
Sage Reference Manual: 2D Graphics
Release 8.0

The Sage Development Team

Jul 23, 2017

CONTENTS

1 General 1
1.1 2D Plotting . 1
1.2 Text in plots . 135
1.3 Colors . 146
1.4 Animated plots . 157

2 Function and Data Plots 167
2.1 Complex Plots . 167
2.2 Contour Plots . 175
2.3 Density Plots . 239
2.4 Plotting fields . 247
2.5 Streamline Plots . 257
2.6 Scatter Plots . 264
2.7 Step function plots . 265
2.8 Histograms . 266
2.9 Bar Charts . 268

3 Plots of Other Mathematical Objects 271
3.1 Graph Plotting . 271
3.2 Matrix Plots . 301

4 Basic Shapes 307
4.1 Arcs of circles and ellipses . 307
4.2 Arrows . 309
4.3 Bezier Paths . 321
4.4 Circles . 328
4.5 Disks . 339
4.6 Ellipses . 341
4.7 Line Plots . 344
4.8 Points . 348
4.9 Polygons . 352
4.10 Arcs in hyperbolic geometry . 368
4.11 Polygons and triangles in hyperbolic geometry . 369
4.12 Regular polygons in the upper half model for hyperbolic plane . 374

5 Infrastructure and Low-Level Functions 379
5.1 Graphics objects . 379
5.2 Plotting primitives . 403
5.3 Plotting utilities . 405

6 Indices and Tables 409

i

Python Module Index 411

Index 413

ii

CHAPTER

ONE

GENERAL

1.1 2D Plotting

Sage provides extensive 2D plotting functionality. The underlying rendering is done using the matplotlib Python
library.

The following graphics primitives are supported:

• arrow() - an arrow from a min point to a max point.

• circle() - a circle with given radius

• ellipse() - an ellipse with given radii and angle

• arc() - an arc of a circle or an ellipse

• disk() - a filled disk (i.e. a sector or wedge of a circle)

• line() - a line determined by a sequence of points (this need not be straight!)

• point() - a point

• text() - some text

• polygon() - a filled polygon

The following plotting functions are supported:

• plot() - plot of a function or other Sage object (e.g., elliptic curve).

• parametric_plot()

• implicit_plot()

• polar_plot()

• region_plot()

• list_plot()

• scatter_plot()

• bar_chart()

• contour_plot()

• density_plot()

• plot_vector_field()

• plot_slope_field()

• matrix_plot()

1

Sage Reference Manual: 2D Graphics, Release 8.0

• complex_plot()

• graphics_array()

• The following log plotting functions:

– plot_loglog()

– plot_semilogx() and plot_semilogy()

– list_plot_loglog()

– list_plot_semilogx() and list_plot_semilogy()

The following miscellaneous Graphics functions are included:

• Graphics()

• is_Graphics()

• hue()

Type ? after each primitive in Sage for help and examples.

EXAMPLES:

We draw a curve:

sage: plot(x^2, (x,0,5))
Graphics object consisting of 1 graphics primitive

2 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We draw a circle and a curve:

sage: circle((1,1), 1) + plot(x^2, (x,0,5))
Graphics object consisting of 2 graphics primitives

Notice that the aspect ratio of the above plot makes the plot very tall because the plot adopts the default aspect ratio of
the circle (to make the circle appear like a circle). We can change the aspect ratio to be what we normally expect for a
plot by explicitly asking for an ‘automatic’ aspect ratio:

sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), aspect_ratio='automatic')

The aspect ratio describes the apparently height/width ratio of a unit square. If you want the vertical units to be twice
as big as the horizontal units, specify an aspect ratio of 2:

sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), aspect_ratio=2)

The figsize option adjusts the figure size. The default figsize is 4. To make a figure that is roughly twice as big,
use figsize=8:

sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), figsize=8)

You can also give separate horizontal and vertical dimensions. Both will be measured in inches:

sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), figsize=[4,8])

1.1. 2D Plotting 3

Sage Reference Manual: 2D Graphics, Release 8.0

However, do not make the figsize too big (e.g. one dimension greater than 327 or both in the mid-200s) as this will
lead to errors or crashes. See show() for full details.

Note that the axes will not cross if the data is not on both sides of both axes, even if it is quite close:

sage: plot(x^3, (x,1,10))
Graphics object consisting of 1 graphics primitive

When the labels have quite different orders of magnitude or are very large, scientific notation (the 𝑒 notation for powers
of ten) is used:

sage: plot(x^2, (x,480,500)) # no scientific notation
Graphics object consisting of 1 graphics primitive

4 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(x^2, (x,300,500)) # scientific notation on y-axis
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 5

Sage Reference Manual: 2D Graphics, Release 8.0

But you can fix your own tick labels, if you know what to expect and have a preference:

sage: plot(x^2, (x,300,500), ticks=[100,50000])
Graphics object consisting of 1 graphics primitive

6 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

To change the ticks on one axis only, use the following notation:

sage: plot(x^2, (x,300,500), ticks=[None,50000])
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 7

Sage Reference Manual: 2D Graphics, Release 8.0

You can even have custom tick labels along with custom positioning.

sage: plot(x^2, (x,0,3), ticks=[[1,2.5],pi/2], tick_formatter=[["x_1","x_2"],pi])
→˓# long time
Graphics object consisting of 1 graphics primitive

8 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We construct a plot involving several graphics objects:

sage: G = plot(cos(x), (x, -5, 5), thickness=5, color='green', title='A plot')
sage: P = polygon([[1,2], [5,6], [5,0]], color='red')
sage: G + P
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 9

Sage Reference Manual: 2D Graphics, Release 8.0

Next we construct the reflection of the above polygon about the 𝑦-axis by iterating over the list of first-coordinates of
the first graphic element of P (which is the actual Polygon; note that P is a Graphics object, which consists of a single
polygon):

sage: Q = polygon([(-x,y) for x,y in P[0]], color='blue')
sage: Q # show it
Graphics object consisting of 1 graphics primitive

10 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We combine together different graphics objects using “+”:

sage: H = G + P + Q
sage: print(H)
Graphics object consisting of 3 graphics primitives
sage: type(H)
<class 'sage.plot.graphics.Graphics'>
sage: H[1]
Polygon defined by 3 points
sage: list(H[1])
[(1.0, 2.0), (5.0, 6.0), (5.0, 0.0)]
sage: H # show it
Graphics object consisting of 3 graphics primitives

1.1. 2D Plotting 11

Sage Reference Manual: 2D Graphics, Release 8.0

We can put text in a graph:

sage: L = [[cos(pi*i/100)^3,sin(pi*i/100)] for i in range(200)]
sage: p = line(L, rgbcolor=(1/4,1/8,3/4))
sage: t = text('A Bulb', (1.5, 0.25))
sage: x = text('x axis', (1.5,-0.2))
sage: y = text('y axis', (0.4,0.9))
sage: g = p+t+x+y
sage: g.show(xmin=-1.5, xmax=2, ymin=-1, ymax=1)

12 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We can add a title to a graph:

sage: x = var('x')
sage: plot(x^2, (x,-2,2), title='A plot of x^2')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 13

Sage Reference Manual: 2D Graphics, Release 8.0

We can set the position of the title:

sage: plot(x^2, (-2,2), title='Plot of x^2', title_pos=(0.5,-0.05))
Graphics object consisting of 1 graphics primitive

14 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We plot the Riemann zeta function along the critical line and see the first few zeros:

sage: i = CDF.0 # define i this way for maximum speed.
sage: p1 = plot(lambda t: arg(zeta(0.5+t*i)), 1, 27, rgbcolor=(0.8,0,0))
sage: p2 = plot(lambda t: abs(zeta(0.5+t*i)), 1, 27, color=hue(0.7))
sage: print(p1 + p2)
Graphics object consisting of 2 graphics primitives
sage: p1 + p2 # display it
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 15

Sage Reference Manual: 2D Graphics, Release 8.0

Note: Not all functions in Sage are symbolic. When plotting non-symbolic functions they should be wrapped in
lambda:

sage: plot(lambda x:fibonacci(round(x)), (x,1,10))
Graphics object consisting of 1 graphics primitive

16 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Many concentric circles shrinking toward the origin:

sage: show(sum(circle((i,0), i, hue=sin(i/10)) for i in [10,9.9,..,0])) # long time

1.1. 2D Plotting 17

Sage Reference Manual: 2D Graphics, Release 8.0

Here is a pretty graph:

sage: g = Graphics()
sage: for i in range(60):
....: p = polygon([(i*cos(i),i*sin(i)), (0,i), (i,0)],\
....: color=hue(i/40+0.4), alpha=0.2)
....: g = g + p
sage: g.show(dpi=200, axes=False)

18 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Another graph:

sage: x = var('x')
sage: P = plot(sin(x)/x, -4, 4, color='blue') + \
....: plot(x*cos(x), -4, 4, color='red') + \
....: plot(tan(x), -4, 4, color='green')
sage: P.show(ymin=-pi, ymax=pi)

1.1. 2D Plotting 19

Sage Reference Manual: 2D Graphics, Release 8.0

PYX EXAMPLES: These are some examples of plots similar to some of the plots in the PyX (http://pyx.sourceforge.
net) documentation:

Symbolline:

sage: y(x) = x*sin(x^2)
sage: v = [(x, y(x)) for x in [-3,-2.95,..,3]]
sage: show(points(v, rgbcolor=(0.2,0.6, 0.1), pointsize=30) + plot(spline(v), -3.1,
→˓3))

20 Chapter 1. General

http://pyx.sourceforge.net
http://pyx.sourceforge.net

Sage Reference Manual: 2D Graphics, Release 8.0

Cycliclink:

sage: x = var('x')
sage: g1 = plot(cos(20*x)*exp(-2*x), 0, 1)
sage: g2 = plot(2*exp(-30*x) - exp(-3*x), 0, 1)
sage: show(graphics_array([g1, g2], 2, 1), xmin=0)

1.1. 2D Plotting 21

Sage Reference Manual: 2D Graphics, Release 8.0

Pi Axis:

sage: g1 = plot(sin(x), 0, 2*pi)
sage: g2 = plot(cos(x), 0, 2*pi, linestyle="--")
sage: (g1+g2).show(ticks=pi/6, tick_formatter=pi) # long time # show their sum,
→˓nicely formatted

22 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

An illustration of integration:

sage: f(x) = (x-3)*(x-5)*(x-7)+40
sage: P = line([(2,0),(2,f(2))], color='black')
sage: P += line([(8,0),(8,f(8))], color='black')
sage: P += polygon([(2,0),(2,f(2))] + [(x, f(x)) for x in [2,2.1,..,8]] + [(8,0),(2,
→˓0)], rgbcolor=(0.8,0.8,0.8),aspect_ratio='automatic')
sage: P += text("$\\int_{a}^b f(x) dx$", (5, 20), fontsize=16, color='black')
sage: P += plot(f, (1, 8.5), thickness=3)
sage: P # show the result
Graphics object consisting of 5 graphics primitives

1.1. 2D Plotting 23

Sage Reference Manual: 2D Graphics, Release 8.0

NUMERICAL PLOTTING:

Sage includes Matplotlib, which provides 2D plotting with an interface that is a likely very familiar to people doing
numerical computation. You can use plt.clf() to clear the current image frame and plt.close() to close it.
For example,

sage: import pylab as plt
sage: t = plt.arange(0.0, 2.0, 0.01)
sage: s = sin(2*pi*t)
sage: P = plt.plot(t, s, linewidth=1.0)
sage: xl = plt.xlabel('time (s)')
sage: yl = plt.ylabel('voltage (mV)')
sage: t = plt.title('About as simple as it gets, folks')
sage: plt.grid(True)
sage: plt.savefig(os.path.join(SAGE_TMP, 'sage.png'))
sage: plt.clf()
sage: plt.savefig(os.path.join(SAGE_TMP, 'blank.png'))
sage: plt.close()
sage: plt.imshow([[1,2],[0,1]])
<matplotlib.image.AxesImage object at ...>

We test that imshow works as well, verifying that trac ticket #2900 is fixed (in Matplotlib).

sage: plt.imshow([[(0,0,0)]])
<matplotlib.image.AxesImage object at ...>
sage: plt.savefig(os.path.join(SAGE_TMP, 'foo.png'))

24 Chapter 1. General

https://trac.sagemath.org/2900

Sage Reference Manual: 2D Graphics, Release 8.0

Since the above overwrites many Sage plotting functions, we reset the state of Sage, so that the examples below work!

sage: reset()

See http://matplotlib.sourceforge.net for complete documentation about how to use Matplotlib.

sage: p = plot(sin(x), (x, 0,2*pi))
sage: Q = loads(dumps(p))

Verify that a clean sage startup does not import matplotlib:

sage: os.system("sage -c \"if 'matplotlib' in sys.modules: sys.exit(1)\"") # long time
0

AUTHORS:

• Alex Clemesha and William Stein (2006-04-10): initial version

• David Joyner: examples

• Alex Clemesha (2006-05-04) major update

• William Stein (2006-05-29): fine tuning, bug fixes, better server integration

• William Stein (2006-07-01): misc polish

• Alex Clemesha (2006-09-29): added contour_plot, frame axes, misc polishing

• Robert Miller (2006-10-30): tuning, NetworkX primitive

• Alex Clemesha (2006-11-25): added plot_vector_field, matrix_plot, arrow, bar_chart, Axes class usage (see
axes.py)

• Bobby Moretti and William Stein (2008-01): Change plot to specify ranges using the (varname, min, max)
notation.

• William Stein (2008-01-19): raised the documentation coverage from a miserable 12 percent to a ‘wopping’ 35
percent, and fixed and clarified numerous small issues.

• Jason Grout (2009-09-05): shifted axes and grid functionality over to matplotlib; fixed a number of smaller
issues.

• Jason Grout (2010-10): rewrote aspect ratio portions of the code

• Jeroen Demeyer (2012-04-19): move parts of this file to graphics.py (trac ticket #12857)

• Aaron Lauve (2016-07-13): reworked handling of ‘color’ when passed a list of functions; now more in-line with
other CAS’s. Added list functionality to linestyle and legend_label options as well. (trac ticket #12962)

sage.plot.plot.SelectiveFormatter(formatter, skip_values)
This matplotlib formatter selectively omits some tick values and passes the rest on to a specified formatter.

EXAMPLES:

This example is almost straight from a matplotlib example.

sage: from sage.plot.plot import SelectiveFormatter
sage: import matplotlib.pyplot as plt
sage: import numpy
sage: fig=plt.figure()
sage: ax=fig.add_subplot(111)
sage: t = numpy.arange(0.0, 2.0, 0.01)
sage: s = numpy.sin(2*numpy.pi*t)
sage: p = ax.plot(t, s)

1.1. 2D Plotting 25

http://matplotlib.sourceforge.net
https://trac.sagemath.org/12857
https://trac.sagemath.org/12962

Sage Reference Manual: 2D Graphics, Release 8.0

sage: formatter=SelectiveFormatter(ax.xaxis.get_major_formatter(),skip_values=[0,
→˓1])
sage: ax.xaxis.set_major_formatter(formatter)
sage: fig.savefig(os.path.join(SAGE_TMP, 'test.png'))

sage.plot.plot.adaptive_refinement(f, p1, p2, adaptive_tolerance=0.01, adaptive_recursion=5,
level=0)

The adaptive refinement algorithm for plotting a function f. See the docstring for plot for a description of the
algorithm.

INPUT:

•f - a function of one variable

•p1, p2 - two points to refine between

•adaptive_recursion - (default: 5) how many levels of recursion to go before giving up when doing
adaptive refinement. Setting this to 0 disables adaptive refinement.

•adaptive_tolerance - (default: 0.01) how large a relative difference should be before the adaptive
refinement code considers it significant; see documentation for generate_plot_points for more information.
See the documentation for plot() for more information on how the adaptive refinement algorithm works.

OUTPUT:

•list - a list of points to insert between p1 and p2 to get a better linear approximation between them

sage: x = var('x')
sage: f(x) = sin(1/x)
sage: n1 = len(adaptive_refinement(f, (0,0), (pi,0), adaptive_tolerance=0.01)); n1
15
sage: n2 = len(adaptive_refinement(f, (0,0), (pi,0), adaptive_recursion=10,
→˓adaptive_tolerance=0.01)); n2
79
sage: n3 = len(adaptive_refinement(f, (0,0), (pi,0), adaptive_tolerance=0.001));
→˓n3
26

sage.plot.plot.generate_plot_points(f, xrange, plot_points=5, adaptive_tolerance=0.01,
adaptive_recursion=5, randomize=True, ini-
tial_points=None)

Calculate plot points for a function f in the interval xrange. The adaptive refinement algorithm is also automati-
cally invoked with a relative adaptive tolerance of adaptive_tolerance; see below.

INPUT:

•f - a function of one variable

•p1, p2 - two points to refine between

•plot_points - (default: 5) the minimal number of plot points. (Note however that in any actual plot a
number is passed to this, with default value 200.)

•adaptive_recursion - (default: 5) how many levels of recursion to go before giving up when doing
adaptive refinement. Setting this to 0 disables adaptive refinement.

•adaptive_tolerance - (default: 0.01) how large the relative difference should be before the adaptive
refinement code considers it significant. If the actual difference is greater than adaptive_tolerance*delta,
where delta is the initial subinterval size for the given xrange and plot_points, then the algorithm will
consider it significant.

•initial_points - (default: None) a list of points that should be evaluated.

26 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

OUTPUT:

•a list of points (x, f(x)) in the interval xrange, which approximate the function f.

sage: x = var('x')
sage: f(x) = sin(1/x)
sage: [len(generate_plot_points(f, (-pi, pi), plot_points=16, adaptive_
→˓tolerance=i, randomize=False)) for i in [0.01, 0.001, 0.0001]]
[97, 161, 275]

sage: [len(generate_plot_points(f, (-pi, pi), plot_points=16, adaptive_
→˓recursion=i, randomize=False)) for i in [5, 10, 15]]
[97, 499, 2681]

sage.plot.plot.graphics_array(array, nrows=None, ncols=None)
graphics_array take a list of lists (or tuples) of graphics objects and plots them all on one canvas (single
plot).

INPUT:

•array – a list of lists or tuples. The graphics objects to combine into a graphics array.

•nrows, ncols – (optional) integers. If both are given then the input array is flattened and turned
into an nrows x ncols array, with blank graphics objects padded at the end, if necessary. If only
one is specified, the other is chosen automatically.

EXAMPLES: Make some plots of sin functions:

sage: f(x) = sin(x)
sage: g(x) = sin(2*x)
sage: h(x) = sin(4*x)
sage: p1 = plot(f,(-2*pi,2*pi),color=hue(0.5)) # long time
sage: p2 = plot(g,(-2*pi,2*pi),color=hue(0.9)) # long time
sage: p3 = parametric_plot((f,g),(0,2*pi),color=hue(0.6)) # long time
sage: p4 = parametric_plot((f,h),(0,2*pi),color=hue(1.0)) # long time

Now make a graphics array out of the plots:

sage: graphics_array(((p1,p2),(p3,p4))) # long time
Graphics Array of size 2 x 2

1.1. 2D Plotting 27

Sage Reference Manual: 2D Graphics, Release 8.0

One can also name the array, and then use show() or save():

sage: ga = graphics_array(((p1,p2),(p3,p4))) # long time
sage: ga.show() # long time

Here we give only one row:

sage: p1 = plot(sin,(-4,4))
sage: p2 = plot(cos,(-4,4))
sage: g = graphics_array([p1, p2]); print(g)
Graphics Array of size 1 x 2
sage: g.show()

28 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

It is possible to use figsize to change the size of the plot as a whole:

sage: L = [plot(sin(k*x),(x,-pi,pi)) for k in [1..3]]
sage: G = graphics_array(L)
sage: G.show(figsize=[5,3]) # smallish and compact
sage: G.show(figsize=[10,20]) # bigger and tall and thin; long time (2s on sage.
→˓math, 2012)
sage: G.show(figsize=8) # figure as a whole is a square

Specifying only the number of rows or the number of columns computes the other dimension automatically:

sage: ga = graphics_array([plot(sin)] * 10, nrows=3)
sage: ga.nrows(), ga.ncols()
(3, 4)
sage: ga = graphics_array([plot(sin)] * 10, ncols=3)
sage: ga.nrows(), ga.ncols()
(4, 3)

sage.plot.plot.list_plot(data, plotjoined=False, aspect_ratio=’automatic’, **kwargs)
list_plot takes either a list of numbers, a list of tuples, a numpy array, or a dictionary and plots the corre-
sponding points.

If given a list of numbers (that is, not a list of tuples or lists), list_plot forms a list of tuples (i, x_i)
where i goes from 0 to len(data)-1 and x_i is the i-th data value, and puts points at those tuple values.

list_plot will plot a list of complex numbers in the obvious way; any numbers for which CC() makes sense
will work.

1.1. 2D Plotting 29

Sage Reference Manual: 2D Graphics, Release 8.0

list_plot also takes a list of tuples (x_i, y_i) where x_i and y_i are the i-th values representing the
x- and y-values, respectively.

If given a dictionary, list_plot interprets the keys as 𝑥-values and the values as 𝑦-values.

The plotjoined=True option tells list_plot to plot a line joining all the data.

For other keyword options that the list_plot function can take, refer to plot().

It is possible to pass empty dictionaries, lists, or tuples to list_plot. Doing so will plot nothing (returning
an empty plot).

EXAMPLES:

sage: list_plot([i^2 for i in range(5)]) # long time
Graphics object consisting of 1 graphics primitive

Here are a bunch of random red points:

sage: r = [(random(),random()) for _ in range(20)]
sage: list_plot(r, color='red')
Graphics object consisting of 1 graphics primitive

30 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

This gives all the random points joined in a purple line:

sage: list_plot(r, plotjoined=True, color='purple')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 31

Sage Reference Manual: 2D Graphics, Release 8.0

You can provide a numpy array.:

sage: import numpy
sage: list_plot(numpy.arange(10))
Graphics object consisting of 1 graphics primitive

32 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: list_plot(numpy.array([[1,2], [2,3], [3,4]]))
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 33

Sage Reference Manual: 2D Graphics, Release 8.0

Plot a list of complex numbers:

sage: list_plot([1, I, pi + I/2, CC(.25, .25)])
Graphics object consisting of 1 graphics primitive

34 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: list_plot([exp(I*theta) for theta in [0, .2..pi]])
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 35

Sage Reference Manual: 2D Graphics, Release 8.0

Note that if your list of complex numbers are all actually real, they get plotted as real values, so this

sage: list_plot([CDF(1), CDF(1/2), CDF(1/3)])
Graphics object consisting of 1 graphics primitive

36 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

is the same as list_plot([1, 1/2, 1/3]) – it produces a plot of the points (0, 1), (1, 1/2), and (2, 1/3).

If you have separate lists of 𝑥 values and 𝑦 values which you want to plot against each other, use the zip
command to make a single list whose entries are pairs of (𝑥, 𝑦) values, and feed the result into list_plot:

sage: x_coords = [cos(t)^3 for t in srange(0, 2*pi, 0.02)]
sage: y_coords = [sin(t)^3 for t in srange(0, 2*pi, 0.02)]
sage: list_plot(list(zip(x_coords, y_coords)))
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 37

Sage Reference Manual: 2D Graphics, Release 8.0

If instead you try to pass the two lists as separate arguments, you will get an error message:

sage: list_plot(x_coords, y_coords)
Traceback (most recent call last):
...
TypeError: The second argument 'plotjoined' should be boolean (True or False).
→˓If you meant to plot two lists 'x' and 'y' against each other, use 'list_
→˓plot(list(zip(x,y)))'.

Dictionaries with numeric keys and values can be plotted:

sage: list_plot({22: 3365, 27: 3295, 37: 3135, 42: 3020, 47: 2880, 52: 2735, 57:
→˓2550})
Graphics object consisting of 1 graphics primitive

38 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Plotting in logarithmic scale is possible for 2D list plots. There are two different syntaxes available:

sage: yl = [2**k for k in range(20)]
sage: list_plot(yl, scale='semilogy') # long time # log axis on vertical
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 39

Sage Reference Manual: 2D Graphics, Release 8.0

sage: list_plot_semilogy(yl) # same
Graphics object consisting of 1 graphics primitive

Warning: If plotjoined is False then the axis that is in log scale must have all points strictly positive.
For instance, the following plot will show no points in the figure since the points in the horizontal axis starts
from (0, 1).

sage: list_plot(yl, scale='loglog') # both axes are log
Graphics object consisting of 1 graphics primitive

Instead this will work. We drop the point (0, 1).:

sage: list_plot(list(zip(range(1,len(yl)), yl[1:])), scale='loglog') # long
→˓time
Graphics object consisting of 1 graphics primitive

We use list_plot_loglog() and plot in a different base.:

sage: list_plot_loglog(list(zip(range(1,len(yl)), yl[1:])), base=2) # long time
Graphics object consisting of 1 graphics primitive

40 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We can also change the scale of the axes in the graphics just before displaying:

sage: G = list_plot(yl) # long time
sage: G.show(scale=('semilogy', 2)) # long time

sage.plot.plot.list_plot_loglog(data, plotjoined=False, base=10, **kwds)
Plot the data in ‘loglog’ scale, that is, both the horizontal and the vertical axes will be in logarithmic scale.

INPUT:

•base – (default: 10) the base of the logarithm. This must be greater than 1. The base can be also given
as a list or tuple (basex, basey). basex sets the base of the logarithm along the horizontal axis and
basey sets the base along the vertical axis.

For all other inputs, look at the documentation of list_plot().

EXAMPLES:

sage: yl = [5**k for k in range(10)]; xl = [2**k for k in range(10)]
sage: list_plot_loglog(list(zip(xl, yl))) # long time # plot in loglog scale with
→˓base 10
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 41

Sage Reference Manual: 2D Graphics, Release 8.0

sage: list_plot_loglog(list(zip(xl, yl)), base=2.1) # long time # with base 2.1
→˓on both axes
Graphics object consisting of 1 graphics primitive

42 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: list_plot_loglog(list(zip(xl, yl)), base=(2,5)) # long time
Graphics object consisting of 1 graphics primitive

Warning: If plotjoined is False then the axis that is in log scale must have all points strictly positive.
For instance, the following plot will show no points in the figure since the points in the horizontal axis starts
from (0, 1).

sage: yl = [2**k for k in range(20)]
sage: list_plot_loglog(yl)
Graphics object consisting of 1 graphics primitive

Instead this will work. We drop the point (0, 1).:

sage: list_plot_loglog(list(zip(range(1,len(yl)), yl[1:])))
Graphics object consisting of 1 graphics primitive

sage.plot.plot.list_plot_semilogx(data, plotjoined=False, base=10, **kwds)
Plot data in ‘semilogx’ scale, that is, the horizontal axis will be in logarithmic scale.

INPUT:

•base – (default: 10) the base of the logarithm. This must be greater than 1.

For all other inputs, look at the documentation of list_plot().

EXAMPLES:

1.1. 2D Plotting 43

Sage Reference Manual: 2D Graphics, Release 8.0

sage: yl = [2**k for k in range(12)]
sage: list_plot_semilogx(list(zip(yl,yl)))
Graphics object consisting of 1 graphics primitive

Warning: If plotjoined is False then the horizontal axis must have all points strictly positive. Other-
wise the plot will come up empty. For instance the following plot contains a point at (0, 1).

sage: yl = [2**k for k in range(12)]
sage: list_plot_semilogx(yl) # plot empty due to (0,1)
Graphics object consisting of 1 graphics primitive

We remove (0, 1) to fix this.:

sage: list_plot_semilogx(list(zip(range(1, len(yl)), yl[1:])))
Graphics object consisting of 1 graphics primitive

sage: list_plot_semilogx([(1,2),(3,4),(3,-1),(25,3)], base=2) # with base 2
Graphics object consisting of 1 graphics primitive

44 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.plot.list_plot_semilogy(data, plotjoined=False, base=10, **kwds)
Plot data in ‘semilogy’ scale, that is, the vertical axis will be in logarithmic scale.

INPUT:

•base – (default: 10) the base of the logarithm. This must be greater than 1.

For all other inputs, look at the documentation of list_plot().

EXAMPLES:

sage: yl = [2**k for k in range(12)]
sage: list_plot_semilogy(yl) # plot in semilogy scale, base 10
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 45

Sage Reference Manual: 2D Graphics, Release 8.0

Warning: If plotjoined is False then the vertical axis must have all points strictly positive. Otherwise
the plot will come up empty. For instance the following plot contains a point at (1, 0).

sage: xl = [2**k for k in range(12)]; yl = range(len(xl))
sage: list_plot_semilogy(list(zip(xl,yl))) # plot empty due to (1,0)
Graphics object consisting of 1 graphics primitive

We remove (1, 0) to fix this.:

sage: list_plot_semilogy(list(zip(xl[1:],yl[1:])))
Graphics object consisting of 1 graphics primitive

sage: list_plot_semilogy([2, 4, 6, 8, 16, 31], base=2) # with base 2
Graphics object consisting of 1 graphics primitive

46 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.plot.minmax_data(xdata, ydata, dict=False)
Returns the minimums and maximums of xdata and ydata.

If dict is False, then minmax_data returns the tuple (xmin, xmax, ymin, ymax); otherwise, it returns a dictionary
whose keys are ‘xmin’, ‘xmax’, ‘ymin’, and ‘ymax’ and whose values are the corresponding values.

EXAMPLES:

sage: from sage.plot.plot import minmax_data
sage: minmax_data([], [])
(-1, 1, -1, 1)
sage: minmax_data([-1, 2], [4, -3])
(-1, 2, -3, 4)
sage: d = minmax_data([-1, 2], [4, -3], dict=True)
sage: list(sorted(d.items()))
[('xmax', 2), ('xmin', -1), ('ymax', 4), ('ymin', -3)]

sage.plot.plot.parametric_plot(funcs, aspect_ratio=1.0, *args, **kwargs)
Plot a parametric curve or surface in 2d or 3d.

parametric_plot() takes two or three functions as a list or a tuple and makes a plot with the first function
giving the 𝑥 coordinates, the second function giving the 𝑦 coordinates, and the third function (if present) giving
the 𝑧 coordinates.

In the 2d case, parametric_plot() is equivalent to the plot() command with the option
parametric=True. In the 3d case, parametric_plot() is equivalent to parametric_plot3d().
See each of these functions for more help and examples.

INPUT:

1.1. 2D Plotting 47

Sage Reference Manual: 2D Graphics, Release 8.0

•funcs - 2 or 3-tuple of functions, or a vector of dimension 2 or 3.

•other options - passed to plot() or parametric_plot3d()

EXAMPLES: We draw some 2d parametric plots. Note that the default aspect ratio is 1, so that circles look like
circles.

sage: t = var('t')
sage: parametric_plot((cos(t), sin(t)), (t, 0, 2*pi))
Graphics object consisting of 1 graphics primitive

sage: parametric_plot((sin(t), sin(2*t)), (t, 0, 2*pi), color=hue(0.6))
Graphics object consisting of 1 graphics primitive

48 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: parametric_plot((1, t), (t, 0, 4))
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 49

Sage Reference Manual: 2D Graphics, Release 8.0

Note that in parametric_plot, there is only fill or no fill.

sage: parametric_plot((t, t^2), (t, -4, 4), fill=True)
Graphics object consisting of 2 graphics primitives

50 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

A filled Hypotrochoid:

sage: parametric_plot([cos(x) + 2 * cos(x/4), sin(x) - 2 * sin(x/4)], (x,0, 8*pi),
→˓ fill=True)
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 51

Sage Reference Manual: 2D Graphics, Release 8.0

sage: parametric_plot((5*cos(x), 5*sin(x), x), (x,-12, 12), plot_points=150,
→˓color="red") # long time
Graphics3d Object

sage: y=var('y')
sage: parametric_plot((5*cos(x), x*y, cos(x*y)), (x, -4,4), (y,-4,4)) # long
→˓time`
Graphics3d Object

sage: t=var('t')
sage: parametric_plot(vector((sin(t), sin(2*t))), (t, 0, 2*pi), color='green') #
→˓long time
Graphics object consisting of 1 graphics primitive

52 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: t = var('t')
sage: parametric_plot(vector([t, t+1, t^2]), (t, 0, 1)) # long time
Graphics3d Object

Plotting in logarithmic scale is possible with 2D plots. The keyword aspect_ratio will be ignored if the
scale is not 'loglog' or 'linear'.:

sage: parametric_plot((x, x**2), (x, 1, 10), scale='loglog')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 53

Sage Reference Manual: 2D Graphics, Release 8.0

We can also change the scale of the axes in the graphics just before displaying. In this case, the aspect_ratio
must be specified as 'automatic' if the scale is set to 'semilogx' or 'semilogy'. For other values
of the scale parameter, any aspect_ratio can be used, or the keyword need not be provided.:

sage: p = parametric_plot((x, x**2), (x, 1, 10))
sage: p.show(scale='semilogy', aspect_ratio='automatic')

sage.plot.plot.plot(funcs, exclude=None, fillalpha=0.5, detect_poles=False, plot_points=200, thick-
ness=1, adaptive_tolerance=0.01, fillcolor=’automatic’, adaptive_recursion=5,
aspect_ratio=’automatic’, alpha=1, legend_label=None, fill=False, *args,
**kwds)

Use plot by writing

plot(X, ...)

where 𝑋 is a Sage object (or list of Sage objects) that either is callable and returns numbers that can be coerced
to floats, or has a plot method that returns a GraphicPrimitive object.

There are many other specialized 2D plot commands available in Sage, such as plot_slope_field, as well
as various graphics primitives like Arrow ; type sage.plot.plot? for a current list.

Type plot.options for a dictionary of the default options for plots. You can change this to change the
defaults for all future plots. Use plot.reset() to reset to the default options.

PLOT OPTIONS:

•plot_points - (default: 200) the minimal number of plot points.

•adaptive_recursion - (default: 5) how many levels of recursion to go before giving up when doing
adaptive refinement. Setting this to 0 disables adaptive refinement.

54 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

•adaptive_tolerance - (default: 0.01) how large a difference should be before the adaptive refine-
ment code considers it significant. See the documentation further below for more information, starting at
“the algorithm used to insert”.

•base - (default: 10) the base of the logarithm if a logarithmic scale is set. This must be greater than 1.
The base can be also given as a list or tuple (basex, basey). basex sets the base of the logarithm
along the horizontal axis and basey sets the base along the vertical axis.

•scale – (default: "linear") string. The scale of the axes. Possible values are "linear",
"loglog", "semilogx", "semilogy".

The scale can be also be given as single argument that is a list or tuple (scale, base) or (scale,
basex, basey).

The "loglog" scale sets both the horizontal and vertical axes to logarithmic scale. The "semilogx"
scale sets the horizontal axis to logarithmic scale. The "semilogy" scale sets the vertical axis to loga-
rithmic scale. The "linear" scale is the default value when Graphics is initialized.

•xmin - starting x value in the rendered figure. This parameter is passed directly to the show procedure
and it could be overwritten.

•xmax - ending x value in the rendered figure. This parameter is passed directly to the show procedure
and it could be overwritten.

•ymin - starting y value in the rendered figure. This parameter is passed directly to the show procedure
and it could be overwritten.

•ymax - ending y value in the rendered figure. This parameter is passed directly to the show procedure
and it could be overwritten.

•detect_poles - (Default: False) If set to True poles are detected. If set to “show” vertical asymptotes
are drawn.

•legend_label - a (TeX) string serving as the label for 𝑋 in the legend. If 𝑋 is a list, then this option
can be a single string, or a list or dictionary with strings as entries/values. If a dictionary, then keys are
taken from range(len(X)).

Note:

•If the scale is "linear", then irrespective of what base is set to, it will default to 10 and will remain
unused.

•If you want to limit the plot along the horizontal axis in the final rendered figure, then pass the xmin
and xmax keywords to the show() method. To limit the plot along the vertical axis, ymin and ymax
keywords can be provided to either this plot command or to the show command.

•This function does NOT simply sample equally spaced points between xmin and xmax. Instead it computes
equally spaced points and adds small perturbations to them. This reduces the possibility of, e.g., sampling
sin only at multiples of 2𝜋, which would yield a very misleading graph.

•If there is a range of consecutive points where the function has no value, then those points will be excluded
from the plot. See the example below on automatic exclusion of points.

•For the other keyword options that the plot function can take, refer to the method show() and the
further options below.

COLOR OPTIONS:

•color - (Default: ‘blue’) One of:

–an RGB tuple (r,g,b) with each of r,g,b between 0 and 1.

1.1. 2D Plotting 55

Sage Reference Manual: 2D Graphics, Release 8.0

–a color name as a string (e.g., ‘purple’).

–an HTML color such as ‘#aaff0b’.

–a list or dictionary of colors (valid only if 𝑋 is a list): if a dictionary, keys are taken from
range(len(X)); the entries/values of the list/dictionary may be any of the options above.

–‘automatic’ – maps to default (‘blue’) if 𝑋 is a single Sage object; and maps to a fixed sequence of
regularly spaced colors if 𝑋 is a list.

•legend_color - the color of the text for 𝑋 (or each item in 𝑋) in the legend. Default color is
‘black’. Options are as in color above, except that the choice ‘automatic’ maps to ‘black’ if 𝑋 is a
single Sage object.

•fillcolor - The color of the fill for the plot of 𝑋 (or each item in 𝑋). Default color is ‘gray’ if 𝑋
is a single Sage object or if color is a single color. Otherwise, options are as in color above.

APPEARANCE OPTIONS:

The following options affect the appearance of the line through the points on the graph of 𝑋 (these are the same
as for the line function):

INPUT:

•alpha - How transparent the line is

•thickness - How thick the line is

•rgbcolor - The color as an RGB tuple

•hue - The color given as a hue

LINE OPTIONS:

Any MATPLOTLIB line option may also be passed in. E.g.,

•linestyle - (default: “-”) The style of the line, which is one of

–"-" or "solid"

–"--" or "dashed"

–"-." or "dash dot"

–":" or "dotted"

–"None" or " " or "" (nothing)

–a list or dictionary (see below)

The linestyle can also be prefixed with a drawing style (e.g., "steps--")

–"default" (connect the points with straight lines)

–"steps" or "steps-pre" (step function; horizontal line is to the left of point)

–"steps-mid" (step function; points are in the middle of horizontal lines)

–"steps-post" (step function; horizontal line is to the right of point)

If 𝑋 is a list, then linestyle may be a list (with entries taken from the strings above) or a dictionary
(with keys in range(len(X)) and values taken from the strings above).

•marker - The style of the markers, which is one of

–"None" or " " or "" (nothing) – default

–"," (pixel), "." (point)

56 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

–"_" (horizontal line), "|" (vertical line)

–"o" (circle), "p" (pentagon), "s" (square), "x" (x), "+" (plus), "*" (star)

–"D" (diamond), "d" (thin diamond)

–"H" (hexagon), "h" (alternative hexagon)

–"<" (triangle left), ">" (triangle right), "^" (triangle up), "v" (triangle down)

–"1" (tri down), "2" (tri up), "3" (tri left), "4" (tri right)

–0 (tick left), 1 (tick right), 2 (tick up), 3 (tick down)

–4 (caret left), 5 (caret right), 6 (caret up), 7 (caret down), 8 (octagon)

–"$...$" (math TeX string)

–(numsides, style, angle) to create a custom, regular symbol

*numsides – the number of sides

*style – 0 (regular polygon), 1 (star shape), 2 (asterisk), 3 (circle)

*angle – the angular rotation in degrees

•markersize - the size of the marker in points

•markeredgecolor – the color of the marker edge

•markerfacecolor – the color of the marker face

•markeredgewidth - the size of the marker edge in points

•exclude - (Default: None) values which are excluded from the plot range. Either a list of real numbers,
or an equation in one variable.

FILLING OPTIONS:

•fill - (Default: False) One of:

–“axis” or True: Fill the area between the function and the x-axis.

–“min”: Fill the area between the function and its minimal value.

–“max”: Fill the area between the function and its maximal value.

–a number c: Fill the area between the function and the horizontal line y = c.

–a function g: Fill the area between the function that is plotted and g.

–a dictionary d (only if a list of functions are plotted): The keys of the dictionary should be integers.
The value of d[i] specifies the fill options for the i-th function in the list. If d[i] == [j]: Fill
the area between the i-th and the j-th function in the list. (But if d[i] == j: Fill the area between
the i-th function in the list and the horizontal line y = j.)

•fillalpha - (default: 0.5) How transparent the fill is. A number between 0 and 1.

EXAMPLES:

We plot the sin function:

sage: P = plot(sin, (0,10)); print(P)
Graphics object consisting of 1 graphics primitive
sage: len(P) # number of graphics primitives
1
sage: len(P[0]) # how many points were computed (random)
225

1.1. 2D Plotting 57

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P # render
Graphics object consisting of 1 graphics primitive

sage: P = plot(sin, (0,10), plot_points=10); print(P)
Graphics object consisting of 1 graphics primitive
sage: len(P[0]) # random output
32
sage: P # render
Graphics object consisting of 1 graphics primitive

58 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We plot with randomize=False, which makes the initial sample points evenly spaced (hence always the
same). Adaptive plotting might insert other points, however, unless adaptive_recursion=0.

sage: p=plot(1, (x,0,3), plot_points=4, randomize=False, adaptive_recursion=0)
sage: list(p[0])
[(0.0, 1.0), (1.0, 1.0), (2.0, 1.0), (3.0, 1.0)]

Some colored functions:

sage: plot(sin, 0, 10, color='purple')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 59

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin, 0, 10, color='#ff00ff')
Graphics object consisting of 1 graphics primitive

60 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We plot several functions together by passing a list of functions as input:

sage: plot([x*exp(-n*x^2)/.4 for n in [1..5]], (0, 2), aspect_ratio=.8)
Graphics object consisting of 5 graphics primitives

1.1. 2D Plotting 61

Sage Reference Manual: 2D Graphics, Release 8.0

By default, color will change from one primitive to the next. This may be controlled by modifying color
option:

sage: g1 = plot([x*exp(-n*x^2)/.4 for n in [1..3]], (0, 2), color='blue', aspect_
→˓ratio=.8); g1
Graphics object consisting of 3 graphics primitives
sage: g2 = plot([x*exp(-n*x^2)/.4 for n in [1..3]], (0, 2), color=['red','red',
→˓'green'], linestyle=['-','--','-.'], aspect_ratio=.8); g2
Graphics object consisting of 3 graphics primitives

62 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We can also build a plot step by step from an empty plot:

sage: a = plot([]); a # passing an empty list returns an empty plot
→˓(Graphics() object)
Graphics object consisting of 0 graphics primitives
sage: a += plot(x**2); a # append another plot
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 63

Sage Reference Manual: 2D Graphics, Release 8.0

sage: a += plot(x**3); a # append yet another plot
Graphics object consisting of 2 graphics primitives

64 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

The function sin(1/𝑥) wiggles wildly near 0. Sage adapts to this and plots extra points near the origin.

sage: plot(sin(1/x), (x, -1, 1))
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 65

Sage Reference Manual: 2D Graphics, Release 8.0

Via the matplotlib library, Sage makes it easy to tell whether a graph is on both sides of both axes, as the axes
only cross if the origin is actually part of the viewing area:

sage: plot(x^3,(x,0,2)) # this one has the origin
Graphics object consisting of 1 graphics primitive

66 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(x^3,(x,1,2)) # this one does not
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 67

Sage Reference Manual: 2D Graphics, Release 8.0

Another thing to be aware of with axis labeling is that when the labels have quite different orders of magnitude
or are very large, scientific notation (the 𝑒 notation for powers of ten) is used:

sage: plot(x^2,(x,480,500)) # this one has no scientific notation
Graphics object consisting of 1 graphics primitive

68 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(x^2,(x,300,500)) # this one has scientific notation on y-axis
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 69

Sage Reference Manual: 2D Graphics, Release 8.0

You can put a legend with legend_label (the legend is only put once in the case of multiple functions):

sage: plot(exp(x), 0, 2, legend_label='e^x')
Graphics object consisting of 1 graphics primitive

70 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Sage understands TeX, so these all are slightly different, and you can choose one based on your needs:

sage: plot(sin, legend_label='sin')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 71

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin, legend_label='sin')
Graphics object consisting of 1 graphics primitive

72 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin, legend_label='\sin')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 73

Sage Reference Manual: 2D Graphics, Release 8.0

It is possible to use a different color for the text of each label:

sage: p1 = plot(sin, legend_label='sin', legend_color='red')
sage: p2 = plot(cos, legend_label='cos', legend_color='green')
sage: p1 + p2
Graphics object consisting of 2 graphics primitives

74 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Prior to trac ticket #19485, legends by default had a shadowless gray background. This behavior can be recov-
ered by setting the legend options on your plot object:

sage: p = plot(sin(x), legend_label='$\sin(x)$')
sage: p.set_legend_options(back_color=(0.9,0.9,0.9), shadow=False)

1.1. 2D Plotting 75

https://trac.sagemath.org/19485

Sage Reference Manual: 2D Graphics, Release 8.0

If 𝑋 is a list of Sage objects and legend_label is ‘automatic’, then Sage will create labels for each function
according to their internal representation:

sage: plot([sin(x), tan(x), 1-x^2], legend_label='automatic')
Graphics object consisting of 3 graphics primitives

76 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

If legend_label is any single string other than ‘automatic’, then it is repeated for all members of 𝑋:

sage: plot([sin(x), tan(x)], color='blue', legend_label='trig')
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 77

Sage Reference Manual: 2D Graphics, Release 8.0

Note that the independent variable may be omitted if there is no ambiguity:

sage: plot(sin(1.0/x), (-1, 1))
Graphics object consisting of 1 graphics primitive

78 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Plotting in logarithmic scale is possible for 2D plots. There are two different syntaxes supported:

sage: plot(exp, (1, 10), scale='semilogy') # log axis on vertical
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 79

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot_semilogy(exp, (1, 10)) # same thing
Graphics object consisting of 1 graphics primitive

80 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot_loglog(exp, (1, 10)) # both axes are log
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 81

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(exp, (1, 10), scale='loglog', base=2) # long time # base of log is 2
Graphics object consisting of 1 graphics primitive

82 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We can also change the scale of the axes in the graphics just before displaying:

sage: G = plot(exp, 1, 10) # long time
sage: G.show(scale=('semilogy', 2)) # long time

The algorithm used to insert extra points is actually pretty simple. On the picture drawn by the lines below:

sage: p = plot(x^2, (-0.5, 1.4)) + line([(0,0), (1,1)], color='green')
sage: p += line([(0.5, 0.5), (0.5, 0.5^2)], color='purple')
sage: p += point(((0, 0), (0.5, 0.5), (0.5, 0.5^2), (1, 1)), color='red',
→˓pointsize=20)
sage: p += text('A', (-0.05, 0.1), color='red')
sage: p += text('B', (1.01, 1.1), color='red')
sage: p += text('C', (0.48, 0.57), color='red')
sage: p += text('D', (0.53, 0.18), color='red')
sage: p.show(axes=False, xmin=-0.5, xmax=1.4, ymin=0, ymax=2)

1.1. 2D Plotting 83

Sage Reference Manual: 2D Graphics, Release 8.0

You have the function (in blue) and its approximation (in green) passing through the points A and B. The
algorithm finds the midpoint C of AB and computes the distance between C and D. If that distance exceeds the
adaptive_tolerance threshold (relative to the size of the initial plot subintervals), the point D is added to
the curve. If D is added to the curve, then the algorithm is applied recursively to the points A and D, and D and
B. It is repeated adaptive_recursion times (5, by default).

The actual sample points are slightly randomized, so the above plots may look slightly different each time you
draw them.

We draw the graph of an elliptic curve as the union of graphs of 2 functions.

sage: def h1(x): return abs(sqrt(x^3 - 1))
sage: def h2(x): return -abs(sqrt(x^3 - 1))
sage: P = plot([h1, h2], 1,4)
sage: P # show the result
Graphics object consisting of 2 graphics primitives

84 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

It is important to mention that when we draw several graphs at the same time, parameters xmin, xmax, ymin
and ymax are just passed directly to the show procedure. In fact, these parameters would be overwritten:

sage: p=plot(x^3, x, xmin=-1, xmax=1,ymin=-1, ymax=1)
sage: q=plot(exp(x), x, xmin=-2, xmax=2, ymin=0, ymax=4)
sage: (p+q).show()

As a workaround, we can perform the trick:

sage: p1 = line([(a,b) for a,b in zip(p[0].xdata,p[0].ydata) if (b>=-1 and b<=1)])
sage: q1 = line([(a,b) for a,b in zip(q[0].xdata,q[0].ydata) if (b>=0 and b<=4)])
sage: (p1+q1).show()

We can also directly plot the elliptic curve:

sage: E = EllipticCurve([0,-1])
sage: plot(E, (1, 4), color=hue(0.6))
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 85

Sage Reference Manual: 2D Graphics, Release 8.0

We can change the line style as well:

sage: plot(sin(x), (x, 0, 10), linestyle='-.')
Graphics object consisting of 1 graphics primitive

86 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

If we have an empty linestyle and specify a marker, we can see the points that are actually being plotted:

sage: plot(sin(x), (x,0,10), plot_points=20, linestyle='', marker='.')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 87

Sage Reference Manual: 2D Graphics, Release 8.0

The marker can be a TeX symbol as well:

sage: plot(sin(x), (x,0,10), plot_points=20, linestyle='', marker=r'\checkmark')
Graphics object consisting of 1 graphics primitive

88 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Sage currently ignores points that cannot be evaluated

sage: set_verbose(-1)
sage: plot(-x*log(x), (x,0,1)) # this works fine since the failed endpoint is
→˓just skipped.
Graphics object consisting of 1 graphics primitive
sage: set_verbose(0)

This prints out a warning and plots where it can (we turn off the warning by setting the verbose mode temporarily
to -1.)

sage: set_verbose(-1)
sage: plot(x^(1/3), (x,-1,1))
Graphics object consisting of 1 graphics primitive
sage: set_verbose(0)

1.1. 2D Plotting 89

Sage Reference Manual: 2D Graphics, Release 8.0

Plotting the real cube root function for negative input requires avoiding the complex numbers one would usually
get. The easiest way is to use absolute value:

sage: plot(sign(x)*abs(x)^(1/3), (x,-1,1))
Graphics object consisting of 1 graphics primitive

90 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We can also use the following:

sage: plot(sign(x)*(x*sign(x))^(1/3), (x,-4,4))
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 91

Sage Reference Manual: 2D Graphics, Release 8.0

A way that points to how to plot other functions without symbolic variants is using lambda functions:

sage: plot(lambda x : RR(x).nth_root(3), (x,-1, 1))
Graphics object consisting of 1 graphics primitive

92 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

We can detect the poles of a function:

sage: plot(gamma, (-3, 4), detect_poles=True).show(ymin=-5, ymax=5)

1.1. 2D Plotting 93

Sage Reference Manual: 2D Graphics, Release 8.0

We draw the Gamma-Function with its poles highlighted:

sage: plot(gamma, (-3, 4), detect_poles='show').show(ymin=-5, ymax=5)

94 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

The basic options for filling a plot:

sage: p1 = plot(sin(x), -pi, pi, fill='axis')
sage: p2 = plot(sin(x), -pi, pi, fill='min', fillalpha=1)
sage: p3 = plot(sin(x), -pi, pi, fill='max')
sage: p4 = plot(sin(x), -pi, pi, fill=(1-x)/3, fillcolor='blue', fillalpha=.2)
sage: graphics_array([[p1, p2], [p3, p4]]).show(frame=True, axes=False) # long
→˓time

1.1. 2D Plotting 95

Sage Reference Manual: 2D Graphics, Release 8.0

The basic options for filling a list of plots:

sage: (f1, f2) = x*exp(-1*x^2)/.35, x*exp(-2*x^2)/.35
sage: p1 = plot([f1, f2], -pi, pi, fill={1: [0]}, fillcolor='blue', fillalpha=.25,
→˓ color='blue')
sage: p2 = plot([f1, f2], -pi, pi, fill={0: x/3, 1:[0]}, color=['blue'])
sage: p3 = plot([f1, f2], -pi, pi, fill=[0, [0]], fillcolor=['orange','red'],
→˓fillalpha=1, color={1: 'blue'})
sage: p4 = plot([f1, f2], (x,-pi, pi), fill=[x/3, 0], fillcolor=['grey'], color=[
→˓'red', 'blue'])
sage: graphics_array([[p1, p2], [p3, p4]]).show(frame=True, axes=False) # long
→˓time

96 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

A example about the growth of prime numbers:

sage: plot(1.13*log(x), 1, 100, fill=lambda x: nth_prime(x)/floor(x), fillcolor=
→˓'red')
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 97

Sage Reference Manual: 2D Graphics, Release 8.0

Fill the area between a function and its asymptote:

sage: f = (2*x^3+2*x-1)/((x-2)*(x+1))
sage: plot([f, 2*x+2], -7,7, fill={0: [1]}, fillcolor='#ccc').show(ymin=-20,
→˓ymax=20)

98 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Fill the area between a list of functions and the x-axis:

sage: def b(n): return lambda x: bessel_J(n, x)
sage: plot([b(n) for n in [1..5]], 0, 20, fill='axis')
Graphics object consisting of 10 graphics primitives

1.1. 2D Plotting 99

Sage Reference Manual: 2D Graphics, Release 8.0

Note that to fill between the ith and jth functions, you must use the dictionary key-value syntax i:[j]; using
key-value pairs like i:j will fill between the ith function and the line y=j:

sage: def b(n): return lambda x: bessel_J(n, x) + 0.5*(n-1)
sage: plot([b(c) for c in [1..5]], 0, 20, fill={i:[i-1] for i in [1..4]}, color=
→˓{i:'blue' for i in [1..5]}, aspect_ratio=3, ymax=3);
Graphics object consisting of 9 graphics primitives
sage: plot([b(c) for c in [1..5]], 0, 20, fill={i:i-1 for i in [1..4]}, color=
→˓'blue', aspect_ratio=3) # long time
Graphics object consisting of 9 graphics primitives

100 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: plot(sin(x^2), (x, -3, 3), title='Plot of $\sin(x^2)$', axes_labels=['x','
→˓y']) # These labels will be nicely typeset
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 101

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin(x^2), (x, -3, 3), title='Plot of sin(x^2)', axes_labels=['x','y'])
→˓# These will not
Graphics object consisting of 1 graphics primitive

102 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin(x^2), (x, -3, 3), axes_labels=['x','y'], axes_labels_size=2.5) #
→˓Large axes labels (w.r.t. the tick marks)
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 103

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin(x^2), (x, -3, 3), figsize=[8,2])
Graphics object consisting of 1 graphics primitive
sage: plot(sin(x^2), (x, -3, 3)).show(figsize=[8,2]) # These are equivalent

104 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

This includes options for custom ticks and formatting. See documentation for show() for more details.

sage: plot(sin(pi*x), (x, -8, 8), ticks=[[-7,-3,0,3,7],[-1/2,0,1/2]])
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 105

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(2*x+1,(x,0,5),ticks=[[0,1,e,pi,sqrt(20)],2],tick_formatter="latex")
Graphics object consisting of 1 graphics primitive

106 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

This is particularly useful when setting custom ticks in multiples of 𝑝𝑖.

sage: plot(sin(x),(x,0,2*pi),ticks=pi/3,tick_formatter=pi)
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 107

Sage Reference Manual: 2D Graphics, Release 8.0

You can even have custom tick labels along with custom positioning.

sage: plot(x**2, (x,0,3), ticks=[[1,2.5],[0.5,1,2]], tick_formatter=[["x_1","$x_
→˓2$"],["$y_1$","$y_2$","$y_3$"]])
Graphics object consisting of 1 graphics primitive

108 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

You can force Type 1 fonts in your figures by providing the relevant option as shown below. This also requires
that LaTeX, dvipng and Ghostscript be installed:

sage: plot(x, typeset='type1') # optional - latex

A example with excluded values:

sage: plot(floor(x), (x, 1, 10), exclude=[1..10])
Graphics object consisting of 11 graphics primitives

1.1. 2D Plotting 109

Sage Reference Manual: 2D Graphics, Release 8.0

We exclude all points where PrimePi makes a jump:

sage: jumps = [n for n in [1..100] if prime_pi(n) != prime_pi(n-1)]
sage: plot(lambda x: prime_pi(x), (x, 1, 100), exclude=jumps)
Graphics object consisting of 26 graphics primitives

110 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Excluded points can also be given by an equation:

sage: g(x) = x^2-2*x-2
sage: plot(1/g(x), (x, -3, 4), exclude=g(x)==0, ymin=-5, ymax=5) # long time
Graphics object consisting of 3 graphics primitives

1.1. 2D Plotting 111

Sage Reference Manual: 2D Graphics, Release 8.0

exclude and detect_poles can be used together:

sage: f(x) = (floor(x)+0.5) / (1-(x-0.5)^2)
sage: plot(f, (x, -3.5, 3.5), detect_poles='show', exclude=[-3..3], ymin=-5,
→˓ymax=5)
Graphics object consisting of 12 graphics primitives

112 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Regions in which the plot has no values are automatically excluded. The regions thus excluded are in addition
to the exclusion points present in the exclude keyword argument.:

sage: set_verbose(-1)
sage: plot(arcsec, (x, -2, 2)) # [-1, 1] is excluded automatically
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 113

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(arcsec, (x, -2, 2), exclude=[1.5]) # x=1.5 is also excluded
Graphics object consisting of 3 graphics primitives

114 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(arcsec(x/2), -2, 2) # plot should be empty; no valid points
Graphics object consisting of 0 graphics primitives
sage: plot(sqrt(x^2-1), -2, 2) # [-1, 1] is excluded automatically
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 115

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(arccsc, -2, 2) # [-1, 1] is excluded automatically
Graphics object consisting of 2 graphics primitives
sage: set_verbose(0)

116 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: d = plot([sin(x), cos(x)], 100, 120).get_minmax_data()
sage: d['xmin']
100.0
sage: d['xmax']
120.0

We check various combinations of tuples and functions, ending with tests that lambda functions work properly
with explicit variable declaration, without a tuple.

sage: p = plot(lambda x: x,(x,-1,1))
sage: p = plot(lambda x: x,-1,1)
sage: p = plot(x,x,-1,1)
sage: p = plot(x,-1,1)
sage: p = plot(x^2,x,-1,1)
sage: p = plot(x^2,xmin=-1,xmax=2)
sage: p = plot(lambda x: x,x,-1,1)
sage: p = plot(lambda x: x^2,x,-1,1)
sage: p = plot(lambda x: 1/x,x,-1,1)
sage: f(x) = sin(x+3)-.1*x^3
sage: p = plot(lambda x: f(x),x,-1,1)

We check to handle cases where the function gets evaluated at a point which causes an ‘inf’ or ‘-inf’ result to be
produced.

sage: p = plot(1/x, 0, 1)
sage: p = plot(-1/x, 0, 1)

1.1. 2D Plotting 117

Sage Reference Manual: 2D Graphics, Release 8.0

Bad options now give better errors:

sage: P = plot(sin(1/x), (x,-1,3), foo=10)
Traceback (most recent call last):
...
RuntimeError: Error in line(): option 'foo' not valid.
sage: P = plot(x, (x,1,1)) # trac ticket #11753
Traceback (most recent call last):
...
ValueError: plot start point and end point must be different

We test that we can plot 𝑓(𝑥) = 𝑥 (see trac ticket #10246):

sage: f(x)=x; f
x |--> x
sage: plot(f,(x,-1,1))
Graphics object consisting of 1 graphics primitive

Check that trac ticket #15030 is fixed:

sage: plot(abs(log(x)), x)
Graphics object consisting of 1 graphics primitive

Check that if excluded points are less than xmin then the exclusion still works for polar and parametric plots.
The following should show two excluded points:

sage: set_verbose(-1)
sage: polar_plot(sin(sqrt(x^2-1)), (x,0,2*pi), exclude=[1/2,2,3])
Graphics object consisting of 3 graphics primitives

sage: parametric_plot((sqrt(x^2-1),sqrt(x^2-1/2)), (x,0,5), exclude=[1,2,3])
Graphics object consisting of 3 graphics primitives

sage: set_verbose(0)

Legends can contain variables with long names, trac ticket #13543:

sage: hello = var('hello')
sage: label = '$' + latex(hello) + '$'
sage: plot(x, x, 0, 1, legend_label=label)
Graphics object consisting of 1 graphics primitive

Extra keywords should be saved if object has a plot method, trac ticket #20924:

sage: G = graphs.PetersenGraph()
sage: p = G.plot()
sage: p.aspect_ratio()
1.0
sage: pp = plot(G)
sage: pp.aspect_ratio()
1.0

sage.plot.plot.plot_loglog(funcs, base=10, *args, **kwds)
Plot graphics in ‘loglog’ scale, that is, both the horizontal and the vertical axes will be in logarithmic scale.

INPUT:

•base – (default: 10) the base of the logarithm. This must be greater than 1. The base can be also given
as a list or tuple (basex, basey). basex sets the base of the logarithm along the horizontal axis and

118 Chapter 1. General

https://trac.sagemath.org/10246
https://trac.sagemath.org/15030
https://trac.sagemath.org/13543
https://trac.sagemath.org/20924

Sage Reference Manual: 2D Graphics, Release 8.0

basey sets the base along the vertical axis.

•funcs – any Sage object which is acceptable to the plot().

For all other inputs, look at the documentation of plot().

EXAMPLES:

sage: plot_loglog(exp, (1,10)) # plot in loglog scale with base 10
Graphics object consisting of 1 graphics primitive

sage: plot_loglog(exp, (1,10), base=2.1) # long time # with base 2.1 on both axes
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 119

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot_loglog(exp, (1,10), base=(2,3))
Graphics object consisting of 1 graphics primitive

120 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.plot.plot_semilogx(funcs, base=10, *args, **kwds)
Plot graphics in ‘semilogx’ scale, that is, the horizontal axis will be in logarithmic scale.

INPUT:

•base – (default: 10) the base of the logarithm. This must be greater than 1.

•funcs – any Sage object which is acceptable to the plot().

For all other inputs, look at the documentation of plot().

EXAMPLES:

sage: plot_semilogx(exp, (1,10)) # long time # plot in semilogx scale, base 10
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 121

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot_semilogx(exp, (1,10), base=2) # with base 2
Graphics object consisting of 1 graphics primitive

122 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.plot.plot_semilogy(funcs, base=10, *args, **kwds)
Plot graphics in ‘semilogy’ scale, that is, the vertical axis will be in logarithmic scale.

INPUT:

•base – (default: 10) the base of the logarithm. This must be greater than 1.

•funcs – any Sage object which is acceptable to the plot().

For all other inputs, look at the documentation of plot().

EXAMPLES:

sage: plot_semilogy(exp, (1,10)) # long time # plot in semilogy scale, base 10
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 123

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot_semilogy(exp, (1,10), base=2) # long time # with base 2
Graphics object consisting of 1 graphics primitive

124 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.plot.polar_plot(funcs, aspect_ratio=1.0, *args, **kwds)
polar_plot takes a single function or a list or tuple of functions and plots them with polar coordinates in the
given domain.

This function is equivalent to the plot() command with the options polar=True and aspect_ratio=1.
For more help on options, see the documentation for plot().

INPUT:

•funcs - a function

•other options are passed to plot

EXAMPLES:

Here is a blue 8-leaved petal:

sage: polar_plot(sin(5*x)^2, (x, 0, 2*pi), color='blue')
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 125

Sage Reference Manual: 2D Graphics, Release 8.0

A red figure-8:

sage: polar_plot(abs(sqrt(1 - sin(x)^2)), (x, 0, 2*pi), color='red')
Graphics object consisting of 1 graphics primitive

126 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

A green limacon of Pascal:

sage: polar_plot(2 + 2*cos(x), (x, 0, 2*pi), color=hue(0.3))
Graphics object consisting of 1 graphics primitive

1.1. 2D Plotting 127

Sage Reference Manual: 2D Graphics, Release 8.0

Several polar plots:

sage: polar_plot([2*sin(x), 2*cos(x)], (x, 0, 2*pi))
Graphics object consisting of 2 graphics primitives

128 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

A filled spiral:

sage: polar_plot(sqrt, 0, 2 * pi, fill=True)
Graphics object consisting of 2 graphics primitives

1.1. 2D Plotting 129

Sage Reference Manual: 2D Graphics, Release 8.0

Fill the area between two functions:

sage: polar_plot(cos(4*x) + 1.5, 0, 2*pi, fill=0.5 * cos(4*x) + 2.5, fillcolor=
→˓'orange')
Graphics object consisting of 2 graphics primitives

130 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Fill the area between several spirals:

sage: polar_plot([(1.2+k*0.2)*log(x) for k in range(6)], 1, 3 * pi, fill={0: [1],
→˓2: [3], 4: [5]})
Graphics object consisting of 9 graphics primitives

1.1. 2D Plotting 131

Sage Reference Manual: 2D Graphics, Release 8.0

Exclude points at discontinuities:

sage: polar_plot(log(floor(x)), (x, 1, 4*pi), exclude=[1..12])
Graphics object consisting of 12 graphics primitives

132 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.plot.reshape(v, n, m)
Helper function for creating graphics arrays.

The input array is flattened and turned into an 𝑛𝑖𝑚𝑒𝑠𝑚 array, with blank graphics object padded at the end, if
necessary.

INPUT:

•v - a list of lists or tuples

•n, m - integers

OUTPUT:

A list of lists of graphics objects

EXAMPLES:

sage: L = [plot(sin(k*x),(x,-pi,pi)) for k in range(10)]
sage: graphics_array(L,3,4) # long time (up to 4s on sage.math, 2012)
Graphics Array of size 3 x 4

sage: M = [[plot(sin(k*x),(x,-pi,pi)) for k in range(3)],[plot(cos(j*x),(x,-pi,
→˓pi)) for j in [3..5]]]
sage: graphics_array(M,6,1) # long time (up to 4s on sage.math, 2012)
Graphics Array of size 6 x 1

sage.plot.plot.setup_for_eval_on_grid(v, xrange, yrange, plot_points)
This function is deprecated. Please use sage.plot.misc.setup_for_eval_on_grid instead. Please

1.1. 2D Plotting 133

Sage Reference Manual: 2D Graphics, Release 8.0

note that that function has slightly different calling and return conventions which make it more generally appli-
cable.

INPUT:

•v - a list of functions

•xrange - 2 or 3 tuple (if 3, first is a variable)

•yrange - 2 or 3 tuple

•plot_points - a positive integer

OUTPUT:

•g - tuple of fast callable functions

•xstep - step size in xdirection

•ystep - step size in ydirection

•xrange - tuple of 2 floats

•yrange - tuple of 2 floats

EXAMPLES:

sage: x,y = var('x,y')
sage: sage.plot.plot.setup_for_eval_on_grid([x^2 + y^2], (x,0,5), (y,0,pi), 11)
doctest:...: DeprecationWarning: sage.plot.plot.setup_for_eval_on_grid is
→˓deprecated. Please use sage.plot.misc.setup_for_eval_on_grid; note that that
→˓function has slightly different calling and return conventions which make it
→˓more generally applicable
See http://trac.sagemath.org/7008 for details.
([<sage.ext... object at ...>],
0.5,
0.3141592653589793,
(0.0, 5.0),
(0.0, 3.141592653589793))

We always plot at least two points; one at the beginning and one at the end of the ranges.

sage: sage.plot.plot.setup_for_eval_on_grid([x^2+y^2], (x,0,1), (y,-1,1), 1)
([<sage.ext... object at ...>],
1.0,
2.0,
(0.0, 1.0),
(-1.0, 1.0))

sage.plot.plot.to_float_list(v)
Given a list or tuple or iterable v, coerce each element of v to a float and make a list out of the result.

EXAMPLES:

sage: from sage.plot.plot import to_float_list
sage: to_float_list([1,1/2,3])
[1.0, 0.5, 3.0]

sage.plot.plot.var_and_list_of_values(v, plot_points)
INPUT:

•v - (v0, v1) or (var, v0, v1); if the former return the range of values between v0 and v1 taking plot_points
steps; if var is given, also return var.

134 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

•plot_points - integer = 2 (the endpoints)

OUTPUT:

•var - a variable or None

•list - a list of floats

EXAMPLES:

sage: from sage.plot.plot import var_and_list_of_values
sage: var_and_list_of_values((var('theta'), 2, 5), 5)
doctest:...: DeprecationWarning: var_and_list_of_values is deprecated. Please
→˓use sage.plot.misc.setup_for_eval_on_grid; note that that function has slightly
→˓different calling and return conventions which make it more generally applicable
See http://trac.sagemath.org/7008 for details.
(theta, [2.0, 2.75, 3.5, 4.25, 5.0])
sage: var_and_list_of_values((2, 5), 5)
(None, [2.0, 2.75, 3.5, 4.25, 5.0])
sage: var_and_list_of_values((var('theta'), 2, 5), 2)
(theta, [2.0, 5.0])
sage: var_and_list_of_values((2, 5), 2)
(None, [2.0, 5.0])

sage.plot.plot.xydata_from_point_list(points)
Returns two lists (xdata, ydata), each coerced to a list of floats, which correspond to the x-coordinates and the
y-coordinates of the points.

The points parameter can be a list of 2-tuples or some object that yields a list of one or two numbers.

This function can potentially be very slow for large point sets.

1.2 Text in plots

class sage.plot.text.Text(string, point, options)
Bases: sage.plot.primitive.GraphicPrimitive

Base class for Text graphics primitive.

1.2. Text in plots 135

Sage Reference Manual: 2D Graphics, Release 8.0

get_minmax_data()
Returns a dictionary with the bounding box data. Notice that, for text, the box is just the location itself.

EXAMPLES:

sage: T = text("Where am I?",(1,1))
sage: t=T[0]
sage: t.get_minmax_data()['ymin']
1.0
sage: t.get_minmax_data()['ymax']
1.0

plot3d(**kwds)
Plots 2D text in 3D.

EXAMPLES:

sage: T = text("ABC",(1,1))
sage: t = T[0]
sage: s=t.plot3d()
sage: s.jmol_repr(s.testing_render_params())[0][2]
'label "ABC"'
sage: s._trans
(1.0, 1.0, 0)

sage.plot.text.text(string, xy, clip=False, vertical_alignment=’center’, rgbcolor=(0, 0, 1), font-
size=10, horizontal_alignment=’center’, axis_coords=False, **options)

136 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Returns a 2D text graphics object at the point (𝑥, 𝑦).

Type text.options for a dictionary of options for 2D text.

2D OPTIONS:

•fontsize - How big the text is. Either an integer that specifies the size in points or a string which
specifies a size (one of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’)

•fontstyle - A string either ‘normal’, ‘italic’ or ‘oblique’

•fontweight - A numeric value in the range 0-1000 or a string (one of ‘ultralight’, ‘light’, ‘normal’, ‘reg-
ular’, ‘book’,’ ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra bold’, ‘black’)

•rgbcolor - The color as an RGB tuple

•hue - The color given as a hue

•alpha - A float (0.0 transparent through 1.0 opaque)

•background_color - The background color

•rotation - How to rotate the text: angle in degrees, vertical, horizontal

•vertical_alignment - How to align vertically: top, center, bottom

•horizontal_alignment - How to align horizontally: left, center, right

•zorder - The layer level in which to draw

•clip - (default: False) Whether to clip or not

•axis_coords - (default: False) If True, use axis coordinates, so that (0,0) is the lower left and (1,1)
upper right, regardless of the x and y range of plotted values.

•bounding_box - A dictionary specifying a bounding box. Currently the text location.

EXAMPLES:

sage: text("Sage graphics are really neat because they use matplotlib!", (2,12))
Graphics object consisting of 1 graphics primitive

1.2. Text in plots 137

Sage Reference Manual: 2D Graphics, Release 8.0

Larger font, bold, colored red and transparent text:

sage: text("I had a dream!", (2,12), alpha=0.3, fontsize='large', fontweight='bold
→˓', color='red')
Graphics object consisting of 1 graphics primitive

138 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

By setting horizontal_alignment to ‘left’ the text is guaranteed to be in the lower left no matter what:

sage: text("I got a horse and he lives in a tree", (0,0), axis_coords=True,
→˓horizontal_alignment='left')
Graphics object consisting of 1 graphics primitive

1.2. Text in plots 139

Sage Reference Manual: 2D Graphics, Release 8.0

Various rotations:

sage: text("noitator", (0,0), rotation=45.0, horizontal_alignment='left',
→˓vertical_alignment='bottom')
Graphics object consisting of 1 graphics primitive

140 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: text("Sage is really neat!!",(0,0), rotation="vertical")
Graphics object consisting of 1 graphics primitive

1.2. Text in plots 141

Sage Reference Manual: 2D Graphics, Release 8.0

You can also align text differently:

sage: t1 = text("Hello",(1,1), vertical_alignment="top")
sage: t2 = text("World", (1,0.5), horizontal_alignment="left")
sage: t1 + t2 # render the sum
Graphics object consisting of 2 graphics primitives

142 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

You can save text as part of PDF output:

sage: text("sage", (0,0), rgbcolor=(0,0,0)).save(os.path.join(SAGE_TMP, 'a.pdf'))

Some examples of bounding box:

sage: bbox = {'boxstyle':"rarrow,pad=0.3", 'fc':"cyan", 'ec':"b", 'lw':2}
sage: text("I feel good", (1,2), bounding_box=bbox)
Graphics object consisting of 1 graphics primitive

1.2. Text in plots 143

Sage Reference Manual: 2D Graphics, Release 8.0

sage: text("So good", (0,0), bounding_box={'boxstyle':'round', 'fc':'w'})
Graphics object consisting of 1 graphics primitive

144 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

The possible options of the bounding box are ‘boxstyle’ (one of ‘larrow’, ‘rarrow’, ‘round’, ‘round4’, ‘round-
tooth’, ‘sawtooth’, ‘square’), ‘fc’ or ‘facecolor’, ‘ec’ or ‘edgecolor’, ‘ha’ or ‘horizontalalignment’, ‘va’ or ‘ver-
ticalalignment’, ‘lw’ or ‘linewidth’.

A text with a background color:

sage: text("So good", (-2,2), background_color='red')
Graphics object consisting of 1 graphics primitive

1.2. Text in plots 145

Sage Reference Manual: 2D Graphics, Release 8.0

Text must be 2D (use the text3d command for 3D text):

sage: t = text("hi",(1,2,3))
Traceback (most recent call last):
...
ValueError: use text3d instead for text in 3d
sage: t = text3d("hi",(1,2,3))

Extra options will get passed on to show(), as long as they are valid:

sage: text("MATH IS AWESOME", (0, 0), fontsize=40, axes=False)
Graphics object consisting of 1 graphics primitive
sage: text("MATH IS AWESOME", (0, 0), fontsize=40).show(axes=False) # These are
→˓equivalent

1.3 Colors

This module defines a Color object and helper functions (see, e.g., hue(), rainbow()), as well as a set of
colors and colormaps to use with Graphics objects in Sage.

For a list of pre-defined colors in Sage, evaluate:

sage: sorted(colors)
['aliceblue', 'antiquewhite', 'aqua', 'aquamarine', 'automatic', ...]

146 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Apart from ‘automatic’ which just an alias for ‘lightblue’, this list comprises the “official” W3C CSS3 / SVG colors.

For a list of color maps in Sage, evaluate:

sage: sorted(colormaps)
[u'Accent', u'Accent_r', u'Blues', u'Blues_r', u'BrBG', u'BrBG_r', ...]

These are imported from matplotlib’s cm module.

class sage.plot.colors.Color(r=’#0000ff’, g=None, b=None, space=’rgb’)
Bases: object

An Red-Green-Blue (RGB) color model color object. For most consumer-grade devices (e.g., CRTs, LCDs, and
printers), as well as internet applications, this is a point in the sRGB absolute color space. The Hue-Saturation-
Lightness (HSL), Hue-Lightness-Saturation (HLS), and Hue-Saturation-Value (HSV) spaces are useful alternate
representations, or coordinate transformations, of this space. Coordinates in all of these spaces are floating point
values in the interval [0.0, 1.0].

Note: All instantiations of Color are converted to an internal RGB floating point 3-tuple. This is likely to
degrade precision.

INPUT:

•r,g,b - either a triple of floats between 0 and 1, OR r - a color name string or HTML color hex string

•space - a string (default: ‘rgb’); the coordinate system (other choices are ‘hsl’, ‘hls’, and ‘hsv’) in which
to interpret a triple of floats

EXAMPLES:

sage: Color('purple')
RGB color (0.5019607843137255, 0.0, 0.5019607843137255)
sage: Color('#8000ff')
RGB color (0.5019607843137255, 0.0, 1.0)
sage: Color(0.5,0,1)
RGB color (0.5, 0.0, 1.0)
sage: Color(0.5, 1.0, 1, space='hsv')
RGB color (0.0, 1.0, 1.0)
sage: Color(0.25, 0.5, 0.5, space='hls')
RGB color (0.5000000000000001, 0.75, 0.25)
sage: Color(1, 0, 1/3, space='hsl')
RGB color (0.3333333333333333, 0.3333333333333333, 0.3333333333333333)
sage: from sage.plot.colors import chocolate
sage: Color(chocolate)
RGB color (0.8235294117647058, 0.4117647058823529, 0.11764705882352941)

blend(color, fraction=0.5)
Return a color blended with the given color by a given fraction. The algorithm interpolates linearly
between the colors’ corresponding R, G, and B coordinates.

INPUT:

•color - a Color instance or float-convertible 3-tuple/list; the color with which to blend this color

•fraction - a float-convertible number; the fraction of color to blend with this color

OUTPUT:

•a new Color instance

EXAMPLES:

1.3. Colors 147

http://www.w3.org/TR/css3-color/#svg-color
http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://matplotlib.sourceforge.net/api/cm_api.html

Sage Reference Manual: 2D Graphics, Release 8.0

sage: from sage.plot.colors import red, blue, lime
sage: red.blend(blue)
RGB color (0.5, 0.0, 0.5)
sage: red.blend(blue, fraction=0.0)
RGB color (1.0, 0.0, 0.0)
sage: red.blend(blue, fraction=1.0)
RGB color (0.0, 0.0, 1.0)
sage: lime.blend((0.3, 0.5, 0.7))
RGB color (0.15, 0.75, 0.35)
sage: blue.blend(blue)
RGB color (0.0, 0.0, 1.0)
sage: red.blend(lime, fraction=0.3)
RGB color (0.7, 0.3, 0.0)
sage: blue.blend((0.0, 0.9, 0.2), fraction=0.2)
RGB color (0.0, 0.18000000000000002, 0.8400000000000001)
sage: red.blend(0.2)
Traceback (most recent call last):
...
TypeError: 0.200000000000000 must be a Color or float-convertible 3-tuple/list

darker(fraction=0.3333333333333333)
Return a darker “shade” of this RGB color by blend()-ing it with black. This is not an inverse of
lighter().

INPUT:

•fraction - a float (default: 1/3); blending fraction to apply

OUTPUT:

•a new instance of Color

EXAMPLES:

sage: from sage.plot.colors import black
sage: vector(black.darker().rgb()) == vector(black.rgb())
True
sage: Color(0.4, 0.6, 0.8).darker(0.1)
RGB color (0.36000000000000004, 0.54, 0.7200000000000001)
sage: Color(.1,.2,.3,space='hsl').darker()
RGB color (0.24000000000000002, 0.20800000000000002, 0.16)

hls()
Return the Hue-Lightness-Saturation (HLS) coordinates of this color.

OUTPUT:

•a 3-tuple of floats

EXAMPLES:

sage: Color(0.3, 0.5, 0.7, space='hls').hls()
(0.30000000000000004, 0.5, 0.7)
sage: Color(0.3, 0.5, 0.7, space='hsl').hls()
(0.30000000000000004, 0.7, 0.5000000000000001)
sage: Color('#aabbcc').hls()
(0.5833333333333334, 0.7333333333333334, 0.25000000000000017)
sage: from sage.plot.colors import orchid
sage: orchid.hls()
(0.8396226415094339, 0.6470588235294117, 0.5888888888888889)

148 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

hsl()
Return the Hue-Saturation-Lightness (HSL) coordinates of this color.

OUTPUT:

•a 3-tuple of floats

EXAMPLES:

sage: Color(1,0,0).hsl()
(0.0, 1.0, 0.5)
sage: from sage.plot.colors import orchid
sage: orchid.hsl()
(0.8396226415094339, 0.5888888888888889, 0.6470588235294117)
sage: Color('#aabbcc').hsl()
(0.5833333333333334, 0.25000000000000017, 0.7333333333333334)

hsv()
Return the Hue-Saturation-Value (HSV) coordinates of this color.

OUTPUT:

•a 3-tuple of floats

EXAMPLES:

sage: from sage.plot.colors import red
sage: red.hsv()
(0.0, 1.0, 1.0)
sage: Color(1,1,1).hsv()
(0.0, 0.0, 1.0)
sage: Color('gray').hsv()
(0.0, 0.0, 0.5019607843137255)

html_color()
Return a HTML hex representation for this color.

OUTPUT:

•a string of length 7.

EXAMPLES:

sage: Color('yellow').html_color()
'#ffff00'
sage: Color('#fedcba').html_color()
'#fedcba'
sage: Color(0.0, 1.0, 0.0).html_color()
'#00ff00'
sage: from sage.plot.colors import honeydew
sage: honeydew.html_color()
'#f0fff0'

lighter(fraction=0.3333333333333333)
Return a lighter “shade” of this RGB color by blend()-ing it with white. This is not an inverse of
darker().

INPUT:

•fraction - a float (default: 1/3); blending fraction to apply

OUTPUT:

1.3. Colors 149

Sage Reference Manual: 2D Graphics, Release 8.0

•a new instance of Color

EXAMPLES:

sage: from sage.plot.colors import khaki
sage: khaki.lighter()
RGB color (0.9607843137254903, 0.934640522875817, 0.6993464052287582)
sage: Color('white').lighter().darker()
RGB color (0.6666666666666667, 0.6666666666666667, 0.6666666666666667)
sage: Color('#abcdef').lighter(1/4)
RGB color (0.7529411764705882, 0.8529411764705883, 0.9529411764705882)
sage: Color(1, 0, 8/9, space='hsv').lighter()
RGB color (0.925925925925926, 0.925925925925926, 0.925925925925926)

rgb()
Return the underlying Red-Green-Blue (RGB) coordinates of this color.

OUTPUT:

•a 3-tuple of floats

EXAMPLES:

sage: Color(0.3, 0.5, 0.7).rgb()
(0.3, 0.5, 0.7)
sage: Color('#8000ff').rgb()
(0.5019607843137255, 0.0, 1.0)
sage: from sage.plot.colors import orange
sage: orange.rgb()
(1.0, 0.6470588235294118, 0.0)
sage: Color('magenta').rgb()
(1.0, 0.0, 1.0)
sage: Color(1, 0.7, 0.9, space='hsv').rgb()
(0.9, 0.2700000000000001, 0.2700000000000001)

class sage.plot.colors.Colormaps
Bases: _abcoll.MutableMapping

A dict-like collection of lazily-loaded matplotlib color maps. For a list of map names, evaluate:

sage: sorted(colormaps)
[u'Accent', u'Accent_r', u'Blues', u'Blues_r', ...]

load_maps()
If it’s necessary, loads matplotlib’s color maps and adds them to the collection.

EXAMPLES:

sage: from sage.plot.colors import Colormaps
sage: maps = Colormaps()
sage: len(maps.maps)
0
sage: maps.load_maps()
sage: len(maps.maps)>130
True

class sage.plot.colors.ColorsDict
Bases: dict

A dict-like collection of colors, accessible via key or attribute. For a list of color names, evaluate:

150 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: sorted(colors)
['aliceblue', 'antiquewhite', 'aqua', 'aquamarine', ...]

sage.plot.colors.float_to_html(r, g, b)
Convert a Red-Green-Blue (RGB) color tuple to a HTML hex color.

Each input value should be in the interval [0.0, 1.0]; otherwise, the values are first reduced modulo one (see
mod_one()).

INPUT:

•r – a real number; the RGB color’s “red” intensity

•g – a real number; the RGB color’s “green” intensity

•b – a real number; the RGB color’s “blue” intensity

OUTPUT:

•a string of length 7, starting with ‘#’

EXAMPLES:

sage: from sage.plot.colors import float_to_html
sage: float_to_html(1.,1.,0.)
'#ffff00'
sage: float_to_html(.03,.06,.02)
'#070f05'
sage: float_to_html(*Color('brown').rgb())
'#a52a2a'
sage: float_to_html((0.2, 0.6, 0.8))
Traceback (most recent call last):
...
TypeError: float_to_html() takes exactly 3 arguments (1 given)

sage.plot.colors.float_to_integer(r, g, b)
Convert a Red-Green-Blue (RGB) color tuple to an integer.

Each input value should be in the interval [0.0, 1.0]; otherwise, the values are first reduced modulo one (see
mod_one()).

INPUT:

•r – a real number; the RGB color’s “red” intensity

•g – a real number; the RGB color’s “green” intensity

•b – a real number; the RGB color’s “blue” intensity

OUTPUT:

•an integer with encoding 2562𝑟 + 256𝑔 + 𝑏

EXAMPLES:

sage: from sage.plot.colors import float_to_integer
sage: float_to_integer(1.,1.,0.)
16776960
sage: float_to_integer(.03,.06,.02)
462597
sage: float_to_integer(*Color('brown').rgb())
10824234
sage: float_to_integer((0.2, 0.6, 0.8))

1.3. Colors 151

Sage Reference Manual: 2D Graphics, Release 8.0

Traceback (most recent call last):
...
TypeError: float_to_integer() takes exactly 3 arguments (1 given)

sage.plot.colors.get_cmap(cmap)
Returns a color map (actually, a matplotlib Colormap object), given its name or a [mixed] list/tuple of RGB
list/tuples and color names. For a list of map names, evaluate:

sage: sorted(colormaps)
[u'Accent', u'Accent_r', u'Blues', u'Blues_r', ...]

See rgbcolor() for valid list/tuple element formats.

INPUT:

•cmap - a string, list, tuple, or matplotlib.colors.Colormap; a string must be a valid color map
name

OUTPUT:

•a matplotlib.colors.Colormap instance

EXAMPLES:

sage: from sage.plot.colors import get_cmap
sage: get_cmap('jet')
<matplotlib.colors.LinearSegmentedColormap object at 0x...>
sage: get_cmap(u'jet')
<matplotlib.colors.LinearSegmentedColormap object at 0x...>
sage: get_cmap([(0,0,0), (0.5,0.5,0.5), (1,1,1)])
<matplotlib.colors.ListedColormap object at 0x...>
sage: get_cmap(['green', 'lightblue', 'blue'])
<matplotlib.colors.ListedColormap object at 0x...>
sage: get_cmap(((0.5, 0.3, 0.2), [1.0, 0.0, 0.5], 'purple', Color(0.5,0.5,1,
→˓space='hsv')))
<matplotlib.colors.ListedColormap object at 0x...>
sage: get_cmap('jolies')
Traceback (most recent call last):
...
RuntimeError: Color map jolies not known (type import matplotlib.cm; matplotlib.
→˓cm.datad.keys() for valid names)
sage: get_cmap('mpl')
Traceback (most recent call last):
...
RuntimeError: Color map mpl not known (type import matplotlib.cm; matplotlib.cm.
→˓datad.keys() for valid names)

sage.plot.colors.html_to_float(c)
Convert a HTML hex color to a Red-Green-Blue (RGB) tuple.

INPUT:

•c - a string; a valid HTML hex color

OUTPUT:

•a RGB 3-tuple of floats in the interval [0.0, 1.0]

EXAMPLES:

152 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: from sage.plot.colors import html_to_float
sage: html_to_float('#fff')
(1.0, 1.0, 1.0)
sage: html_to_float('#abcdef')
(0.6705882352941176, 0.803921568627451, 0.9372549019607843)
sage: html_to_float('#123xyz')
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 16: '3x'

sage.plot.colors.hue(h, s=1, v=1)
Convert a Hue-Saturation-Value (HSV) color tuple to a valid Red-Green-Blue (RGB) tuple. All three inputs
should lie in the interval [0.0, 1.0]; otherwise, they are reduced modulo 1 (see mod_one()). In particular h=0
and h=1 yield red, with the intermediate hues orange, yellow, green, cyan, blue, and violet as h increases.

This function makes it easy to sample a broad range of colors for graphics:

sage: p = Graphics()
sage: for phi in xsrange(0, 2 * pi, 1 / pi):
....: p += plot(sin(x + phi), (x, -7, 7), rgbcolor = hue(phi))
sage: p
Graphics object consisting of 20 graphics primitives

INPUT:

•h - a number; the color’s hue

•s - a number (default: 1); the color’s saturation

•v - a number (default: 1); the color’s value

OUTPUT:

•a RGB 3-tuple of floats in the interval [0.0, 1.0]

EXAMPLES:

sage: hue(0.6)
(0.0, 0.40000000000000036, 1.0)
sage: from sage.plot.colors import royalblue
sage: royalblue
RGB color (0.2549019607843137, 0.4117647058823529, 0.8823529411764706)
sage: hue(*royalblue.hsv())
(0.2549019607843137, 0.4117647058823529, 0.8823529411764706)
sage: hue(.5, .5, .5)
(0.25, 0.5, 0.5)

Note: The HSV to RGB coordinate transformation itself is given in the source code for the Python library’s
colorsys module:

sage: from colorsys import hsv_to_rgb # not tested
sage: hsv_to_rgb?? # not tested

sage.plot.colors.mod_one(x)
Reduce a number modulo 1.

INPUT:

•x - an instance of Integer, int, RealNumber, etc.; the number to reduce

1.3. Colors 153

https://docs.python.org/library/colorsys.html#module-colorsys

Sage Reference Manual: 2D Graphics, Release 8.0

OUTPUT:

•a float

EXAMPLES:

sage: from sage.plot.colors import mod_one
sage: mod_one(1)
1.0
sage: mod_one(7.0)
0.0
sage: mod_one(-11/7)
0.4285714285714286
sage: mod_one(pi) + mod_one(-pi)
1.0

sage.plot.colors.rainbow(n, format=’hex’)
Returns a list of colors sampled at equal intervals over the spectrum, from Hue-Saturation-Value (HSV) coor-
dinates (0, 1, 1) to (1, 1, 1). This range is red at the extremes, but it covers orange, yellow, green, cyan, blue,
violet, and many other hues in between. This function is particularly useful for representing vertex partitions on
graphs.

INPUT:

•n - a number; the length of the list

•format - a string (default: ‘hex’); the output format for each color in the list; the other choice is ‘rgbtuple’

OUTPUT:

•a list of strings or RGB 3-tuples of floats in the interval [0.0, 1.0]

EXAMPLES:

sage: from sage.plot.colors import rainbow
sage: rainbow(7)
['#ff0000', '#ffda00', '#48ff00', '#00ff91', '#0091ff', '#4800ff', '#ff00da']
sage: rainbow(int(7))
['#ff0000', '#ffda00', '#48ff00', '#00ff91', '#0091ff', '#4800ff', '#ff00da']
sage: rainbow(7, 'rgbtuple')
[(1.0, 0.0, 0.0), (1.0, 0.8571428571428571, 0.0), (0.2857142857142858, 1.0, 0.0),
→˓(0.0, 1.0, 0.5714285714285712), (0.0, 0.5714285714285716, 1.0), (0.
→˓2857142857142856, 0.0, 1.0), (1.0, 0.0, 0.8571428571428577)]

AUTHORS:

•Robert L. Miller

•Karl-Dieter Crisman (directly use hsv_to_rgb() for hues)

sage.plot.colors.rgbcolor(c, space=’rgb’)
Convert a color (string, tuple, list, or Color) to a mod-one reduced (see mod_one()) valid Red-Green-Blue
(RGB) tuple. The returned tuple is also a valid matplotlib RGB color.

INPUT:

•c - a Color instance, string (name or HTML hex), 3-tuple, or 3-list; the color to convert

•space - a string (default: ‘rgb’); the color space coordinate system (other choices are ‘hsl’, ‘hls’, and
‘hsv’) in which to interpret a 3-tuple or 3-list

OUTPUT:

•a RGB 3-tuple of floats in the interval [0.0, 1.0]

154 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

EXAMPLES:

sage: from sage.plot.colors import rgbcolor
sage: rgbcolor(Color(0.25, 0.4, 0.9))
(0.25, 0.4, 0.9)
sage: rgbcolor('purple')
(0.5019607843137255, 0.0, 0.5019607843137255)
sage: rgbcolor(u'purple')
(0.5019607843137255, 0.0, 0.5019607843137255)
sage: rgbcolor('#fa0')
(1.0, 0.6666666666666666, 0.0)
sage: rgbcolor(u'#fa0')
(1.0, 0.6666666666666666, 0.0)
sage: rgbcolor('#ffffff')
(1.0, 1.0, 1.0)
sage: rgbcolor(u'#ffffff')
(1.0, 1.0, 1.0)
sage: rgbcolor((1,1/2,1/3))
(1.0, 0.5, 0.3333333333333333)
sage: rgbcolor([1,1/2,1/3])
(1.0, 0.5, 0.3333333333333333)
sage: rgbcolor((1,1,1), space='hsv')
(1.0, 0.0, 0.0)
sage: rgbcolor((0.5,0.75,1), space='hls')
(0.5, 0.9999999999999999, 1.0)
sage: rgbcolor((0.5,1.0,0.75), space='hsl')
(0.5, 0.9999999999999999, 1.0)
sage: rgbcolor([1,2,255]) # WARNING -- numbers are reduced mod 1!!
(1.0, 0.0, 0.0)
sage: rgbcolor('#abcd')
Traceback (most recent call last):
...
ValueError: color hex string (= 'abcd') must have length 3 or 6
sage: rgbcolor('fff')
Traceback (most recent call last):
...
ValueError: unknown color 'fff'
sage: rgbcolor(1)
Traceback (most recent call last):
...
TypeError: '1' must be a Color, list, tuple, or string
sage: rgbcolor((0.2,0.8,1), space='grassmann')
Traceback (most recent call last):
...
ValueError: space must be one of 'rgb', 'hsv', 'hsl', 'hls'
sage: rgbcolor([0.4, 0.1])
Traceback (most recent call last):
...
ValueError: color list or tuple '[0.400000000000000, 0.100000000000000]' must
→˓have 3 entries, one for each RGB, HSV, HLS, or HSL channel

sage.plot.colors.to_mpl_color(c, space=’rgb’)
Convert a color (string, tuple, list, or Color) to a mod-one reduced (see mod_one()) valid Red-Green-Blue
(RGB) tuple. The returned tuple is also a valid matplotlib RGB color.

INPUT:

•c - a Color instance, string (name or HTML hex), 3-tuple, or 3-list; the color to convert

•space - a string (default: ‘rgb’); the color space coordinate system (other choices are ‘hsl’, ‘hls’, and

1.3. Colors 155

Sage Reference Manual: 2D Graphics, Release 8.0

‘hsv’) in which to interpret a 3-tuple or 3-list

OUTPUT:

•a RGB 3-tuple of floats in the interval [0.0, 1.0]

EXAMPLES:

sage: from sage.plot.colors import rgbcolor
sage: rgbcolor(Color(0.25, 0.4, 0.9))
(0.25, 0.4, 0.9)
sage: rgbcolor('purple')
(0.5019607843137255, 0.0, 0.5019607843137255)
sage: rgbcolor(u'purple')
(0.5019607843137255, 0.0, 0.5019607843137255)
sage: rgbcolor('#fa0')
(1.0, 0.6666666666666666, 0.0)
sage: rgbcolor(u'#fa0')
(1.0, 0.6666666666666666, 0.0)
sage: rgbcolor('#ffffff')
(1.0, 1.0, 1.0)
sage: rgbcolor(u'#ffffff')
(1.0, 1.0, 1.0)
sage: rgbcolor((1,1/2,1/3))
(1.0, 0.5, 0.3333333333333333)
sage: rgbcolor([1,1/2,1/3])
(1.0, 0.5, 0.3333333333333333)
sage: rgbcolor((1,1,1), space='hsv')
(1.0, 0.0, 0.0)
sage: rgbcolor((0.5,0.75,1), space='hls')
(0.5, 0.9999999999999999, 1.0)
sage: rgbcolor((0.5,1.0,0.75), space='hsl')
(0.5, 0.9999999999999999, 1.0)
sage: rgbcolor([1,2,255]) # WARNING -- numbers are reduced mod 1!!
(1.0, 0.0, 0.0)
sage: rgbcolor('#abcd')
Traceback (most recent call last):
...
ValueError: color hex string (= 'abcd') must have length 3 or 6
sage: rgbcolor('fff')
Traceback (most recent call last):
...
ValueError: unknown color 'fff'
sage: rgbcolor(1)
Traceback (most recent call last):
...
TypeError: '1' must be a Color, list, tuple, or string
sage: rgbcolor((0.2,0.8,1), space='grassmann')
Traceback (most recent call last):
...
ValueError: space must be one of 'rgb', 'hsv', 'hsl', 'hls'
sage: rgbcolor([0.4, 0.1])
Traceback (most recent call last):
...
ValueError: color list or tuple '[0.400000000000000, 0.100000000000000]' must
→˓have 3 entries, one for each RGB, HSV, HLS, or HSL channel

156 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

1.4 Animated plots

Animations are generated from a list (or other iterable) of graphics objects. Images are produced by calling the
save_image method on each input object, creating a sequence of PNG files. These are then assembled to various
target formats using different tools. In particular, the convert program from ImageMagick can be used to generate
an animated GIF file. FFmpeg (with the command line program ffmpeg) provides support for various video formats,
but also an alternative method of generating animated GIFs. For browsers which support it, APNG can be used as
another alternative which works without any extra dependencies.

Warning: Note that ImageMagick and FFmpeg are not included with Sage, and must be installed by the user. On
unix systems, type which convert at a command prompt to see if convert (part of the ImageMagick suite)
is installed. If it is, you will be given its location. Similarly, you can check for ffmpeg with which ffmpeg.
See the websites of ImageMagick or FFmpeg for installation instructions.

EXAMPLES:

The sine function:

sage: sines = [plot(c*sin(x), (-2*pi,2*pi), color=Color(c,0,0), ymin=-1, ymax=1) for
→˓c in sxrange(0,1,.2)]
sage: a = animate(sines)
sage: a # optional -- ImageMagick
Animation with 5 frames
sage: a.show() # optional -- ImageMagick

Animate using FFmpeg instead of ImageMagick:

sage: f = tmp_filename(ext='.gif')
sage: a.save(filename=f, use_ffmpeg=True) # optional -- ffmpeg

Animate as an APNG:

sage: a.apng() # long time
doctest:...: DeprecationWarning: use tmp_filename instead
See http://trac.sagemath.org/17234 for details.

An animated sage.plot.graphics.GraphicsArray of rotating ellipses:

sage: E = animate((graphics_array([[ellipse((0,0),a,b,angle=t,xmin=-3,
→˓xmax=3)+circle((0,0),3,color='blue') for a in range(1,3)] for b in range(2,4)]) for
→˓t in sxrange(0,pi/4,.15)))
sage: str(E) # animations produced from a generator do not have a known length
'Animation with unknown number of frames'
sage: E.show() # optional -- ImageMagick

A simple animation of a circle shooting up to the right:

sage: c = animate([circle((i,i), 1-1/(i+1), hue=i/10) for i in srange(0,2,0.2)],
....: xmin=0,ymin=0,xmax=2,ymax=2,figsize=[2,2])
sage: c.show() # optional -- ImageMagick

Animations of 3d objects:

sage: var('s,t')
(s, t)

1.4. Animated plots 157

http://www.imagemagick.org
http://www.ffmpeg.org
http://caniuse.com/#feat=apng
https://wiki.mozilla.org/APNG_Specification
http://www.imagemagick.org
http://www.ffmpeg.org
http://www.ffmpeg.org
https://wiki.mozilla.org/APNG_Specification

Sage Reference Manual: 2D Graphics, Release 8.0

sage: def sphere_and_plane(x):
....: return sphere((0,0,0),1,color='red',opacity=.5)+parametric_plot3d([t,x,s],
→˓(s,-1,1),(t,-1,1),color='green',opacity=.7)
sage: sp = animate([sphere_and_plane(x) for x in sxrange(-1,1,.3)])
sage: sp[0] # first frame
Graphics3d Object
sage: sp[-1] # last frame
Graphics3d Object
sage: sp.show() # optional -- ImageMagick

sage: (x,y,z) = var('x,y,z')
sage: def frame(t):
....: return implicit_plot3d((x^2 + y^2 + z^2), (x, -2, 2), (y, -2, 2), (z, -2,
→˓2), plot_points=60, contour=[1,3,5], region=lambda x,y,z: x<=t or y>=t or z<=t)
sage: a = animate([frame(t) for t in srange(.01,1.5,.2)])
sage: a[0] # long time
Graphics3d Object
sage: a.show() # optional -- ImageMagick

If the input objects do not have a save_image method, then the animation object attempts to make an image by
calling its internal method sage.plot.animate.Animation.make_image(). This is illustrated by the fol-
lowing example:

sage: t = var('t')
sage: a = animate((sin(c*pi*t) for c in sxrange(1,2,.2)))
sage: a.show() # optional -- ImageMagick

AUTHORS:

• William Stein

• John Palmieri

• Niles Johnson (2013-12): Expand to animate more graphics objects

• Martin von Gagern (2014-12): Added APNG support

REFERENCES:

• ImageMagick

• FFmpeg

• APNG

• browsers which support it

class sage.plot.animate.APngAssembler(out, num_frames, num_plays=0, delay=200, de-
lay_denominator=100)

Bases: object

Builds an APNG (Animated PNG) from a sequence of PNG files. This is used by the sage.plot.animate.
Animation.apng() method.

This code is quite simple; it does little more than copying chunks from input PNG files to the output file. There
is no optimization involved. This does not depend on external programs or libraries.

INPUT:

•out – a file opened for binary writing to which the data will be written

•num_frames – the number of frames in the animation

158 Chapter 1. General

http://www.imagemagick.org
http://www.ffmpeg.org
https://wiki.mozilla.org/APNG_Specification
http://caniuse.com/#feat=apng
https://wiki.mozilla.org/APNG_Specification

Sage Reference Manual: 2D Graphics, Release 8.0

•num_plays – how often to iterate, 0 means infinitely

•delay – numerator of the delay fraction in seconds

•delay_denominator – denominator of the delay in seconds

EXAMPLES:

sage: from sage.plot.animate import APngAssembler
sage: def assembleAPNG():
....: a = animate([sin(x + float(k)) for k in srange(0,2*pi,0.7)],
....: xmin=0, xmax=2*pi, figsize=[2,1])
....: pngdir = a.png()
....: outfile = sage.misc.temporary_file.tmp_filename(ext='.png')
....: with open(outfile, "wb") as f:
....: apng = APngAssembler(f, len(a))
....: for i in range(len(a)):
....: png = os.path.join(pngdir, "{:08d}.png".format(i))
....: apng.add_frame(png, delay=10*i + 10)
....: return outfile
....:
sage: assembleAPNG() # long time
'...png'

REFERENCES:

•APNG

add_frame(pngfile, delay=None, delay_denominator=None)
Adds a single frame to the APNG file.

INPUT:

•pngfile – file name of the PNG file with data for this frame

•delay – numerator of the delay fraction in seconds

•delay_denominator – denominator of the delay in seconds

If the delay is not specified, the default from the constructor applies.

set_default(pngfile)
Adds a default image for the APNG file.

This image is used as a fallback in case some application does not understand the APNG format. This
method must be called prior to any calls to the add_frame method, if it is called at all. If it is not called,
then the first frame of the animation will be the default.

INPUT:

•pngfile – file name of the PNG file with data for the default image

class sage.plot.animate.Animation(v=None, **kwds)
Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.
SageObject

Return an animation of a sequence of plots of objects.

INPUT:

•v - iterable of Sage objects. These should preferably be graphics objects, but if they aren’t then
make_image() is called on them.

•xmin, xmax, ymin, ymax - the ranges of the x and y axes.

1.4. Animated plots 159

https://wiki.mozilla.org/APNG_Specification

Sage Reference Manual: 2D Graphics, Release 8.0

•**kwds - all additional inputs are passed onto the rendering command. E.g., use figsize to adjust the
resolution and aspect ratio.

EXAMPLES:

sage: a = animate([sin(x + float(k)) for k in srange(0,2*pi,0.3)],
....: xmin=0, xmax=2*pi, figsize=[2,1])
sage: a # optional -- ImageMagick
Animation with 21 frames
sage: a[:5] # optional -- ImageMagick
Animation with 5 frames
sage: a.show() # optional -- ImageMagick
sage: a[:5].show() # optional -- ImageMagick

The show()method takes arguments to specify the delay between frames (measured in hundredths of a second,
default value 20) and the number of iterations (default value 0, which means to iterate forever). To iterate 4 times
with half a second between each frame:

sage: a.show(delay=50, iterations=4) # optional -- ImageMagick

An animation of drawing a parabola:

sage: step = 0.1
sage: L = Graphics()
sage: v = []
sage: for i in srange(0,1,step):
....: L += line([(i,i^2),(i+step,(i+step)^2)], rgbcolor=(1,0,0),
→˓thickness=2)
....: v.append(L)
sage: a = animate(v, xmin=0, ymin=0)
sage: a.show() # optional -- ImageMagick
sage: show(L)

apng(savefile=None, show_path=False, delay=20, iterations=0)
Creates an animated PNG composed from rendering the graphics objects in self. Return the absolute path
to that file.

Notice that not all web browsers are capable of displaying APNG files, though they should still present the
first frame of the animation as a fallback.

The generated file is not optimized, so it may be quite large.

Input:

•delay - (default: 20) delay in hundredths of a second between frames

•savefile - file that the animated gif gets saved to

•iterations - integer (default: 0); number of iterations of animation. If 0, loop forever.

•show_path - boolean (default: False); if True, print the path to the saved file

EXAMPLES:

sage: a = animate([sin(x + float(k)) for k in srange(0,2*pi,0.7)],
....: xmin=0, xmax=2*pi, figsize=[2,1])
sage: dir = tmp_dir()
sage: a.apng() # long time
sage: a.apng(savefile=dir + 'my_animation.png', delay=35, iterations=3) #
→˓long time

160 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

sage: a.apng(savefile=dir + 'my_animation.png', show_path=True) # long time
Animation saved to .../my_animation.png.

If the individual frames have different sizes, an error will be raised:

sage: a = animate([plot(sin(x), (x, 0, k)) for k in range(1,4)],
....: ymin=-1, ymax=1, aspect_ratio=1, figsize=[2,1])
sage: a.apng() # long time
Traceback (most recent call last):
...
ValueError: Chunk IHDR mismatch

ffmpeg(savefile=None, show_path=False, output_format=None, ffmpeg_options=’‘, delay=None, iter-
ations=0, pix_fmt=’rgb24’)

Returns a movie showing an animation composed from rendering the frames in self.

This method will only work if ffmpeg is installed. See http://www.ffmpeg.org for information about ffm-
peg.

INPUT:

•savefile - file that the mpeg gets saved to.

•show_path - boolean (default: False); if True, print the path to the saved file

•output_format - string (default: None); format and suffix to use for the video. This may be ‘mpg’,
‘mpeg’, ‘avi’, ‘gif’, or any other format that ffmpeg can handle. If this is None and the user specifies
savefile with a suffix, say savefile='animation.avi', try to determine the format (‘avi’
in this case) from that file name. If no file is specified or if the suffix cannot be determined, ‘mpg’ is
used.

•ffmpeg_options - string (default: ‘’); this string is passed directly to ffmpeg.

•delay - integer (default: None); delay in hundredths of a second between frames. The framerate is
100/delay. This is not supported for mpeg files: for mpegs, the frame rate is always 25 fps.

•iterations - integer (default: 0); number of iterations of animation. If 0, loop forever. This is
only supported for animated gif output and requires ffmpeg version 0.9 or later. For older versions,
set iterations=None.

•pix_fmt - string (default: ‘rgb24’); used only for gif output. Different values such as ‘rgb8’ or
‘pal8’ may be necessary depending on how ffmpeg was installed. Set pix_fmt=None to disable
this option.

If savefile is not specified: in notebook mode, display the animation; otherwise, save it to a default file
name. Use sage.misc.misc.set_verbose() with level=1 to see additional output.

EXAMPLES:

sage: a = animate([sin(x + float(k)) for k in srange(0,2*pi,0.7)],
....: xmin=0, xmax=2*pi, ymin=-1, ymax=1, figsize=[2,1])
sage: td = tmp_dir()
sage: a.ffmpeg(savefile=td + 'new.mpg') # optional -- ffmpeg
sage: a.ffmpeg(savefile=td + 'new.avi') # optional -- ffmpeg
sage: a.ffmpeg(savefile=td + 'new.gif') # optional -- ffmpeg
sage: a.ffmpeg(savefile=td + 'new.mpg', show_path=True) # optional -- ffmpeg
Animation saved to .../new.mpg.

Note: If ffmpeg is not installed, you will get an error message like this:

1.4. Animated plots 161

http://www.ffmpeg.org

Sage Reference Manual: 2D Graphics, Release 8.0

Error: ffmpeg does not appear to be installed. Saving an animation to
a movie file in any format other than GIF requires this software, so
please install it and try again.

See www.ffmpeg.org for more information.

gif(delay=20, savefile=None, iterations=0, show_path=False, use_ffmpeg=False)
Returns an animated gif composed from rendering the graphics objects in self.

This method will only work if either (a) the ImageMagick software suite is installed, i.e., you have the
convert command or (b) ffmpeg is installed. See the web sites of ImageMagick and FFmpeg for more
details. By default, this produces the gif using convert if it is present. If this can’t find convert or if
use_ffmpeg is True, then it uses ffmpeg instead.

INPUT:

•delay - (default: 20) delay in hundredths of a second between frames

•savefile - file that the animated gif gets saved to

•iterations - integer (default: 0); number of iterations of animation. If 0, loop forever.

•show_path - boolean (default: False); if True, print the path to the saved file

•use_ffmpeg - boolean (default: False); if True, use ‘ffmpeg’ by default instead of ‘convert’.

If savefile is not specified: in notebook mode, display the animation; otherwise, save it to a default file
name.

EXAMPLES:

sage: a = animate([sin(x + float(k)) for k in srange(0,2*pi,0.7)],
....: xmin=0, xmax=2*pi, ymin=-1, ymax=1, figsize=[2,1])
sage: td = tmp_dir()
sage: a.gif() # not tested
sage: a.gif(savefile=td + 'my_animation.gif', delay=35, iterations=3) #
→˓optional -- ImageMagick
sage: with open(td + 'my_animation.gif', 'rb') as f: print(
→˓'\x21\xf9\x04\x08\x23\x00') in f.read() # optional -- ImageMagick
True
sage: a.gif(savefile=td + 'my_animation.gif', show_path=True) # optional --
→˓ImageMagick
Animation saved to .../my_animation.gif.
sage: a.gif(savefile=td + 'my_animation_2.gif', show_path=True, use_
→˓ffmpeg=True) # optional -- ffmpeg
Animation saved to .../my_animation_2.gif.

Note: If neither ffmpeg nor ImageMagick is installed, you will get an error message like this:

Error: Neither ImageMagick nor ffmpeg appears to be installed. Saving an
animation to a GIF file or displaying an animation requires one of these
packages, so please install one of them and try again.

See www.imagemagick.org and www.ffmpeg.org for more information.

REFERENCES:

•ImageMagick

162 Chapter 1. General

http://www.imagemagick.org
http://www.ffmpeg.org
http://www.imagemagick.org

Sage Reference Manual: 2D Graphics, Release 8.0

•FFmpeg

graphics_array(ncols=3)
Return a sage.plot.graphics.GraphicsArray with plots of the frames of this animation, using
the given number of columns. The frames must be acceptable inputs for sage.plot.graphics.
GraphicsArray .

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: v = [E.change_ring(GF(p)).plot(pointsize=30) for p in [97, 101, 103,
→˓107]]
sage: a = animate(v, xmin=0, ymin=0, axes=False)
sage: a # optional -- ImageMagick
Animation with 4 frames
sage: a.show() # optional -- ImageMagick

Modify the default arrangement of array:

sage: g = a.graphics_array(); print(g)
Graphics Array of size 2 x 3
sage: g.show(figsize=[6,3]) # not tested

Specify different arrangement of array and save it with a given file name:

sage: g = a.graphics_array(ncols=2); print(g)
Graphics Array of size 2 x 2
sage: f = tmp_filename(ext='.png')
sage: g.save(f)

Frames can be specified as a generator too; it is internally converted to a list:

sage: t = var('t')
sage: b = animate((plot(sin(c*pi*t)) for c in sxrange(1,2,.2)))
sage: g = b.graphics_array()
sage: g
Graphics Array of size 2 x 3

make_image(frame, filename, **kwds)
Given a frame which has no save_image() method, make a graphics object and save it as an image
with the given filename. By default, this is sage.plot.plot.plot(). To make animations of other
objects, override this method in a subclass.

EXAMPLES:

sage: from sage.plot.animate import Animation
sage: class MyAnimation(Animation):
....: def make_image(self, frame, filename, **kwds):
....: P = parametric_plot(frame[0], frame[1], **frame[2])
....: P.save_image(filename,**kwds)

sage: t = var('t')
sage: x = lambda t: cos(t)
sage: y = lambda n,t: sin(t)/n
sage: B = MyAnimation([([x(t), y(i+1,t)],(t,0,1), {'color':Color((1,0,i/4)),
→˓'aspect_ratio':1, 'ymax':1}) for i in range(4)])

sage: d = B.png(); v = os.listdir(d); v.sort(); v # long time
['00000000.png', '00000001.png', '00000002.png', '00000003.png']

1.4. Animated plots 163

http://www.ffmpeg.org

Sage Reference Manual: 2D Graphics, Release 8.0

sage: B.show() # not tested

sage: class MyAnimation(Animation):
....: def make_image(self, frame, filename, **kwds):
....: G = frame.plot()
....: G.set_axes_range(floor(G.xmin()),ceil(G.xmax()),floor(G.ymin()),
→˓ceil(G.ymax()))
....: G.save_image(filename, **kwds)

sage: B = MyAnimation([graphs.CompleteGraph(n) for n in range(7,11)],
→˓figsize=5)
sage: d = B.png()
sage: v = os.listdir(d); v.sort(); v
['00000000.png', '00000001.png', '00000002.png', '00000003.png']
sage: B.show() # not tested

png(dir=None)
Render PNG images of the frames in this animation, saving them in dir. Return the absolute path to that
directory. If the frames have been previously rendered and dir is None, just return the directory in which
they are stored.

When dir is other than None, force re-rendering of frames.

INPUT:

•dir – Directory in which to store frames. Default None; in this case, a temporary directory will be
created for storing the frames.

EXAMPLES:

sage: a = animate([plot(x^2 + n) for n in range(4)], ymin=0, ymax=4)
sage: d = a.png(); v = os.listdir(d); v.sort(); v # long time
['00000000.png', '00000001.png', '00000002.png', '00000003.png']

save(filename=None, show_path=False, use_ffmpeg=False, **kwds)
Save this animation.

INPUT:

•filename - (default: None) name of save file

•show_path - boolean (default: False); if True, print the path to the saved file

•use_ffmpeg - boolean (default: False); if True, use ‘ffmpeg’ by default instead of ‘convert’ when
creating GIF files.

If filename is None, then in notebook mode, display the animation; otherwise, save the animation to a
GIF file. If filename ends in ‘.sobj’, save to an sobj file. Otherwise, try to determine the format from the
filename extension (‘.mpg’, ‘.gif’, ‘.avi’, etc.). If the format cannot be determined, default to GIF.

For GIF files, either ffmpeg or the ImageMagick suite must be installed. For other movie formats, ffmpeg
must be installed. An sobj file can be saved with no extra software installed.

EXAMPLES:

sage: a = animate([sin(x + float(k)) for k in srange(0,2*pi,0.7)],
....: xmin=0, xmax=2*pi, ymin=-1, ymax=1, figsize=[2,1])
sage: td = tmp_dir()
sage: a.save() # not tested
sage: a.save(td + 'wave.gif') # optional -- ImageMagick
sage: a.save(td + 'wave.gif', show_path=True) # optional -- ImageMagick

164 Chapter 1. General

Sage Reference Manual: 2D Graphics, Release 8.0

Animation saved to file .../wave.gif.
sage: a.save(td + 'wave.avi', show_path=True) # optional -- ffmpeg
Animation saved to file .../wave.avi.
sage: a.save(td + 'wave0.sobj')
sage: a.save(td + 'wave1.sobj', show_path=True)
Animation saved to file .../wave1.sobj.

show(delay=None, iterations=None, **kwds)
Show this animation immediately.

This method attempts to display the graphics immediately, without waiting for the currently running code
(if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a
large number of external viewer programs.

INPUT:

•delay – (default: 20) delay in hundredths of a second between frames.

•iterations – integer (default: 0); number of iterations of animation. If 0, loop forever.

•format - (default: gif) format to use for output. Currently supported formats are: gif, ogg, webm,
mp4, flash, matroska, avi, wmv, quicktime.

OUTPUT:

This method does not return anything. Use save() if you want to save the figure as an image.

Note: Currently this is done using an animated gif, though this could change in the future. This requires
that either ffmpeg or the ImageMagick suite (in particular, the convert command) is installed.

See also the ffmpeg() method.

EXAMPLES:

sage: a = animate([sin(x + float(k)) for k in srange(0,2*pi,0.7)],
....: xmin=0, xmax=2*pi, figsize=[2,1])
sage: a.show() # optional -- ImageMagick

The preceding will loop the animation forever. If you want to show only three iterations instead:

sage: a.show(iterations=3) # optional -- ImageMagick

To put a half-second delay between frames:

sage: a.show(delay=50) # optional -- ImageMagick

You can also make use of the HTML5 video element in the Sage Notebook:

sage: a.show(format="ogg") # optional -- ffmpeg
sage: a.show(format="webm") # optional -- ffmpeg
sage: a.show(format="mp4") # optional -- ffmpeg
sage: a.show(format="webm", iterations=1) # optional -- ffmpeg

Other backends may support other file formats as well:

sage: a.show(format="flash") # optional -- ffmpeg
sage: a.show(format="matroska") # optional -- ffmpeg
sage: a.show(format="avi") # optional -- ffmpeg

1.4. Animated plots 165

Sage Reference Manual: 2D Graphics, Release 8.0

sage: a.show(format="wmv") # optional -- ffmpeg
sage: a.show(format="quicktime") # optional -- ffmpeg

Note: If you don’t have ffmpeg or ImageMagick installed, you will get an error message like this:

Error: Neither ImageMagick nor ffmpeg appears to be installed. Saving an
animation to a GIF file or displaying an animation requires one of these
packages, so please install one of them and try again.

See www.imagemagick.org and www.ffmpeg.org for more information.

sage.plot.animate.animate(frames, **kwds)
Animate a list of frames by creating a sage.plot.animate.Animation object.

EXAMPLES:

sage: t = var('t')
sage: a = animate((cos(c*pi*t) for c in sxrange(1,2,.2)))
sage: a.show() # optional -- ImageMagick

See also sage.plot.animate for more examples.

166 Chapter 1. General

CHAPTER

TWO

FUNCTION AND DATA PLOTS

2.1 Complex Plots

class sage.plot.complex_plot.ComplexPlot(rgb_data, xrange, yrange, options)
Bases: sage.plot.primitive.GraphicPrimitive

The GraphicsPrimitive to display complex functions in using the domain coloring method

INPUT:

•rgb_data – An array of colored points to be plotted.

•xrange – A minimum and maximum x value for the plot.

•yrange – A minimum and maximum y value for the plot.

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: p = complex_plot(lambda z: z, (-1, 2), (-3, 4))
sage: sorted(p.get_minmax_data().items())
[('xmax', 2.0), ('xmin', -1.0), ('ymax', 4.0), ('ymin', -3.0)]

sage.plot.complex_plot.complex_plot(f, xrange, yrange, plot_points=100, interpola-
tion=’catrom’, **options)

complex_plot takes a complex function of one variable, 𝑓(𝑧) and plots output of the function over the spec-
ified xrange and yrange as demonstrated below. The magnitude of the output is indicated by the brightness
(with zero being black and infinity being white) while the argument is represented by the hue (with red being
positive real, and increasing through orange, yellow, ... as the argument increases).

complex_plot(f, (xmin, xmax), (ymin, ymax), ...)

INPUT:

•f – a function of a single complex value 𝑥+ 𝑖𝑦

•(xmin, xmax) – 2-tuple, the range of x values

•(ymin, ymax) – 2-tuple, the range of y values

The following inputs must all be passed in as named parameters:

•plot_points – integer (default: 100); number of points to plot in each direction of the grid

•interpolation – string (default: 'catrom'), the interpolation method to use: 'bilinear',
'bicubic', 'spline16', 'spline36', 'quadric', 'gaussian', 'sinc', 'bessel',
'mitchell', 'lanczos', 'catrom', 'hermite', 'hanning', 'hamming', 'kaiser'

167

Sage Reference Manual: 2D Graphics, Release 8.0

EXAMPLES:

Here we plot a couple of simple functions:

sage: complex_plot(sqrt(x), (-5, 5), (-5, 5))
Graphics object consisting of 1 graphics primitive

sage: complex_plot(sin(x), (-5, 5), (-5, 5))
Graphics object consisting of 1 graphics primitive

168 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: complex_plot(log(x), (-10, 10), (-10, 10))
Graphics object consisting of 1 graphics primitive

2.1. Complex Plots 169

Sage Reference Manual: 2D Graphics, Release 8.0

sage: complex_plot(exp(x), (-10, 10), (-10, 10))
Graphics object consisting of 1 graphics primitive

170 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

A function with some nice zeros and a pole:

sage: f(z) = z^5 + z - 1 + 1/z
sage: complex_plot(f, (-3, 3), (-3, 3))
Graphics object consisting of 1 graphics primitive

2.1. Complex Plots 171

Sage Reference Manual: 2D Graphics, Release 8.0

Here is the identity, useful for seeing what values map to what colors:

sage: complex_plot(lambda z: z, (-3, 3), (-3, 3))
Graphics object consisting of 1 graphics primitive

172 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

The Riemann Zeta function:

sage: complex_plot(zeta, (-30,30), (-30,30))
Graphics object consisting of 1 graphics primitive

2.1. Complex Plots 173

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: complex_plot(lambda z: z, (-3, 3), (-3, 3), figsize=[1,1])
Graphics object consisting of 1 graphics primitive

sage: complex_plot(lambda z: z, (-3, 3), (-3, 3)).show(figsize=[1,1]) # These are
→˓equivalent

sage: complex_plot(sqrt, (-5, 5), (-5, 5))
Graphics object consisting of 1 graphics primitive

sage.plot.complex_plot.complex_to_rgb(z_values)
INPUT:

•z_values – A grid of complex numbers, as a list of lists

OUTPUT:

An 𝑁 ×𝑀 × 3 floating point Numpy array X, where X[i,j] is an (r,g,b) tuple.

EXAMPLES:

sage: from sage.plot.complex_plot import complex_to_rgb
sage: complex_to_rgb([[0, 1, 1000]])
array([[[0. , 0. , 0.],

[0.77172568, 0. , 0.],
[1. , 0.64421177, 0.64421177]]])

sage: complex_to_rgb([[0, 1j, 1000j]])

174 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

array([[[0. , 0. , 0.],
[0.38586284, 0.77172568, 0.],
[0.82210588, 1. , 0.64421177]]])

2.2 Contour Plots

class sage.plot.contour_plot.ContourPlot(xy_data_array, xrange, yrange, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class for the contour plot graphics type. See contour_plot? for help actually doing contour plots.

INPUT:

•xy_data_array - list of lists giving evaluated values of the function on the grid

•xrange - tuple of 2 floats indicating range for horizontal direction

•yrange - tuple of 2 floats indicating range for vertical direction

•options - dict of valid plot options to pass to constructor

EXAMPLES:

Note this should normally be used indirectly via contour_plot:

sage: from sage.plot.contour_plot import ContourPlot
sage: C = ContourPlot([[1,3],[2,4]], (1,2), (2,3), options={})
sage: C
ContourPlot defined by a 2 x 2 data grid
sage: C.xrange
(1, 2)

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: x,y = var('x,y')
sage: f(x,y) = x^2 + y^2
sage: d = contour_plot(f, (3,6), (3,6))[0].get_minmax_data()
sage: d['xmin']
3.0
sage: d['ymin']
3.0

sage.plot.contour_plot.contour_plot(f, xrange, yrange, axes=False, linestyles=None,
region=None, labels=False, plot_points=100,
linewidths=None, colorbar=False, contours=None,
aspect_ratio=1, legend_label=None, frame=True,
fill=True, label_inline=None, label_fmt=’%1.2f’,
label_fontsize=9, label_colors=’blue’, la-
bel_inline_spacing=3, colorbar_spacing=None, col-
orbar_orientation=’vertical’, colorbar_format=None,
**options)

contour_plot takes a function of two variables, 𝑓(𝑥, 𝑦) and plots contour lines of the function over the
specified xrange and yrange as demonstrated below.

contour_plot(f, (xmin,xmax), (ymin,ymax), ...)

2.2. Contour Plots 175

Sage Reference Manual: 2D Graphics, Release 8.0

INPUT:

•f – a function of two variables

•(xmin,xmax) – 2-tuple, the range of x values OR 3-tuple (x,xmin,xmax)

•(ymin,ymax) – 2-tuple, the range of y values OR 3-tuple (y,ymin,ymax)

The following inputs must all be passed in as named parameters:

•plot_points – integer (default: 100); number of points to plot in each direction of the grid. For old
computers, 25 is fine, but should not be used to verify specific intersection points.

•fill – bool (default: True), whether to color in the area between contour lines

•cmap – a colormap (default: 'gray'), the name of a predefined colormap, a list of colors or an instance
of a matplotlib Colormap. Type: import matplotlib.cm; matplotlib.cm.datad.keys()
for available colormap names.

•contours – integer or list of numbers (default: None): If a list of numbers is given, then this specifies
the contour levels to use. If an integer is given, then this many contour lines are used, but the exact levels
are determined automatically. If None is passed (or the option is not given), then the number of contour
lines is determined automatically, and is usually about 5.

•linewidths – integer or list of integer (default: None), if a single integer all levels will be of the width
given, otherwise the levels will be plotted with the width in the order given. If the list is shorter than the
number of contours, then the widths will be repeated cyclically.

•linestyles – string or list of strings (default: None), the style of the lines to be plotted, one of:
"solid", "dashed", "dashdot", "dotted", respectively "-", "--", "-.", ":". If the list is
shorter than the number of contours, then the styles will be repeated cyclically.

•labels – boolean (default: False) Show level labels or not.

The following options are to adjust the style and placement of labels, they have no effect if no labels are
shown.

–label_fontsize – integer (default: 9), the font size of the labels.

–label_colors – string or sequence of colors (default: None) If a string, gives the name of a single
color with which to draw all labels. If a sequence, gives the colors of the labels. A color is a string
giving the name of one or a 3-tuple of floats.

–label_inline – boolean (default: False if fill is True, otherwise True), controls whether the un-
derlying contour is removed or not.

–label_inline_spacing – integer (default: 3), When inline, this is the amount of contour that is
removed from each side, in pixels.

–label_fmt – a format string (default: “%1.2f”), this is used to get the label text from the level. This
can also be a dictionary with the contour levels as keys and corresponding text string labels as values.
It can also be any callable which returns a string when called with a numeric contour level.

•colorbar – boolean (default: False) Show a colorbar or not.

The following options are to adjust the style and placement of colorbars. They have no effect if a colorbar
is not shown.

–colorbar_orientation – string (default: ‘vertical’), controls placement of the colorbar, can be
either ‘vertical’ or ‘horizontal’

–colorbar_format – a format string, this is used to format the colorbar labels.

176 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

–colorbar_spacing – string (default: ‘proportional’). If ‘proportional’, make the contour divi-
sions proportional to values. If ‘uniform’, space the colorbar divisions uniformly, without regard for
numeric values.

•legend_label – the label for this item in the legend

•region - (default: None) If region is given, it must be a function of two variables. Only segments of
the surface where region(x,y) returns a number >0 will be included in the plot.

EXAMPLES:

Here we plot a simple function of two variables. Note that since the input function is an expression, we need to
explicitly declare the variables in 3-tuples for the range:

sage: x,y = var('x,y')
sage: contour_plot(cos(x^2 + y^2), (x,-4,4), (y,-4,4))
Graphics object consisting of 1 graphics primitive

Here we change the ranges and add some options:

sage: x,y = var('x,y')
sage: contour_plot((x^2) * cos(x*y), (x,-10,5), (y,-5,5), fill=False, plot_
→˓points=150)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 177

Sage Reference Manual: 2D Graphics, Release 8.0

An even more complicated plot:

sage: x,y = var('x,y')
sage: contour_plot(sin(x^2+y^2) * cos(x) * sin(y), (x,-4,4), (y,-4,4), plot_
→˓points=150)
Graphics object consisting of 1 graphics primitive

178 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Some elliptic curves, but with symbolic endpoints. In the first example, the plot is rotated 90 degrees because
we switch the variables 𝑥, 𝑦:

sage: x,y = var('x,y')
sage: contour_plot(y^2 + 1 - x^3 - x, (y,-pi,pi), (x,-pi,pi))
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 179

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi))
Graphics object consisting of 1 graphics primitive

180 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

We can play with the contour levels:

sage: x,y = var('x,y')
sage: f(x,y) = x^2 + y^2
sage: contour_plot(f, (-2,2), (-2,2))
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 181

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (-2,2), (-2,2), contours=2, cmap=[(1,0,0), (0,1,0), (0,0,
→˓1)])
Graphics object consisting of 1 graphics primitive

182 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (-2,2), (-2,2),
....: contours=(0.1,1.0,1.2,1.4), cmap='hsv')
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 183

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (-2,2), (-2,2), contours=(1.0,), fill=False)
Graphics object consisting of 1 graphics primitive

184 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(x - y^2, (x,-5,5), (y,-3,3), contours=[-4,0,1])
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 185

Sage Reference Manual: 2D Graphics, Release 8.0

We can change the style of the lines:

sage: contour_plot(f, (-2,2), (-2,2), fill=False, linewidths=10)
Graphics object consisting of 1 graphics primitive

186 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (-2,2), (-2,2), fill=False, linestyles='dashdot')
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 187

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(x^2 - y^2, (x,-3,3), (y,-3,3),
....: contours=[0,1,2,3,4], linewidths=[1,5],
....: linestyles=['solid','dashed'], fill=False)
sage: P
Graphics object consisting of 1 graphics primitive

188 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(x^2 - y^2, (x,-3,3), (y,-3,3),
....: contours=[0,1,2,3,4], linewidths=[1,5],
....: linestyles=['solid','dashed'])
sage: P
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 189

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(x^2 - y^2, (x,-3,3), (y,-3,3),
....: contours=[0,1,2,3,4], linewidths=[1,5],
....: linestyles=['-',':'])
sage: P
Graphics object consisting of 1 graphics primitive

190 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

We can add labels and play with them:

sage: contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),
....: fill=False, cmap='hsv', labels=True)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 191

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P=contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),
....: fill=False, cmap='hsv',
....: labels=True, label_fmt="%1.0f",
....: label_colors='black')
sage: P
Graphics object consisting of 1 graphics primitive

192 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),
....: fill=False, cmap='hsv', labels=True,
....: contours=[-4,0,4],
....: label_fmt={-4:"low", 0:"medium", 4: "hi"},
....: label_colors='black')
sage: P
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 193

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),
....: fill=False, cmap='hsv', labels=True,
....: contours=[-4,0,4], label_fmt=lambda x: "$z=%s$"%x,
....: label_colors='black', label_inline=True,
....: label_fontsize=12)
sage: P
Graphics object consisting of 1 graphics primitive

194 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),
....: fill=False, cmap='hsv', labels=True,
....: label_fontsize=18)
sage: P
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 195

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),
....: fill=False, cmap='hsv', labels=True,
....: label_inline_spacing=1)
sage: P
Graphics object consisting of 1 graphics primitive

196 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),
....: fill=False, cmap='hsv', labels=True,
....: label_inline=False)
sage: P
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 197

Sage Reference Manual: 2D Graphics, Release 8.0

We can change the color of the labels if so desired:

sage: contour_plot(f, (-2,2), (-2,2), labels=True, label_colors='red')
Graphics object consisting of 1 graphics primitive

198 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

We can add a colorbar as well:

sage: f(x, y)=x^2-y^2
sage: contour_plot(f, (x,-3,3), (y,-3,3), colorbar=True)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 199

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (x,-3,3), (y,-3,3), colorbar=True, colorbar_orientation=
→˓'horizontal')
Graphics object consisting of 1 graphics primitive

200 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (x,-3,3), (y,-3,3), contours=[-2,-1,4], colorbar=True)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 201

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (x,-3,3), (y,-3,3), contours=[-2,-1,4],
....: colorbar=True, colorbar_spacing='uniform')
Graphics object consisting of 1 graphics primitive

202 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (x,-3,3), (y,-3,3), contours=[0,2,3,6],
....: colorbar=True, colorbar_format='%.3f')
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 203

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (x,-3,3), (y,-3,3), labels=True,
....: label_colors='red', contours=[0,2,3,6],
....: colorbar=True)
Graphics object consisting of 1 graphics primitive

204 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: contour_plot(f, (x,-3,3), (y,-3,3), cmap='winter',
....: contours=20, fill=False, colorbar=True)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 205

Sage Reference Manual: 2D Graphics, Release 8.0

This should plot concentric circles centered at the origin:

sage: x,y = var('x,y')
sage: contour_plot(x^2 + y^2-2,(x,-1,1), (y,-1,1))
Graphics object consisting of 1 graphics primitive

206 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: f(x,y) = cos(x) + sin(y)
sage: contour_plot(f, (0,pi), (0,pi), axes=True)
Graphics object consisting of 1 graphics primitive

sage: contour_plot(f, (0,pi), (0,pi)).show(axes=True) # These are equivalent

2.2. Contour Plots 207

Sage Reference Manual: 2D Graphics, Release 8.0

One can also plot over a reduced region:

sage: contour_plot(x**2 - y**2, (x,-2,2), (y,-2,2), region=x - y, plot_points=300)
Graphics object consisting of 1 graphics primitive

208 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Note that with fill=False and grayscale contours, there is the possibility of confusion between the contours
and the axes, so use fill=False together with axes=True with caution:

sage: contour_plot(f, (-pi,pi), (-pi,pi), fill=False, axes=True)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 209

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.contour_plot.equify(f)
Returns the equation rewritten as a symbolic function to give negative values when True, positive when False.

EXAMPLES:

sage: from sage.plot.contour_plot import equify
sage: var('x, y')
(x, y)
sage: equify(x^2 < 2)
x^2 - 2
sage: equify(x^2 > 2)
-x^2 + 2
sage: equify(x*y > 1)
-x*y + 1
sage: equify(y > 0)
-y
sage: f=equify(lambda x, y: x > y)
sage: f(1, 2)
1
sage: f(2, 1)
-1

sage.plot.contour_plot.implicit_plot(f, xrange, yrange, cmap=[’blue’], contours=(0,),
plot_points=150, fill=False, **options)

implicit_plot takes a function of two variables, 𝑓(𝑥, 𝑦) and plots the curve 𝑓(𝑥, 𝑦) = 0 over the specified
xrange and yrange as demonstrated below.

implicit_plot(f, (xmin,xmax), (ymin,ymax), ...)

210 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

implicit_plot(f, (x,xmin,xmax), (y,ymin,ymax), ...)

INPUT:

•f – a function of two variables or equation in two variables

•(xmin,xmax) – 2-tuple, the range of x values or (x,xmin,xmax)

•(ymin,ymax) – 2-tuple, the range of y values or (y,ymin,ymax)

The following inputs must all be passed in as named parameters:

•plot_points – integer (default: 150); number of points to plot in each direction of the grid

•fill – boolean (default: False); if True, fill the region 𝑓(𝑥, 𝑦) < 0.

•fillcolor – string (default: 'blue'), the color of the region where 𝑓(𝑥, 𝑦) < 0 if fill = True.
Colors are defined in sage.plot.colors; try colors? to see them all.

•linewidth – integer (default: None), if a single integer all levels will be of the width given, otherwise
the levels will be plotted with the widths in the order given.

•linestyle – string (default: None), the style of the line to be plotted, one of: "solid", "dashed",
"dashdot" or "dotted", respectively "-", "--", "-.", or ":".

•color – string (default: 'blue'), the color of the plot. Colors are defined in sage.plot.colors;
try colors? to see them all. If fill = True, then this sets only the color of the border of the plot.
See fillcolor for setting the color of the fill region.

•legend_label – the label for this item in the legend

•base – (default: 10) the base of the logarithm if a logarithmic scale is set. This must be greater than 1.
The base can be also given as a list or tuple (basex, basey). basex sets the base of the logarithm
along the horizontal axis and basey sets the base along the vertical axis.

•scale – (default: "linear") string. The scale of the axes. Possible values are "linear",
"loglog", "semilogx", "semilogy".

The scale can be also be given as single argument that is a list or tuple (scale, base) or (scale,
basex, basey).

The "loglog" scale sets both the horizontal and vertical axes to logarithmic scale. The "semilogx"
scale sets the horizontal axis to logarithmic scale. The "semilogy" scale sets the vertical axis to loga-
rithmic scale. The "linear" scale is the default value when Graphics is initialized.

EXAMPLES:

A simple circle with a radius of 2. Note that since the input function is an expression, we need to explicitly
declare the variables in 3-tuples for the range:

sage: var("x y")
(x, y)
sage: implicit_plot(x^2 + y^2 - 2, (x,-3,3), (y,-3,3))
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 211

Sage Reference Manual: 2D Graphics, Release 8.0

We can do the same thing, but using a callable function so we don’t need to explicitly define the variables in the
ranges. We also fill the inside:

sage: f(x,y) = x^2 + y^2 - 2
sage: implicit_plot(f, (-3,3), (-3,3), fill=True, plot_points=500) # long time
Graphics object consisting of 2 graphics primitives

212 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

The same circle but with a different line width:

sage: implicit_plot(f, (-3,3), (-3,3), linewidth=6)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 213

Sage Reference Manual: 2D Graphics, Release 8.0

Again the same circle but this time with a dashdot border:

sage: implicit_plot(f, (-3,3), (-3,3), linestyle='dashdot')
Graphics object consisting of 1 graphics primitive

214 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

The same circle with different line and fill colors:

sage: implicit_plot(f, (-3,3), (-3,3), color='red', fill=True, fillcolor='green',
....: plot_points=500) # long time
Graphics object consisting of 2 graphics primitives

2.2. Contour Plots 215

Sage Reference Manual: 2D Graphics, Release 8.0

You can also plot an equation:

sage: var("x y")
(x, y)
sage: implicit_plot(x^2 + y^2 == 2, (x,-3,3), (y,-3,3))
Graphics object consisting of 1 graphics primitive

216 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

You can even change the color of the plot:

sage: implicit_plot(x^2 + y^2 == 2, (x,-3,3), (y,-3,3), color="red")
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 217

Sage Reference Manual: 2D Graphics, Release 8.0

The color of the fill region can be changed:

sage: implicit_plot(x**2 + y**2 == 2, (x,-3,3), (y,-3,3), fill=True, fillcolor=
→˓'red')
Graphics object consisting of 2 graphics primitives

218 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Here is a beautiful (and long) example which also tests that all colors work with this:

sage: G = Graphics()
sage: counter = 0
sage: for col in colors.keys(): # long time
....: G += implicit_plot(x^2 + y^2 == 1 + counter*.1, (x,-4,4),(y,-4,4),
→˓color=col)
....: counter += 1
sage: G # long time
Graphics object consisting of 148 graphics primitives

2.2. Contour Plots 219

Sage Reference Manual: 2D Graphics, Release 8.0

We can define a level-𝑛 approximation of the boundary of the Mandelbrot set:

sage: def mandel(n):
....: c = polygen(CDF, 'c')
....: z = 0
....: for i in range(n):
....: z = z*z + c
....: def f(x,y):
....: val = z(CDF(x, y))
....: return val.norm() - 4
....: return f

The first-level approximation is just a circle:

sage: implicit_plot(mandel(1), (-3,3), (-3,3))
Graphics object consisting of 1 graphics primitive

220 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

A third-level approximation starts to get interesting:

sage: implicit_plot(mandel(3), (-2,1), (-1.5,1.5))
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 221

Sage Reference Manual: 2D Graphics, Release 8.0

The seventh-level approximation is a degree 64 polynomial, and implicit_plot does a pretty good job on
this part of the curve. (plot_points=200 looks even better, but it takes over a second.)

sage: implicit_plot(mandel(7), (-0.3, 0.05), (-1.15, -0.9), plot_points=50)
Graphics object consisting of 1 graphics primitive

222 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

When making a filled implicit plot using a python function rather than a symbolic expression the user should
increase the number of plot points to avoid artifacts:

sage: implicit_plot(lambda x, y: x^2 + y^2 - 2, (x,-3,3), (y,-3,3),
....: fill=True, plot_points=500) # long time
Graphics object consisting of 2 graphics primitives

2.2. Contour Plots 223

Sage Reference Manual: 2D Graphics, Release 8.0

An example of an implicit plot on ‘loglog’ scale:

sage: implicit_plot(x^2 + y^2 == 200, (x,1,200), (y,1,200), scale='loglog')
Graphics object consisting of 1 graphics primitive

224 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.contour_plot.region_plot(f, xrange, yrange, plot_points, incol, outcol, bordercol,
borderstyle, borderwidth, alpha, frame=False, axes=True,
plot_points=100, aspect_ratio=1, outcol=None, border-
width=None, incol=’blue’, alpha=1, borderstyle=None,
legend_label=None, bordercol=None, **options)

region_plot takes a boolean function of two variables, 𝑓(𝑥, 𝑦) and plots the region where f is True over the
specified xrange and yrange as demonstrated below.

region_plot(f, (xmin,xmax), (ymin,ymax), ...)

INPUT:

•f – a boolean function or a list of boolean functions of two variables

•(xmin,xmax) – 2-tuple, the range of x values OR 3-tuple (x,xmin,xmax)

•(ymin,ymax) – 2-tuple, the range of y values OR 3-tuple (y,ymin,ymax)

•plot_points – integer (default: 100); number of points to plot in each direction of the grid

•incol – a color (default: 'blue'), the color inside the region

•outcol – a color (default: None), the color of the outside of the region

If any of these options are specified, the border will be shown as indicated, otherwise it is only implicit (with
color incol) as the border of the inside of the region.

•bordercol – a color (default: None), the color of the border ('black' if borderwidth or
borderstyle is specified but not bordercol)

2.2. Contour Plots 225

Sage Reference Manual: 2D Graphics, Release 8.0

•borderstyle – string (default: 'solid'), one of 'solid', 'dashed', 'dotted', 'dashdot',
respectively '-', '--', ':', '-.'.

•borderwidth – integer (default: None), the width of the border in pixels

•alpha – (default: 1) how transparent the fill is; a number between 0 and 1

•legend_label – the label for this item in the legend

•base - (default: 10) the base of the logarithm if a logarithmic scale is set. This must be greater than 1.
The base can be also given as a list or tuple (basex, basey). basex sets the base of the logarithm
along the horizontal axis and basey sets the base along the vertical axis.

•scale – (default: "linear") string. The scale of the axes. Possible values are "linear",
"loglog", "semilogx", "semilogy".

The scale can be also be given as single argument that is a list or tuple (scale, base) or (scale,
basex, basey).

The "loglog" scale sets both the horizontal and vertical axes to logarithmic scale. The "semilogx"
scale sets the horizontal axis to logarithmic scale. The "semilogy" scale sets the vertical axis to loga-
rithmic scale. The "linear" scale is the default value when Graphics is initialized.

EXAMPLES:

Here we plot a simple function of two variables:

sage: x,y = var('x,y')
sage: region_plot(cos(x^2 + y^2) <= 0, (x,-3,3), (y,-3,3))
Graphics object consisting of 1 graphics primitive

226 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Here we play with the colors:

sage: region_plot(x^2 + y^3 < 2, (x,-2,2), (y,-2,2), incol='lightblue', bordercol=
→˓'gray')
Graphics object consisting of 2 graphics primitives

An even more complicated plot, with dashed borders:

sage: region_plot(sin(x) * sin(y) >= 1/4, (x,-10,10), (y,-10,10),
....: incol='yellow', bordercol='black',
....: borderstyle='dashed', plot_points=250)
Graphics object consisting of 2 graphics primitives

2.2. Contour Plots 227

Sage Reference Manual: 2D Graphics, Release 8.0

A disk centered at the origin:

sage: region_plot(x^2 + y^2 < 1, (x,-1,1), (y,-1,1))
Graphics object consisting of 1 graphics primitive

228 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

A plot with more than one condition (all conditions must be true for the statement to be true):

sage: region_plot([x^2 + y^2 < 1, x < y], (x,-2,2), (y,-2,2))
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 229

Sage Reference Manual: 2D Graphics, Release 8.0

Since it doesn’t look very good, let’s increase plot_points:

sage: region_plot([x^2 + y^2 < 1, x< y], (x,-2,2), (y,-2,2), plot_points=400)
Graphics object consisting of 1 graphics primitive

230 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

To get plots where only one condition needs to be true, use a function. Using lambda functions, we definitely
need the extra plot_points:

sage: region_plot(lambda x, y: x^2 + y^2 < 1 or x < y, (x,-2,2), (y,-2,2), plot_
→˓points=400)
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 231

Sage Reference Manual: 2D Graphics, Release 8.0

The first quadrant of the unit circle:

sage: region_plot([y > 0, x > 0, x^2 + y^2 < 1], (x,-1.1,1.1), (y,-1.1,1.1), plot_
→˓points=400)
Graphics object consisting of 1 graphics primitive

232 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Here is another plot, with a huge border:

sage: region_plot(x*(x-1)*(x+1) + y^2 < 0, (x,-3,2), (y,-3,3),
....: incol='lightblue', bordercol='gray', borderwidth=10,
....: plot_points=50)
Graphics object consisting of 2 graphics primitives

2.2. Contour Plots 233

Sage Reference Manual: 2D Graphics, Release 8.0

If we want to keep only the region where x is positive:

sage: region_plot([x*(x-1)*(x+1) + y^2 < 0, x > -1], (x,-3,2), (y,-3,3),
....: incol='lightblue', plot_points=50)
Graphics object consisting of 1 graphics primitive

234 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Here we have a cut circle:

sage: region_plot([x^2 + y^2 < 4, x > -1], (x,-2,2), (y,-2,2),
....: incol='lightblue', bordercol='gray', plot_points=200)
Graphics object consisting of 2 graphics primitives

2.2. Contour Plots 235

Sage Reference Manual: 2D Graphics, Release 8.0

The first variable range corresponds to the horizontal axis and the second variable range corresponds to the
vertical axis:

sage: s, t = var('s, t')
sage: region_plot(s > 0, (t,-2,2), (s,-2,2))
Graphics object consisting of 1 graphics primitive

236 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: region_plot(s>0,(s,-2,2),(t,-2,2))
Graphics object consisting of 1 graphics primitive

2.2. Contour Plots 237

Sage Reference Manual: 2D Graphics, Release 8.0

An example of a region plot in ‘loglog’ scale:

sage: region_plot(x^2 + y^2 < 100, (x,1,10), (y,1,10), scale='loglog')
Graphics object consisting of 1 graphics primitive

238 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

2.3 Density Plots

class sage.plot.density_plot.DensityPlot(xy_data_array, xrange, yrange, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class for the density plot graphics type. See density_plot? for help actually doing density plots.

INPUT:

•xy_data_array - list of lists giving evaluated values of the function on the grid

•xrange - tuple of 2 floats indicating range for horizontal direction

•yrange - tuple of 2 floats indicating range for vertical direction

•options - dict of valid plot options to pass to constructor

EXAMPLES:

Note this should normally be used indirectly via density_plot:

sage: from sage.plot.density_plot import DensityPlot
sage: D = DensityPlot([[1,3],[2,4]], (1,2), (2,3),options={})
sage: D
DensityPlot defined by a 2 x 2 data grid
sage: D.yrange
(2, 3)

2.3. Density Plots 239

Sage Reference Manual: 2D Graphics, Release 8.0

sage: D.options()
{}

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: x,y = var('x,y')
sage: f(x, y) = x^2 + y^2
sage: d = density_plot(f, (3,6), (3,6))[0].get_minmax_data()
sage: d['xmin']
3.0
sage: d['ymin']
3.0

sage.plot.density_plot.density_plot(f, xrange, yrange, cmap=’gray’, plot_points=25, interpo-
lation=’catrom’, **options)

density_plot takes a function of two variables, 𝑓(𝑥, 𝑦) and plots the height of the function over the specified
xrange and yrange as demonstrated below.

density_plot(f, (xmin,xmax), (ymin,ymax), ...)

INPUT:

•f – a function of two variables

•(xmin,xmax) – 2-tuple, the range of x values OR 3-tuple (x,xmin,xmax)

•(ymin,ymax) – 2-tuple, the range of y values OR 3-tuple (y,ymin,ymax)

The following inputs must all be passed in as named parameters:

•plot_points – integer (default: 25); number of points to plot in each direction of the grid

•cmap – a colormap (default: 'gray'), the name of a predefined colormap, a list of colors or an instance
of a matplotlib Colormap. Type: import matplotlib.cm; matplotlib.cm.datad.keys()
for available colormap names.

•interpolation – string (default: 'catrom'), the interpolation method to use: 'bilinear',
'bicubic', 'spline16', 'spline36', 'quadric', 'gaussian', 'sinc', 'bessel',
'mitchell', 'lanczos', 'catrom', 'hermite', 'hanning', 'hamming', 'kaiser'

EXAMPLES:

Here we plot a simple function of two variables. Note that since the input function is an expression, we need to
explicitly declare the variables in 3-tuples for the range:

sage: x,y = var('x,y')
sage: density_plot(sin(x) * sin(y), (x,-2,2), (y,-2,2))
Graphics object consisting of 1 graphics primitive

240 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Here we change the ranges and add some options; note that here f is callable (has variables declared), so we
can use 2-tuple ranges:

sage: x,y = var('x,y')
sage: f(x,y) = x^2 * cos(x*y)
sage: density_plot(f, (x,-10,5), (y,-5,5), interpolation='sinc', plot_points=100)
Graphics object consisting of 1 graphics primitive

2.3. Density Plots 241

Sage Reference Manual: 2D Graphics, Release 8.0

An even more complicated plot:

sage: x,y = var('x,y')
sage: density_plot(sin(x^2+y^2) * cos(x) * sin(y), (x,-4,4), (y,-4,4), cmap='jet',
→˓ plot_points=100)
Graphics object consisting of 1 graphics primitive

242 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

This should show a “spotlight” right on the origin:

sage: x,y = var('x,y')
sage: density_plot(1/(x^10 + y^10), (x,-10,10), (y,-10,10))
Graphics object consisting of 1 graphics primitive

2.3. Density Plots 243

Sage Reference Manual: 2D Graphics, Release 8.0

Some elliptic curves, but with symbolic endpoints. In the first example, the plot is rotated 90 degrees because
we switch the variables 𝑥, 𝑦:

sage: density_plot(y^2 + 1 - x^3 - x, (y,-pi,pi), (x,-pi,pi))
Graphics object consisting of 1 graphics primitive

244 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: density_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi))
Graphics object consisting of 1 graphics primitive

2.3. Density Plots 245

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: density_plot(log(x) + log(y), (x,1,10), (y,1,10), dpi=20)
Graphics object consisting of 1 graphics primitive

246 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: density_plot(log(x) + log(y), (x,1,10), (y,1,10)).show(dpi=20) # These are
→˓equivalent

2.4 Plotting fields

class sage.plot.plot_field.PlotField(xpos_array, ypos_array, xvec_array, yvec_array, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class that initializes the PlotField graphics type

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: x,y = var('x,y')
sage: d = plot_vector_field((.01*x,x+y), (x,10,20), (y,10,20))[0].get_minmax_
→˓data()
sage: d['xmin']
10.0
sage: d['ymin']
10.0

sage.plot.plot_field.plot_slope_field(f, xrange, yrange, **kwds)
plot_slope_field takes a function of two variables xvar and yvar (for instance, if the variables are 𝑥 and

2.4. Plotting fields 247

Sage Reference Manual: 2D Graphics, Release 8.0

𝑦, take 𝑓(𝑥, 𝑦)), and at representative points (𝑥𝑖, 𝑦𝑖) between xmin, xmax, and ymin, ymax respectively, plots a
line with slope 𝑓(𝑥𝑖, 𝑦𝑖) (see below).

plot_slope_field(f, (xvar,xmin,xmax), (yvar,ymin,ymax))

EXAMPLES:

A logistic function modeling population growth:

sage: x,y = var('x y')
sage: capacity = 3 # thousand
sage: growth_rate = 0.7 # population increases by 70% per unit of time
sage: plot_slope_field(growth_rate * (1-y/capacity) * y, (x,0,5), (y,0,
→˓capacity*2))
Graphics object consisting of 1 graphics primitive

Plot a slope field involving sin and cos:

sage: x,y = var('x y')
sage: plot_slope_field(sin(x+y) + cos(x+y), (x,-3,3), (y,-3,3))
Graphics object consisting of 1 graphics primitive

248 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Plot a slope field using a lambda function:

sage: plot_slope_field(lambda x,y: x + y, (-2,2), (-2,2))
Graphics object consisting of 1 graphics primitive

2.4. Plotting fields 249

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.plot_field.plot_vector_field(f_g, xrange, yrange, frame=True, plot_points=20,
**options)

plot_vector_field takes two functions of two variables xvar and yvar (for instance, if the variables are
𝑥 and 𝑦, take (𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦))) and plots vector arrows of the function over the specified ranges, with xrange
being of xvar between xmin and xmax, and yrange similarly (see below).

plot_vector_field((f,g), (xvar,xmin,xmax), (yvar,ymin,ymax))

EXAMPLES:

Plot some vector fields involving sin and cos:

sage: x,y = var('x y')
sage: plot_vector_field((sin(x),cos(y)), (x,-3,3), (y,-3,3))
Graphics object consisting of 1 graphics primitive

250 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot_vector_field((y,(cos(x)-2) * sin(x)), (x,-pi,pi), (y,-pi,pi))
Graphics object consisting of 1 graphics primitive

2.4. Plotting fields 251

Sage Reference Manual: 2D Graphics, Release 8.0

Plot a gradient field:

sage: u, v = var('u v')
sage: f = exp(-(u^2 + v^2))
sage: plot_vector_field(f.gradient(), (u,-2,2), (v,-2,2), color='blue')
Graphics object consisting of 1 graphics primitive

252 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Plot two orthogonal vector fields:

sage: x,y = var('x,y')
sage: a = plot_vector_field((x,y), (x,-3,3), (y,-3,3), color='blue')
sage: b = plot_vector_field((y,-x), (x,-3,3), (y,-3,3), color='red')
sage: show(a + b)

2.4. Plotting fields 253

Sage Reference Manual: 2D Graphics, Release 8.0

We ignore function values that are infinite or NaN:

sage: x,y = var('x,y')
sage: plot_vector_field((-x/sqrt(x^2+y^2),-y/sqrt(x^2+y^2)), (x,-10,10), (y,-10,
→˓10))
Graphics object consisting of 1 graphics primitive

254 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: x,y = var('x,y')
sage: plot_vector_field((-x/sqrt(x+y),-y/sqrt(x+y)), (x,-10, 10), (y,-10,10))
Graphics object consisting of 1 graphics primitive

2.4. Plotting fields 255

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: plot_vector_field((x,y), (x,-2,2), (y,-2,2), xmax=10)
Graphics object consisting of 1 graphics primitive
sage: plot_vector_field((x,y), (x,-2,2), (y,-2,2)).show(xmax=10) # These are
→˓equivalent

256 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

2.5 Streamline Plots

class sage.plot.streamline_plot.StreamlinePlot(xpos_array, ypos_array, xvec_array,
yvec_array, options)

Bases: sage.plot.primitive.GraphicPrimitive

Primitive class that initializes the StreamlinePlot graphics type

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: x, y = var('x y')
sage: d = streamline_plot((.01*x, x+y), (x,10,20), (y,10,20))[0].get_minmax_
→˓data()
sage: d['xmin']
10.0
sage: d['ymin']
10.0

sage.plot.streamline_plot.streamline_plot(f_g, xrange, yrange, frame=True,
plot_points=20, density=1.0, **options)

Return a streamline plot in a vector field.

streamline_plot can take either one or two functions. Consider two variables 𝑥 and 𝑦.

2.5. Streamline Plots 257

Sage Reference Manual: 2D Graphics, Release 8.0

If given two functions (𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦)), then this function plots steamlines in the vector field over the specified
ranges with xrange being of 𝑥, denoted by xvar below, between xmin and xmax, and yrange similarly
(see below).

streamline_plot((f, g), (xvar, xmin, xmax), (yvar, ymin, ymax))

Similarly, if given one function 𝑓(𝑥, 𝑦), then this function plots streamlines in the slope field 𝑑𝑦/𝑑𝑥 = 𝑓(𝑥, 𝑦)
over the specified ranges as given above.

PLOT OPTIONS:

•plot_points – (default: 200) the minimal number of plot points

•density – float (default: 1.); controls the closeness of streamlines

•start_points – (optional) list of coordinates of starting points for the streamlines; coordinate pairs
can be tuples or lists

EXAMPLES:

Plot some vector fields involving sin and cos:

sage: x, y = var('x y')
sage: streamline_plot((sin(x), cos(y)), (x,-3,3), (y,-3,3))
Graphics object consisting of 1 graphics primitive

sage: streamline_plot((y, (cos(x)-2) * sin(x)), (x,-pi,pi), (y,-pi,pi))
Graphics object consisting of 1 graphics primitive

258 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

We increase the density of the plot:

sage: streamline_plot((y, (cos(x)-2) * sin(x)), (x,-pi,pi), (y,-pi,pi), density=2)
Graphics object consisting of 1 graphics primitive

2.5. Streamline Plots 259

Sage Reference Manual: 2D Graphics, Release 8.0

We ignore function values that are infinite or NaN:

sage: x, y = var('x y')
sage: streamline_plot((-x/sqrt(x^2+y^2), -y/sqrt(x^2+y^2)), (x,-10,10), (y,-10,
→˓10))
Graphics object consisting of 1 graphics primitive

260 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: streamline_plot((x, y), (x,-2,2), (y,-2,2), xmax=10)
Graphics object consisting of 1 graphics primitive
sage: streamline_plot((x, y), (x,-2,2), (y,-2,2)).show(xmax=10) # These are
→˓equivalent

2.5. Streamline Plots 261

Sage Reference Manual: 2D Graphics, Release 8.0

We can also construct streamlines in a slope field:

sage: x, y = var('x y')
sage: streamline_plot((x + y) / sqrt(x^2 + y^2), (x,-3,3), (y,-3,3))
Graphics object consisting of 1 graphics primitive

262 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

We choose some particular points the streamlines pass through:

sage: pts = [[1, 1], [-2, 2], [1, -3/2]]
sage: g = streamline_plot((x + y) / sqrt(x^2 + y^2), (x,-3,3), (y,-3,3), start_
→˓points=pts)
sage: g += point(pts, color='red')
sage: g
Graphics object consisting of 2 graphics primitives

2.5. Streamline Plots 263

Sage Reference Manual: 2D Graphics, Release 8.0

Note: Streamlines currently pass close to start_points but do not necessarily pass directly through them.
That is part of the behavior of matplotlib, not an error on your part.

2.6 Scatter Plots

class sage.plot.scatter_plot.ScatterPlot(xdata, ydata, options)
Bases: sage.plot.primitive.GraphicPrimitive

Scatter plot graphics primitive.

Input consists of two lists/arrays of the same length, whose values give the horizontal and vertical coordinates
of each point in the scatter plot. Options may be passed in dictionary format.

EXAMPLES:

sage: from sage.plot.scatter_plot import ScatterPlot
sage: ScatterPlot([0,1,2], [3.5,2,5.1], {'facecolor':'white', 'marker':'s'})
Scatter plot graphics primitive on 3 data points

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

264 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage: s = scatter_plot([[0,1],[2,4],[3.2,6]])
sage: d = s.get_minmax_data()
sage: d['xmin']
0.0
sage: d['ymin']
1.0

sage.plot.scatter_plot.scatter_plot(datalist, edgecolor=’black’, facecolor=’#fec7b8’,
clip=True, markersize=50, aspect_ratio=’automatic’,
zorder=5, marker=’o’, alpha=1, **options)

Returns a Graphics object of a scatter plot containing all points in the datalist. Type scatter_plot.
options to see all available plotting options.

INPUT:

•datalist – a list of tuples (x,y)

•alpha – default: 1

•markersize – default: 50

•marker - The style of the markers (default "o"). See the documentation of plot() for the full list of
markers.

•facecolor – default: '#fec7b8'

•edgecolor – default: 'black'

•zorder – default: 5

EXAMPLES:

sage: scatter_plot([[0,1],[2,2],[4.3,1.1]], marker='s')
Graphics object consisting of 1 graphics primitive

Extra options will get passed on to show(), as long as they are valid:

sage: scatter_plot([(0, 0), (1, 1)], markersize=100, facecolor='green', ymax=100)
Graphics object consisting of 1 graphics primitive
sage: scatter_plot([(0, 0), (1, 1)], markersize=100, facecolor='green').
→˓show(ymax=100) # These are equivalent

2.7 Step function plots

sage.plot.step.plot_step_function(v, vertical_lines=True, **kwds)
Return the line graphics object that gives the plot of the step function 𝑓 defined by the list 𝑣 of pairs (𝑎, 𝑏). Here
if (𝑎, 𝑏) is in 𝑣, then 𝑓(𝑎) = 𝑏. The user does not have to worry about sorting the input list 𝑣.

INPUT:

•v – list of pairs (a,b)

•vertical_lines – bool (default: True) if True, draw vertical risers at each step of this step function.
Technically these vertical lines are not part of the graph of this function, but they look very nice in the plot
so we include them by default

EXAMPLES:

We plot the prime counting function:

2.7. Step function plots 265

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot_step_function([(i,prime_pi(i)) for i in range(20)])
Graphics object consisting of 1 graphics primitive

sage: plot_step_function([(i,sin(i)) for i in range(5,20)])
Graphics object consisting of 1 graphics primitive

We pass in many options and get something that looks like “Space Invaders”:

sage: v = [(i,sin(i)) for i in range(5,20)]
sage: plot_step_function(v, vertical_lines=False, thickness=30, rgbcolor='purple',
→˓ axes=False)
Graphics object consisting of 14 graphics primitives

2.8 Histograms

class sage.plot.histogram.Histogram(datalist, options)
Bases: sage.plot.primitive.GraphicPrimitive

Graphics primitive that represents a histogram. This takes quite a few options as well.

EXAMPLES:

sage: from sage.plot.histogram import Histogram
sage: g = Histogram([1,3,2,0], {}); g
Histogram defined by a data list of size 4
sage: type(g)
<class 'sage.plot.histogram.Histogram'>
sage: opts = { 'bins':20, 'label':'mydata'}
sage: g = Histogram([random() for _ in range(500)], opts); g
Histogram defined by a data list of size 500

We can accept multiple sets of the same length:

sage: g = Histogram([[1,3,2,0], [4,4,3,3]], {}); g
Histogram defined by 2 data lists

get_minmax_data()
Get minimum and maximum horizontal and vertical ranges for the Histogram object.

EXAMPLES:

sage: H = histogram([10,3,5], normed=True); h = H[0]
sage: h.get_minmax_data()
{'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.4761904761904765, 'ymin': 0}
sage: G = histogram([random() for _ in range(500)]); g = G[0]
sage: g.get_minmax_data() # random output
{'xmax': 0.99729312925213209, 'xmin': 0.00013024562219410285, 'ymax': 61,
→˓'ymin': 0}
sage: Y = histogram([random()*10 for _ in range(500)], range=[2,8]); y = Y[0]
sage: ymm = y.get_minmax_data(); ymm['xmax'], ymm['xmin']
(8.0, 2.0)
sage: Z = histogram([[1,3,2,0], [4,4,3,3]]); z = Z[0]
sage: z.get_minmax_data()
{'xmax': 4.0, 'xmin': 0, 'ymax': 2, 'ymin': 0}

266 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.histogram.histogram(datalist, edgecolor=’black’, normed=False, align=’mid’,
range=None, weights=None, aspect_ratio=’automatic’, bins=10,
**options)

Computes and draws the histogram for list(s) of numerical data. See examples for the many options; even more
customization is available using matplotlib directly.

INPUT:

•datalist – A list, or a list of lists, of numerical data

•align – (default: “mid”) How the bars align inside of each bin. Acceptable values are “left”, “right” or
“mid”

•alpha – (float in [0,1], default: 1) The transparency of the plot

•bins – The number of sections in which to divide the range. Also can be a sequence of points within the
range that create the partition

•color – The color of the face of the bars or list of colors if multiple data sets are given

•cumulative – (boolean - default: False) If True, then a histogram is computed in which each bin
gives the counts in that bin plus all bins for smaller values. Negative values give a reversed direction of
accumulation

•edgecolor – The color of the border of each bar

•fill – (boolean - default: True) Whether to fill the bars

•hatch – (default: None) symbol to fill the bars with - one of “/”, “”, “|”, “-”, “+”, “x”, “o”, “O”, ”.”, “*”,
“” (or None)

•hue – The color of the bars given as a hue. See hue for more information on the hue

•label – A string label for each data list given

•linewidth – (float) width of the lines defining the bars

•linestyle – (default: ‘solid’) Style of the line. One of ‘solid’ or ‘-‘, ‘dashed’ or ‘–‘, ‘dotted’ or ‘:’,
‘dashdot’ or ‘-.’

•normed – (boolean - default: False) If True, the counts are normalized to form a probability density.

•range – A list [min, max] which define the range of the histogram. Values outside of this range are
treated as outliers and omitted from counts

•rwidth – (float in [0,1], default: 1) The relative width of the bars as a fraction of the bin width

•stacked – (boolean - default: False) If True, multiple data are stacked on top of each other

•weights – (list) A sequence of weights the same length as the data list. If supplied, then each value
contributes its associated weight to the bin count

•zorder – (integer) the layer level at which to draw the histogram

Note: The weights option works only with a single list. List of lists representing multiple data are not
supported.

EXAMPLES:

A very basic histogram for four data points:

sage: histogram([1,2,3,4], bins=2)
Graphics object consisting of 1 graphics primitive

2.8. Histograms 267

Sage Reference Manual: 2D Graphics, Release 8.0

We can see how the histogram compares to various distributions. Note the use of the normed keyword to
guarantee the plot looks like the probability density function:

sage: nv = normalvariate
sage: H = histogram([nv(0,1) for _ in range(1000)], bins=20, normed=True, range=[-
→˓5,5])
sage: P = plot(1/sqrt(2*pi)*e^(-x^2/2), (x,-5,5), color='red', linestyle='--')
sage: H+P
Graphics object consisting of 2 graphics primitives

There are many options one can use with histograms. Some of these control the presentation of the data, even if
it is boring:

sage: histogram(list(range(100)), color=(1,0,0), label='mydata',
→˓rwidth=.5, align="right")
Graphics object consisting of 1 graphics primitive

This includes many usual matplotlib styling options:

sage: T = RealDistribution('lognormal', [0,1])
sage: histogram([T.get_random_element() for _ in range(100)], alpha=0.3,
→˓ edgecolor='red', fill=False, linestyle='dashed', hatch='O', linewidth=5)
Graphics object consisting of 1 graphics primitive
sage: histogram([T.get_random_element() for _ in range(100)],linestyle='-.')
Graphics object consisting of 1 graphics primitive

We can do several data sets at once if desired:

sage: histogram([srange(0,1,.1)*10, [nv(0, 1) for _ in range(100)]], color=['red',
→˓'green'], bins=5)
Graphics object consisting of 1 graphics primitive

We have the option of stacking the data sets too:

sage: histogram([[1,1,1,1,2,2,2,3,3,3], [4,4,4,4,3,3,3,2,2,2]], stacked=True,
→˓color=['blue', 'red'])
Graphics object consisting of 1 graphics primitive

It is possible to use weights with the histogram as well:

sage: histogram(list(range(10)), bins=3, weights=[1,2,3,4,5,5,4,3,2,1])
Graphics object consisting of 1 graphics primitive

2.9 Bar Charts

class sage.plot.bar_chart.BarChart(ind, datalist, options)
Bases: sage.plot.primitive.GraphicPrimitive

Graphics primitive that represents a bar chart.

EXAMPLES:

sage: from sage.plot.bar_chart import BarChart
sage: g = BarChart(list(range(4)), [1,3,2,0], {}); g
BarChart defined by a 4 datalist
sage: type(g)
<class 'sage.plot.bar_chart.BarChart'>

268 Chapter 2. Function and Data Plots

Sage Reference Manual: 2D Graphics, Release 8.0

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: b = bar_chart([-2.3,5,-6,12])
sage: d = b.get_minmax_data()
sage: d['xmin']
0
sage: d['xmax']
4

sage.plot.bar_chart.bar_chart(datalist, aspect_ratio=’automatic’, width=0.5, leg-
end_label=None, rgbcolor=(0, 0, 1), **options)

A bar chart of (currently) one list of numerical data. Support for more data lists in progress.

EXAMPLES:

A bar_chart with blue bars:

sage: bar_chart([1,2,3,4])
Graphics object consisting of 1 graphics primitive

A bar_chart with thinner bars:

sage: bar_chart([x^2 for x in range(1,20)], width=0.2)
Graphics object consisting of 1 graphics primitive

A bar_chart with negative values and red bars:

sage: bar_chart([-3,5,-6,11], rgbcolor=(1,0,0))
Graphics object consisting of 1 graphics primitive

A bar chart with a legend (it’s possible, not necessarily useful):

sage: bar_chart([-1,1,-1,1], legend_label='wave')
Graphics object consisting of 1 graphics primitive

Extra options will get passed on to show(), as long as they are valid:

sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0), axes=False)
Graphics object consisting of 1 graphics primitive
sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0)).show(axes=False) # These are
→˓equivalent

2.9. Bar Charts 269

Sage Reference Manual: 2D Graphics, Release 8.0

270 Chapter 2. Function and Data Plots

CHAPTER

THREE

PLOTS OF OTHER MATHEMATICAL OBJECTS

3.1 Graph Plotting

(For LaTeX drawings of graphs, see the graph_latex module.)

All graphs have an associated Sage graphics object, which you can display:

sage: G = graphs.WheelGraph(15)
sage: P = G.plot()
sage: P.show() # long time

If you create a graph in Sage using the Graph command, then plot that graph, the positioning of nodes is determined

271

Sage Reference Manual: 2D Graphics, Release 8.0

using the spring-layout algorithm. For the special graph constructors, which you get using graphs.[tab], the
positions are preset. For example, consider the Petersen graph with default node positioning vs. the Petersen graph
constructed by this database:

sage: petersen_spring = Graph(':I`ES@obGkqegW~')
sage: petersen_spring.show() # long time

sage: petersen_database = graphs.PetersenGraph()
sage: petersen_database.show() # long time

272 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

For all the constructors in this database (except some random graphs), the position dictionary is filled in, instead of
using the spring-layout algorithm.

Plot options

Here is the list of options accepted by plot() and the constructor of GraphPlot. Those two functions also accept
all options of sage.plot.graphics.Graphics.show().

3.1. Graph Plotting 273

Sage Reference Manual: 2D Graphics, Release 8.0

partition A partition of the vertex set. If specified, plot will show each cell in a different color.
vertex_colors takes precedence.

dist The distance between multiedges.
vertex_labels Whether or not to draw vertex labels.
edge_color The default color for edges not listed in edge_colors.
spring Use spring layout to finalize the current layout.
pos The position dictionary of vertices
loop_size The radius of the smallest loop.
color_by_labelWhether to color the edges according to their labels. This also accepts a function or

dictionary mapping labels to colors.
iterations The number of times to execute the spring layout algorithm.
talk Whether to display the vertices in talk mode (larger and white).
edge_labels Whether or not to draw edge labels.
vertex_size The size to draw the vertices.
edge_thicknessThe thickness of the edges.
dim The dimension of the layout – 2 or 3.
edge_style The linestyle of the edges. It should be one of “solid”, “dashed”, “dotted”, dashdot”, or “-”,

“–”, ”:”, “-.”, respectively.
layout A layout algorithm – one of : “acyclic”, “circular” (plots the graph with vertices evenly

distributed on a circle), “ranked”, “graphviz”, “planar”, “spring” (traditional spring layout,
using the graph’s current positions as initial positions), or “tree” (the tree will be plotted in
levels, depending on minimum distance for the root).

vertex_shape The shape to draw the vertices. Currently unavailable for Multi-edged DiGraphs.
vertex_colors Dictionary of vertex coloring : each key is a color recognizable by matplotlib, and each

corresponding entry is a list of vertices.
by_component Whether to do the spring layout by connected component – a boolean.
heights A dictionary mapping heights to the list of vertices at this height.
graph_border Whether or not to draw a frame around the graph.
max_dist The max distance range to allow multiedges.
prog Which graphviz layout program to use – one of “circo”, “dot”, “fdp”, “neato”, or “twopi”.
edge_colors a dictionary specifying edge colors: each key is a color recognized by matplotlib, and each

entry is a list of edges.
vertex_color Default color for vertices not listed in vertex_colors dictionary.
tree_orientationThe direction of tree branches – ‘up’, ‘down’, ‘left’ or ‘right’.
save_pos Whether or not to save the computed position for the graph.
tree_root A vertex designation for drawing trees. A vertex of the tree to be used as the root for the

layout='tree' option. If no root is specified, then one is chosen close to the center of
the tree. Ignored unless layout='tree'

edge_labels_backgroundThe color of the background of the edge labels

Default options

This module defines two dictionaries containing default options for the plot() and show()methods. These two dic-
tionaries are sage.graphs.graph_plot.DEFAULT_PLOT_OPTIONS and sage.graphs.graph_plot.
DEFAULT_SHOW_OPTIONS, respectively.

Obviously, these values are overruled when arguments are given explicitly.

Here is how to define the default size of a graph drawing to be [6,6]. The first two calls to show() use this option,
while the third does not (a value for figsize is explicitly given):

sage: import sage.graphs.graph_plot
sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = [6,6]
sage: graphs.PetersenGraph().show() # long time
sage: graphs.ChvatalGraph().show() # long time

274 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: graphs.PetersenGraph().show(figsize=[4,4]) # long time

We can now reset the default to its initial value, and now display graphs as previously:

sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = [4,4]
sage: graphs.PetersenGraph().show() # long time
sage: graphs.ChvatalGraph().show() # long time

Note:

• While DEFAULT_PLOT_OPTIONS affects both G.show() and G.plot(), settings from
DEFAULT_SHOW_OPTIONS only affects G.show().

• In order to define a default value permanently, you can add a couple of lines to Sage’s startup scripts. Example

sage: import sage.graphs.graph_plot
sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = [4,4]

Index of methods and functions
GraphPlot.set_pos() Sets the position plotting parameters for this GraphPlot.
GraphPlot.set_vertices() Sets the vertex plotting parameters for this GraphPlot.
GraphPlot.set_edges() Sets the edge (or arrow) plotting parameters for the GraphPlot object.
GraphPlot.show() Shows the (Di)Graph associated with this GraphPlot object.
GraphPlot.plot() Returns a graphics object representing the (di)graph.
GraphPlot.layout_tree() Compute a nice layout of a tree.
_circle_embedding() Sets some vertices on a circle in the embedding of a graph G.
_line_embedding() Sets some vertices on a line in the embedding of a graph G.

3.1.1 Methods and classes

sage.graphs.graph_plot._circle_embedding(g, vertices, center=(0, 0), radius=1, shift=0)
Sets some vertices on a circle in the embedding of a graph G.

This method modifies the graph’s embedding so that the vertices listed in vertices appear in this ordering
on a circle of given radius and center. The shift parameter is actually a rotation of the circle. A value of
shift=1 will replace in the drawing the 𝑖-th element of the list by the (𝑖 − 1)-th. Non-integer values are
admissible, and a value of 𝛼 corresponds to a rotation of the circle by an angle of 𝛼2𝜋/𝑛 (where 𝑛 is the number
of vertices set on the circle).

EXAMPLES:

sage: from sage.graphs.graph_plot import _circle_embedding
sage: g = graphs.CycleGraph(5)
sage: _circle_embedding(g, [0, 2, 4, 1, 3], radius=2, shift=.5)
sage: g.show()

sage.graphs.graph_plot._line_embedding(g, vertices, first=(0, 0), last=(0, 1))
Sets some vertices on a line in the embedding of a graph G.

This method modifies the graph’s embedding so that the vertices of vertices appear on a line, where the
position of vertices[0] is the pair first and the position of vertices[-1] is last. The vertices are
evenly spaced.

EXAMPLES:

3.1. Graph Plotting 275

Sage Reference Manual: 2D Graphics, Release 8.0

sage: from sage.graphs.graph_plot import _line_embedding
sage: g = graphs.PathGraph(5)
sage: _line_embedding(g, [0, 2, 4, 1, 3], first=(-1, -1), last=(1, 1))
sage: g.show()

class sage.graphs.graph_plot.GraphPlot(graph, options)
Bases: sage.structure.sage_object.SageObject

Returns a GraphPlot object, which stores all the parameters needed for plotting (Di)Graphs. A GraphPlot
has a plot and show function, as well as some functions to set parameters for vertices and edges. This constructor
assumes default options are set. Defaults are shown in the example below.

EXAMPLES:

sage: from sage.graphs.graph_plot import GraphPlot
sage: options = {
....: 'vertex_size':200,
....: 'vertex_labels':True,
....: 'layout':None,
....: 'edge_style':'solid',
....: 'edge_color':'black',
....: 'edge_colors':None,
....: 'edge_labels':False,
....: 'iterations':50,
....: 'tree_orientation':'down',
....: 'heights':None,
....: 'graph_border':False,
....: 'talk':False,
....: 'color_by_label':False,
....: 'partition':None,
....: 'dist':.075,
....: 'max_dist':1.5,
....: 'loop_size':.075,
....: 'edge_labels_background':'transparent'}
sage: g = Graph({0:[1,2], 2:[3], 4:[0,1]})
sage: GP = GraphPlot(g, options)

layout_tree(root, orientation)
Compute a nice layout of a tree.

INPUT:

•root – the root vertex.

•orientation – Whether to place the root at the top or at the bottom :

–orientation="down" – children are placed below their parent

–orientation="top" – children are placed above their parent

EXAMPLES:

sage: T = graphs.RandomLobster(25,0.3,0.3)
sage: T.show(layout='tree',tree_orientation='up') # indirect doctest

sage: from sage.graphs.graph_plot import GraphPlot
sage: G = graphs.HoffmanSingletonGraph()
sage: T = Graph()
sage: T.add_edges(G.min_spanning_tree(starting_vertex=0))
sage: T.show(layout='tree',tree_root=0) # indirect doctest

276 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

plot(**kwds)
Returns a graphics object representing the (di)graph.

INPUT:

The options accepted by this method are to be found in the documentation of the sage.graphs.
graph_plot module, and the show() method.

Note: See the module's documentation for information on default values of this method.

We can specify some pretty precise plotting of familiar graphs:

sage: from math import sin, cos, pi
sage: P = graphs.PetersenGraph()
sage: d = {'#FF0000':[0,5], '#FF9900':[1,6], '#FFFF00':[2,7], '#00FF00':[3,8],
....: '#0000FF':[4,9]}
sage: pos_dict = {}
sage: for i in range(5):
....: x = float(cos(pi/2 + ((2*pi)/5)*i))
....: y = float(sin(pi/2 + ((2*pi)/5)*i))
....: pos_dict[i] = [x,y]
...
sage: for i in range(5,10):
....: x = float(0.5*cos(pi/2 + ((2*pi)/5)*i))
....: y = float(0.5*sin(pi/2 + ((2*pi)/5)*i))
....: pos_dict[i] = [x,y]
...
sage: pl = P.graphplot(pos=pos_dict, vertex_colors=d)
sage: pl.show()

3.1. Graph Plotting 277

Sage Reference Manual: 2D Graphics, Release 8.0

Here are some more common graphs with typical options:

sage: C = graphs.CubeGraph(8)
sage: P = C.graphplot(vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show()

278 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: G = graphs.HeawoodGraph().copy(sparse=True)
sage: for u,v,l in G.edges():
....: G.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: G.graphplot(edge_labels=True).show()

3.1. Graph Plotting 279

Sage Reference Manual: 2D Graphics, Release 8.0

The options for plotting also work with directed graphs:

sage: D = DiGraph({ 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4],
....: 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14], 8: [9], 9: [10, 13],
....: 10: [11], 11: [12, 18], 12: [16, 13], 13: [14], 14: [15], 15: [16],
....: 16: [17], 17: [18], 18: [19], 19: []})
sage: for u,v,l in D.edges():
....: D.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: D.graphplot(edge_labels=True, layout='circular').show()

280 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

This example shows off the coloring of edges:

sage: from sage.plot.colors import rainbow
sage: C = graphs.CubeGraph(5)
sage: R = rainbow(5)
sage: edge_colors = {}
sage: for i in range(5):
....: edge_colors[R[i]] = []
sage: for u,v,l in C.edges():
....: for i in range(5):
....: if u[i] != v[i]:
....: edge_colors[R[i]].append((u,v,l))
sage: C.graphplot(vertex_labels=False, vertex_size=0, edge_colors=edge_
→˓colors).show()

3.1. Graph Plotting 281

Sage Reference Manual: 2D Graphics, Release 8.0

With the partition option, we can separate out same-color groups of vertices:

sage: D = graphs.DodecahedralGraph()
sage: Pi = [[6,5,15,14,7],[16,13,8,2,4],[12,17,9,3,1],[0,19,18,10,11]]
sage: D.show(partition=Pi)

282 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

Loops are also plotted correctly:

sage: G = graphs.PetersenGraph()
sage: G.allow_loops(True)
sage: G.add_edge(0,0)
sage: G.show()

3.1. Graph Plotting 283

Sage Reference Manual: 2D Graphics, Release 8.0

sage: D = DiGraph({0:[0,1], 1:[2], 2:[3]}, loops=True)
sage: D.show()
sage: D.show(edge_colors={(0,1,0):[(0,1,None),(1,2,None)],(0,0,0):[(2,3,
→˓None)]})

284 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

More options:

sage: pos = {0:[0.0, 1.5], 1:[-0.8, 0.3], 2:[-0.6, -0.8],
....: 3:[0.6, -0.8], 4:[0.8, 0.3]}
sage: g = Graph({0:[1], 1:[2], 2:[3], 3:[4], 4:[0]})
sage: g.graphplot(pos=pos, layout='spring', iterations=0).plot()
Graphics object consisting of 11 graphics primitives

3.1. Graph Plotting 285

Sage Reference Manual: 2D Graphics, Release 8.0

sage: G = Graph()
sage: P = G.graphplot().plot()
sage: P.axes()
False
sage: G = DiGraph()
sage: P = G.graphplot().plot()
sage: P.axes()
False

We can plot multiple graphs:

sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}).plot()
Graphics object consisting of 14 graphics primitives

286 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}).plot()
Graphics object consisting of 14 graphics primitives

3.1. Graph Plotting 287

Sage Reference Manual: 2D Graphics, Release 8.0

sage: t.set_edge_label(0,1,-7)
sage: t.set_edge_label(0,5,3)
sage: t.set_edge_label(0,5,99)
sage: t.set_edge_label(1,2,1000)
sage: t.set_edge_label(3,2,'spam')
sage: t.set_edge_label(2,6,3/2)
sage: t.set_edge_label(0,4,66)
sage: t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}, edge_
→˓labels=True).plot()
Graphics object consisting of 20 graphics primitives

288 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.graphplot(layout='tree').show()

3.1. Graph Plotting 289

Sage Reference Manual: 2D Graphics, Release 8.0

The tree layout is also useful:

sage: t = DiGraph('JCC???@A??GO??CO??GO??')
sage: t.graphplot(layout='tree', tree_root=0, tree_orientation="up").show()

290 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

More examples:

sage: D = DiGraph({0:[1,2,3], 2:[1,4], 3:[0]})
sage: D.graphplot().show()

3.1. Graph Plotting 291

Sage Reference Manual: 2D Graphics, Release 8.0

sage: D = DiGraph(multiedges=True, sparse=True)
sage: for i in range(5):
....: D.add_edge((i,i+1,'a'))
....: D.add_edge((i,i-1,'b'))
sage: D.graphplot(edge_labels=True,edge_colors=D._color_by_label()).plot()
Graphics object consisting of 34 graphics primitives

292 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: g.graphplot(edge_labels=True, color_by_label=True, edge_style='dashed').
→˓plot()
Graphics object consisting of 26 graphics primitives

3.1. Graph Plotting 293

Sage Reference Manual: 2D Graphics, Release 8.0

The edge_style option may be provided in the short format too:

sage: g.graphplot(edge_labels=True, color_by_label=True, edge_style='--').
→˓plot()
Graphics object consisting of 26 graphics primitives

set_edges(**edge_options)
Sets the edge (or arrow) plotting parameters for the GraphPlot object.

This function is called by the constructor but can also be called to make updates to the vertex options of
an existing GraphPlot object. Note that the changes are cumulative.

EXAMPLES:

sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True,
....: edge_style='dashed')
sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
Graphics object consisting of 26 graphics primitives

294 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: GP.set_edges(edge_color='black')
sage: GP.plot()
Graphics object consisting of 26 graphics primitives

3.1. Graph Plotting 295

Sage Reference Manual: 2D Graphics, Release 8.0

sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True)
sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True,
....: edge_style='dashed')
sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
Graphics object consisting of 28 graphics primitives

296 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: GP.set_edges(edge_color='black')
sage: GP.plot()
Graphics object consisting of 28 graphics primitives

3.1. Graph Plotting 297

Sage Reference Manual: 2D Graphics, Release 8.0

set_pos()
Sets the position plotting parameters for this GraphPlot.

EXAMPLES:

This function is called implicitly by the code below:

sage: g = Graph({0:[1,2], 2:[3], 4:[0,1]})
sage: g.graphplot(save_pos=True, layout='circular') # indirect doctest
GraphPlot object for Graph on 5 vertices

The following illustrates the format of a position dictionary, but due to numerical noise we do not check
the values themselves:

sage: g.get_pos()
{0: [...e-17, 1.0],
1: [-0.951..., 0.309...],
2: [-0.587..., -0.809...],
3: [0.587..., -0.809...],
4: [0.951..., 0.309...]}

sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]})
Graphics object consisting of 14 graphics primitives

298 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

set_vertices(**vertex_options)
Sets the vertex plotting parameters for this GraphPlot. This function is called by the constructor but
can also be called to make updates to the vertex options of an existing GraphPlot object. Note that the
changes are cumulative.

EXAMPLES:

sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True,
....: edge_style='dashed')
sage: GP.set_vertices(talk=True)
sage: GP.plot()
Graphics object consisting of 26 graphics primitives
sage: GP.set_vertices(vertex_color='green', vertex_shape='^')
sage: GP.plot()
Graphics object consisting of 26 graphics primitives

3.1. Graph Plotting 299

Sage Reference Manual: 2D Graphics, Release 8.0

300 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

show(**kwds)
Shows the (Di)Graph associated with this GraphPlot object.

INPUT:

This method accepts all parameters of sage.plot.graphics.Graphics.show().

Note:

•See the module's documentation for information on default values of this method.

•Any options not used by plot will be passed on to the show() method.

EXAMPLES:

sage: C = graphs.CubeGraph(8)
sage: P = C.graphplot(vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show()

3.2 Matrix Plots

class sage.plot.matrix_plot.MatrixPlot(xy_data_array, xrange, yrange, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class for the matrix plot graphics type. See matrix_plot? for help actually doing matrix plots.

INPUT:

3.2. Matrix Plots 301

Sage Reference Manual: 2D Graphics, Release 8.0

•xy_data_array - list of lists giving matrix values corresponding to the grid

•xrange - tuple of 2 floats indicating range for horizontal direction (number of columns in the matrix)

•yrange - tuple of 2 floats indicating range for vertical direction (number of rows in the matrix)

•options - dict of valid plot options to pass to constructor

EXAMPLES:

Note this should normally be used indirectly via matrix_plot():

sage: from sage.plot.matrix_plot import MatrixPlot
sage: M = MatrixPlot([[1,3],[2,4]],(1,2),(2,3),options={'cmap':'winter'})
sage: M
MatrixPlot defined by a 2 x 2 data grid
sage: M.yrange
(2, 3)
sage: M.xy_data_array
[[1, 3], [2, 4]]
sage: M.options()
{'cmap': 'winter'}

Extra options will get passed on to show(), as long as they are valid:

sage: matrix_plot([[1, 0], [0, 1]], fontsize=10)
Graphics object consisting of 1 graphics primitive
sage: matrix_plot([[1, 0], [0, 1]]).show(fontsize=10) # These are equivalent

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: m = matrix_plot(matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]]))[0]
sage: list(sorted(m.get_minmax_data().items()))
[('xmax', 3.5), ('xmin', -0.5), ('ymax', -0.5), ('ymin', 2.5)]

sage.plot.matrix_plot.matrix_plot(mat, origin=’upper’, vmin=None, frame=True, axes=False,
colorbar=False, aspect_ratio=1, subdivisions=False,
cmap=’Greys’, ticks_integer=True, marker=’.’,
vmax=None, norm=None, subdivision_boundaries=None,
subdivision_style=None, colorbar_orientation=’vertical’,
colorbar_format=None, **options)

A plot of a given matrix or 2D array.

If the matrix is sparse, colors only indicate whether an element is nonzero or zero, so the plot represents the
sparsity pattern of the matrix.

If the matrix is dense, each matrix element is given a different color value depending on its relative size compared
to the other elements in the matrix.

The default is for the lowest number to be black and the highest number to be white in a greyscale pattern; see
the information about normalizing below. To reverse this, use cmap='Greys'.

The tick marks drawn on the frame axes denote the row numbers (vertical ticks) and the column numbers
(horizontal ticks) of the matrix.

INPUT:

•mat - a 2D matrix or array

The following input must all be passed in as named parameters, if default not used:

302 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

•cmap - a colormap (default: ‘Greys’), the name of a predefined colormap, a list of colors, or an instance
of a matplotlib Colormap.

The list of predefined color maps can be visualized in matplotlib’s documentation. You can also type
import matplotlib.cm; matplotlib.cm.datad.keys() to list their names.

•colorbar – boolean (default: False) Show a colorbar or not (dense matrices only).

The following options are used to adjust the style and placement of colorbars. They have no effect if a
colorbar is not shown.

–colorbar_orientation – string (default: ‘vertical’), controls placement of the colorbar, can be
either ‘vertical’ or ‘horizontal’

–colorbar_format – a format string, this is used to format the colorbar labels.

–colorbar_options – a dictionary of options for the matplotlib colorbar API. Documentation for
the matplotlib.colorbar module has details.

•norm - If None (default), the value range is scaled to the interval [0,1]. If ‘value’, then the actual value is
used with no scaling. A matplotlib.colors.Normalize instance may also passed.

•vmin - The minimum value (values below this are set to this value)

•vmax - The maximum value (values above this are set to this value)

•origin - If ‘upper’ (default), the first row of the matrix is on the top of the graph. If ‘lower’, the first row
is on the bottom of the graph.

•subdivisions - If True, plot the subdivisions of the matrix as lines.

•subdivision_boundaries - a list of lists in the form [row_subdivisions,
column_subdivisions], which specifies the row and column subdivisions to use. If not specified,
defaults to the matrix subdivisions

•subdivision_style - a dictionary of properties passed on to the line2d() command for plotting
subdivisions. If this is a two-element list or tuple, then it specifies the styles of row and column divisions,
respectively.

EXAMPLES:

A matrix over Z colored with different grey levels:

sage: matrix_plot(matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]]))
Graphics object consisting of 1 graphics primitive

Here we make a random matrix over R and use cmap='hsv' to color the matrix elements different RGB
colors:

sage: matrix_plot(random_matrix(RDF, 50), cmap='hsv')
Graphics object consisting of 1 graphics primitive

By default, entries are scaled to the interval [0,1] before determining colors from the color map. That means the
two plots below are the same:

sage: P = matrix_plot(matrix(2,[1,1,3,3]))
sage: Q = matrix_plot(matrix(2,[2,2,3,3]))
sage: P; Q
Graphics object consisting of 1 graphics primitive
Graphics object consisting of 1 graphics primitive

However, we can specify which values scale to 0 or 1 with the vmin and vmax parameters (values outside the
range are clipped). The two plots below are now distinguished:

3.2. Matrix Plots 303

http://matplotlib.org/examples/color/colormaps_reference.html

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = matrix_plot(matrix(2,[1,1,3,3]), vmin=0, vmax=3, colorbar=True)
sage: Q = matrix_plot(matrix(2,[2,2,3,3]), vmin=0, vmax=3, colorbar=True)
sage: P; Q
Graphics object consisting of 1 graphics primitive
Graphics object consisting of 1 graphics primitive

We can also specify a norm function of ‘value’, which means that there is no scaling performed:

sage: matrix_plot(random_matrix(ZZ,10)*.05, norm='value', colorbar=True)
Graphics object consisting of 1 graphics primitive

Matrix subdivisions can be plotted as well:

sage: m=random_matrix(RR,10)
sage: m.subdivide([2,4],[6,8])
sage: matrix_plot(m, subdivisions=True, subdivision_style=dict(color='red',
→˓thickness=3))
Graphics object consisting of 1 graphics primitive

You can also specify your own subdivisions and separate styles for row or column subdivisions:

sage: m=random_matrix(RR,10)
sage: matrix_plot(m, subdivisions=True, subdivision_boundaries=[[2,4],[6,8]],
→˓subdivision_style=[dict(color='red',thickness=3),dict(linestyle='--',
→˓thickness=6)])
Graphics object consisting of 1 graphics primitive

Generally matrices are plotted with the (0,0) entry in the upper left. However, sometimes if we are plotting an
image, we’d like the (0,0) entry to be in the lower left. We can do that with the origin argument:

sage: matrix_plot(identity_matrix(100), origin='lower')
Graphics object consisting of 1 graphics primitive

Another random plot, but over F389:

sage: m = random_matrix(GF(389), 10)
sage: matrix_plot(m, cmap='Oranges')
Graphics object consisting of 1 graphics primitive

It also works if you lift it to the polynomial ring:

sage: matrix_plot(m.change_ring(GF(389)['x']), cmap='Oranges')
Graphics object consisting of 1 graphics primitive

We have several options for colorbars:

sage: matrix_plot(random_matrix(RDF, 50), colorbar=True, colorbar_orientation=
→˓'horizontal')
Graphics object consisting of 1 graphics primitive

sage: matrix_plot(random_matrix(RDF, 50), colorbar=True, colorbar_format='%.3f')
Graphics object consisting of 1 graphics primitive

The length of a color bar and the length of the adjacent matrix plot dimension may be quite different. This
example shows how to adjust the length of the colorbar by passing a dictionary of options to the matplotlib
colorbar routines.

304 Chapter 3. Plots of Other Mathematical Objects

Sage Reference Manual: 2D Graphics, Release 8.0

sage: m = random_matrix(ZZ, 40, 80, x=-10, y=10)
sage: m.plot(colorbar=True, colorbar_orientation='vertical',
....: colorbar_options={'shrink':0.50})
Graphics object consisting of 1 graphics primitive

Here we plot a random sparse matrix:

sage: sparse = matrix(dict([((randint(0, 10), randint(0, 10)), 1) for i in
→˓range(100)]))
sage: matrix_plot(sparse)
Graphics object consisting of 1 graphics primitive

sage: A=random_matrix(ZZ,100000,density=.00001,sparse=True)
sage: matrix_plot(A,marker=',')
Graphics object consisting of 1 graphics primitive

As with dense matrices, sparse matrix entries are automatically converted to floating point numbers before
plotting. Thus the following works:

sage: b=random_matrix(GF(2),200,sparse=True,density=0.01)
sage: matrix_plot(b)
Graphics object consisting of 1 graphics primitive

While this returns an error:

sage: b=random_matrix(CDF,200,sparse=True,density=0.01)
sage: matrix_plot(b)
Traceback (most recent call last):
...
ValueError: can not convert entries to floating point numbers

To plot the absolute value of a complex matrix, use the apply_map method:

sage: b=random_matrix(CDF,200,sparse=True,density=0.01)
sage: matrix_plot(b.apply_map(abs))
Graphics object consisting of 1 graphics primitive

Plotting lists of lists also works:

sage: matrix_plot([[1,3,5,1],[2,4,5,6],[1,3,5,7]])
Graphics object consisting of 1 graphics primitive

As does plotting of NumPy arrays:

sage: import numpy
sage: matrix_plot(numpy.random.rand(10, 10))
Graphics object consisting of 1 graphics primitive

A plot title can be added to the matrix plot.:

sage: matrix_plot(identity_matrix(50), origin='lower', title='not identity')
Graphics object consisting of 1 graphics primitive

The title position is adjusted upwards if the origin keyword is set to "upper" (this is the default).:

sage: matrix_plot(identity_matrix(50), title='identity')
Graphics object consisting of 1 graphics primitive

3.2. Matrix Plots 305

Sage Reference Manual: 2D Graphics, Release 8.0

sage: matrix_plot([1,2,3])
Traceback (most recent call last):
...
TypeError: mat must be a Matrix or a two dimensional array

sage: matrix_plot([[sin(x), cos(x)], [1, 0]])
Traceback (most recent call last):
...
TypeError: mat must be a Matrix or a two dimensional array

Test that sparse matrices also work with subdivisions:

sage: matrix_plot(sparse, subdivisions=True, subdivision_boundaries=[[2,4],[6,8]])
Graphics object consisting of 1 graphics primitive

Test that matrix plots have aspect ratio one (see trac ticket #15315):

sage: P = matrix_plot(random_matrix(RDF, 5))
sage: P.aspect_ratio()
1

306 Chapter 3. Plots of Other Mathematical Objects

https://trac.sagemath.org/15315

CHAPTER

FOUR

BASIC SHAPES

4.1 Arcs of circles and ellipses

class sage.plot.arc.Arc(x, y, r1, r2, angle, s1, s2, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class for the Arc graphics type. See arc? for information about actually plotting an arc of a circle or
an ellipse.

INPUT:

•x,y - coordinates of the center of the arc

•r1, r2 - lengths of the two radii

•angle - angle of the horizontal with width

•sector - sector of angle

•options - dict of valid plot options to pass to constructor

EXAMPLES:

Note that the construction should be done using arc:

sage: from sage.plot.arc import Arc
sage: print(Arc(0,0,1,1,pi/4,pi/4,pi/2,{}))
Arc with center (0.0,0.0) radii (1.0,1.0) angle 0.785398163397 inside the sector
→˓(0.785398163397,1.57079632679)

bezier_path()
Return self as a Bezier path.

This is needed to concatenate arcs, in order to create hyperbolic polygons.

EXAMPLES:

sage: from sage.plot.arc import Arc
sage: op = {'alpha':1,'thickness':1,'rgbcolor':'blue','zorder':0,
....: 'linestyle':'--'}
sage: Arc(2,3,2.2,2.2,0,2,3,op).bezier_path()
Graphics object consisting of 1 graphics primitive

sage: a = arc((0,0),2,1,0,(pi/5,pi/2+pi/12), linestyle="--", color="red")
sage: b = a[0].bezier_path()
sage: b[0]
Bezier path from (1.618..., 0.5877...) to (-0.5176..., 0.9659...)

307

Sage Reference Manual: 2D Graphics, Release 8.0

get_minmax_data()
Returns a dictionary with the bounding box data.

The bounding box is computed as minimal as possible.

EXAMPLES:

An example without angle:

sage: p = arc((-2, 3), 1, 2)
sage: d = p.get_minmax_data()
sage: d['xmin']
-3.0
sage: d['xmax']
-1.0
sage: d['ymin']
1.0
sage: d['ymax']
5.0

The same example with a rotation of angle 𝜋/2:

sage: p = arc((-2, 3), 1, 2, pi/2)
sage: d = p.get_minmax_data()
sage: d['xmin']
-4.0
sage: d['xmax']
0.0
sage: d['ymin']
2.0
sage: d['ymax']
4.0

plot3d()

sage.plot.arc.arc(center, r1, r2=None, angle=0.0, sector=(0.0, 6.283185307179586), rgb-
color=’blue’, thickness=1, zorder=5, aspect_ratio=1.0, alpha=1, linestyle=’solid’,
**options)

An arc (that is a portion of a circle or an ellipse)

Type arc.options to see all options.

INPUT:

•center - 2-tuple of real numbers - position of the center.

•r1, r2 - positive real numbers - radii of the ellipse. If only r1 is set, then the two radii are supposed to be
equal and this function returns an arc of circle.

•angle - real number - angle between the horizontal and the axis that corresponds to r1.

•sector - 2-tuple (default: (0,2*pi))- angles sector in which the arc will be drawn.

OPTIONS:

•alpha - float (default: 1) - transparency

•thickness - float (default: 1) - thickness of the arc

•color, rgbcolor - string or 2-tuple (default: ‘blue’) - the color of the arc

•linestyle - string (default: 'solid') - The style of the line, which is one of 'dashed', 'dotted',
'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

308 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

EXAMPLES:

Plot an arc of circle centered at (0,0) with radius 1 in the sector (𝜋/4, 3 * 𝜋/4):

sage: arc((0,0), 1, sector=(pi/4,3*pi/4))
Graphics object consisting of 1 graphics primitive

Plot an arc of an ellipse between the angles 0 and 𝜋/2:

sage: arc((2,3), 2, 1, sector=(0,pi/2))
Graphics object consisting of 1 graphics primitive

Plot an arc of a rotated ellipse between the angles 0 and 𝜋/2:

sage: arc((2,3), 2, 1, angle=pi/5, sector=(0,pi/2))
Graphics object consisting of 1 graphics primitive

Plot an arc of an ellipse in red with a dashed linestyle:

sage: arc((0,0), 2, 1, 0, (0,pi/2), linestyle="dashed", color="red")
Graphics object consisting of 1 graphics primitive
sage: arc((0,0), 2, 1, 0, (0,pi/2), linestyle="--", color="red")
Graphics object consisting of 1 graphics primitive

The default aspect ratio for arcs is 1.0:

sage: arc((0,0), 1, sector=(pi/4,3*pi/4)).aspect_ratio()
1.0

It is not possible to draw arcs in 3D:

sage: A = arc((0,0,0), 1)
Traceback (most recent call last):
...
NotImplementedError

4.2 Arrows

class sage.plot.arrow.Arrow(xtail, ytail, xhead, yhead, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class that initializes the (line) arrow graphics type

EXAMPLES:

We create an arrow graphics object, then take the 0th entry in it to get the actual Arrow graphics primitive:

sage: P = arrow((0,1), (2,3))[0]
sage: type(P)
<class 'sage.plot.arrow.Arrow'>
sage: P
Arrow from (0.0,1.0) to (2.0,3.0)

get_minmax_data()
Returns a bounding box for this arrow.

EXAMPLES:

4.2. Arrows 309

Sage Reference Manual: 2D Graphics, Release 8.0

sage: d = arrow((1,1), (5,5)).get_minmax_data()
sage: d['xmin']
1.0
sage: d['xmax']
5.0

plot3d(ztail=0, zhead=0, **kwds)
Takes 2D plot and places it in 3D.

EXAMPLES:

sage: A = arrow((0,0),(1,1))[0].plot3d()
sage: A.jmol_repr(A.testing_render_params())[0]
'draw line_1 diameter 2 arrow {0.0 0.0 0.0} {1.0 1.0 0.0} '

Note that we had to index the arrow to get the Arrow graphics primitive. We can also change the height
via the Graphics.plot3d() method, but only as a whole:

sage: A = arrow((0,0),(1,1)).plot3d(3)
sage: A.jmol_repr(A.testing_render_params())[0][0]
'draw line_1 diameter 2 arrow {0.0 0.0 3.0} {1.0 1.0 3.0} '

Optional arguments place both the head and tail outside the 𝑥𝑦-plane, but at different heights. This must
be done on the graphics primitive obtained by indexing:

sage: A=arrow((0,0),(1,1))[0].plot3d(3,4)
sage: A.jmol_repr(A.testing_render_params())[0]
'draw line_1 diameter 2 arrow {0.0 0.0 3.0} {1.0 1.0 4.0} '

class sage.plot.arrow.CurveArrow(path, options)
Bases: sage.plot.primitive.GraphicPrimitive

Returns an arrow graphics primitive along the provided path (bezier curve).

EXAMPLES:

sage: from sage.plot.arrow import CurveArrow
sage: b = CurveArrow(path=[[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]],
....: options={})
sage: b
CurveArrow from (0, 0) to (0, 0)

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: from sage.plot.arrow import CurveArrow
sage: b = CurveArrow(path=[[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]],
....: options={})
sage: d = b.get_minmax_data()
sage: d['xmin']
0.0
sage: d['xmax']
1.0

sage.plot.arrow.arrow(tailpoint=None, headpoint=None, **kwds)
Returns either a 2-dimensional or 3-dimensional arrow depending on value of points.

310 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

For information regarding additional arguments, see either arrow2d? or arrow3d?.

EXAMPLES:

sage: arrow((0,0), (1,1))
Graphics object consisting of 1 graphics primitive

sage: arrow((0,0,1), (1,1,1))
Graphics3d Object

4.2. Arrows 311

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.arrow.arrow2d(tailpoint=None, headpoint=None, path=None, head=1, linestyle=’solid’,
rgbcolor=(0, 0, 1), width=2, zorder=2, legend_label=None, **options)

If tailpoint and headpoint are provided, returns an arrow from (xtail, ytail) to (xhead, yhead). If
tailpoint or headpoint is None and path is not None, returns an arrow along the path. (See further
info on paths in bezier_path).

INPUT:

•tailpoint - the starting point of the arrow

•headpoint - where the arrow is pointing to

•path - the list of points and control points (see bezier_path for detail) that the arrow will follow from
source to destination

•head - 0, 1 or 2, whether to draw the head at the start (0), end (1) or both (2) of the path (using 0 will
swap headpoint and tailpoint). This is ignored in 3D plotting.

•linestyle - (default: 'solid') The style of the line, which is one of 'dashed', 'dotted',
'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

•width - (default: 2) the width of the arrow shaft, in points

•color - (default: (0,0,1)) the color of the arrow (as an RGB tuple or a string)

•hue - the color of the arrow (as a number)

•arrowsize - the size of the arrowhead

•arrowshorten - the length in points to shorten the arrow (ignored if using path parameter)

•legend_label - the label for this item in the legend

312 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

•legend_color - the color for the legend label

•zorder - the layer level to draw the arrow– note that this is ignored in 3D plotting.

EXAMPLES:

A straight, blue arrow:

sage: arrow2d((1,1), (3,3))
Graphics object consisting of 1 graphics primitive

Make a red arrow:

sage: arrow2d((-1,-1), (2,3), color=(1,0,0))
Graphics object consisting of 1 graphics primitive

4.2. Arrows 313

Sage Reference Manual: 2D Graphics, Release 8.0

sage: arrow2d((-1,-1), (2,3), color='red')
Graphics object consisting of 1 graphics primitive

314 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

You can change the width of an arrow:

sage: arrow2d((1,1), (3,3), width=5, arrowsize=15)
Graphics object consisting of 1 graphics primitive

4.2. Arrows 315

Sage Reference Manual: 2D Graphics, Release 8.0

Use a dashed line instead of a solid one for the arrow:

sage: arrow2d((1,1), (3,3), linestyle='dashed')
Graphics object consisting of 1 graphics primitive
sage: arrow2d((1,1), (3,3), linestyle='--')
Graphics object consisting of 1 graphics primitive

316 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

A pretty circle of arrows:

sage: sum([arrow2d((0,0), (cos(x),sin(x)), hue=x/(2*pi)) for x in [0..2*pi,step=0.
→˓1]])
Graphics object consisting of 63 graphics primitives

4.2. Arrows 317

Sage Reference Manual: 2D Graphics, Release 8.0

If we want to draw the arrow between objects, for example, the boundaries of two lines, we can use the
arrowshorten option to make the arrow shorter by a certain number of points:

sage: L1 = line([(0,0), (1,0)], thickness=10)
sage: L2 = line([(0,1), (1,1)], thickness=10)
sage: A = arrow2d((0.5,0), (0.5,1), arrowshorten=10, rgbcolor=(1,0,0))
sage: L1 + L2 + A
Graphics object consisting of 3 graphics primitives

318 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

If BOTH headpoint and tailpoint are None, then an empty plot is returned:

sage: arrow2d(headpoint=None, tailpoint=None)
Graphics object consisting of 0 graphics primitives

We can also draw an arrow with a legend:

sage: arrow((0,0), (0,2), legend_label='up', legend_color='purple')
Graphics object consisting of 1 graphics primitive

4.2. Arrows 319

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to Graphics.show(), as long as they are valid:

sage: arrow2d((-2,2), (7,1), frame=True)
Graphics object consisting of 1 graphics primitive

320 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage: arrow2d((-2,2), (7,1)).show(frame=True)

4.3 Bezier Paths

class sage.plot.bezier_path.BezierPath(path, options)
Bases: sage.plot.primitive.GraphicPrimitive_xydata

Path of Bezier Curves graphics primitive.

The input to this constructor is a list of curves, each a list of points, along which to create the curves, along with
a dict of any options passed.

EXAMPLES:

sage: from sage.plot.bezier_path import BezierPath
sage: BezierPath([[(0,0), (.5,.5),(1,0)],[(.5,1),(0,0)]], {'linestyle':'dashed'})
Bezier path from (0, 0) to (0, 0)

We use bezier_path() to actually plot Bezier curves:

sage: bezier_path([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]], linestyle="dashed")
Graphics object consisting of 1 graphics primitive

4.3. Bezier Paths 321

Sage Reference Manual: 2D Graphics, Release 8.0

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: b = bezier_path([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]])
sage: d = b.get_minmax_data()
sage: d['xmin']
0.0
sage: d['xmax']
1.0

plot3d(z=0, **kwds)
Returns a 3D plot (Jmol) of the Bezier path. Since a BezierPath primitive contains only 𝑥, 𝑦 coor-
dinates, the path will be drawn in some plane (default is 𝑧 = 0). To create a Bezier path with nonzero
(and nonidentical) 𝑧 coordinates in the path and control points, use the function bezier3d() instead of
bezier_path().

EXAMPLES:

sage: b = bezier_path([[(0,0),(0,1),(1,0)]])
sage: A = b.plot3d()
sage: B = b.plot3d(z=2)
sage: A + B
Graphics3d Object

322 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage: bezier3d([[(0,0,0),(1,0,0),(0,1,0),(0,1,1)]])
Graphics3d Object

4.3. Bezier Paths 323

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.bezier_path.bezier_path(path, rgbcolor=(0, 0, 0), thickness=1, zorder=2, alpha=1,
linestyle=’solid’, fill=False, **options)

Returns a Graphics object of a Bezier path corresponding to the path parameter. The path is a list of curves, and
each curve is a list of points. Each point is a tuple (x,y).

The first curve contains the endpoints as the first and last point in the list. All other curves assume a starting
point given by the last entry in the preceding list, and take the last point in the list as their opposite endpoint. A
curve can have 0, 1 or 2 control points listed between the endpoints. In the input example for path below, the
first and second curves have 2 control points, the third has one, and the fourth has no control points:

path = [[p1, c1, c2, p2], [c3, c4, p3], [c5, p4], [p5], ...]

In the case of no control points, a straight line will be drawn between the two endpoints. If one control point is
supplied, then the curve at each of the endpoints will be tangent to the line from that endpoint to the control point.
Similarly, in the case of two control points, at each endpoint the curve will be tangent to the line connecting that
endpoint with the control point immediately after or immediately preceding it in the list.

324 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

So in our example above, the curve between p1 and p2 is tangent to the line through p1 and c1 at p1, and
tangent to the line through p2 and c2 at p2. Similarly, the curve between p2 and p3 is tangent to line(p2,c3) at
p2 and tangent to line(p3,c4) at p3. Curve(p3,p4) is tangent to line(p3,c5) at p3 and tangent to line(p4,c5) at p4.
Curve(p4,p5) is a straight line.

INPUT:

•path – a list of lists of tuples (see above)

•alpha – default: 1

•fill – default: False

•thickness – default: 1

•linestyle – default: 'solid', The style of the line, which is one of 'dashed', 'dotted',
'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

•rbgcolor – default: (0,0,0)

•zorder – the layer in which to draw

EXAMPLES:

sage: path = [[(0,0),(.5,.1),(.75,3),(1,0)],[(.5,1),(.5,0)],[(.2,.5)]]
sage: b = bezier_path(path, linestyle='dashed', rgbcolor='green')
sage: b
Graphics object consisting of 1 graphics primitive

4.3. Bezier Paths 325

Sage Reference Manual: 2D Graphics, Release 8.0

To construct a simple curve, create a list containing a single list:

sage: path = [[(0,0),(.5,1),(1,0)]]
sage: curve = bezier_path(path, linestyle='dashed', rgbcolor='green')
sage: curve
Graphics object consisting of 1 graphics primitive

326 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: bezier_path([[(0,1),(.5,0),(1,1)]], fontsize=50)
Graphics object consisting of 1 graphics primitive
sage: bezier_path([[(0,1),(.5,0),(1,1)]]).show(fontsize=50) # These are equivalent

4.3. Bezier Paths 327

Sage Reference Manual: 2D Graphics, Release 8.0

4.4 Circles

class sage.plot.circle.Circle(x, y, r, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class for the Circle graphics type. See circle? for information about actually plotting circles.

INPUT:

•x - 𝑥-coordinate of center of Circle

•y - 𝑦-coordinate of center of Circle

•r - radius of Circle object

•options - dict of valid plot options to pass to constructor

EXAMPLES:

Note this should normally be used indirectly via circle:

sage: from sage.plot.circle import Circle
sage: C = Circle(2,3,5,{'zorder':2})
sage: C
Circle defined by (2.0,3.0) with r=5.0
sage: C.options()['zorder']
2

328 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage: C.r
5.0

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: p = circle((3, 3), 1)
sage: d = p.get_minmax_data()
sage: d['xmin']
2.0
sage: d['ymin']
2.0

plot3d(z=0, **kwds)
Plots a 2D circle (actually a 50-gon) in 3D, with default height zero.

INPUT:

•z - optional 3D height above 𝑥𝑦-plane.

EXAMPLES:

sage: circle((0,0), 1).plot3d()
Graphics3d Object

This example uses this method implicitly, but does not pass the optional parameter z to this method:

sage: sum([circle((random(),random()), random()).plot3d(z=random()) for _ in
→˓range(20)])
Graphics3d Object

4.4. Circles 329

Sage Reference Manual: 2D Graphics, Release 8.0

These examples are explicit, and pass z to this method:

sage: C = circle((2,pi), 2, hue=.8, alpha=.3, fill=True)
sage: c = C[0]
sage: d = c.plot3d(z=2)
sage: d.texture.opacity
0.3

sage: C = circle((2,pi), 2, hue=.8, alpha=.3, linestyle='dotted')
sage: c = C[0]
sage: d = c.plot3d(z=2)
sage: d.jmol_repr(d.testing_render_params())[0][-1]
'color $line_1 translucent 0.7 [204,0,255]'

sage.plot.circle.circle(center, radius, edgecolor=’blue’, legend_color=None, facecolor=’blue’,
clip=True, linestyle=’solid’, thickness=1, zorder=5, aspect_ratio=1.0, al-
pha=1, legend_label=None, fill=False, **options)

Return a circle at a point center = (𝑥, 𝑦) (or (𝑥, 𝑦, 𝑧) and parallel to the 𝑥𝑦-plane) with radius = 𝑟. Type
circle.options to see all options.

OPTIONS:

•alpha - default: 1

•fill - default: False

•thickness - default: 1

•linestyle - default: 'solid' (2D plotting only) The style of the line, which is one of 'dashed',
'dotted', 'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

330 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

•edgecolor - default: ‘blue’ (2D plotting only)

•facecolor - default: ‘blue’ (2D plotting only, useful only if fill=True)

•rgbcolor - 2D or 3D plotting. This option overrides edgecolor and facecolor for 2D plotting.

•legend_label - the label for this item in the legend

•legend_color - the color for the legend label

EXAMPLES:

The default color is blue, the default linestyle is solid, but this is easy to change:

sage: c = circle((1,1), 1)
sage: c
Graphics object consisting of 1 graphics primitive

sage: c = circle((1,1), 1, rgbcolor=(1,0,0), linestyle='-.')
sage: c
Graphics object consisting of 1 graphics primitive

4.4. Circles 331

Sage Reference Manual: 2D Graphics, Release 8.0

We can also use this command to plot three-dimensional circles parallel to the 𝑥𝑦-plane:

sage: c = circle((1,1,3), 1, rgbcolor=(1,0,0))
sage: c
Graphics3d Object
sage: type(c)
<class 'sage.plot.plot3d.base.TransformGroup'>

332 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

To correct the aspect ratio of certain graphics, it is necessary to show with a figsize of square dimensions:

sage: c.show(figsize=[5,5],xmin=-1,xmax=3,ymin=-1,ymax=3)

Here we make a more complicated plot, with many circles of different colors:

sage: g = Graphics()
sage: step=6; ocur=1/5; paths=16;
sage: PI = math.pi # numerical for speed -- fine for graphics
sage: for r in range(1,paths+1):
....: for x,y in [((r+ocur)*math.cos(n), (r+ocur)*math.sin(n)) for n in
→˓srange(0, 2*PI+PI/step, PI/step)]:
....: g += circle((x,y), ocur, rgbcolor=hue(r/paths))
....: rnext = (r+1)^2
....: ocur = (rnext-r)-ocur
sage: g.show(xmin=-(paths+1)^2, xmax=(paths+1)^2, ymin=-(paths+1)^2,
→˓ymax=(paths+1)^2, figsize=[6,6])

4.4. Circles 333

Sage Reference Manual: 2D Graphics, Release 8.0

Note that the rgbcolor option overrides the other coloring options. This produces red fill in a blue circle:

sage: circle((2,3), 1, fill=True, edgecolor='blue', facecolor='red')
Graphics object consisting of 1 graphics primitive

334 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

This produces an all-green filled circle:

sage: circle((2,3), 1, fill=True, edgecolor='blue', rgbcolor='green')
Graphics object consisting of 1 graphics primitive

4.4. Circles 335

Sage Reference Manual: 2D Graphics, Release 8.0

The option hue overrides all other options, so be careful with its use. This produces a purplish filled circle:

sage: circle((2,3), 1, fill=True, edgecolor='blue', rgbcolor='green', hue=.8)
Graphics object consisting of 1 graphics primitive

336 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

And circles with legends:

sage: circle((4,5), 1, rgbcolor='yellow', fill=True, legend_label='the sun').
→˓show(xmin=0, ymin=0)

4.4. Circles 337

Sage Reference Manual: 2D Graphics, Release 8.0

sage: circle((4,5), 1, legend_label='the sun', legend_color='yellow').show(xmin=0,
→˓ ymin=0)

338 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: circle((0, 0), 2, figsize=[10,10]) # That circle is huge!
Graphics object consisting of 1 graphics primitive

sage: circle((0, 0), 2).show(figsize=[10,10]) # These are equivalent

4.5 Disks

class sage.plot.disk.Disk(point, r, angle, options)
Bases: sage.plot.primitive.GraphicPrimitive

Primitive class for the Disk graphics type. See disk? for information about actually plotting a disk (the Sage
term for a sector or wedge of a circle).

INPUT:

•point - coordinates of center of disk

•r - radius of disk

•angle - beginning and ending angles of disk (i.e. angle extent of sector/wedge)

•options - dict of valid plot options to pass to constructor

EXAMPLES:

4.5. Disks 339

Sage Reference Manual: 2D Graphics, Release 8.0

Note this should normally be used indirectly via disk:

sage: from sage.plot.disk import Disk
sage: D = Disk((1,2), 2, (pi/2,pi), {'zorder':3})
sage: D
Disk defined by (1.0,2.0) with r=2.0 spanning (1.57079632679, 3.14159265359)
→˓radians
sage: D.options()['zorder']
3
sage: D.x
1.0

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

sage: D = disk((5,4), 1, (pi/2, pi))
sage: d = D.get_minmax_data()
sage: d['xmin']
4.0
sage: d['ymin']
3.0
sage: d['xmax']
6.0
sage: d['ymax']
5.0

plot3d(z=0, **kwds)
Plots a 2D disk (actually a 52-gon) in 3D, with default height zero.

INPUT:

•z - optional 3D height above 𝑥𝑦-plane.

AUTHORS:

•Karl-Dieter Crisman (05-09)

EXAMPLES:

sage: disk((0,0), 1, (0, pi/2)).plot3d()
Graphics3d Object
sage: disk((0,0), 1, (0, pi/2)).plot3d(z=2)
Graphics3d Object
sage: disk((0,0), 1, (pi/2, 0), fill=False).plot3d(3)
Graphics3d Object

These examples show that the appropriate options are passed:

sage: D = disk((2,3), 1, (pi/4,pi/3), hue=.8, alpha=.3, fill=True)
sage: d = D[0]
sage: d.plot3d(z=2).texture.opacity
0.3

sage: D = disk((2,3), 1, (pi/4,pi/3), hue=.8, alpha=.3, fill=False)
sage: d = D[0]
sage: dd = d.plot3d(z=2)
sage: dd.jmol_repr(dd.testing_render_params())[0][-1]
'color $line_4 translucent 0.7 [204,0,255]'

340 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.disk.disk(point, radius, angle, rgbcolor=(0, 0, 1), thickness=0, aspect_ratio=1.0, alpha=1,
legend_label=None, fill=True, **options)

A disk (that is, a sector or wedge of a circle) with center at a point = (𝑥, 𝑦) (or (𝑥, 𝑦, 𝑧) and parallel to the
𝑥𝑦-plane) with radius = 𝑟 spanning (in radians) angle=‘(rad1, rad2)‘.

Type disk.options to see all options.

EXAMPLES:

Make some dangerous disks:

sage: bl = disk((0.0,0.0), 1, (pi, 3*pi/2), color='yellow')
sage: tr = disk((0.0,0.0), 1, (0, pi/2), color='yellow')
sage: tl = disk((0.0,0.0), 1, (pi/2, pi), color='black')
sage: br = disk((0.0,0.0), 1, (3*pi/2, 2*pi), color='black')
sage: P = tl+tr+bl+br
sage: P.show(xmin=-2,xmax=2,ymin=-2,ymax=2)

The default aspect ratio is 1.0:

sage: disk((0.0,0.0), 1, (pi, 3*pi/2)).aspect_ratio()
1.0

Another example of a disk:

sage: bl = disk((0.0,0.0), 1, (pi, 3*pi/2), rgbcolor=(1,1,0))
sage: bl.show(figsize=[5,5])

Note that since thickness defaults to zero, it is best to change that option when using fill=False:

sage: disk((2,3), 1, (pi/4,pi/3), hue=.8, alpha=.3, fill=False, thickness=2)
Graphics object consisting of 1 graphics primitive

The previous two examples also illustrate using hue and rgbcolor as ways of specifying the color of the
graphic.

We can also use this command to plot three-dimensional disks parallel to the 𝑥𝑦-plane:

sage: d = disk((1,1,3), 1, (pi,3*pi/2), rgbcolor=(1,0,0))
sage: d
Graphics3d Object
sage: type(d)
<type 'sage.plot.plot3d.index_face_set.IndexFaceSet'>

Extra options will get passed on to show(), as long as they are valid:

sage: disk((0, 0), 5, (0, pi/2), xmin=0, xmax=5, ymin=0, ymax=5, figsize=(2,2),
→˓rgbcolor=(1, 0, 1))
Graphics object consisting of 1 graphics primitive
sage: disk((0, 0), 5, (0, pi/2), rgbcolor=(1, 0, 1)).show(xmin=0, xmax=5, ymin=0,
→˓ymax=5, figsize=(2,2)) # These are equivalent

4.6 Ellipses

class sage.plot.ellipse.Ellipse(x, y, r1, r2, angle, options)
Bases: sage.plot.primitive.GraphicPrimitive

4.6. Ellipses 341

Sage Reference Manual: 2D Graphics, Release 8.0

Primitive class for the Ellipse graphics type. See ellipse? for information about actually plotting ellipses.

INPUT:

•x,y - coordinates of the center of the ellipse

•r1, r2 - radii of the ellipse

•angle - angle

•options - dictionary of options

EXAMPLES:

Note that this construction should be done using ellipse:

sage: from sage.plot.ellipse import Ellipse
sage: Ellipse(0, 0, 2, 1, pi/4, {})
Ellipse centered at (0.0, 0.0) with radii (2.0, 1.0) and angle 0.785398163397

get_minmax_data()
Returns a dictionary with the bounding box data.

The bounding box is computed to be as minimal as possible.

EXAMPLES:

An example without an angle:

sage: p = ellipse((-2, 3), 1, 2)
sage: d = p.get_minmax_data()
sage: d['xmin']
-3.0
sage: d['xmax']
-1.0
sage: d['ymin']
1.0
sage: d['ymax']
5.0

The same example with a rotation of angle 𝜋/2:

sage: p = ellipse((-2, 3), 1, 2, pi/2)
sage: d = p.get_minmax_data()
sage: d['xmin']
-4.0
sage: d['xmax']
0.0
sage: d['ymin']
2.0
sage: d['ymax']
4.0

plot3d()
Plotting in 3D is not implemented.

sage.plot.ellipse.ellipse(center, r1, r2, angle=0, edgecolor=’blue’, legend_color=None,
facecolor=’blue’, linestyle=’solid’, thickness=1, zorder=5, as-
pect_ratio=1.0, alpha=1, legend_label=None, fill=False, **options)

Return an ellipse centered at a point center = (x,y) with radii = r1,r2 and angle angle. Type ellipse.
options to see all options.

INPUT:

342 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

•center - 2-tuple of real numbers - coordinates of the center

•r1, r2 - positive real numbers - the radii of the ellipse

•angle - real number (default: 0) - the angle between the first axis and the horizontal

OPTIONS:

•alpha - default: 1 - transparency

•fill - default: False - whether to fill the ellipse or not

•thickness - default: 1 - thickness of the line

•linestyle - default: 'solid' - The style of the line, which is one of 'dashed', 'dotted',
'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

•edgecolor - default: ‘black’ - color of the contour

•facecolor - default: ‘red’ - color of the filling

•rgbcolor - 2D or 3D plotting. This option overrides edgecolor and facecolor for 2D plotting.

•legend_label - the label for this item in the legend

•legend_color - the color for the legend label

EXAMPLES:

An ellipse centered at (0,0) with major and minor axes of lengths 2 and 1. Note that the default color is blue:

sage: ellipse((0,0),2,1)
Graphics object consisting of 1 graphics primitive

More complicated examples with tilted axes and drawing options:

sage: ellipse((0,0),3,1,pi/6,fill=True,alpha=0.3,linestyle="dashed")
Graphics object consisting of 1 graphics primitive
sage: ellipse((0,0),3,1,pi/6,fill=True,alpha=0.3,linestyle="--")
Graphics object consisting of 1 graphics primitive

sage: ellipse((0,0),3,1,pi/6,fill=True,edgecolor='black',facecolor='red')
Graphics object consisting of 1 graphics primitive

We see that rgbcolor overrides these other options, as this plot is green:

sage: ellipse((0,0),3,1,pi/6,fill=True,edgecolor='black',facecolor='red',rgbcolor=
→˓'green')
Graphics object consisting of 1 graphics primitive

The default aspect ratio for ellipses is 1.0:

sage: ellipse((0,0),2,1).aspect_ratio()
1.0

One cannot yet plot ellipses in 3D:

sage: ellipse((0,0,0),2,1)
Traceback (most recent call last):
...
NotImplementedError: plotting ellipse in 3D is not implemented

We can also give ellipses a legend:

4.6. Ellipses 343

Sage Reference Manual: 2D Graphics, Release 8.0

sage: ellipse((0,0),2,1,legend_label="My ellipse", legend_color='green')
Graphics object consisting of 1 graphics primitive

4.7 Line Plots

class sage.plot.line.Line(xdata, ydata, options)
Bases: sage.plot.primitive.GraphicPrimitive_xydata

Primitive class that initializes the line graphics type.

EXAMPLES:

sage: from sage.plot.line import Line
sage: Line([1,2,7], [1,5,-1], {})
Line defined by 3 points

plot3d(z=0, **kwds)
Plots a 2D line in 3D, with default height zero.

EXAMPLES:

sage: E = EllipticCurve('37a').plot(thickness=5).plot3d()
sage: F = EllipticCurve('37a').plot(thickness=5).plot3d(z=2)
sage: E + F # long time (5s on sage.math, 2012)
Graphics3d Object

sage.plot.line.line(points, **kwds)
Returns either a 2-dimensional or 3-dimensional line depending on value of points.

INPUT:

•points - either a single point (as a tuple), a list of points, a single complex number, or a list of complex
numbers.

For information regarding additional arguments, see either line2d? or line3d?.

EXAMPLES:

sage: line([(0,0), (1,1)])
Graphics object consisting of 1 graphics primitive

sage: line([(0,0,1), (1,1,1)])
Graphics3d Object

sage.plot.line.line2d(points, legend_color=None, rgbcolor=(0, 0, 1), thickness=1, as-
pect_ratio=’automatic’, alpha=1, legend_label=None, **options)

Create the line through the given list of points.

INPUT:

•points - either a single point (as a tuple), a list of points, a single complex number, or a list of complex
numbers.

Type line2d.options for a dictionary of the default options for lines. You can change this to change the
defaults for all future lines. Use line2d.reset() to reset to the default options.

INPUT:

•alpha – How transparent the line is

344 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

•thickness – How thick the line is

•rgbcolor – The color as an RGB tuple

•hue – The color given as a hue

•legend_color – The color of the text in the legend

•legend_label – the label for this item in the legend

Any MATPLOTLIB line option may also be passed in. E.g.,

•linestyle - (default: “-”) The style of the line, which is one of

– "-" or "solid"

– "--" or "dashed"

– "-." or "dash dot"

– ":" or "dotted"

– "None" or " " or "" (nothing)

The linestyle can also be prefixed with a drawing style (e.g., "steps--")

– "default" (connect the points with straight lines)

– "steps" or "steps-pre" (step function; horizontal line is to the left of point)

– "steps-mid" (step function; points are in the middle of horizontal lines)

– "steps-post" (step function; horizontal line is to the right of point)

•marker - The style of the markers, which is one of

– "None" or " " or "" (nothing) – default

– "," (pixel), "." (point)

– "_" (horizontal line), "|" (vertical line)

– "o" (circle), "p" (pentagon), "s" (square), "x" (x), "+" (plus), "*" (star)

– "D" (diamond), "d" (thin diamond)

– "H" (hexagon), "h" (alternative hexagon)

– "<" (triangle left), ">" (triangle right), "^" (triangle up), "v" (triangle down)

– "1" (tri down), "2" (tri up), "3" (tri left), "4" (tri right)

– 0 (tick left), 1 (tick right), 2 (tick up), 3 (tick down)

– 4 (caret left), 5 (caret right), 6 (caret up), 7 (caret down)

– "$...$" (math TeX string)

•markersize – the size of the marker in points

•markeredgecolor – the color of the marker edge

•markerfacecolor – the color of the marker face

•markeredgewidth – the size of the marker edge in points

EXAMPLES:

A line with no points or one point:

4.7. Line Plots 345

Sage Reference Manual: 2D Graphics, Release 8.0

sage: line([]) #returns an empty plot
Graphics object consisting of 0 graphics primitives
sage: import numpy; line(numpy.array([]))
Graphics object consisting of 0 graphics primitives
sage: line([(1,1)])
Graphics object consisting of 1 graphics primitive

A line with numpy arrays:

sage: line(numpy.array([[1,2], [3,4]]))
Graphics object consisting of 1 graphics primitive

A line with a legend:

sage: line([(0,0),(1,1)], legend_label='line')
Graphics object consisting of 1 graphics primitive

Lines with different colors in the legend text:

sage: p1 = line([(0,0),(1,1)], legend_label='line')
sage: p2 = line([(1,1),(2,4)], legend_label='squared', legend_color='red')
sage: p1 + p2
Graphics object consisting of 2 graphics primitives

Extra options will get passed on to show(), as long as they are valid:

sage: line([(0,1), (3,4)], figsize=[10, 2])
Graphics object consisting of 1 graphics primitive
sage: line([(0,1), (3,4)]).show(figsize=[10, 2]) # These are equivalent

We can also use a logarithmic scale if the data will support it:

sage: line([(1,2),(2,4),(3,4),(4,8),(4.5,32)],scale='loglog',base=2)
Graphics object consisting of 1 graphics primitive

Many more examples below!

A blue conchoid of Nicomedes:

sage: L = [[1+5*cos(pi/2+pi*i/100), tan(pi/2+pi*i/100)*(1+5*cos(pi/2+pi*i/100))]
→˓for i in range(1,100)]
sage: line(L, rgbcolor=(1/4,1/8,3/4))
Graphics object consisting of 1 graphics primitive

A line with 2 complex points:

sage: i = CC.0
sage: line([1+i, 2+3*i])
Graphics object consisting of 1 graphics primitive

A blue hypotrochoid (3 leaves):

sage: n = 4; h = 3; b = 2
sage: L = [[n*cos(pi*i/100)+h*cos((n/b)*pi*i/100),n*sin(pi*i/100)-h*sin((n/
→˓b)*pi*i/100)] for i in range(200)]
sage: line(L, rgbcolor=(1/4,1/4,3/4))
Graphics object consisting of 1 graphics primitive

346 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

A blue hypotrochoid (4 leaves):

sage: n = 6; h = 5; b = 2
sage: L = [[n*cos(pi*i/100)+h*cos((n/b)*pi*i/100),n*sin(pi*i/100)-h*sin((n/
→˓b)*pi*i/100)] for i in range(200)]
sage: line(L, rgbcolor=(1/4,1/4,3/4))
Graphics object consisting of 1 graphics primitive

A red limacon of Pascal:

sage: L = [[sin(pi*i/100)+sin(pi*i/50),-(1+cos(pi*i/100)+cos(pi*i/50))] for i in
→˓range(-100,101)]
sage: line(L, rgbcolor=(1,1/4,1/2))
Graphics object consisting of 1 graphics primitive

A light green trisectrix of Maclaurin:

sage: L = [[2*(1-4*cos(-pi/2+pi*i/100)^2),10*tan(-pi/2+pi*i/100)*(1-4*cos(-pi/
→˓2+pi*i/100)^2)] for i in range(1,100)]
sage: line(L, rgbcolor=(1/4,1,1/8))
Graphics object consisting of 1 graphics primitive

A green lemniscate of Bernoulli:

sage: cosines = [cos(-pi/2+pi*i/100) for i in range(201)]
sage: v = [(1/c, tan(-pi/2+pi*i/100)) for i,c in enumerate(cosines) if c != 0]
sage: L = [(a/(a^2+b^2), b/(a^2+b^2)) for a,b in v]
sage: line(L, rgbcolor=(1/4,3/4,1/8))
Graphics object consisting of 1 graphics primitive

A red plot of the Jacobi elliptic function sn(𝑥, 2), −3 < 𝑥 < 3:

sage: L = [(i/100.0, real_part(jacobi('sn', i/100.0, 2.0))) for i in
....: range(-300, 300, 30)]
sage: line(L, rgbcolor=(3/4, 1/4, 1/8))
Graphics object consisting of 1 graphics primitive

A red plot of 𝐽-Bessel function 𝐽2(𝑥), 0 < 𝑥 < 10:

sage: L = [(i/10.0, bessel_J(2,i/10.0)) for i in range(100)]
sage: line(L, rgbcolor=(3/4,1/4,5/8))
Graphics object consisting of 1 graphics primitive

A purple plot of the Riemann zeta function 𝜁(1/2 + 𝑖𝑡), 0 < 𝑡 < 30:

sage: i = CDF.gen()
sage: v = [zeta(0.5 + n/10 * i) for n in range(300)]
sage: L = [(z.real(), z.imag()) for z in v]
sage: line(L, rgbcolor=(3/4,1/2,5/8))
Graphics object consisting of 1 graphics primitive

A purple plot of the Hasse-Weil 𝐿-function 𝐿(𝐸, 1 + 𝑖𝑡), −1 < 𝑡 < 10:

sage: E = EllipticCurve('37a')
sage: vals = E.lseries().values_along_line(1-I, 1+10*I, 100) # critical line
sage: L = [(z[1].real(), z[1].imag()) for z in vals]
sage: line(L, rgbcolor=(3/4,1/2,5/8))
Graphics object consisting of 1 graphics primitive

4.7. Line Plots 347

Sage Reference Manual: 2D Graphics, Release 8.0

A red, blue, and green “cool cat”:

sage: G = plot(-cos(x), -2, 2, thickness=5, rgbcolor=(0.5,1,0.5))
sage: P = polygon([[1,2], [5,6], [5,0]], rgbcolor=(1,0,0))
sage: Q = polygon([(-x,y) for x,y in P[0]], rgbcolor=(0,0,1))
sage: G + P + Q # show the plot
Graphics object consisting of 3 graphics primitives

4.8 Points

class sage.plot.point.Point(xdata, ydata, options)
Bases: sage.plot.primitive.GraphicPrimitive_xydata

Primitive class for the point graphics type. See point?, point2d? or point3d? for information about actually
plotting points.

INPUT:

•xdata - list of x values for points in Point object

•ydata - list of y values for points in Point object

•options - dict of valid plot options to pass to constructor

EXAMPLES:

Note this should normally be used indirectly via point and friends:

sage: from sage.plot.point import Point
sage: P = Point([1,2],[2,3],{'alpha':.5})
sage: P
Point set defined by 2 point(s)
sage: P.options()['alpha']
0.500000000000000
sage: P.xdata
[1, 2]

plot3d(z=0, **kwds)
Plots a two-dimensional point in 3-D, with default height zero.

INPUT:

•z - optional 3D height above 𝑥𝑦-plane. May be a list if self is a list of points.

EXAMPLES:

One point:

sage: A=point((1,1))
sage: a=A[0];a
Point set defined by 1 point(s)
sage: b=a.plot3d()

One point with a height:

sage: A=point((1,1))
sage: a=A[0];a
Point set defined by 1 point(s)
sage: b=a.plot3d(z=3)

348 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage: b.loc[2]
3.0

Multiple points:

sage: P=point([(0,0), (1,1)])
sage: p=P[0]; p
Point set defined by 2 point(s)
sage: q=p.plot3d(size=22)

Multiple points with different heights:

sage: P=point([(0,0), (1,1)])
sage: p=P[0]
sage: q=p.plot3d(z=[2,3])
sage: q.all[0].loc[2]
2.0
sage: q.all[1].loc[2]
3.0

Note that keywords passed must be valid point3d options:

sage: A=point((1,1),size=22)
sage: a=A[0];a
Point set defined by 1 point(s)
sage: b=a.plot3d()
sage: b.size
22
sage: b=a.plot3d(pointsize=23) # only 2D valid option
sage: b.size
22
sage: b=a.plot3d(size=23) # correct keyword
sage: b.size
23

sage.plot.point.point(points, **kwds)
Returns either a 2-dimensional or 3-dimensional point or sum of points.

INPUT:

•points - either a single point (as a tuple), a list of points, a single complex number, or a list of complex
numbers.

For information regarding additional arguments, see either point2d? or point3d?.

See also:

sage.plot.point.point2d(), sage.plot.plot3d.shapes2.point3d()

EXAMPLES:

sage: point((1,2))
Graphics object consisting of 1 graphics primitive

sage: point((1,2,3))
Graphics3d Object

sage: point([(0,0), (1,1)])
Graphics object consisting of 1 graphics primitive

4.8. Points 349

Sage Reference Manual: 2D Graphics, Release 8.0

sage: point([(0,0,1), (1,1,1)])
Graphics3d Object

Extra options will get passed on to show(), as long as they are valid:

sage: point([(cos(theta), sin(theta)) for theta in srange(0, 2*pi, pi/8)],
→˓frame=True)
Graphics object consisting of 1 graphics primitive
sage: point([(cos(theta), sin(theta)) for theta in srange(0, 2*pi, pi/8)]).
→˓show(frame=True) # These are equivalent

sage.plot.point.point2d(points, legend_color=None, faceted=False, rgbcolor=(0, 0, 1),
marker=’o’, markeredgecolor=None, aspect_ratio=’automatic’, alpha=1,
legend_label=None, size=10, **options)

A point of size size defined by point = (𝑥, 𝑦).

INPUT:

•points - either a single point (as a tuple), a list of points, a single complex number, or a list of complex
numbers.

•alpha – How transparent the point is.

•faceted – If True color the edge of the point. (only for 2D plots)

•hue – The color given as a hue.

•legend_color – The color of the legend text

•legend_label – The label for this item in the legend.

•marker – the marker symbol for 2D plots only (see documentation of plot() for details)

•markeredgecolor – the color of the marker edge (only for 2D plots)

•rgbcolor – The color as an RGB tuple.

•size – How big the point is (i.e., area in points^2=(1/72 inch)^2).

•zorder – The layer level in which to draw

EXAMPLES:

A purple point from a single tuple or coordinates:

sage: point((0.5, 0.5), rgbcolor=hue(0.75))
Graphics object consisting of 1 graphics primitive

Points with customized markers and edge colors:

sage: r = [(random(), random()) for _ in range(10)]
sage: point(r, marker='d', markeredgecolor='red', size=20)
Graphics object consisting of 1 graphics primitive

Passing an empty list returns an empty plot:

sage: point([])
Graphics object consisting of 0 graphics primitives
sage: import numpy; point(numpy.array([]))
Graphics object consisting of 0 graphics primitives

If you need a 2D point to live in 3-space later, this is possible:

350 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage: A=point((1,1))
sage: a=A[0];a
Point set defined by 1 point(s)
sage: b=a.plot3d(z=3)

This is also true with multiple points:

sage: P=point([(0,0), (1,1)])
sage: p=P[0]
sage: q=p.plot3d(z=[2,3])

Here are some random larger red points, given as a list of tuples:

sage: point(((0.5, 0.5), (1, 2), (0.5, 0.9), (-1, -1)), rgbcolor=hue(1), size=30)
Graphics object consisting of 1 graphics primitive

And an example with a legend:

sage: point((0,0), rgbcolor='black', pointsize=40, legend_label='origin')
Graphics object consisting of 1 graphics primitive

The legend can be colored:

sage: P = points([(0,0),(1,0)], pointsize=40, legend_label='origin', legend_color=
→˓'red')
sage: P + plot(x^2,(x,0,1), legend_label='plot', legend_color='green')
Graphics object consisting of 2 graphics primitives

Extra options will get passed on to show(), as long as they are valid:

sage: point([(cos(theta), sin(theta)) for theta in srange(0, 2*pi, pi/8)],
→˓frame=True)
Graphics object consisting of 1 graphics primitive
sage: point([(cos(theta), sin(theta)) for theta in srange(0, 2*pi, pi/8)]).
→˓show(frame=True) # These are equivalent

For plotting data, we can use a logarithmic scale, as long as we are sure not to include any nonpositive points in
the logarithmic direction:

sage: point([(1,2),(2,4),(3,4),(4,8),(4.5,32)],scale='semilogy',base=2)
Graphics object consisting of 1 graphics primitive

Since Sage Version 4.4 (trac ticket #8599), the size of a 2d point can be given by the argument size instead of
pointsize. The argument pointsize is still supported:

sage: point((3,4), size=100)
Graphics object consisting of 1 graphics primitive

sage: point((3,4), pointsize=100)
Graphics object consisting of 1 graphics primitive

We can plot a single complex number:

sage: point(CC(1+I), pointsize=100)
Graphics object consisting of 1 graphics primitive

We can also plot a list of complex numbers:

4.8. Points 351

https://trac.sagemath.org/8599

Sage Reference Manual: 2D Graphics, Release 8.0

sage: point([CC(I), CC(I+1), CC(2+2*I)], pointsize=100)
Graphics object consisting of 1 graphics primitive

sage.plot.point.points(points, **kwds)
Returns either a 2-dimensional or 3-dimensional point or sum of points.

INPUT:

•points - either a single point (as a tuple), a list of points, a single complex number, or a list of complex
numbers.

For information regarding additional arguments, see either point2d? or point3d?.

See also:

sage.plot.point.point2d(), sage.plot.plot3d.shapes2.point3d()

EXAMPLES:

sage: point((1,2))
Graphics object consisting of 1 graphics primitive

sage: point((1,2,3))
Graphics3d Object

sage: point([(0,0), (1,1)])
Graphics object consisting of 1 graphics primitive

sage: point([(0,0,1), (1,1,1)])
Graphics3d Object

Extra options will get passed on to show(), as long as they are valid:

sage: point([(cos(theta), sin(theta)) for theta in srange(0, 2*pi, pi/8)],
→˓frame=True)
Graphics object consisting of 1 graphics primitive
sage: point([(cos(theta), sin(theta)) for theta in srange(0, 2*pi, pi/8)]).
→˓show(frame=True) # These are equivalent

4.9 Polygons

class sage.plot.polygon.Polygon(xdata, ydata, options)
Bases: sage.plot.primitive.GraphicPrimitive_xydata

Primitive class for the Polygon graphics type. For information on actual plotting, please see polygon(),
polygon2d(), or polygon3d().

INPUT:

•xdata - list of 𝑥-coordinates of points defining Polygon

•ydata - list of 𝑦-coordinates of points defining Polygon

•options - dict of valid plot options to pass to constructor

EXAMPLES:

Note this should normally be used indirectly via polygon():

352 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage: from sage.plot.polygon import Polygon
sage: P = Polygon([1,2,3],[2,3,2],{'alpha':.5})
sage: P
Polygon defined by 3 points
sage: P.options()['alpha']
0.500000000000000
sage: P.ydata
[2, 3, 2]

sage: polygon([(0,0,1), (1,1,1), (2,0,1)])
Graphics3d Object

plot3d(z=0, **kwds)
Plots a 2D polygon in 3D, with default height zero.

INPUT:

•z - optional 3D height above 𝑥𝑦-plane, or a list of heights corresponding to the list of 2D polygon
points.

EXAMPLES:

A pentagon:

sage: polygon([(cos(t), sin(t)) for t in srange(0, 2*pi, 2*pi/5)]).plot3d()
Graphics3d Object

Showing behavior of the optional parameter z:

4.9. Polygons 353

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = polygon([(0,0), (1,2), (0,1), (-1,2)])
sage: p = P[0]; p
Polygon defined by 4 points
sage: q = p.plot3d()
sage: q.obj_repr(q.testing_render_params())[2]
['v 0 0 0', 'v 1 2 0', 'v 0 1 0', 'v -1 2 0']
sage: r = p.plot3d(z=3)
sage: r.obj_repr(r.testing_render_params())[2]
['v 0 0 3', 'v 1 2 3', 'v 0 1 3', 'v -1 2 3']
sage: s = p.plot3d(z=[0,1,2,3])
sage: s.obj_repr(s.testing_render_params())[2]
['v 0 0 0', 'v 1 2 1', 'v 0 1 2', 'v -1 2 3']

sage.plot.polygon.polygon(points, **options)
Returns either a 2-dimensional or 3-dimensional polygon depending on value of points.

For information regarding additional arguments, see either polygon2d() or polygon3d(). Options may
be found and set using the dictionaries polygon2d.options and polygon3d.options.

EXAMPLES:

sage: polygon([(0,0), (1,1), (0,1)])
Graphics object consisting of 1 graphics primitive

sage: polygon([(0,0,1), (1,1,1), (2,0,1)])
Graphics3d Object

354 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

Extra options will get passed on to show(), as long as they are valid:

sage: polygon([(0,0), (1,1), (0,1)], axes=False)
Graphics object consisting of 1 graphics primitive
sage: polygon([(0,0), (1,1), (0,1)]).show(axes=False) # These are equivalent

sage.plot.polygon.polygon2d(points, edgecolor=None, legend_color=None, rgbcolor=(0, 0, 1),
thickness=None, aspect_ratio=1.0, alpha=1, legend_label=None,
fill=True, **options)

Returns a 2-dimensional polygon defined by points.

Type polygon2d.options for a dictionary of the default options for polygons. You can change this to
change the defaults for all future polygons. Use polygon2d.reset() to reset to the default options.

EXAMPLES:

We create a purple-ish polygon:

sage: polygon2d([[1,2], [5,6], [5,0]], rgbcolor=(1,0,1))
Graphics object consisting of 1 graphics primitive

By default, polygons are filled in, but we can make them without a fill as well:

sage: polygon2d([[1,2], [5,6], [5,0]], fill=False)
Graphics object consisting of 1 graphics primitive

4.9. Polygons 355

Sage Reference Manual: 2D Graphics, Release 8.0

In either case, the thickness of the border can be controlled:

sage: polygon2d([[1,2], [5,6], [5,0]], fill=False, thickness=4, color='orange')
Graphics object consisting of 1 graphics primitive

356 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

For filled polygons, one can use different colors for the border and the interior as follows:

sage: L = [[0,0]]+[[i/100, 1.1+cos(i/20)] for i in range(100)]+[[1,0]]
sage: polygon2d(L, color="limegreen", edgecolor="black", axes=False)
Graphics object consisting of 1 graphics primitive

4.9. Polygons 357

Sage Reference Manual: 2D Graphics, Release 8.0

Some modern art – a random polygon, with legend:

sage: v = [(randrange(-5,5), randrange(-5,5)) for _ in range(10)]
sage: polygon2d(v, legend_label='some form')
Graphics object consisting of 1 graphics primitive

358 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

A purple hexagon:

sage: L = [[cos(pi*i/3),sin(pi*i/3)] for i in range(6)]
sage: polygon2d(L, rgbcolor=(1,0,1))
Graphics object consisting of 1 graphics primitive

4.9. Polygons 359

Sage Reference Manual: 2D Graphics, Release 8.0

A green deltoid:

sage: L = [[-1+cos(pi*i/100)*(1+cos(pi*i/100)),2*sin(pi*i/100)*(1-cos(pi*i/100))]
→˓for i in range(200)]
sage: polygon2d(L, rgbcolor=(1/8,3/4,1/2))
Graphics object consisting of 1 graphics primitive

360 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

A blue hypotrochoid:

sage: L = [[6*cos(pi*i/100)+5*cos((6/2)*pi*i/100),6*sin(pi*i/100)-5*sin((6/
→˓2)*pi*i/100)] for i in range(200)]
sage: polygon2d(L, rgbcolor=(1/8,1/4,1/2))
Graphics object consisting of 1 graphics primitive

4.9. Polygons 361

Sage Reference Manual: 2D Graphics, Release 8.0

Another one:

sage: n = 4; h = 5; b = 2
sage: L = [[n*cos(pi*i/100)+h*cos((n/b)*pi*i/100),n*sin(pi*i/100)-h*sin((n/
→˓b)*pi*i/100)] for i in range(200)]
sage: polygon2d(L, rgbcolor=(1/8,1/4,3/4))
Graphics object consisting of 1 graphics primitive

362 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

A purple epicycloid:

sage: m = 9; b = 1
sage: L = [[m*cos(pi*i/100)+b*cos((m/b)*pi*i/100),m*sin(pi*i/100)-b*sin((m/
→˓b)*pi*i/100)] for i in range(200)]
sage: polygon2d(L, rgbcolor=(7/8,1/4,3/4))
Graphics object consisting of 1 graphics primitive

4.9. Polygons 363

Sage Reference Manual: 2D Graphics, Release 8.0

A brown astroid:

sage: L = [[cos(pi*i/100)^3,sin(pi*i/100)^3] for i in range(200)]
sage: polygon2d(L, rgbcolor=(3/4,1/4,1/4))
Graphics object consisting of 1 graphics primitive

364 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

And, my favorite, a greenish blob:

sage: L = [[cos(pi*i/100)*(1+cos(pi*i/50)), sin(pi*i/100)*(1+sin(pi*i/50))] for i
→˓in range(200)]
sage: polygon2d(L, rgbcolor=(1/8,3/4,1/2))
Graphics object consisting of 1 graphics primitive

4.9. Polygons 365

Sage Reference Manual: 2D Graphics, Release 8.0

This one is for my wife:

sage: L = [[sin(pi*i/100)+sin(pi*i/50),-(1+cos(pi*i/100)+cos(pi*i/50))] for i in
→˓range(-100,100)]
sage: polygon2d(L, rgbcolor=(1,1/4,1/2))
Graphics object consisting of 1 graphics primitive

366 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

One can do the same one with a colored legend label:

sage: polygon2d(L, color='red', legend_label='For you!', legend_color='red')
Graphics object consisting of 1 graphics primitive

4.9. Polygons 367

Sage Reference Manual: 2D Graphics, Release 8.0

Polygons have a default aspect ratio of 1.0:

sage: polygon2d([[1,2], [5,6], [5,0]]).aspect_ratio()
1.0

AUTHORS:

•David Joyner (2006-04-14): the long list of examples above.

4.10 Arcs in hyperbolic geometry

AUTHORS:

• Hartmut Monien (2011 - 08)

class sage.plot.hyperbolic_arc.HyperbolicArc(A, B, options)
Bases: sage.plot.bezier_path.BezierPath

Primitive class for hyberbolic arc type. See hyperbolic_arc? for information about plotting a hyperbolic
arc in the complex plane.

INPUT:

•a, b - coordinates of the hyperbolic arc in the complex plane

•options - dict of valid plot options to pass to constructor

EXAMPLES:

368 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

Note that constructions should use hyperbolic_arc:

sage: from sage.plot.hyperbolic_arc import HyperbolicArc

sage: print(HyperbolicArc(0, 1/2+I*sqrt(3)/2, {}))
Hyperbolic arc (0.000000000000000, 0.500000000000000 + 0.866025403784439*I)

sage.plot.hyperbolic_arc.hyperbolic_arc(a, b, rgbcolor=’blue’, thickness=1, zorder=2, al-
pha=1, linestyle=’solid’, fill=False, **options)

Plot an arc from a to b in hyperbolic geometry in the complex upper half plane.

INPUT:

•a, b - complex numbers in the upper half complex plane connected bye the arc

OPTIONS:

•alpha - default: 1

•thickness - default: 1

•rgbcolor - default: ‘blue’

•linestyle - (default: 'solid') The style of the line, which is one of 'dashed', 'dotted',
'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

Examples:

Show a hyperbolic arc from 0 to 1:

sage: hyperbolic_arc(0, 1)
Graphics object consisting of 1 graphics primitive

Show a hyperbolic arc from 1/2 to 𝑖 with a red thick line:

sage: hyperbolic_arc(1/2, I, color='red', thickness=2)
Graphics object consisting of 1 graphics primitive

Show a hyperbolic arc form 𝑖 to 2𝑖 with dashed line:

sage: hyperbolic_arc(I, 2*I, linestyle='dashed')
Graphics object consisting of 1 graphics primitive
sage: hyperbolic_arc(I, 2*I, linestyle='--')
Graphics object consisting of 1 graphics primitive

4.11 Polygons and triangles in hyperbolic geometry

AUTHORS:

• Hartmut Monien (2011-08)

• Vincent Delecroix (2014-11)

class sage.plot.hyperbolic_polygon.HyperbolicPolygon(pts, options)
Bases: sage.plot.bezier_path.BezierPath

Primitive class for hyberbolic polygon type.

See hyperbolic_polygon? for information about plotting a hyperbolic polygon in the complex plane.

INPUT:

4.11. Polygons and triangles in hyperbolic geometry 369

Sage Reference Manual: 2D Graphics, Release 8.0

•pts – coordinates of the polygon (as complex numbers)

•options – dict of valid plot options to pass to constructor

EXAMPLES:

Note that constructions should use hyperbolic_polygon() or hyperbolic_triangle():

sage: from sage.plot.hyperbolic_polygon import HyperbolicPolygon
sage: print(HyperbolicPolygon([0, 1/2, I], {}))
Hyperbolic polygon (0.000000000000000, 0.500000000000000, 1.00000000000000*I)

sage.plot.hyperbolic_polygon.hyperbolic_polygon(pts, rgbcolor=’blue’, thickness=1,
zorder=2, alpha=1, linestyle=’solid’,
fill=False, **options)

Return a hyperbolic polygon in the hyperbolic plane with vertices pts.

Type ?hyperbolic_polygon to see all options.

INPUT:

•pts – a list or tuple of complex numbers

OPTIONS:

•alpha – default: 1

•fill – default: False

•thickness – default: 1

•rgbcolor – default: 'blue'

•linestyle – (default: 'solid') The style of the line, which is one of 'dashed', 'dotted',
'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

EXAMPLES:

Show a hyperbolic polygon with coordinates −1, 3𝑖, 2 + 2𝑖, 1 + 𝑖:

sage: hyperbolic_polygon([-1,3*I,2+2*I,1+I])
Graphics object consisting of 1 graphics primitive

370 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

With more options:

sage: hyperbolic_polygon([-1,3*I,2+2*I,1+I], fill=True, color='red')
Graphics object consisting of 1 graphics primitive

4.11. Polygons and triangles in hyperbolic geometry 371

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.hyperbolic_polygon.hyperbolic_triangle(a, b, c, **options)
Return a hyperbolic triangle in the hyperbolic plane with vertices (a,b,c).

Type ?hyperbolic_polygon to see all options.

INPUT:

•a, b, c – complex numbers in the upper half complex plane

OPTIONS:

•alpha – default: 1

•fill – default: False

•thickness – default: 1

•rgbcolor – default: 'blue'

•linestyle - (default: 'solid') The style of the line, which is one of 'dashed', 'dotted',
'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

EXAMPLES:

Show a hyperbolic triangle with coordinates 0, 1/2 + 𝑖
√
3/2 and −1/2 + 𝑖

√
3/2:

sage: hyperbolic_triangle(0, -1/2+I*sqrt(3)/2, 1/2+I*sqrt(3)/2)
Graphics object consisting of 1 graphics primitive

372 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

A hyperbolic triangle with coordinates 0, 1 and 2 + 𝑖 and a dashed line:

sage: hyperbolic_triangle(0, 1, 2+i, fill=true, rgbcolor='red', linestyle='--')
Graphics object consisting of 1 graphics primitive

4.11. Polygons and triangles in hyperbolic geometry 373

Sage Reference Manual: 2D Graphics, Release 8.0

4.12 Regular polygons in the upper half model for hyperbolic plane

AUTHORS:

• Javier Honrubia (2016-01)

class sage.plot.hyperbolic_regular_polygon.HyperbolicRegularPolygon(sides,
i_angle,
center,
options)

Bases: sage.plot.hyperbolic_polygon.HyperbolicPolygon

Primitive class for regular hyberbolic polygon type.

See hyperbolic_regular_polygon? for information about plotting a hyperbolic regular polygon in the
upper complex halfplane.

INPUT:

•sides – number of sides of the polygon

•i_angle – interior angle of the polygon

•center– center point as a complex number of the polygon

EXAMPLES:

Note that constructions should use hyperbolic_regular_polygon():

374 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

sage: from sage.plot.hyperbolic_regular_polygon import HyperbolicRegularPolygon
sage: print(HyperbolicRegularPolygon(5,pi/2,I, {}))
Hyperbolic regular polygon (sides=5, i_angle=1/2*pi, center=1.00000000000000*I)

The code verifies is there exists a compact hyperbolic regular polygon with the given data, checking

𝐴(𝒫) = 𝜋(𝑠− 2)− 𝑠 · 𝛼 > 0,

where 𝑠 is sides and 𝛼 is i_angle`. This raises an error if the ``i_angle is less than
the minimum to generate a compact polygon:

sage: from sage.plot.hyperbolic_regular_polygon import HyperbolicRegularPolygon
sage: P = HyperbolicRegularPolygon(4, pi/2, I, {})
Traceback (most recent call last):
...
ValueError: there exists no hyperbolic regular compact polygon,
for sides=4 the interior angle must be less than 1/2*pi

It is an error to give a center outside the upper half plane in this model

sage: from sage.plot.hyperbolic_regular_polygon import HyperbolicRegularPolygon
sage: P = HyperbolicRegularPolygon(4, pi/4, 1-I, {})
Traceback (most recent call last):
...
ValueError: center: 1.00000000000000 - 1.00000000000000*I is not
a valid point in the upper half plane model of the hyperbolic plane

sage.plot.hyperbolic_regular_polygon.hyperbolic_regular_polygon(sides,
i_angle, cen-
ter=1.00000000000000*I,
rgb-
color=’blue’,
thickness=1,
zorder=2,
alpha=1,
linestyle=’solid’,
fill=False,
**options)

Return a hyperbolic regular polygon in the upper half model of Hyperbolic plane given the number of sides,
interior angle and possibly a center.

Type ?hyperbolic_regular_polygon to see all options.

INPUT:

•sides – number of sides of the polygon

•i_angle – interior angle of the polygon

•center – (default: 𝑖) hyperbolic center point (complex number) of the polygon

OPTIONS:

•alpha – default: 1

•fill – default: False

•thickness – default: 1

•rgbcolor – default: 'blue'

4.12. Regular polygons in the upper half model for hyperbolic plane 375

Sage Reference Manual: 2D Graphics, Release 8.0

•linestyle – (default: 'solid') the style of the line, which can be one of the following:

–'dashed' or '--'

–'dotted' or ':'

–'solid' or '-'

–'dashdot' or '-.'

EXAMPLES:

Show a hyperbolic regular polygon with 6 sides and square angles:

sage: g = hyperbolic_regular_polygon(6, pi/2)
sage: g.plot()
Graphics object consisting of 1 graphics primitive

With more options:

sage: g = hyperbolic_regular_polygon(6, pi/2, center=3+2*I, fill=True, color='red
→˓')
sage: g.plot()
Graphics object consisting of 1 graphics primitive

376 Chapter 4. Basic Shapes

Sage Reference Manual: 2D Graphics, Release 8.0

The code verifies is there exists a hyperbolic regular polygon with the given data, checking

𝐴(𝒫) = 𝜋(𝑠− 2)− 𝑠 · 𝛼 > 0,

where 𝑠 is sides and 𝛼 is i_angle`. This raises an error if the ``i_angle is less than
the minimum to generate a compact polygon:

sage: hyperbolic_regular_polygon(4, pi/2)
Traceback (most recent call last):
...
ValueError: there exists no hyperbolic regular compact polygon,
for sides=4 the interior angle must be less than 1/2*pi

It is an error to give a center outside the upper half plane in this model:

sage: from sage.plot.hyperbolic_regular_polygon import hyperbolic_regular_polygon
sage: hyperbolic_regular_polygon(4, pi/4, 1-I)
Traceback (most recent call last):
...
ValueError: center: 1.00000000000000 - 1.00000000000000*I is not
a valid point in the upper half plane model of the hyperbolic plane

4.12. Regular polygons in the upper half model for hyperbolic plane 377

Sage Reference Manual: 2D Graphics, Release 8.0

378 Chapter 4. Basic Shapes

CHAPTER

FIVE

INFRASTRUCTURE AND LOW-LEVEL FUNCTIONS

5.1 Graphics objects

This file contains the definition of the classes Graphics and GraphicsArray . Usually, you don’t create these
classes directly (although you can do it), you would use plot() or graphics_array() instead.

AUTHORS:

• Jeroen Demeyer (2012-04-19): split off this file from plot.py (trac ticket #12857)

• Punarbasu Purkayastha (2012-05-20): Add logarithmic scale (trac ticket #4529)

• Emily Chen (2013-01-05): Add documentation for show() figsize parameter (trac ticket #5956)

• Eric Gourgoulhon (2015-03-19): Add parameter axes_labels_size (trac ticket #18004)

class sage.plot.graphics.Graphics
Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.
SageObject

The Graphics object is an empty list of graphics objects. It is useful to use this object when initializing a for
loop where different graphics object will be added to the empty object.

EXAMPLES:

sage: G = Graphics(); print(G)
Graphics object consisting of 0 graphics primitives
sage: c = circle((1,1), 1)
sage: G+=c; print(G)
Graphics object consisting of 1 graphics primitive

Here we make a graphic of embedded isosceles triangles, coloring each one with a different color as we go:

sage: h=10; c=0.4; p=0.5;
sage: G = Graphics()
sage: for x in srange(1,h+1):
....: l = [[0,x*sqrt(3)],[-x/2,-x*sqrt(3)/2],[x/2,-x*sqrt(3)/2],[0,x*sqrt(3)]]
....: G+=line(l,color=hue(c + p*(x/h)))
sage: G.show(figsize=[5,5])

We can change the scale of the axes in the graphics before displaying.:

sage: G = plot(exp, 1, 10) # long time
sage: G.show(scale='semilogy') # long time

379

https://trac.sagemath.org/12857
https://trac.sagemath.org/4529
https://trac.sagemath.org/5956
https://trac.sagemath.org/18004

Sage Reference Manual: 2D Graphics, Release 8.0

sage: isinstance(g2, Graphics)
True

sage: hash(Graphics()) # random
42

_rich_repr_(display_manager, **kwds)
Rich Output Magic Method

See sage.repl.rich_output for details.

EXAMPLES:

sage: from sage.repl.rich_output import get_display_manager
sage: dm = get_display_manager()
sage: g = Graphics()
sage: g._rich_repr_(dm)
OutputImagePng container

add_primitive(primitive)
Adds a primitive to this graphics object.

EXAMPLES:

We give a very explicit example:

sage: G = Graphics()
sage: from sage.plot.line import Line
sage: from sage.plot.arrow import Arrow
sage: L = Line([3,4,2,7,-2],[1,2,e,4,5.],{'alpha':1,'thickness':2,'rgbcolor
→˓':(0,1,1),'legend_label':''})
sage: A = Arrow(2,-5,.1,.2,{'width':3,'head':0,'rgbcolor':(1,0,0),'linestyle':
→˓'dashed','zorder':8,'legend_label':''})
sage: G.add_primitive(L)
sage: G.add_primitive(A)
sage: G
Graphics object consisting of 2 graphics primitives

aspect_ratio()
Get the current aspect ratio, which is the ratio of height to width of a unit square, or ‘automatic’.

OUTPUT: a positive float (height/width of a unit square), or ‘automatic’ (expand to fill the figure).

EXAMPLES:

The default aspect ratio for a new blank Graphics object is ‘automatic’:

sage: P = Graphics()
sage: P.aspect_ratio()
'automatic'

The aspect ratio can be explicitly set different than the object’s default:

sage: P = circle((1,1), 1)
sage: P.aspect_ratio()
1.0
sage: P.set_aspect_ratio(2)
sage: P.aspect_ratio()
2.0
sage: P.set_aspect_ratio('automatic')

380 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P.aspect_ratio()
'automatic'

axes(show=None)
Set whether or not the 𝑥 and 𝑦 axes are shown by default.

INPUT:

•show - bool

If called with no input, return the current axes setting.

EXAMPLES:

sage: L = line([(1,2), (3,-4), (2, 5), (1,2)])

By default the axes are displayed.

sage: L.axes()
True

But we turn them off, and verify that they are off

sage: L.axes(False)
sage: L.axes()
False

Displaying L now shows a triangle but no axes.

sage: L
Graphics object consisting of 1 graphics primitive

axes_color(c=None)
Set the axes color.

If called with no input, return the current axes_color setting.

INPUT:

•c - an RGB color 3-tuple, where each tuple entry is a float between 0 and 1

EXAMPLES: We create a line, which has like everything a default axes color of black.

sage: L = line([(1,2), (3,-4), (2, 5), (1,2)])
sage: L.axes_color()
(0, 0, 0)

We change the axes color to red and verify the change.

sage: L.axes_color((1,0,0))
sage: L.axes_color()
(1.0, 0.0, 0.0)

When we display the plot, we’ll see a blue triangle and bright red axes.

sage: L
Graphics object consisting of 1 graphics primitive

axes_label_color(c=None)
Set the color of the axes labels.

5.1. Graphics objects 381

Sage Reference Manual: 2D Graphics, Release 8.0

The axes labels are placed at the edge of the x and y axes, and are not on by default (use the axes_labels
command to set them; see the example below). This function just changes their color.

INPUT:

•c - an RGB 3-tuple of numbers between 0 and 1

If called with no input, return the current axes_label_color setting.

EXAMPLES: We create a plot, which by default has axes label color black.

sage: p = plot(sin, (-1,1))
sage: p.axes_label_color()
(0, 0, 0)

We change the labels to be red, and confirm this:

sage: p.axes_label_color((1,0,0))
sage: p.axes_label_color()
(1.0, 0.0, 0.0)

We set labels, since otherwise we won’t see anything.

sage: p.axes_labels(['x axis', 'y axis'])

In the plot below, notice that the labels are red:

sage: p
Graphics object consisting of 1 graphics primitive

axes_labels(l=None)
Set the axes labels.

INPUT:

•l - (default: None) a list of two strings or None

OUTPUT: a 2-tuple of strings

If l is None, returns the current axes_labels, which is itself by default None. The default labels are
both empty.

EXAMPLES: We create a plot and put x and y axes labels on it.

sage: p = plot(sin(x), (x, 0, 10))
sage: p.axes_labels(['x','y'])
sage: p.axes_labels()
('x', 'y')

Now when you plot p, you see x and y axes labels:

sage: p
Graphics object consisting of 1 graphics primitive

Notice that some may prefer axes labels which are not typeset:

sage: plot(sin(x), (x, 0, 10), axes_labels=['x','y'])
Graphics object consisting of 1 graphics primitive

382 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

sage: c = circle((0,0), 1)
sage: c.axes_labels(['axe des abscisses', u'axe des ordonnées'])
sage: c._axes_labels
('axe des abscisses', u'axe des ordonnées')

axes_labels_size(s=None)
Set the relative size of axes labels w.r.t. the axes tick marks.

INPUT:

•s - float, relative size of axes labels w.r.t. to the tick marks, the size of the tick marks being set by
fontsize().

If called with no input, return the current relative size.

EXAMPLES:

sage: p = plot(sin(x^2), (x, -3, 3), axes_labels=['x','y'])
sage: p.axes_labels_size() # default value
1.6
sage: p.axes_labels_size(2.5)
sage: p.axes_labels_size()
2.5

Now the axes labels are large w.r.t. the tick marks:

sage: p
Graphics object consisting of 1 graphics primitive

axes_range(xmin=None, xmax=None, ymin=None, ymax=None)
Set the ranges of the 𝑥 and 𝑦 axes.

INPUT:

•xmin, xmax, ymin, ymax - floats

EXAMPLES:

sage: L = line([(1,2), (3,-4), (2, 5), (1,2)])
sage: L.set_axes_range(-1, 20, 0, 2)
sage: d = L.get_axes_range()
sage: d['xmin'], d['xmax'], d['ymin'], d['ymax']
(-1.0, 20.0, 0.0, 2.0)

axes_width(w=None)
Set the axes width. Use this to draw a plot with really fat or really thin axes.

INPUT:

•w - a float

If called with no input, return the current axes_width setting.

EXAMPLES: We create a plot, see the default axes width (with funny Python float rounding), then reset
the width to 10 (very fat).

sage: p = plot(cos, (-3,3))
sage: p.axes_width()
0.8
sage: p.axes_width(10)

5.1. Graphics objects 383

Sage Reference Manual: 2D Graphics, Release 8.0

sage: p.axes_width()
10.0

Finally we plot the result, which is a graph with very fat axes.

sage: p
Graphics object consisting of 1 graphics primitive

description()
Print a textual description to stdout.

This method is mostly used for doctests.

EXAMPLES:

sage: print(polytopes.hypercube(2).plot().description())
Polygon defined by 4 points: [(1.0, 1.0), (-1.0, 1.0), (-1.0, -1.0), (1.0, -1.
→˓0)]
Line defined by 2 points: [(-1.0, -1.0), (-1.0, 1.0)]
Line defined by 2 points: [(-1.0, -1.0), (1.0, -1.0)]
Line defined by 2 points: [(-1.0, 1.0), (1.0, 1.0)]
Line defined by 2 points: [(1.0, -1.0), (1.0, 1.0)]
Point set defined by 4 point(s): [(-1.0, -1.0), (-1.0, 1.0), (1.0, -1.0), (1.
→˓0, 1.0)]

fontsize(s=None)
Set the font size of axes labels and tick marks.

Note that the relative size of the axes labels font w.r.t. the tick marks font can be adjusted via
axes_labels_size().

INPUT:

•s - integer, a font size in points.

If called with no input, return the current fontsize.

EXAMPLES:

sage: L = line([(1,2), (3,-4), (2, 5), (1,2)])
sage: L.fontsize()
10
sage: L.fontsize(20)
sage: L.fontsize()
20

All the numbers on the axes will be very large in this plot:

sage: L
Graphics object consisting of 1 graphics primitive

get_axes_range()
Returns a dictionary of the range of the axes for this graphics object. This is fall back to the ranges in
get_minmax_data() for any value which the user has not explicitly set.

Warning: Changing the dictionary returned by this function does not change the axes range for this
object. To do that, use the set_axes_range() method.

384 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

EXAMPLES:

sage: L = line([(1,2), (3,-4), (2, 5), (1,2)])
sage: list(sorted(L.get_axes_range().items()))
[('xmax', 3.0), ('xmin', 1.0), ('ymax', 5.0), ('ymin', -4.0)]
sage: L.set_axes_range(xmin=-1)
sage: list(sorted(L.get_axes_range().items()))
[('xmax', 3.0), ('xmin', -1.0), ('ymax', 5.0), ('ymin', -4.0)]

get_minmax_data()
Return the x and y coordinate minimum and maximum

Warning: The returned dictionary is mutable, but changing it does not change the
xmin/xmax/ymin/ymax data. The minmax data is a function of the primitives which make up this
Graphics object. To change the range of the axes, call methods xmin(), xmax(), ymin(), ymax(),
or set_axes_range().

OUTPUT:

A dictionary whose keys give the xmin, xmax, ymin, and ymax data for this graphic.

EXAMPLES:

sage: g = line([(-1,1), (3,2)])
sage: list(sorted(g.get_minmax_data().items()))
[('xmax', 3.0), ('xmin', -1.0), ('ymax', 2.0), ('ymin', 1.0)]

Note that changing ymax doesn’t change the output of get_minmax_data:

sage: g.ymax(10)
sage: list(sorted(g.get_minmax_data().items()))
[('xmax', 3.0), ('xmin', -1.0), ('ymax', 2.0), ('ymin', 1.0)]

The width/height ratio (in output units, after factoring in the chosen aspect ratio) of the plot is limited to
10−15 . . . 1015, otherwise floating point errors cause problems in matplotlib:

sage: l = line([(1e-19,-1), (-1e-19,+1)], aspect_ratio=1.0)
sage: l.get_minmax_data()
{'xmax': 1.00010000000000e-15,
'xmin': -9.99900000000000e-16,
'ymax': 1.0,
'ymin': -1.0}

sage: l = line([(0,0), (1,1)], aspect_ratio=1e19)
sage: l.get_minmax_data()
{'xmax': 5000.50000000000, 'xmin': -4999.50000000000, 'ymax': 1.0, 'ymin': 0.
→˓0}

legend(show=None)
Set whether or not the legend is shown by default.

INPUT:

•show - (default: None) a boolean

If called with no input, return the current legend setting.

EXAMPLES:

By default no legend is displayed:

5.1. Graphics objects 385

Sage Reference Manual: 2D Graphics, Release 8.0

sage: P = plot(sin)
sage: P.legend()
False

But if we put a label then the legend is shown:

sage: P = plot(sin, legend_label='sin')
sage: P.legend()
True

We can turn it on or off:

sage: P.legend(False)
sage: P.legend()
False
sage: P.legend(True)
sage: P # show with the legend
Graphics object consisting of 1 graphics primitive

matplotlib(filename=None, xmin=None, xmax=None, ymin=None, ymax=None, figsize=None,
figure=None, sub=None, axes=None, axes_labels=None, axes_labels_size=None,
fontsize=None, frame=False, verify=True, aspect_ratio=None, gridlines=None, grid-
linesstyle=None, vgridlinesstyle=None, hgridlinesstyle=None, show_legend=None,
legend_options={}, axes_pad=None, ticks_integer=None, tick_formatter=None,
ticks=None, title=None, title_pos=None, base=None, scale=None, typeset=’default’)

Return a matplotlib figure object representing the graphic

EXAMPLES:

sage: c = circle((1,1),1)
sage: print(c.matplotlib())
Figure(640x480)

To obtain the first matplotlib axes object inside of the figure, you can do something like the following.

sage: p=plot(sin(x), (x, -2*pi, 2*pi))
sage: figure=p.matplotlib()
sage: axes=figure.axes[0]

For input parameters, see the documentation for the show() method (this function accepts all except the
transparent argument).

plot()
Draw a 2D plot of this graphics object, which just returns this object since this is already a 2D graphics
object.

EXAMPLES:

sage: S = circle((0,0), 2)
sage: S.plot() is S
True

It does not accept any argument (trac ticket #19539):

sage: S.plot(1)
Traceback (most recent call last):
...
TypeError: plot() takes exactly 1 argument (2 given)

386 Chapter 5. Infrastructure and Low-Level Functions

https://trac.sagemath.org/19539

Sage Reference Manual: 2D Graphics, Release 8.0

sage: S.plot(hey="hou")
Traceback (most recent call last):
...
TypeError: plot() got an unexpected keyword argument 'hey'

plot3d(z=0, **kwds)
Returns an embedding of this 2D plot into the xy-plane of 3D space, as a 3D plot object. An optional
parameter z can be given to specify the z-coordinate.

EXAMPLES:

sage: sum([plot(z*sin(x), 0, 10).plot3d(z) for z in range(6)]) # long time
Graphics3d Object

save(filename, legend_loc=’best’, legend_fancybox=False, legend_font_style=’normal’,
legend_font_size=’medium’, legend_font_variant=’normal’, legend_title=None,
legend_handlelength=0.05, legend_markerscale=0.6, legend_numpoints=2, leg-
end_labelspacing=0.02, legend_columnspacing=None, legend_font_weight=’medium’, leg-
end_handletextpad=0.5, legend_ncol=1, legend_borderaxespad=None, legend_shadow=True,
legend_borderpad=0.6, legend_font_family=’sans-serif’, legend_back_color=’white’, **kwds)

Save the graphics to an image file.

INPUT:

•filename – string. The filename and the image format given by the extension, which can be one of
the following:

–.eps,

–.pdf,

–.pgf,

–.png,

–.ps,

–.sobj (for a Sage object you can load later),

–.svg,

–empty extension will be treated as .sobj.

All other keyword arguments will be passed to the plotter.

OUTPUT:

•none.

EXAMPLES:

sage: c = circle((1,1), 1, color='red')
sage: filename = os.path.join(SAGE_TMP, 'test.png')
sage: c.save(filename, xmin=-1, xmax=3, ymin=-1, ymax=3)

To make a figure bigger or smaller, use figsize:

sage: c.save(filename, figsize=5, xmin=-1, xmax=3, ymin=-1, ymax=3)

By default, the figure grows to include all of the graphics and text, so the final image may not be ex-
actly the figure size you specified. If you want a figure to be exactly a certain size, specify the keyword
fig_tight=False:

5.1. Graphics objects 387

Sage Reference Manual: 2D Graphics, Release 8.0

sage: c.save(filename, figsize=[8,4], fig_tight=False,
....: xmin=-1, xmax=3, ymin=-1, ymax=3)

You can also pass extra options to the plot command instead of this method, e.g.

sage: plot(x^2 - 5, (x, 0, 5), ymin=0).save(tmp_filename(ext='.png'))

will save the same plot as the one shown by this command:

sage: plot(x^2 - 5, (x, 0, 5), ymin=0)
Graphics object consisting of 1 graphics primitive

(This test verifies that trac ticket #8632 is fixed.)

save_image(filename=None, *args, **kwds)
Save an image representation of self.

The image type is determined by the extension of the filename. For example, this could be .png, .jpg,
.gif, .pdf, .svg. Currently this is implemented by calling the save() method of self, passing along
all arguments and keywords.

Note: Not all image types are necessarily implemented for all graphics types. See save() for more
details.

EXAMPLES:

sage: c = circle((1,1), 1, color='red')
sage: filename = os.path.join(SAGE_TMP, 'test.png')
sage: c.save_image(filename, xmin=-1, xmax=3, ymin=-1, ymax=3)

set_aspect_ratio(ratio)
Set the aspect ratio, which is the ratio of height and width of a unit square (i.e., height/width of a unit
square), or ‘automatic’ (expand to fill the figure).

INPUT:

•ratio - a positive real number or ‘automatic’

EXAMPLES: We create a plot of the upper half of a circle, but it doesn’t look round because the aspect
ratio is off:

sage: P = plot(sqrt(1-x^2),(x,-1,1)); P
Graphics object consisting of 1 graphics primitive

So we set the aspect ratio and now it is round:

sage: P.set_aspect_ratio(1)
sage: P.aspect_ratio()
1.0
sage: P
Graphics object consisting of 1 graphics primitive

Note that the aspect ratio is inherited upon addition (which takes the max of aspect ratios of objects whose
aspect ratio has been set):

sage: P + plot(sqrt(4-x^2),(x,-2,2))
Graphics object consisting of 2 graphics primitives

388 Chapter 5. Infrastructure and Low-Level Functions

https://trac.sagemath.org/8632

Sage Reference Manual: 2D Graphics, Release 8.0

In the following example, both plots produce a circle that looks twice as tall as wide:

sage: Q = circle((0,0), 0.5); Q.set_aspect_ratio(2)
sage: (P + Q).aspect_ratio(); P+Q
2.0
Graphics object consisting of 2 graphics primitives
sage: (Q + P).aspect_ratio(); Q+P
2.0
Graphics object consisting of 2 graphics primitives

set_axes_range(xmin=None, xmax=None, ymin=None, ymax=None)
Set the ranges of the 𝑥 and 𝑦 axes.

INPUT:

•xmin, xmax, ymin, ymax - floats

EXAMPLES:

sage: L = line([(1,2), (3,-4), (2, 5), (1,2)])
sage: L.set_axes_range(-1, 20, 0, 2)
sage: d = L.get_axes_range()
sage: d['xmin'], d['xmax'], d['ymin'], d['ymax']
(-1.0, 20.0, 0.0, 2.0)

set_legend_options(**kwds)
Set various legend options.

INPUT:

•title - (default: None) string, the legend title

•ncol - (default: 1) positive integer, the number of columns

•columnspacing - (default: None) the spacing between columns

•borderaxespad - (default: None) float, length between the axes and the legend

•back_color - (default: ‘white’) This parameter can be a string denoting a color or an RGB tuple.
The string can be a color name as in (‘red’, ‘green’, ‘yellow’, ...) or a floating point number like ‘0.8’
which gets expanded to (0.8, 0.8, 0.8). The tuple form is just a floating point RGB tuple with all
values ranging from 0 to 1.

•handlelength - (default: 0.05) float, the length of the legend handles

•handletextpad - (default: 0.5) float, the pad between the legend handle and text

•labelspacing - (default: 0.02) float, vertical space between legend entries

•loc - (default: ‘best’) May be a string, an integer or a tuple. String or integer inputs must be
one of the following:

–0, ‘best’

–1, ‘upper right’

–2, ‘upper left’

–3, ‘lower left’

–4, ‘lower right’

–5, ‘right’

–6, ‘center left’

5.1. Graphics objects 389

Sage Reference Manual: 2D Graphics, Release 8.0

–7, ‘center right’

–8, ‘lower center’

–9, ‘upper center’

–10, ‘center’

–Tuple arguments represent an absolute (x, y) position on the plot in axes coordinates (meaning
from 0 to 1 in each direction).

•markerscale - (default: 0.6) float, how much to scale the markers in the legend.

•numpoints - (default: 2) integer, the number of points in the legend for line

•borderpad - (default: 0.6) float, the fractional whitespace inside the legend border (between 0 and
1)

•font_family - (default: ‘sans-serif’) string, one of ‘serif’, ‘sans-serif’, ‘cursive’, ‘fantasy’,
‘monospace’

•font_style - (default: ‘normal’) string, one of ‘normal’, ‘italic’, ‘oblique’

•font_variant - (default: ‘normal’) string, one of ‘normal’, ‘small-caps’

•font_weight - (default: ‘medium’) string, one of ‘black’, ‘extra bold’, ‘bold’, ‘semibold’,
‘medium’, ‘normal’, ‘light’

•font_size - (default: ‘medium’) string, one of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’,
‘x-large’, ‘xx-large’ or an absolute font size (e.g. 12)

•shadow - (default: True) boolean - draw a shadow behind the legend

•fancybox - (default: False) a boolean. If True, draws a frame with a round fancybox.

These are all keyword arguments.

OUTPUT: a dictionary of all current legend options

EXAMPLES:

By default, no options are set:

sage: p = plot(tan, legend_label='tan')
sage: p.set_legend_options()
{}

We build a legend without a shadow:

sage: p.set_legend_options(shadow=False)
sage: p.set_legend_options()['shadow']
False

To set the legend position to the center of the plot, all these methods are roughly equivalent:

sage: p.set_legend_options(loc='center'); p
Graphics object consisting of 1 graphics primitive

sage: p.set_legend_options(loc=10); p
Graphics object consisting of 1 graphics primitive

390 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

sage: p.set_legend_options(loc=(0.5,0.5)); p # aligns the bottom of the box
→˓to the center
Graphics object consisting of 1 graphics primitive

show(legend_loc=’best’, legend_fancybox=False, legend_font_style=’normal’, leg-
end_font_size=’medium’, legend_font_variant=’normal’, legend_title=None, leg-
end_handlelength=0.05, legend_markerscale=0.6, legend_numpoints=2, leg-
end_labelspacing=0.02, legend_columnspacing=None, legend_font_weight=’medium’, leg-
end_handletextpad=0.5, legend_ncol=1, legend_borderaxespad=None, legend_shadow=True,
legend_borderpad=0.6, legend_font_family=’sans-serif’, legend_back_color=’white’, **kwds)

Show this graphics image immediately.

This method attempts to display the graphics immediately, without waiting for the currently running code
(if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a
large number of external viewer programs.

OPTIONAL INPUT:

•dpi - (default: 100) dots per inch

•figsize - (default: [8.0,6.0]) [width, height] inches. The maximum value of each of the width and
the height can be 327 inches, at the default dpi of 100 dpi, which is just shy of the maximum allowed
value of 32768 dots (pixels).

•fig_tight - (default: True) whether to clip the drawing tightly around drawn objects. If True,
then the resulting image will usually not have dimensions corresponding to figsize. If False, the
resulting image will have dimensions corresponding to figsize.

•aspect_ratio - the perceived height divided by the perceived width. For example, if the aspect
ratio is set to 1, circles will look round and a unit square will appear to have sides of equal length, and
if the aspect ratio is set 2, vertical units will be twice as long as horizontal units, so a unit square will
be twice as high as it is wide. If set to 'automatic', the aspect ratio is determined by figsize
and the picture fills the figure.

•axes - (default: True)

•axes_labels - (default: None) list (or tuple) of two strings; the first is used as the label for the
horizontal axis, and the second for the vertical axis.

•axes_labels_size - (default: current setting – 1.6) scale factor relating the size of the axes labels
with respect to the size of the tick marks.

•fontsize - (default: current setting – 10) positive integer; used for axes labels; if you make this
very large, you may have to increase figsize to see all labels.

•frame - (default: False) draw a frame around the image

•gridlines - (default: None) can be any of the following:

–None, False: do not add grid lines.

–True, “automatic”, “major”: add grid lines at major ticks of the axes.

–“minor”: add grid at major and minor ticks.

–[xlist,ylist]: a tuple or list containing two elements, where xlist (or ylist) can be any of the follow-
ing.

*None, False: don’t add horizontal (or vertical) lines.

*True, “automatic”, “major”: add horizontal (or vertical) grid lines at the major ticks of the axes.

*“minor”: add horizontal (or vertical) grid lines at major and minor ticks of axes.

5.1. Graphics objects 391

Sage Reference Manual: 2D Graphics, Release 8.0

*an iterable yielding numbers n or pairs (n,opts), where n is the coordinate of the line and opt is
a dictionary of MATPLOTLIB options for rendering the line.

•gridlinesstyle, hgridlinesstyle, vgridlinesstyle - (default: None) a dictio-
nary of MATPLOTLIB options for the rendering of the grid lines, the horizontal grid lines or the
vertical grid lines, respectively.

•transparent - (default: False) If True, make the background transparent.

•axes_pad - (default: 0.02 on "linear" scale, 1 on "log" scale).

–In the "linear" scale, it determines the percentage of the axis range that is added to each end
of each axis. This helps avoid problems like clipping lines because of line-width, etc. To get axes
that are exactly the specified limits, set axes_pad to zero.

–On the "log" scale, it determines the exponent of the fraction of the minimum (resp. maximum)
that is subtracted from the minimum (resp. added to the maximum) value of the axis. For instance
if the minimum is 𝑚 and the base of the axis is 𝑏 then the new minimum after padding the axis
will be 𝑚−𝑚/𝑏axes_pad.

•ticks_integer - (default: False) guarantee that the ticks are integers (the ticks option, if spec-
ified, will override this)

•ticks - A matplotlib locator for the major ticks, or a number. There are several options. For more
information about locators, type from matplotlib import ticker and then ticker?.

–If this is a locator object, then it is the locator for the horizontal axis. A value of None means use
the default locator.

–If it is a list of two locators, then the first is for the horizontal axis and one for the vertical axis. A
value of None means use the default locator (so a value of [None, my_locator] uses my_locator
for the vertical axis and the default for the horizontal axis).

–If in either case above one of the entries is a number 𝑚 (something which can be coerced to a
float), it will be replaced by a MultipleLocator which places major ticks at integer multiples of
𝑚. See examples.

–If in either case above one of the entries is a list of numbers, it will be replaced by a FixedLocator
which places ticks at the locations specified. This includes the case of of the empty list, which
will give no ticks. See examples.

•tick_formatter - A matplotlib formatter for the major ticks. There are several options. For more
information about formatters, type from matplotlib import ticker and then ticker?.

If the value of this keyword is a single item, then this will give the formatting for the horizontal axis
only (except for the "latex" option). If it is a list or tuple, the first is for the horizontal axis, the
second for the vertical axis. The options are below:

–If one of the entries is a formatter object, then it used. A value of None means to use the default
locator (so using tick_formatter=[None, my_formatter] uses my_formatter for the
vertical axis and the default for the horizontal axis).

–If one of the entries is a symbolic constant such as 𝜋, 𝑒, or 𝑠𝑞𝑟𝑡(2), ticks will be formatted nicely
at rational multiples of this constant.

Warning: This should only be used with the ticks option using nice rational multiples of that
constant!

–If one of the entries is the string "latex", then the formatting will be nice typesetting of the
ticks. This is intended to be used when the tick locator for at least one of the axes is a list including

392 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

some symbolic elements. This uses matplotlib’s internal LaTeX rendering engine. If you want to
use an external LaTeX compiler, then set the keyword option typeset. See examples.

•title - (default: None) The title for the plot

•title_pos - (default: None) The position of the title for the plot. It must be a tuple or a list of
two real numbers (x_pos, y_pos) which indicate the relative position of the title within the
plot. The plot itself can be considered to occupy, in relative terms, the region within a unit square
[0, 1]
𝑡𝑖𝑚𝑒𝑠[0, 1]. The title text is centered around the horizontal factor x_pos of the plot. The baseline
of the title text is present at the vertical factor y_pos of the plot. Hence, title_pos=(0.5,
0.5) will center the title in the plot, whereas title_pos=(0.5, 1.1) will center the title
along the horizontal direction, but will place the title a fraction 0.1 times above the plot.

–If the first entry is a list of strings (or numbers), then the formatting for the horizontal axis will be
typeset with the strings present in the list. Each entry of the list of strings must be provided with
a corresponding number in the first entry of ticks to indicate its position on the axis. To typeset
the strings with "latex" enclose them within "$" symbols. To have similar custom formatting
of the labels along the vertical axis, the second entry must be a list of strings and the second entry
of ticks must also be a list of numbers which give the positions of the labels. See the examples
below.

•show_legend - (default: None) If True, show the legend

•legend_* - all the options valid for set_legend_options() prefixed with legend_

•base - (default: 10) the base of the logarithm if a logarithmic scale is set. This must be greater than
1. The base can be also given as a list or tuple (basex, basey). basex sets the base of the
logarithm along the horizontal axis and basey sets the base along the vertical axis.

•scale – (default: "linear") string. The scale of the axes. Possible values are

–"linear" – linear scaling of both the axes

–"loglog" – sets both the horizontal and vertical axes to logarithmic scale

–"semilogx" – sets only the horizontal axis to logarithmic scale.

–"semilogy" – sets only the vertical axis to logarithmic scale.

The scale can be also be given as single argument that is a list or tuple (scale, base) or
(scale, basex, basey).

Note:

–If the scale is "linear", then irrespective of what base is set to, it will default to 10 and
will remain unused.

•xmin – starting x value in the rendered figure.

•xmax – ending x value in the rendered figure.

•ymin – starting y value in the rendered figure.

•ymax – ending y value in the rendered figure.

•typeset – (default: "default") string. The type of font rendering that should be used for the
text. The possible values are

5.1. Graphics objects 393

Sage Reference Manual: 2D Graphics, Release 8.0

–"default" – Uses matplotlib’s internal text rendering engine called Mathtext (see http:
//matplotlib.org/users/mathtext.html). If you have modified the default matplotlib settings, for
instance via a matplotlibrc file, then this option will not change any of those settings.

–"latex" – LaTeX is used for rendering the fonts. This requires LaTeX, dvipng and Ghostscript
to be installed.

–"type1" – Type 1 fonts are used by matplotlib in the text in the figure. This requires LaTeX,
dvipng and Ghostscript to be installed.

OUTPUT:

This method does not return anything. Use save() if you want to save the figure as an image.

EXAMPLES:

sage: c = circle((1,1), 1, color='red')
sage: c.show(xmin=-1, xmax=3, ymin=-1, ymax=3)

You can make the picture larger by changing figsize with width, height each having a maximum value
of 327 inches at default dpi:

sage: p = ellipse((0,0),4,1)
sage: p.show(figsize=[327,10],dpi=100)
sage: p.show(figsize=[328,10],dpi=80)

You can turn off the drawing of the axes:

sage: show(plot(sin,-4,4), axes=False)

You can also label the axes. Putting something in dollar signs formats it as a mathematical expression:

sage: show(plot(sin,-4,4), axes_labels=('x','y'))

You can add a title to a plot:

sage: show(plot(sin,-4,4), title='A plot of $\sin(x)$')

You can also provide the position for the title to the plot. In the plot below the title is placed on the bottom
left of the figure.:

sage: plot(sin, -4, 4, title='Plot sin(x)', title_pos=(0.05,-0.05))
Graphics object consisting of 1 graphics primitive

If you want all the text to be rendered by using an external LaTeX installation then set the typeset to
"latex". This requires that LaTeX, dvipng and Ghostscript be installed:

sage: plot(x, typeset='latex') # optional - latex

If you want all the text in your plot to use Type 1 fonts, then set the typeset option to "type1". This
requires that LaTeX, dvipng and Ghostscript be installed:

sage: plot(x, typeset='type1') # optional - latex

You can turn on the drawing of a frame around the plots:

sage: show(plot(sin,-4,4), frame=True)

You can make the background transparent:

394 Chapter 5. Infrastructure and Low-Level Functions

http://matplotlib.org/users/mathtext.html
http://matplotlib.org/users/mathtext.html

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin(x), (x, -4, 4), transparent=True)
Graphics object consisting of 1 graphics primitive

Prior to trac ticket #19485, legends by default had a shadowless gray background. This behavior can be
recovered by passing in certain legend_options:

sage: p = plot(sin(x), legend_label='$\sin(x)$')
sage: p.show(legend_options={'back_color': (0.9,0.9,0.9),
....: 'shadow': False})

We can change the scale of the axes in the graphics before displaying:

sage: G = plot(exp, 1, 10)
sage: G.show(scale='semilogy')

We can change the base of the logarithm too. The following changes the vertical axis to be on log scale,
and with base 2. Note that the base argument will ignore any changes to the axis which is in linear scale.:

sage: G.show(scale='semilogy', base=2) # long time # y axis as powers of 2

sage: G.show(scale='semilogy', base=(3,2)) # base ignored for x-axis

The scale can be also given as a 2-tuple or a 3-tuple.:

sage: G.show(scale=('loglog', 2.1)) # long time # both x and y axes in base 2.
→˓1

sage: G.show(scale=('loglog', 2, 3)) # long time # x in base 2, y in base 3

The base need not be an integer, though it does have to be made a float.:

sage: G.show(scale='semilogx', base=float(e)) # base is e

Logarithmic scale can be used for various kinds of plots. Here are some examples.:

sage: G = list_plot([10**i for i in range(10)]) # long time
sage: G.show(scale='semilogy') # long time

sage: G = parametric_plot((x, x**2), (x, 1, 10))
sage: G.show(scale='loglog')

sage: disk((5,5), 4, (0, 3*pi/2)).show(scale='loglog',base=2)

sage: x, y = var('x, y')
sage: G = plot_vector_field((2^x,y^2),(x,1,10),(y,1,100))
sage: G.show(scale='semilogx',base=2)

Add grid lines at the major ticks of the axes.

sage: c = circle((0,0), 1)
sage: c.show(gridlines=True)
sage: c.show(gridlines="automatic")
sage: c.show(gridlines="major")

Add grid lines at the major and minor ticks of the axes.

5.1. Graphics objects 395

https://trac.sagemath.org/19485

Sage Reference Manual: 2D Graphics, Release 8.0

sage: u,v = var('u v')
sage: f = exp(-(u^2+v^2))
sage: p = plot_vector_field(f.gradient(), (u,-2,2), (v,-2,2))
sage: p.show(gridlines="minor")

Add only horizontal or vertical grid lines.

sage: p = plot(sin,-10,20)
sage: p.show(gridlines=[None, "automatic"])
sage: p.show(gridlines=["minor", False])

Add grid lines at specific positions (using lists/tuples).

sage: x, y = var('x, y')
sage: p = implicit_plot((y^2-x^2)*(x-1)*(2*x-3)-4*(x^2+y^2-2*x)^2, \
....: (x,-2,2), (y,-2,2), plot_points=1000)
sage: p.show(gridlines=[[1,0],[-1,0,1]])

Add grid lines at specific positions (using iterators).

sage: def maple_leaf(t):
....: return (100/(100+(t-pi/2)^8))*(2-sin(7*t)-cos(30*t)/2)
sage: p = polar_plot(maple_leaf, -pi/4, 3*pi/2, color="red",plot_points=1000)
→˓# long time
sage: p.show(gridlines=([-3,-2.75,..,3], range(-1,5,2))) # long time

Add grid lines at specific positions (using functions).

sage: y = x^5 + 4*x^4 - 10*x^3 - 40*x^2 + 9*x + 36
sage: p = plot(y, -4.1, 1.1)
sage: xlines = lambda a,b: [z for z,m in y.roots()]
sage: p.show(gridlines=[xlines, [0]], frame=True, axes=False)

Change the style of all the grid lines.

sage: b = bar_chart([-3,5,-6,11], color='red')
sage: b.show(gridlines=([-1,-0.5,..,4],True),
....: gridlinesstyle=dict(color="blue", linestyle=":"))

Change the style of the horizontal or vertical grid lines separately.

sage: p = polar_plot(2 + 2*cos(x), 0, 2*pi, color=hue(0.3))
sage: p.show(gridlines=True,
....: hgridlinesstyle=dict(color="orange", linewidth=1.0),
....: vgridlinesstyle=dict(color="blue", linestyle=":"))

Change the style of each grid line individually.

sage: x, y = var('x, y')
sage: p = implicit_plot((y^2-x^2)*(x-1)*(2*x-3)-4*(x^2+y^2-2*x)^2,
....: (x,-2,2), (y,-2,2), plot_points=1000)
sage: p.show(gridlines=(
....: [
....: (1,{"color":"red","linestyle":":"}),
....: (0,{"color":"blue","linestyle":"--"})
....:],
....: [
....: (-1,{"color":"red","linestyle":":"}),

396 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

....: (0,{"color":"blue","linestyle":"--"}),

....: (1,{"color":"red","linestyle":":"}),

....:]

....:),

....: gridlinesstyle=dict(marker='x',color="black"))

Grid lines can be added to contour plots.

sage: f = sin(x^2 + y^2)*cos(x)*sin(y)
sage: c = contour_plot(f, (x, -4, 4), (y, -4, 4), plot_points=100)
sage: c.show(gridlines=True, gridlinesstyle={'linestyle':':','linewidth':1,
→˓'color':'red'})

Grid lines can be added to matrix plots.

sage: M = MatrixSpace(QQ,10).random_element()
sage: matrix_plot(M).show(gridlines=True)

By default, Sage increases the horizontal and vertical axes limits by a certain percentage in all directions.
This is controlled by the axes_pad parameter. Increasing the range of the axes helps avoid problems
with lines and dots being clipped because the linewidth extends beyond the axes. To get axes limits that
are exactly what is specified, set axes_pad to zero. Compare the following two examples

sage: plot(sin(x), (x, -pi, pi),thickness=2)+point((pi, -1), pointsize=15)
Graphics object consisting of 2 graphics primitives
sage: plot(sin(x), (x, -pi, pi),thickness=2,axes_pad=0)+point((pi, -1),
→˓pointsize=15)
Graphics object consisting of 2 graphics primitives

The behavior of the axes_pad parameter is different if the axis is in the "log" scale. If 𝑏 is the base
of the axis, the minimum value of the axis, is decreased by the factor 1/𝑏axes_pad of the minimum and the
maximum value of the axis is increased by the same factor of the maximum value. Compare the axes in
the following two plots to see the difference.

sage: plot_loglog(x, (1.1*10**-2, 9990))
Graphics object consisting of 1 graphics primitive

sage: plot_loglog(x, (1.1*10**-2, 9990), axes_pad=0)
Graphics object consisting of 1 graphics primitive

Via matplotlib, Sage allows setting of custom ticks. See above for more details.

Here the labels are not so useful:

sage: plot(sin(pi*x), (x, -8, 8))
Graphics object consisting of 1 graphics primitive

Now put ticks at multiples of 2:

sage: plot(sin(pi*x), (x, -8, 8), ticks=2)
Graphics object consisting of 1 graphics primitive

Or just choose where you want the ticks:

sage: plot(sin(pi*x), (x, -8, 8), ticks=[[-7,-3,0,3,7],[-1/2,0,1/2]])
Graphics object consisting of 1 graphics primitive

Or no ticks at all:

5.1. Graphics objects 397

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(sin(pi*x), (x, -8, 8), ticks=[[],[]])
Graphics object consisting of 1 graphics primitive

This can be very helpful in showing certain features of plots.

sage: plot(1.5/(1+e^(-x)), (x, -10, 10)) # doesn't quite show value of
→˓inflection point
Graphics object consisting of 1 graphics primitive

sage: plot(1.5/(1+e^(-x)), (x, -10, 10), ticks=[None, 1.5/4]) # It's right at
→˓f(x)=0.75!
Graphics object consisting of 1 graphics primitive

But be careful to leave enough room for at least two major ticks, so that the user can tell what the scale is:

sage: plot(x^2,(x,1,8),ticks=6).show()
Traceback (most recent call last):
...
ValueError: Expand the range of the independent variable to
allow two multiples of your tick locator (option `ticks`).

We can also do custom formatting if you need it. See above for full details:

sage: plot(2*x+1,(x,0,5),ticks=[[0,1,e,pi,sqrt(20)],2],tick_formatter="latex")
Graphics object consisting of 1 graphics primitive

This is particularly useful when setting custom ticks in multiples of 𝜋.

sage: plot(sin(x),(x,0,2*pi),ticks=pi/3,tick_formatter=pi)
Graphics object consisting of 1 graphics primitive

But keep in mind that you will get exactly the formatting you asked for if you specify both formatters. The
first syntax is recommended for best style in that case.

sage: plot(arcsin(x),(x,-1,1),ticks=[None,pi/6],tick_formatter=["latex",pi])
→˓# Nice-looking!
Graphics object consisting of 1 graphics primitive

sage: plot(arcsin(x),(x,-1,1),ticks=[None,pi/6],tick_formatter=[None,pi]) #
→˓Not so nice-looking
Graphics object consisting of 1 graphics primitive

Custom tick labels can be provided by providing the keyword tick_formatter with the list of labels,
and simultaneously providing the keyword ticks with the positions of the labels.

sage: plot(x, (x,0,3), ticks=[[1,2.5],[0.5,1,2]], tick_formatter=[["x_1","
→˓x_2"],["y_1","y_2","y_3"]])
Graphics object consisting of 1 graphics primitive

The following sets the custom tick labels only along the horizontal axis.

sage: plot(x**2, (x,0,2), ticks=[[1,2], None], tick_formatter=[["x_1","x_2
→˓"], None])
Graphics object consisting of 1 graphics primitive

If the number of tick labels do not match the number of positions of tick labels, then it results in an error.:

398 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

sage: plot(x**2, (x,0,2), ticks=[[2], None], tick_formatter=[["x_1","x_2
→˓"], None]).show()
Traceback (most recent call last):
...
ValueError: If the first component of the list `tick_formatter` is a list
→˓then the first component of `ticks` must also be a list of equal length.

When using logarithmic scale along the axis, make sure to have enough room for two ticks so that the user
can tell what the scale is. This can be effected by increasing the range of the independent variable, or by
changing the base, or by providing enough tick locations by using the ticks parameter.

By default, Sage will expand the variable range so that at least two ticks are included along the logarithmic
axis. However, if you specify ticks manually, this safety measure can be defeated:

sage: list_plot_loglog([(1,2),(2,3)], plotjoined=True, ticks=[[1],[1]])
doctest:...: UserWarning: The x-axis contains fewer than 2 ticks;
the logarithmic scale of the plot may not be apparent to the reader.
doctest:...: UserWarning: The y-axis contains fewer than 2 ticks;
the logarithmic scale of the plot may not be apparent to the reader.
Graphics object consisting of 1 graphics primitive

This one works, since the horizontal axis is automatically expanded to contain two ticks and the vertical
axis is provided with two ticks:

sage: list_plot_loglog([(1,2),(2,3)], plotjoined=True, ticks=[None,[1,10]])
Graphics object consisting of 1 graphics primitive

Another example in the log scale where both the axes are automatically expanded to show two major ticks:

sage: list_plot_loglog([(2,0.5), (3, 4)], plotjoined=True)
Graphics object consisting of 1 graphics primitive

When using title_pos, it must be ensured that a list or a tuple of length two is used. Otherwise, an
error is raised.:

sage; plot(x, -4, 4, title='Plot x', title_pos=0.05)
Traceback (most recent call last):
...
ValueError: 'title_pos' must be a list or tuple of two real numbers.

tick_label_color(c=None)
Set the color of the axes tick labels.

INPUT:

•c - an RGB 3-tuple of numbers between 0 and 1

If called with no input, return the current tick_label_color setting.

EXAMPLES:

sage: p = plot(cos, (-3,3))
sage: p.tick_label_color()
(0, 0, 0)
sage: p.tick_label_color((1,0,0))
sage: p.tick_label_color()
(1.0, 0.0, 0.0)
sage: p
Graphics object consisting of 1 graphics primitive

5.1. Graphics objects 399

Sage Reference Manual: 2D Graphics, Release 8.0

xmax(xmax=None)
EXAMPLES:

sage: g = line([(-1,1), (3,2)])
sage: g.xmax()
3.0
sage: g.xmax(10)
sage: g.xmax()
10.0

xmin(xmin=None)
EXAMPLES:

sage: g = line([(-1,1), (3,2)])
sage: g.xmin()
-1.0
sage: g.xmin(-3)
sage: g.xmin()
-3.0

ymax(ymax=None)
EXAMPLES:

sage: g = line([(-1,1), (3,2)])
sage: g.ymax()
2.0
sage: g.ymax(10)
sage: g.ymax()
10.0

ymin(ymin=None)
EXAMPLES:

sage: g = line([(-1,1), (3,2)])
sage: g.ymin()
1.0
sage: g.ymin(-3)
sage: g.ymin()
-3.0

class sage.plot.graphics.GraphicsArray(array)
Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.
SageObject

GraphicsArray takes a (𝑚 x 𝑛) list of lists of graphics objects and plots them all on one canvas.

_rich_repr_(display_manager, **kwds)
Rich Output Magic Method

See sage.repl.rich_output for details.

EXAMPLES:

sage: from sage.repl.rich_output import get_display_manager
sage: dm = get_display_manager()
sage: g = graphics_array([Graphics(), Graphics()], 1, 2)
sage: g._rich_repr_(dm)
OutputImagePng container

400 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

append(g)
Appends a graphic to the array. Currently not implemented.

ncols()
Number of columns of the graphics array.

EXAMPLES:

sage: R = rainbow(6)
sage: L = [plot(x^n,(x,0,1),color=R[n]) for n in range(6)]
sage: G = graphics_array(L,2,3)
sage: G.ncols()
3
sage: graphics_array(L).ncols()
6

nrows()
Number of rows of the graphics array.

EXAMPLES:

sage: R = rainbow(6)
sage: L = [plot(x^n,(x,0,1),color=R[n]) for n in range(6)]
sage: G = graphics_array(L,2,3)
sage: G.nrows()
2
sage: graphics_array(L).nrows()
1

plot()
Draw a 2D plot of this graphics object, which just returns this object since this is already a 2D graphics
object.

EXAMPLES:

sage: g1 = plot(cos(20*x)*exp(-2*x), 0, 1)
sage: g2 = plot(2*exp(-30*x) - exp(-3*x), 0, 1)
sage: S = graphics_array([g1, g2], 2, 1)
sage: S.plot() is S
True

save(filename, dpi=100, figsize=None, axes=None, **kwds)
Save the graphics array.

INPUT:

•filename – string. The filename and the image format given by the extension, which can be one of
the following:

–.eps,

–.pdf,

–.png,

–.ps,

–.sobj (for a Sage object you can load later),

–.svg,

–empty extension will be treated as .sobj.

5.1. Graphics objects 401

Sage Reference Manual: 2D Graphics, Release 8.0

•dpi - dots per inch

•figsize - width or [width, height] See documentation for sage.plot.graphics.
Graphics.show() for more details.

•axes - (default: True)

EXAMPLES:

sage: F = tmp_filename(ext='.png')
sage: L = [plot(sin(k*x),(x,-pi,pi)) for k in [1..3]]
sage: G = graphics_array(L)
sage: G.save(F, dpi=500, axes=False) # long time (6s on sage.math, 2012)

save_image(filename=None, *args, **kwds)
Save an image representation of self. The image type is determined by the extension of the filename. For
example, this could be .png, .jpg, .gif, .pdf, .svg. Currently this is implemented by calling the
save() method of self, passing along all arguments and keywords.

Note: Not all image types are necessarily implemented for all graphics types. See save() for more
details.

EXAMPLES:

sage: plots = [[plot(m*cos(x + n*pi/4), (x,0, 2*pi)) for n in range(3)] for m
→˓in range(1,3)]
sage: G = graphics_array(plots)
sage: G.save_image(tmp_filename(ext='.png'))

show(**kwds)
Show this graphics array immediately.

This method attempts to display the graphics immediately, without waiting for the currently running code
(if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a
large number of external viewer programs.

OPTIONAL INPUT:

•dpi - dots per inch

•figsize - width or [width, height] See the documentation for sage.plot.graphics.
Graphics.show() for more information.

•axes - (default: True)

•fontsize - positive integer

•frame - (default: False) draw a frame around the image

OUTPUT:

This method does not return anything. Use save() if you want to save the figure as an image.

EXAMPLES:

This draws a graphics array with four trig plots and no axes in any of the plots:

sage: G = graphics_array([[plot(sin), plot(cos)], [plot(tan), plot(sec)]])
sage: G.show(axes=False)

402 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

sage.plot.graphics.is_Graphics(x)
Return True if 𝑥 is a Graphics object.

EXAMPLES:

sage: from sage.plot.graphics import is_Graphics
sage: is_Graphics(1)
False
sage: is_Graphics(disk((0.0, 0.0), 1, (0, pi/2)))
True

sage.plot.graphics.show_default(default=None)
Set the default for showing plots using any plot commands. If called with no arguments, returns the current
default.

If this is True (the default) then any plot object when displayed will be displayed as an actual plot instead of
text, i.e., the show command is not needed.

EXAMPLES:

The default starts out as True in interactive use and False in doctests:

sage: show_default() # long time
doctest:...: DeprecationWarning: this is done automatically by the doctest
→˓framework
See http://trac.sagemath.org/14469 for details.
False

5.2 Plotting primitives

class sage.plot.primitive.GraphicPrimitive(options)
Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.
SageObject

Base class for graphics primitives, e.g., things that knows how to draw themselves in 2D.

EXAMPLES:

We create an object that derives from GraphicPrimitive:

sage: P = line([(-1,-2), (3,5)])
sage: P[0]
Line defined by 2 points
sage: type(P[0])
<class 'sage.plot.line.Line'>

options()
Return the dictionary of options for this graphics primitive.

By default this function verifies that the options are all valid; if any aren’t, then a verbose message is
printed with level 0.

EXAMPLES:

sage: from sage.plot.primitive import GraphicPrimitive
sage: GraphicPrimitive({}).options()
{}

5.2. Plotting primitives 403

Sage Reference Manual: 2D Graphics, Release 8.0

plot3d(**kwds)
Plots 3D version of 2D graphics object. Not implemented for base class.

EXAMPLES:

sage: from sage.plot.primitive import GraphicPrimitive
sage: G=GraphicPrimitive({})
sage: G.plot3d()
Traceback (most recent call last):
...
NotImplementedError: 3D plotting not implemented for Graphics primitive

set_options(new_options)
Change the options to 𝑛𝑒𝑤𝑜𝑝𝑡𝑖𝑜𝑛𝑠.

EXAMPLES:

sage: from sage.plot.circle import Circle
sage: c = Circle(0,0,1,{})
sage: c.set_options({'thickness': 0.6})
sage: c.options()
{'thickness': 0.6...}

set_zorder(zorder)
Set the layer in which to draw the object.

EXAMPLES:

sage: P = line([(-2,-3), (3,4)], thickness=4)
sage: p=P[0]
sage: p.set_zorder(2)
sage: p.options()['zorder']
2
sage: Q = line([(-2,-4), (3,5)], thickness=4,zorder=1,hue=.5)
sage: P+Q # blue line on top
Graphics object consisting of 2 graphics primitives
sage: q=Q[0]
sage: q.set_zorder(3)
sage: P+Q # teal line on top
Graphics object consisting of 2 graphics primitives
sage: q.options()['zorder']
3

class sage.plot.primitive.GraphicPrimitive_xydata(options)
Bases: sage.plot.primitive.GraphicPrimitive

Create a base class GraphicsPrimitive. All this does is set the options.

EXAMPLES:

We indirectly test this function:

sage: from sage.plot.primitive import GraphicPrimitive
sage: GraphicPrimitive({})
Graphics primitive

get_minmax_data()
Returns a dictionary with the bounding box data.

EXAMPLES:

404 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

sage: d = polygon([[1,2], [5,6], [5,0]], rgbcolor=(1,0,1))[0].get_minmax_
→˓data()
sage: d['ymin']
0.0
sage: d['xmin']
1.0

sage: d = point((3, 3), rgbcolor=hue(0.75))[0].get_minmax_data()
sage: d['xmin']
3.0
sage: d['ymin']
3.0

sage: l = line([(100, 100), (120, 120)])[0]
sage: d = l.get_minmax_data()
sage: d['xmin']
100.0
sage: d['xmax']
120.0

5.3 Plotting utilities

sage.plot.misc.get_matplotlib_linestyle(linestyle, return_type)
Function which translates between matplotlib linestyle in short notation (i.e. ‘-‘, ‘–‘, ‘:’, ‘-.’) and long notation
(i.e. ‘solid’, ‘dashed’, ‘dotted’, ‘dashdot’).

If linestyle is none of these allowed options, the function raises a ValueError.

INPUT:

•linestyle - The style of the line, which is one of

– "-" or "solid"

– "--" or "dashed"

– "-." or "dash dot"

– ":" or "dotted"

– "None" or " " or "" (nothing)

The linestyle can also be prefixed with a drawing style (e.g., "steps--")

– "default" (connect the points with straight lines)

– "steps" or "steps-pre" (step function; horizontal line is to the left of point)

– "steps-mid" (step function; points are in the middle of horizontal lines)

– "steps-post" (step function; horizontal line is to the right of point)

If linestyle is None (of type NoneType), then we return it back unmodified.

•return_type - The type of linestyle that should be output. This argument takes only two values -
"long" or "short".

EXAMPLES:

Here is an example how to call this function:

5.3. Plotting utilities 405

Sage Reference Manual: 2D Graphics, Release 8.0

sage: from sage.plot.misc import get_matplotlib_linestyle
sage: get_matplotlib_linestyle(':', return_type='short')
':'

sage: get_matplotlib_linestyle(':', return_type='long')
'dotted'

sage.plot.misc.setup_for_eval_on_grid(funcs, ranges, plot_points=None, return_vars=False)
Calculate the necessary parameters to construct a list of points, and make the functions fast_callable.

INPUT:

•funcs – a function, or a list, tuple, or vector of functions

•ranges – a list of ranges. A range can be a 2-tuple of numbers specifying the minimum and maximum,
or a 3-tuple giving the variable explicitly.

•plot_points – a tuple of integers specifying the number of plot points for each range. If a single
number is specified, it will be the value for all ranges. This defaults to 2.

•return_vars – (default False) If True, return the variables, in order.

OUTPUT:

•fast_funcs - if only one function passed, then a fast callable function. If funcs is a list or tuple, then a
tuple of fast callable functions is returned.

•range_specs - a list of range_specs: for each range, a tuple is returned of the form (range_min,
range_max, range_step) such that srange(range_min, range_max, range_step,
include_endpoint=True) gives the correct points for evaluation.

EXAMPLES:

sage: x,y,z=var('x,y,z')
sage: f(x,y)=x+y-z
sage: g(x,y)=x+y
sage: h(y)=-y
sage: sage.plot.misc.setup_for_eval_on_grid(f, [(0, 2),(1,3),(-4,1)], plot_
→˓points=5)
(<sage.ext...>, [(0.0, 2.0, 0.5), (1.0, 3.0, 0.5), (-4.0, 1.0, 1.25)])
sage: sage.plot.misc.setup_for_eval_on_grid([g,h], [(0, 2),(-1,1)], plot_points=5)
((<sage.ext...>, <sage.ext...>), [(0.0, 2.0, 0.5), (-1.0, 1.0, 0.5)])
sage: sage.plot.misc.setup_for_eval_on_grid([sin,cos], [(-1,1)], plot_points=9)
((<sage.ext...>, <sage.ext...>), [(-1.0, 1.0, 0.25)])
sage: sage.plot.misc.setup_for_eval_on_grid([lambda x: x^2,cos], [(-1,1)], plot_
→˓points=9)
((<function <lambda> ...>, <sage.ext...>), [(-1.0, 1.0, 0.25)])
sage: sage.plot.misc.setup_for_eval_on_grid([x+y], [(x,-1,1),(y,-2,2)])
((<sage.ext...>,), [(-1.0, 1.0, 2.0), (-2.0, 2.0, 4.0)])
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,-1,1),(y,-1,1)], plot_
→˓points=[4,9])
(<sage.ext...>, [(-1.0, 1.0, 0.6666666666666666), (-1.0, 1.0, 0.25)])
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,-1,1),(y,-1,1)], plot_
→˓points=[4,9,10])
Traceback (most recent call last):
...
ValueError: plot_points must be either an integer or a list of integers, one for
→˓each range
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(1,-1),(y,-1,1)], plot_
→˓points=[4,9,10])
Traceback (most recent call last):

406 Chapter 5. Infrastructure and Low-Level Functions

Sage Reference Manual: 2D Graphics, Release 8.0

...
ValueError: Some variable ranges specify variables while others do not
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(1,-1),(-1,1)], plot_points=5)
doctest:...: DeprecationWarning:
Unnamed ranges for more than one variable is deprecated and
will be removed from a future release of Sage; you can used
named ranges instead, like (x,0,2)
See http://trac.sagemath.org/7008 for details.
(<sage.ext...>, [(1.0, -1.0, 0.5), (-1.0, 1.0, 0.5)])
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(y,1,-1),(x,-1,1)], plot_
→˓points=5)
(<sage.ext...>, [(1.0, -1.0, 0.5), (-1.0, 1.0, 0.5)])
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,1,-1),(x,-1,1)], plot_
→˓points=5)
Traceback (most recent call last):
...
ValueError: range variables should be distinct, but there are duplicates
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,1,1),(y,-1,1)])
Traceback (most recent call last):
...
ValueError: plot start point and end point must be different
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,1,-1),(y,-1,1)], return_
→˓vars=True)
(<sage.ext...>, [(1.0, -1.0, 2.0), (-1.0, 1.0, 2.0)], [x, y])
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(y,1,-1),(x,-1,1)], return_
→˓vars=True)
(<sage.ext...>, [(1.0, -1.0, 2.0), (-1.0, 1.0, 2.0)], [y, x])

sage.plot.misc.unify_arguments(funcs)
Return a tuple of variables of the functions, as well as the number of “free” variables (i.e., variables that defined
in a callable function).

INPUT:

•funcs – a list of functions; these can be symbolic expressions, polynomials, etc

OUTPUT: functions, expected arguments

•A tuple of variables in the functions

•A tuple of variables that were “free” in the functions

EXAMPLES:

sage: x,y,z=var('x,y,z')
sage: f(x,y)=x+y-z
sage: g(x,y)=x+y
sage: h(y)=-y
sage: sage.plot.misc.unify_arguments((f,g,h))
((x, y, z), (z,))
sage: sage.plot.misc.unify_arguments((g,h))
((x, y), ())
sage: sage.plot.misc.unify_arguments((f,z))
((x, y, z), (z,))
sage: sage.plot.misc.unify_arguments((h,z))
((y, z), (z,))
sage: sage.plot.misc.unify_arguments((x+y,x-y))
((x, y), (x, y))

5.3. Plotting utilities 407

Sage Reference Manual: 2D Graphics, Release 8.0

408 Chapter 5. Infrastructure and Low-Level Functions

CHAPTER

SIX

INDICES AND TABLES

• Index

• Module Index

• Search Page

409

Sage Reference Manual: 2D Graphics, Release 8.0

410 Chapter 6. Indices and Tables

PYTHON MODULE INDEX

g
sage.graphs.graph_plot, 271

p
sage.plot.animate, 157
sage.plot.arc, 307
sage.plot.arrow, 309
sage.plot.bar_chart, 268
sage.plot.bezier_path, 321
sage.plot.circle, 328
sage.plot.colors, 146
sage.plot.complex_plot, 167
sage.plot.contour_plot, 175
sage.plot.density_plot, 239
sage.plot.disk, 339
sage.plot.ellipse, 341
sage.plot.graphics, 379
sage.plot.histogram, 266
sage.plot.hyperbolic_arc, 368
sage.plot.hyperbolic_polygon, 369
sage.plot.hyperbolic_regular_polygon, 374
sage.plot.line, 344
sage.plot.matrix_plot, 301
sage.plot.misc, 405
sage.plot.plot, 1
sage.plot.plot_field, 247
sage.plot.point, 348
sage.plot.polygon, 352
sage.plot.primitive, 403
sage.plot.scatter_plot, 264
sage.plot.step, 265
sage.plot.streamline_plot, 257
sage.plot.text, 135

411

Sage Reference Manual: 2D Graphics, Release 8.0

412 Python Module Index

INDEX

Symbols
_circle_embedding() (in module sage.graphs.graph_plot), 275
_line_embedding() (in module sage.graphs.graph_plot), 275
_rich_repr_() (sage.plot.graphics.Graphics method), 380
_rich_repr_() (sage.plot.graphics.GraphicsArray method), 400

A
adaptive_refinement() (in module sage.plot.plot), 26
add_frame() (sage.plot.animate.APngAssembler method), 159
add_primitive() (sage.plot.graphics.Graphics method), 380
animate() (in module sage.plot.animate), 166
Animation (class in sage.plot.animate), 159
apng() (sage.plot.animate.Animation method), 160
APngAssembler (class in sage.plot.animate), 158
append() (sage.plot.graphics.GraphicsArray method), 400
Arc (class in sage.plot.arc), 307
arc() (in module sage.plot.arc), 308
Arrow (class in sage.plot.arrow), 309
arrow() (in module sage.plot.arrow), 310
arrow2d() (in module sage.plot.arrow), 312
aspect_ratio() (sage.plot.graphics.Graphics method), 380
axes() (sage.plot.graphics.Graphics method), 381
axes_color() (sage.plot.graphics.Graphics method), 381
axes_label_color() (sage.plot.graphics.Graphics method), 381
axes_labels() (sage.plot.graphics.Graphics method), 382
axes_labels_size() (sage.plot.graphics.Graphics method), 383
axes_range() (sage.plot.graphics.Graphics method), 383
axes_width() (sage.plot.graphics.Graphics method), 383

B
bar_chart() (in module sage.plot.bar_chart), 269
BarChart (class in sage.plot.bar_chart), 268
bezier_path() (in module sage.plot.bezier_path), 324
bezier_path() (sage.plot.arc.Arc method), 307
BezierPath (class in sage.plot.bezier_path), 321
blend() (sage.plot.colors.Color method), 147

413

Sage Reference Manual: 2D Graphics, Release 8.0

C
Circle (class in sage.plot.circle), 328
circle() (in module sage.plot.circle), 330
Color (class in sage.plot.colors), 147
Colormaps (class in sage.plot.colors), 150
ColorsDict (class in sage.plot.colors), 150
complex_plot() (in module sage.plot.complex_plot), 167
complex_to_rgb() (in module sage.plot.complex_plot), 174
ComplexPlot (class in sage.plot.complex_plot), 167
contour_plot() (in module sage.plot.contour_plot), 175
ContourPlot (class in sage.plot.contour_plot), 175
CurveArrow (class in sage.plot.arrow), 310

D
darker() (sage.plot.colors.Color method), 148
density_plot() (in module sage.plot.density_plot), 240
DensityPlot (class in sage.plot.density_plot), 239
description() (sage.plot.graphics.Graphics method), 384
Disk (class in sage.plot.disk), 339
disk() (in module sage.plot.disk), 340

E
Ellipse (class in sage.plot.ellipse), 341
ellipse() (in module sage.plot.ellipse), 342
equify() (in module sage.plot.contour_plot), 210

F
ffmpeg() (sage.plot.animate.Animation method), 161
float_to_html() (in module sage.plot.colors), 151
float_to_integer() (in module sage.plot.colors), 151
fontsize() (sage.plot.graphics.Graphics method), 384

G
generate_plot_points() (in module sage.plot.plot), 26
get_axes_range() (sage.plot.graphics.Graphics method), 384
get_cmap() (in module sage.plot.colors), 152
get_matplotlib_linestyle() (in module sage.plot.misc), 405
get_minmax_data() (sage.plot.arc.Arc method), 307
get_minmax_data() (sage.plot.arrow.Arrow method), 309
get_minmax_data() (sage.plot.arrow.CurveArrow method), 310
get_minmax_data() (sage.plot.bar_chart.BarChart method), 269
get_minmax_data() (sage.plot.bezier_path.BezierPath method), 322
get_minmax_data() (sage.plot.circle.Circle method), 329
get_minmax_data() (sage.plot.complex_plot.ComplexPlot method), 167
get_minmax_data() (sage.plot.contour_plot.ContourPlot method), 175
get_minmax_data() (sage.plot.density_plot.DensityPlot method), 240
get_minmax_data() (sage.plot.disk.Disk method), 340
get_minmax_data() (sage.plot.ellipse.Ellipse method), 342
get_minmax_data() (sage.plot.graphics.Graphics method), 385

414 Index

Sage Reference Manual: 2D Graphics, Release 8.0

get_minmax_data() (sage.plot.histogram.Histogram method), 266
get_minmax_data() (sage.plot.matrix_plot.MatrixPlot method), 302
get_minmax_data() (sage.plot.plot_field.PlotField method), 247
get_minmax_data() (sage.plot.primitive.GraphicPrimitive_xydata method), 404
get_minmax_data() (sage.plot.scatter_plot.ScatterPlot method), 264
get_minmax_data() (sage.plot.streamline_plot.StreamlinePlot method), 257
get_minmax_data() (sage.plot.text.Text method), 136
gif() (sage.plot.animate.Animation method), 162
GraphicPrimitive (class in sage.plot.primitive), 403
GraphicPrimitive_xydata (class in sage.plot.primitive), 404
Graphics (class in sage.plot.graphics), 379
graphics_array() (in module sage.plot.plot), 27
graphics_array() (sage.plot.animate.Animation method), 163
GraphicsArray (class in sage.plot.graphics), 400
GraphPlot (class in sage.graphs.graph_plot), 276

H
Histogram (class in sage.plot.histogram), 266
histogram() (in module sage.plot.histogram), 266
hls() (sage.plot.colors.Color method), 148
hsl() (sage.plot.colors.Color method), 148
hsv() (sage.plot.colors.Color method), 149
html_color() (sage.plot.colors.Color method), 149
html_to_float() (in module sage.plot.colors), 152
hue() (in module sage.plot.colors), 153
hyperbolic_arc() (in module sage.plot.hyperbolic_arc), 369
hyperbolic_polygon() (in module sage.plot.hyperbolic_polygon), 370
hyperbolic_regular_polygon() (in module sage.plot.hyperbolic_regular_polygon), 375
hyperbolic_triangle() (in module sage.plot.hyperbolic_polygon), 372
HyperbolicArc (class in sage.plot.hyperbolic_arc), 368
HyperbolicPolygon (class in sage.plot.hyperbolic_polygon), 369
HyperbolicRegularPolygon (class in sage.plot.hyperbolic_regular_polygon), 374

I
implicit_plot() (in module sage.plot.contour_plot), 210
is_Graphics() (in module sage.plot.graphics), 402

L
layout_tree() (sage.graphs.graph_plot.GraphPlot method), 276
legend() (sage.plot.graphics.Graphics method), 385
lighter() (sage.plot.colors.Color method), 149
Line (class in sage.plot.line), 344
line() (in module sage.plot.line), 344
line2d() (in module sage.plot.line), 344
list_plot() (in module sage.plot.plot), 29
list_plot_loglog() (in module sage.plot.plot), 41
list_plot_semilogx() (in module sage.plot.plot), 43
list_plot_semilogy() (in module sage.plot.plot), 45
load_maps() (sage.plot.colors.Colormaps method), 150

Index 415

Sage Reference Manual: 2D Graphics, Release 8.0

M
make_image() (sage.plot.animate.Animation method), 163
matplotlib() (sage.plot.graphics.Graphics method), 386
matrix_plot() (in module sage.plot.matrix_plot), 302
MatrixPlot (class in sage.plot.matrix_plot), 301
minmax_data() (in module sage.plot.plot), 47
mod_one() (in module sage.plot.colors), 153

N
ncols() (sage.plot.graphics.GraphicsArray method), 401
nrows() (sage.plot.graphics.GraphicsArray method), 401

O
options() (sage.plot.primitive.GraphicPrimitive method), 403

P
parametric_plot() (in module sage.plot.plot), 47
plot() (in module sage.plot.plot), 54
plot() (sage.graphs.graph_plot.GraphPlot method), 276
plot() (sage.plot.graphics.Graphics method), 386
plot() (sage.plot.graphics.GraphicsArray method), 401
plot3d() (sage.plot.arc.Arc method), 308
plot3d() (sage.plot.arrow.Arrow method), 310
plot3d() (sage.plot.bezier_path.BezierPath method), 322
plot3d() (sage.plot.circle.Circle method), 329
plot3d() (sage.plot.disk.Disk method), 340
plot3d() (sage.plot.ellipse.Ellipse method), 342
plot3d() (sage.plot.graphics.Graphics method), 387
plot3d() (sage.plot.line.Line method), 344
plot3d() (sage.plot.point.Point method), 348
plot3d() (sage.plot.polygon.Polygon method), 353
plot3d() (sage.plot.primitive.GraphicPrimitive method), 403
plot3d() (sage.plot.text.Text method), 136
plot_loglog() (in module sage.plot.plot), 118
plot_semilogx() (in module sage.plot.plot), 121
plot_semilogy() (in module sage.plot.plot), 123
plot_slope_field() (in module sage.plot.plot_field), 247
plot_step_function() (in module sage.plot.step), 265
plot_vector_field() (in module sage.plot.plot_field), 250
PlotField (class in sage.plot.plot_field), 247
png() (sage.plot.animate.Animation method), 164
Point (class in sage.plot.point), 348
point() (in module sage.plot.point), 349
point2d() (in module sage.plot.point), 350
points() (in module sage.plot.point), 352
polar_plot() (in module sage.plot.plot), 125
Polygon (class in sage.plot.polygon), 352
polygon() (in module sage.plot.polygon), 354
polygon2d() (in module sage.plot.polygon), 355

416 Index

Sage Reference Manual: 2D Graphics, Release 8.0

R
rainbow() (in module sage.plot.colors), 154
region_plot() (in module sage.plot.contour_plot), 225
reshape() (in module sage.plot.plot), 133
rgb() (sage.plot.colors.Color method), 150
rgbcolor() (in module sage.plot.colors), 154

S
sage.graphs.graph_plot (module), 271
sage.plot.animate (module), 157
sage.plot.arc (module), 307
sage.plot.arrow (module), 309
sage.plot.bar_chart (module), 268
sage.plot.bezier_path (module), 321
sage.plot.circle (module), 328
sage.plot.colors (module), 146
sage.plot.complex_plot (module), 167
sage.plot.contour_plot (module), 175
sage.plot.density_plot (module), 239
sage.plot.disk (module), 339
sage.plot.ellipse (module), 341
sage.plot.graphics (module), 379
sage.plot.histogram (module), 266
sage.plot.hyperbolic_arc (module), 368
sage.plot.hyperbolic_polygon (module), 369
sage.plot.hyperbolic_regular_polygon (module), 374
sage.plot.line (module), 344
sage.plot.matrix_plot (module), 301
sage.plot.misc (module), 405
sage.plot.plot (module), 1
sage.plot.plot_field (module), 247
sage.plot.point (module), 348
sage.plot.polygon (module), 352
sage.plot.primitive (module), 403
sage.plot.scatter_plot (module), 264
sage.plot.step (module), 265
sage.plot.streamline_plot (module), 257
sage.plot.text (module), 135
save() (sage.plot.animate.Animation method), 164
save() (sage.plot.graphics.Graphics method), 387
save() (sage.plot.graphics.GraphicsArray method), 401
save_image() (sage.plot.graphics.Graphics method), 388
save_image() (sage.plot.graphics.GraphicsArray method), 402
scatter_plot() (in module sage.plot.scatter_plot), 265
ScatterPlot (class in sage.plot.scatter_plot), 264
SelectiveFormatter() (in module sage.plot.plot), 25
set_aspect_ratio() (sage.plot.graphics.Graphics method), 388
set_axes_range() (sage.plot.graphics.Graphics method), 389
set_default() (sage.plot.animate.APngAssembler method), 159
set_edges() (sage.graphs.graph_plot.GraphPlot method), 294

Index 417

Sage Reference Manual: 2D Graphics, Release 8.0

set_legend_options() (sage.plot.graphics.Graphics method), 389
set_options() (sage.plot.primitive.GraphicPrimitive method), 404
set_pos() (sage.graphs.graph_plot.GraphPlot method), 298
set_vertices() (sage.graphs.graph_plot.GraphPlot method), 299
set_zorder() (sage.plot.primitive.GraphicPrimitive method), 404
setup_for_eval_on_grid() (in module sage.plot.misc), 406
setup_for_eval_on_grid() (in module sage.plot.plot), 133
show() (sage.graphs.graph_plot.GraphPlot method), 300
show() (sage.plot.animate.Animation method), 165
show() (sage.plot.graphics.Graphics method), 391
show() (sage.plot.graphics.GraphicsArray method), 402
show_default() (in module sage.plot.graphics), 403
streamline_plot() (in module sage.plot.streamline_plot), 257
StreamlinePlot (class in sage.plot.streamline_plot), 257

T
Text (class in sage.plot.text), 135
text() (in module sage.plot.text), 136
tick_label_color() (sage.plot.graphics.Graphics method), 399
to_float_list() (in module sage.plot.plot), 134
to_mpl_color() (in module sage.plot.colors), 155

U
unify_arguments() (in module sage.plot.misc), 407

V
var_and_list_of_values() (in module sage.plot.plot), 134

X
xmax() (sage.plot.graphics.Graphics method), 399
xmin() (sage.plot.graphics.Graphics method), 400
xydata_from_point_list() (in module sage.plot.plot), 135

Y
ymax() (sage.plot.graphics.Graphics method), 400
ymin() (sage.plot.graphics.Graphics method), 400

418 Index

	General
	2D Plotting
	Text in plots
	Colors
	Animated plots

	Function and Data Plots
	Complex Plots
	Contour Plots
	Density Plots
	Plotting fields
	Streamline Plots
	Scatter Plots
	Step function plots
	Histograms
	Bar Charts

	Plots of Other Mathematical Objects
	Graph Plotting
	Matrix Plots

	Basic Shapes
	Arcs of circles and ellipses
	Arrows
	Bezier Paths
	Circles
	Disks
	Ellipses
	Line Plots
	Points
	Polygons
	Arcs in hyperbolic geometry
	Polygons and triangles in hyperbolic geometry
	Regular polygons in the upper half model for hyperbolic plane

	Infrastructure and Low-Level Functions
	Graphics objects
	Plotting primitives
	Plotting utilities

	Indices and Tables
	Python Module Index
	Index

