().in_degree(0)
[1]
[1]
[1]
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CHAPTER

TWENTYTHREE

INDUCED MORPHISMS ON HOMOLOGY

This module implements morphisms on homology induced by morphisms of simplicial complexes. It requires working
with field coefficients.

See InducedHomologyMorphism for documentation.

AUTHORS:

• John H. Palmieri (2015.09)

class sage.homology.homology_morphism.InducedHomologyMorphism(map,
base_ring=None,
cohomology=False)

Bases: sage.categories.morphism.Morphism

An element of this class is a morphism of (co)homology groups induced by a map of simplicial complexes. It
requires working with field coefficients.

INPUT:

•map – the map of simplicial complexes

•base_ring – a field (optional, default QQ)

•cohomology – boolean (optional, default False). If True, return the induced map in cohomology
rather than homology.

Note: This is not intended to be used directly by the user, but instead via the method
induced_homology_morphism().

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: f = H({0:0, 1:2, 2:1}) # f switches two vertices
sage: f_star = f.induced_homology_morphism(QQ, cohomology=True)
sage: f_star
Graded algebra endomorphism of Cohomology ring of Minimal triangulation of the 1-
→˓sphere over Rational Field
Defn: induced by:

Simplicial complex endomorphism of Minimal triangulation of the 1-sphere
Defn: 0 |--> 0

1 |--> 2
2 |--> 1

sage: f_star.to_matrix(1)
[-1]
sage: f_star.to_matrix()
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[ 1| 0]
[--+--]
[ 0|-1]

sage: T = simplicial_complexes.Torus()
sage: y = T.homology_with_basis(QQ).basis()[(1,1)]
sage: y.to_cycle()
(0, 2) - (0, 5) + (2, 5)

Since (0, 2)− (0, 5) + (2, 5) is a cycle representing a homology class in the torus, we can define a map 𝑆1 → 𝑇
inducing an inclusion on 𝐻1:

sage: Hom(S1, T)({0:0, 1:2, 2:5})
Simplicial complex morphism:
From: Minimal triangulation of the 1-sphere
To: Minimal triangulation of the torus
Defn: 0 |--> 0

1 |--> 2
2 |--> 5

sage: g = Hom(S1, T)({0:0, 1:2, 2: 5})
sage: g_star = g.induced_homology_morphism(QQ)
sage: g_star.to_matrix(0)
[1]
sage: g_star.to_matrix(1)
[0]
[1]
sage: g_star.to_matrix()
[1|0]
[-+-]
[0|0]
[0|1]
[-+-]
[0|0]

We can evaluate such a map on (co)homology classes:

sage: H = S1.homology_with_basis(QQ)
sage: a = H.basis()[(1,0)]
sage: g_star(a)
h_{1,1}

sage: T = S1.product(S1, is_mutable=False)
sage: diag = Hom(S1,T).diagonal_morphism()
sage: b,c = list(T.cohomology_ring().basis(1))
sage: diag_c = diag.induced_homology_morphism(cohomology=True)
sage: diag_c(b)
h^{1,0}
sage: diag_c(c)
0

base_ring()
The base ring for this map

EXAMPLES:

sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(K,K)
sage: id = H.identity()
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sage: id.induced_homology_morphism(QQ).base_ring()
Rational Field
sage: id.induced_homology_morphism(GF(13)).base_ring()
Finite Field of size 13

is_identity()
True if this is the identity map on (co)homology.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.induced_homology_morphism(QQ).is_identity()
False
sage: flip.induced_homology_morphism(GF(2)).is_identity()
True
sage: rotate = H({0:1, 1:2, 2:0})
sage: rotate.induced_homology_morphism(QQ).is_identity()
True

is_injective()
True if this map is injective on (co)homology.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(S1, K)
sage: f = H({0:0, 1:1, 2:2})
sage: f.induced_homology_morphism().is_injective()
False
sage: f.induced_homology_morphism(cohomology=True).is_injective()
True

sage: T = simplicial_complexes.Torus()
sage: g = Hom(S1, T)({0:0, 1:3, 2: 6})
sage: g_star = g.induced_homology_morphism(QQ)
sage: g.is_injective()
True

is_surjective()
True if this map is surjective on (co)homology.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(S1, K)
sage: f = H({0:0, 1:1, 2:2})
sage: f.induced_homology_morphism().is_surjective()
True
sage: f.induced_homology_morphism(cohomology=True).is_surjective()
False

to_matrix(deg=None)
The matrix for this map.
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If degree deg is specified, return the matrix just in that degree; otherwise, return the block matrix repre-
senting the entire map.

INPUT:

•deg – (optional, default None) the degree

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1_b = S1.barycentric_subdivision()
sage: S1_b.set_immutable()
sage: d = {(0,): 0, (0,1): 1, (1,): 2, (1,2): 0, (2,): 1, (0,2): 2}
sage: f = Hom(S1_b, S1)(d)
sage: h = f.induced_homology_morphism(QQ)
sage: h.to_matrix(1)
[2]
sage: h.to_matrix()
[1|0]
[-+-]
[0|2]
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CHAPTER

TWENTYFOUR

UTILITY FUNCTIONS FOR MATRICES

The actual computation of homology groups ends up being linear algebra with the differentials thought of as matrices.
This module contains some utility functions for this purpose.

sage.homology.matrix_utils.dhsw_snf(mat, verbose=False)
Preprocess a matrix using the “Elimination algorithm” described by Dumas et al. [DHSW2003], and then call
elementary_divisors on the resulting (smaller) matrix.

Note: ‘snf’ stands for ‘Smith Normal Form’.

INPUT:

•mat – an integer matrix, either sparse or dense.

(They use the transpose of the matrix considered here, so they use rows instead of columns.)

ALGORITHM:

Go through mat one column at a time. For each column, add multiples of previous columns to it until either

•it’s zero, in which case it should be deleted.

•its first nonzero entry is 1 or -1, in which case it should be kept.

•its first nonzero entry is something else, in which case it is deferred until the second pass.

Then do a second pass on the deferred columns.

At this point, the columns with 1 or -1 in the first entry contribute to the rank of the matrix, and these can be
counted and then deleted (after using the 1 or -1 entry to clear out its row). Suppose that there were 𝑁 of these.

The resulting matrix should be much smaller; we then feed it to Sage’s elementary_divisors function,
and prepend 𝑁 1’s to account for the rows deleted in the previous step.

EXAMPLES:

sage: from sage.homology.matrix_utils import dhsw_snf
sage: mat = matrix(ZZ, 3, 4, range(12))
sage: dhsw_snf(mat)
[1, 4, 0]
sage: mat = random_matrix(ZZ, 20, 20, x=-1, y=2)
sage: mat.elementary_divisors() == dhsw_snf(mat)
True
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CHAPTER

TWENTYFIVE

INTERFACE TO CHOMP

CHomP stands for “Computation Homology Program”, and is good at computing homology of simplicial complexes,
cubical complexes, and chain complexes. It can also compute homomorphisms induced on homology by maps. See
the CHomP web page http://chomp.rutgers.edu/ for more information.

AUTHOR:

• John H. Palmieri

class sage.interfaces.chomp.CHomP
Interface to the CHomP package.

Parameters

• program (string) – which CHomP program to use

• complex – a simplicial or cubical complex

• subcomplex – a subcomplex of complex or None (the default)

• base_ring (ring; optional, default Z) – ring over which to perform computations – must
be Z or F𝑝.

• generators (boolean; optional, default False) – if True, also return list
of generators

• verbose (boolean; optional, default False) – if True, print helpful mes-
sages as the computation progresses

• extra_opts (string) – options passed directly to program

Returns homology groups as a dictionary indexed by dimension

The programs homsimpl, homcubes, and homchain are available through this interface. homsimpl com-
putes the relative or absolute homology groups of simplicial complexes. homcubes computes the relative or
absolute homology groups of cubical complexes. homchain computes the homology groups of chain com-
plexes. For consistency with Sage’s other homology computations, the answers produced by homsimpl and
homcubes in the absolute case are converted to reduced homology.

Note also that CHomP can only compute over the integers or F𝑝. CHomP is fast enough, though, that if you want
rational information, you should consider using CHomP with integer coefficients, or with mod 𝑝 coefficients for
a sufficiently large 𝑝, rather than using Sage’s built-in homology algorithms.

See also the documentation for the functions homchain(), homcubes(), and homsimpl() for more ex-
amples, including illustrations of some of the optional parameters.

EXAMPLES:
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sage: from sage.interfaces.chomp import CHomP
sage: T = cubical_complexes.Torus()
sage: CHomP()('homcubes', T) # optional - CHomP
{0: 0, 1: Z x Z, 2: Z}

Relative homology of a segment relative to its endpoints:

sage: edge = simplicial_complexes.Simplex(1)
sage: ends = edge.n_skeleton(0)
sage: CHomP()('homsimpl', edge) # optional - CHomP
{0: 0}
sage: CHomP()('homsimpl', edge, ends) # optional - CHomP
{0: 0, 1: Z}

Homology of a chain complex:

sage: C = ChainComplex({3: 2 * identity_matrix(ZZ, 2)}, degree=-1)
sage: CHomP()('homchain', C) # optional - CHomP
{2: C2 x C2}

help(program)
Print a help message for program, a program from the CHomP suite.

Parameters program (string) – which CHomP program to use

Returns nothing – just print a message

EXAMPLES:

sage: from sage.interfaces.chomp import CHomP
sage: CHomP().help('homcubes') # optional - CHomP
HOMCUBES, ver. ... Copyright (C) ... by Pawel Pilarczyk...

sage.interfaces.chomp.have_chomp(program=’homsimpl’)
Return True if this computer has program installed.

The first time it is run, this function caches its result in the variable _have_chomp – a dictionary indexed by
program name – and any subsequent time, it just checks the value of the variable.

This program is used in the routine CHomP.__call__.

If this computer doesn’t have CHomP installed, you may obtain it from http://chomp.rutgers.edu/.

EXAMPLES:

sage: from sage.interfaces.chomp import have_chomp
sage: have_chomp() # random -- depends on whether CHomP is installed
True
sage: 'homsimpl' in sage.interfaces.chomp._have_chomp
True
sage: sage.interfaces.chomp._have_chomp['homsimpl'] == have_chomp()
True

sage.interfaces.chomp.homchain(complex=None, **kwds)
Compute the homology of a chain complex using the CHomP program homchain.

Parameters

• complex – a chain complex
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• generators (boolean; optional, default False) – if True, also return list
of generators

• verbose (boolean; optional, default False) – if True, print helpful mes-
sages as the computation progresses

• help (boolean; optional, default False) – if True, just print a help message
and exit

• extra_opts (string) – options passed directly to homchain

Returns homology groups as a dictionary indexed by dimension

EXAMPLES:

sage: from sage.interfaces.chomp import homchain
sage: C = cubical_complexes.Sphere(3).chain_complex()
sage: homchain(C)[3] # optional - CHomP
Z

Generators: these are given as a list after the homology group. Each generator is specified as a cycle, an element
in the appropriate free module over the base ring:

sage: C2 = delta_complexes.Sphere(2).chain_complex()
sage: homchain(C2, generators=True)[2] # optional - CHomP
(Z, [(1, -1)])
sage: homchain(C2, generators=True, base_ring=GF(2))[2] # optional - CHomP
(Vector space of dimension 1 over Finite Field of size 2, [(1, 1)])

sage.interfaces.chomp.homcubes(complex=None, subcomplex=None, **kwds)
Compute the homology of a cubical complex using the CHomP program homcubes. If the argument
subcomplex is present, compute homology of complex relative to subcomplex.

Parameters

• complex – a cubical complex

• subcomplex – a subcomplex of complex or None (the default)

• base_ring (ring; optional, default Z) – ring over which to perform computations – must
be Z or F𝑝.

• generators (boolean; optional, default False) – if True, also return list
of generators

• verbose (boolean; optional, default False) – if True, print helpful mes-
sages as the computation progresses

• help (boolean; optional, default False) – if True, just print a help message
and exit

• extra_opts (string) – options passed directly to homcubes

Returns homology groups as a dictionary indexed by dimension

EXAMPLES:

sage: from sage.interfaces.chomp import homcubes
sage: S = cubical_complexes.Sphere(3)
sage: homcubes(S)[3] # optional - CHomP
Z

Relative homology:
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sage: C3 = cubical_complexes.Cube(3)
sage: bdry = C3.n_skeleton(2)
sage: homcubes(C3, bdry) # optional - CHomP
{0: 0, 1: 0, 2: 0, 3: Z}

Generators: these are given as a list after the homology group. Each generator is specified as a linear combina-
tion of cubes:

sage: homcubes(cubical_complexes.Sphere(1), generators=True, base_
→˓ring=GF(2))[1][1] # optional - CHomP
[[[1,1] x [0,1]] + [[0,1] x [1,1]] + [[0,1] x [0,0]] + [[0,0] x [0,1]]]

sage.interfaces.chomp.homsimpl(complex=None, subcomplex=None, **kwds)
Compute the homology of a simplicial complex using the CHomP program homsimpl. If the argument
subcomplex is present, compute homology of complex relative to subcomplex.

Parameters

• complex – a simplicial complex

• subcomplex – a subcomplex of complex or None (the default)

• base_ring (ring; optional, default Z) – ring over which to perform computations – must
be Z or F𝑝.

• generators (boolean; optional, default False) – if True, also return list
of generators

• verbose (boolean; optional, default False) – if True, print helpful mes-
sages as the computation progresses

• help (boolean; optional, default False) – if True, just print a help message
and exit

• extra_opts (string) – options passed directly to program

Returns homology groups as a dictionary indexed by dimension

EXAMPLES:

sage: from sage.interfaces.chomp import homsimpl
sage: T = simplicial_complexes.Torus()
sage: M8 = simplicial_complexes.MooreSpace(8)
sage: M4 = simplicial_complexes.MooreSpace(4)
sage: X = T.disjoint_union(T).disjoint_union(T).disjoint_union(M8).disjoint_
→˓union(M4)
sage: homsimpl(X)[1] # optional - CHomP
Z^6 x C4 x C8

Relative homology:

sage: S = simplicial_complexes.Simplex(3)
sage: bdry = S.n_skeleton(2)
sage: homsimpl(S, bdry)[3] # optional - CHomP
Z

Generators: these are given as a list after the homology group. Each generator is specified as a linear combina-
tion of simplices:
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sage: homsimpl(S, bdry, generators=True)[3] # optional - CHomP
(Z, [(0, 1, 2, 3)])

sage: homsimpl(simplicial_complexes.Sphere(1), generators=True) # optional -
→˓CHomP
{0: 0, 1: (Z, [(0, 1) - (0, 2) + (1, 2)])}

sage.interfaces.chomp.process_generators_chain(gen_string, dim, base_ring=None)
Process CHomP generator information for simplicial complexes.

Parameters

• gen_string (string) – generator output from CHomP

• dim (integer) – dimension in which to find generators

• base_ring (optional, default ZZ) – base ring over which to do the computations

Returns list of generators in each dimension, as described below

gen_string has the form

[H_0]
a1

[H_1]
a2
a3

[H_2]
a1 - a2

For each homology group, each line lists a homology generator as a linear combination of generators ai of
the group of chains in the appropriate dimension. The elements ai are indexed starting with 𝑖 = 1. Each
generator is converted, using regular expressions, from a string to a vector (an element in the free module over
base_ring), with ai representing the unit vector in coordinate 𝑖− 1. For example, the string a1 - a2 gets
converted to the vector (1, -1).

Therefore the return value is a list of vectors.

EXAMPLES:

sage: from sage.interfaces.chomp import process_generators_chain
sage: s = "[H_0]\na1\n\n[H_1]\na2\na3\n"
sage: process_generators_chain(s, 1)
[(0, 1), (0, 0, 1)]
sage: s = "[H_0]\na1\n\n[H_1]\n5 * a2 - a1\na3\n"
sage: process_generators_chain(s, 1, base_ring=ZZ)
[(-1, 5), (0, 0, 1)]
sage: process_generators_chain(s, 1, base_ring=GF(2))
[(1, 1), (0, 0, 1)]

sage.interfaces.chomp.process_generators_cubical(gen_string, dim)
Process CHomP generator information for cubical complexes.

Parameters

• gen_string (string) – generator output from CHomP

• dim (integer) – dimension in which to find generators

Returns list of generators in each dimension, as described below
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gen_string has the form

The 2 generators of H_1 follow:
generator 1
-1 * [(0,0,0,0,0)(0,0,0,0,1)]
1 * [(0,0,0,0,0)(0,0,1,0,0)]
...
generator 2
-1 * [(0,1,0,1,1)(1,1,0,1,1)]
-1 * [(0,1,0,0,1)(0,1,0,1,1)]
...

Each line consists of a coefficient multiplied by a cube; the cube is specified by its “bottom left” and “upper
right” corners.

For technical reasons, we remove the first coordinate of each tuple, and using regular expressions, the remaining
parts get converted from a string to a pair (coefficient, Cube), with the cube represented as a product
of tuples. For example, the first line in “generator 1” gets turned into

(-1, [0,0] x [0,0] x [0,0] x [0,1])

representing an element in the free abelian group with basis given by cubes. Each generator is a list of such pairs,
representing the sum of such elements. These are reassembled in CHomP.__call__() to actual elements in
the free module generated by the cubes of the cubical complex in the appropriate dimension.

Therefore the return value is a list of lists of pairs, one list of pairs for each generator.

EXAMPLES:

sage: from sage.interfaces.chomp import process_generators_cubical
sage: s = "The 2 generators of H_1 follow:\ngenerator 1:\n-1 * [(0,0,0,0,0)(0,0,0,
→˓0,1)]\n1 * [(0,0,0,0,0)(0,0,1,0,0)]"
sage: process_generators_cubical(s, 1)
[[(-1, [0,0] x [0,0] x [0,0] x [0,1]), (1, [0,0] x [0,1] x [0,0] x [0,0])]]
sage: len(process_generators_cubical(s, 1)) # only one generator
1

sage.interfaces.chomp.process_generators_simplicial(gen_string, dim, complex)
Process CHomP generator information for simplicial complexes.

Parameters

• gen_string (string) – generator output from CHomP

• dim (integer) – dimension in which to find generators

• complex – simplicial complex under consideration

Returns list of generators in each dimension, as described below

gen_string has the form

The 2 generators of H_1 follow:
generator 1
-1 * (1,6)
1 * (1,4)
...
generator 2
-1 * (1,6)
1 * (1,4)
...
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where each line contains a coefficient and a simplex. Each line is converted, using regular expressions, from a
string to a pair (coefficient, Simplex), like

(-1, (1,6))

representing an element in the free abelian group with basis given by simplices. Each generator is a list of
such pairs, representing the sum of such elements. These are reassembled in CHomP.__call__() to actual
elements in the free module generated by the simplices of the simplicial complex in the appropriate dimension.

Therefore the return value is a list of lists of pairs, one list of pairs for each generator.

EXAMPLES:

sage: from sage.interfaces.chomp import process_generators_simplicial
sage: s = "The 2 generators of H_1 follow:\ngenerator 1:\n-1 * (1,6)\n1 * (1,4)"
sage: process_generators_simplicial(s, 1, simplicial_complexes.Torus())
[[(-1, (1, 6)), (1, (1, 4))]]
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