Thematic Tutorials
Release 8.0

The Sage Development Team

Jul 23, 2017

CONTENTS

1 Introduction to Sage 3
2 Introduction to Python 5
3 Calculus and plotting 7
4 Algebra 9
5 Number Theory 11
6 Geometry 13
7 Combinatorics 15
8 Algebraic Combinatorics 17
9 Parents/Elements, Categories and algebraic structures 19
10 Numerical computations 21
11 Advanced programming 23
12 Documentation 25

Bibliography 403

Thematic Tutorials, Release 8.0

Here you will find Sage demonstrations, quick reference cards, primers, and thematic tutorials,

* A quickref (or quick reference card) is a one page document with the essential examples, and pointers to the
main entry points.

* A primer is a document meant for a user to get started by himself on a theme in a matter of minutes.
* A tutorial is more in-depth and could take as much as an hour or more to get through.

This documentation is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

CONTENTS 1

http://creativecommons.org/licenses/by-sa/3.0/

Thematic Tutorials, Release 8.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION TO SAGE

Logging on to a Sage Server and Creating a Worksheet (PREP)
Introductory Sage Tutorial (PREP)
Tutorial: Using the Sage notebook, navigating the help system, first exercises

Sage’s main tutorial

Thematic Tutorials, Release 8.0

4 Chapter 1. Introduction to Sage

CHAPTER
TWO

INTRODUCTION TO PYTHON

Tutorial: Sage Introductory Programming (PREP)
Tutorial: Programming in Python and Sage
Tutorial: Comprehensions, Iterators, and Iterables
Tutorial: Objects and Classes in Python and Sage

Functional Programming for Mathematicians

Thematic Tutorials, Release 8.0

6 Chapter 2. Introduction to Python

CHAPTER
THREE

CALCULUS AND PLOTTING

* Tutorial: Symbolics and Plotting (PREP)
¢ Tutorial: Calculus (PREP)
e Tutorial: Advanced-2D Plotting (PREP)

Thematic Tutorials, Release 8.0

8 Chapter 3. Calculus and plotting

CHAPTER
FOUR

ALGEBRA

* Group Theory and Sage
* Lie Methods and Related Combinatorics in Sage

¢ Tutorial: Using Free Modules and Vector Spaces

Thematic Tutorials, Release 8.0

10 Chapter 4. Algebra

CHAPTER
FIVE

NUMBER THEORY

* Number Theory and the RSA Public Key Cryptosystem
¢ Introduction to the -adics

o Three Lectures about Explicit Methods in Number Theory Using Sage

11

Thematic Tutorials, Release 8.0

12 Chapter 5. Number Theory

CHAPTER
SIX

GEOMETRY

* A Brief Introduction to Polytopes in Sage

* Draw polytopes in LateX using TikZ

13

Thematic Tutorials, Release 8.0

14 Chapter 6. Geometry

CHAPTER
SEVEN

COMBINATORICS

¢ Introduction to combinatorics in Sage
* Coding Theory in Sage

* How to write your own classes for coding theory

15

Thematic Tutorials, Release 8.0

16 Chapter 7. Combinatorics

CHAPTER
EIGHT

ALGEBRAIC COMBINATORICS

Algebraic Combinatorics in Sage

Tutorial: Symmetric Functions
Lie Methods and Related Combinatorics in Sage
Tutorial: visualizing root systems

Abelian Sandpile Model

17

Thematic Tutorials, Release 8.0

18 Chapter 8. Algebraic Combinatorics

CHAPTER
NINE

PARENTS/ELEMENTS, CATEGORIES AND ALGEBRAIC

How to implement new algebraic structures in Sage
Elements, parents, and categories in Sage: a (draft of) primer
Implementing a new parent: a (draft of) tutorial

Tutorial: Implementing Algebraic Structures

STRUCTURES

19

Thematic Tutorials, Release 8.0

20 Chapter 9. Parents/Elements, Categories and algebraic structures

CHAPTER
TEN

NUMERICAL COMPUTATIONS

* Numerical Computing with Sage

* Linear Programming (Mixed Integer)

21

Thematic Tutorials, Release 8.0

22 Chapter 10. Numerical computations

CHAPTER
ELEVEN

ADVANCED PROGRAMMING

* How to call a C code (or a compiled library) from Sage ?

* Profiling in Sage

23

Thematic Tutorials, Release 8.0

24 Chapter 11. Advanced programming

CHAPTER
TWELVE

DOCUMENTATION

* Creating a Tutorial from a Worksheet

12.1 Thematic tutorial document tree

12.1.1 Algebraic Combinatorics in Sage

Author: Anne Schilling (UC Davis)

These notes provide some Sage examples for Stanley’s book:

A free pdf version of the book without exercises can be found on Stanley’s homepage.

Preparation of this document was supported in part by NSF grants DMS-1001256 and OCI-1147247.

I would like to thank Federico Castillo (who wrote a first version of the n-cube section) and Nicolas M. Thiery (who
wrote a slightly different French version of the Tsetlin library section) for their help.

Walks in graphs

This section provides some examples on Chapter 1 of Stanley’s book [Stanley2013].

We begin by creating a graph with 4 vertices:

sage: G = Graph(4)
sage: G
Graph on 4 vertices

This graph has no edges yet:

sage: G.vertices|()
[0, 1, 2, 3]

sage: G.edges|()

[]

Before we can add edges, we need to tell Sage that our graph can have loops and multiple edges.:

sage: G.allow_loops (True)
sage: G.allow_multiple_edges (True)

Now we are ready to add our edges by specifying a tuple of vertices that are connected by an edge. If there are multiple
edges, we need to add the tuple with multiplicity.:

25

http://www-math.mit.edu/~rstan/algcomb/index.html

Thematic Tutorials, Release 8.0

sage: G.add_edges([(0,0), (0,0), (0,1), (0,3), (1,3),(1,3)1)

Now let us look at the graph!

sage: G.plot ()
Graphics object consisting of 11 graphics primitives

(3)

We can construct the adjacency matrix:

sage: A = G.adjacency_matrix()
sage: A
21

O O O O

1]
[1 0 2]
[0 O 0]
(1 2 0]

The entry in row 4 and column j of the /-th power of A gives us the number of paths of length ¢ from vertex i to vertex
7. Let us verify this:

sage: Axx2

[6 4 0 4]
[4 50 1]
[0 0 0 0]
(4 1 0 5]

There are 4 paths of length 2 from vertex O to vertex 1: take either loop at 0 and then the edge (0, 1) (2 choices) or
take the edge (0, 3) and then either of the two edges (3, 1) (two choices):

sage: (Ax%2)[0,1]
4

To count the number of closed walks, we can also look at the sum of the ¢-th powers of the eigenvalues. Even though
the eigenvalues are not integers, we find that the sum of their squares is an integer:

sage: A.eigenvalues()

[0, -2, 0.5857864376269049?, 3.4142135623730957?]
sage: sum(lax+2 for la in A.eigenvalues())
16.000000000000007

We can achieve the same by looking at the trace of the /-th power of the matrix:

sage: (Ax*2).trace()
16

26 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

n-Cube
This section provides some examples on Chapter 2 of Stanley’s book [Stanley2013], which deals with n-cubes, the
Radon transform, and combinatorial formulas for walks on the n-cube.

The vertices of the n-cube can be described by vectors in Z3. First we define the addition of two vectors u,v € Z3
via the following distance:

sage: def dist(u,v):
e h = [(u[i]+v[i])%2 for i in range(len(u))]
et return sum(h)

The distance function measures in how many slots two vectors in Z3 differ:

sage: u=(1,0,1,1,1,0)
sage: v=(0,0,1,1,0,0)
sage: dist (u,v)

2

Now we are going to define the n-cube as the graph with vertices in Z5 and edges between vertex u and vertex v if
they differ in one slot, that is, the distance function is 1:

sage: def cube(n):

et G = Graph (2+x*n)

e vertices = Tuples([0,1],n)
et for i in range (2%*n):
et for j in range (2+%*n):

Il
—

e if dist (vertices[i],vertices[]]) =
e G.add_edge (i, j)
et return G

We can plot the 3 and 4-cube:

sage: cube(3) .plot ()
Graphics object consisting of 21 graphics primitives

sage: cube (4) .plot ()
Graphics object consisting of 49 graphics primitives

12.1. Thematic tutorial document tree 27

Thematic Tutorials, Release 8.0

Next we can experiment and check Corollary 2.4 in Stanley’s book, which states the n-cube has n choose i eigenvalues
equal to n — 2¢:

sage: G = cube(2)
sage: G.adjacency_matrix () .eigenvalues ()
[27 _2! Or O]

sage: G = cube(3)
sage: G.adjacency_matrix () .eigenvalues ()
[31 73! ll 1! 1/ 71! 71! 711

sage: G = cube(4)
sage: G.adjacency_matrix () .eigenvalues|()
[41 _47 2! 2/ 2/ 2! _21 _21 _2! _21 Or Or OI OI Or O]

It is now easy to slightly vary this problem and change the edge set by connecting vertices u and v if their distance is
2 (see Problem 4 in Chapter 2):

sage: def cube_2(n):

et G = Graph (2xxn)

e vertices = Tuples([0,1],n)

e for i in range (2%*n):

et for j in range(2%x*n):

e if dist(vertices|[i],vertices[j]) == 2:
cee G.add_edge (i, Jj)

et return G

sage: G = cube_2(2)
sage: G.adjacency_matrix () .eigenvalues/()
[ll l/ 71/ 71]

sage: G = cube_2 (4)
sage: G.adjacency_matrix().eigenvalues ()
[67 6/ _27 _27 _2/ _27 _27 _2/ OI Or Or OI OI Or Or O]

Note that the graph is in fact disconnected. Do you understand why?

sage: cube_2(4) .plot ()
Graphics object consisting of 65 graphics primitives

28 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The Tsetlin library

Introduction

In this section, we study a simple random walk (or Markov chain), called the Tsetlin library. It will give us the
opportunity to see the interplay between combinatorics, linear algebra, representation theory and computer exploration,
without requiring heavy theoretical background. I hope this encourages everyone to play around with this or similar
systems and investigate their properties! Formal theorems and proofs can be found in the references at the end of this
section.

It has been known for several years that the theory of group representations can facilitate the study of systems whose
evolution is random (Markov chains), breaking them down into simpler systems. More recently it was realized that
generalizing this (namely replacing the invertibility axiom for groups by other axioms) explains the behavior of other
particularly simple Markov chains such as the Tsetlin library.

The Tsetlin library

Consider a bookshelf in a library containing n distinct books. When a person borrows a book and then returns it, it
gets placed back on the shelf to the right of all books. This is what we naturally do with our pile of shirts in the closet:
after use and cleaning, the shirt is placed on the top of its pile. Hence the most popular books/shirts will more likely
appear on the right/top of the shelf/pile.

This type of organization has the advantage of being self-adaptive:
* The books most often used accumulate on the right and thus can easily be found.
« If the use changes over time, the system adapts.

In fact, this type of strategy is used not only in everyday life, but also in computer science. The natural questions that
arise are:

e Stationary distribution: To which state(s) does the system converge to? This, among other things, is used to
evaluate the average access time to a book.

* The rate of convergence: How fast does the system adapt to a changing environment .

Let us formalize the description. The Tsetlin library is a discrete Markov chain (discrete time, discrete state space)
described by:

* The state space €2, is given by the set of all permutations of the n books.

¢ The transition operators are denoted by 0;: €, — €2,. When 0; is applied to a permutation ¢, the number ¢ is
moved to the end of the permutation.

* We assign parameters z; > 0 forall 1 < i < n with ;" | #; = 1. The parameter z; indicates the probability
of choosing the operator ;.

12.1. Thematic tutorial document tree 29

Thematic Tutorials, Release 8.0

Transition graph and matrix

One can depict the action of the operators 0; on the state space €2, by a digraph. The following picture shows the
action of 01, Oz, J3 on 3:

The above picture can be reproduced in Sage as follows:

sage: P = Poset (([1,2,31,11))

This is the antichain poset. Its linear extensions are all permutations of {1, 2, 3}:

sage: L = P.linear_extensions()

sage: L

The set of all linear extensions of Finite poset containing 3 elements
sage: L.list ()

[es, 2, 11, 13, 1, 21, 12, 3, 11, (2, 1, 31, [1, 3, 21, (1, 2, 311

The graph is produced via:

sage: G = L.markov_chain_digraph(labeling='source'); G
Looped multi-digraph on 6 vertices
sage: view(G) # not tested

We can now look at the transition matrix and see whether we notice anything about its eigenvalue and eigenvectors:

sage: M = L.markov_chain_transition_matrix(labeling="'source')
sage: M

[-x1 - x2 %0 0 0 %0 0]

[x1 -x0 - x2 x1 0 0 0]

[0 0 —x1 - x2 x0 0 x0]

[x2 0 x2 -x0 - x1 0 0]

[0 0 0 x1l -x0 - x2 x1]

[0 X2 0 0 x2 —-x0 - x1]

This matrix is normalized so that all columns add to 0. So we need to add (x¢ + x; + x2) times the 6 X 6 identity
matrix to get the probability matrix:

sage: x = M.base_ring() .gens ()

sage: Mt = (x[0]+x[1]+x[2])+*matrix.identity(6)+M
sage: Mt

[x0O xO 0 0 xO0 0]

[x1 x1 x1 0 0 0]

30 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

x2 0 x2 x2 0 0]
0 0 x1 x1 x1
x2 0 0 x2 x2]

0 0 x0 x0 0 x0]
]

Since the x; are formal variables, we need to compute the eigenvalues and eigenvectors in the symbolic ring SR:

sage: Mt.change_ring(SR) .eigenvalues ()
[x2, x1, x0, x0 + x1 + x2, 0, 0]

Do you see any pattern? In fact, if you start playing with bigger values of n (the size of the underlying permutations),
you might observe that there is an eigenvalue for every subset S of {1,2,...,n} and the multiplicity is given by a
derangement number d,, _|s|. Derangment numbers count permutations without fixed point. For the eigenvectors we
obtain:

sage: Mt.change_ring(SR) .eigenvectors_right ()
[(x2, [(O0, O, O, 1, O, -1)1, 1),

(x1 [¢o, 1, o, o, -1, 01, 1),

(x0, [(1, O, -1, O, O, O)1, 1),
(x0 + x1 + x2,
[(1, (x1 + x2)/(x0 + x2), x2/x1, (x1*x2 + x272)/(x0*x1 + x1"2),
(x1*x2 + x272)/(x072 + x0%x2), (x1xx2 + x272)/(x072 + x0xx1))1, 1),

(Or [(lr OI _17 OI _17 1)/ (O/ 1/ _17 1/ _17 O)}r 2)}

The stationary distribution is the eigenvector of eigenvalues 1 = x¢ + 1 + z2. Do you see a pattern?

Optional exercices: Study of the transition operators and graph

Instead of using the methods that are already in Sage, try to build the state space €2,, and the transition operators 0;
yourself as follows.

1. For technical reasons, it is most practical in Sage to label the n books in the library by 0,1,--- ,n — 1, and to
represent each state in the Markov chain by a permutation of the set {0, ...,n — 1} as a tuple. Construct the
state space €2, as:

sage: list (map(tuple, Permutations(range(3))))
(¢, 1, 2, 0, 2, 1), (1, 0, 2, (1, 2, 0), (2, 0, 1), (2, 1, 0)]

2. Write a function transition_operator (sigma, i) which implements the operator 0; which takes
as input a tuple sigma and integer ¢ € {1,2,...,n} and outputs a new tuple. It might be useful to extract
subtuples (sigma [i: j]) and concatentation.

3. Write a function tsetlin_digraph (n) which constructs the (multi digraph) as described as shown
above. This can be achieved using DiGraph.

4. Verify for which values of n the digraph is strongly connected (i.e., you can go from any vertex to any other
vertex by going in the direction of the arrow). This indicates whether the Markov chain is irreducible.

Conclusion

The Tsetlin library was studied from the viewpoint of monoids in [Bidigare1997] and [Brown2000]. Precise state-
ments of the eigenvalues and the stationary distribution of the probability matrix as well as proofs of the statements
are given in these papers. Generalizations of the Tsetlin library from the antichain to arbitrary posets was given in
[AKS2013].

12.1. Thematic tutorial document tree 31

Thematic Tutorials, Release 8.0

Young’s lattice and the RSK algorithm

This section provides some examples on Young’s lattice and the RSK (Robinson-Schensted-Knuth) algorithm ex-

plained in Chapter 8 of Stanley’s book [Stanley2013].

Young’s Lattice

We begin by creating the first few levels of Young’s lattice Y. For this, we need to define the elements and the order

relation for the poset, which is containment of partitions:

sage: level = 6

sage: elements = [b for n in range(level) for b
sage: ord = lambda x,y: y.contains (x)

sage: Y = Poset ((elements,ord), facade=True)
sage: H = Y.hasse_diagram()

sage: view(H) # optional - dot2tex graphviz

in Partitions (n)]

LITTT]

We can now define the up and down operators U and D on QY

QY:

. First we do so on partitions, which form a basis for

sage: QQY = CombinatorialFreeModule (QQ,elements)
sage: def U_on_basis(la):

..... covers = Y.upper_covers (la)

..... return QQY.sum_of_monomials (covers)
sage: def D_on_basis(la):

covers

Y.lower_covers (la)
return QQY.sum_of_ _monomials (covers)

As a shorthand, one also can write the above as:

32

Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: U_on_basis = QQY.sum_of_monomials * Y.upper_covers
sage: D_on_basis QQY.sum_of_monomials % Y.lower_covers

Here is the result when we apply the operators to the partition (2, 1):

sage: la = Partition([2,1])

sage: U_on_basis (la)

B([2, 1, 111 + BI[I[2, 2]]1 + BI[I[3, 111
sage: D_on_basis(la)

B[[1, 111 + B[[2]]

Now we define the up and down operator on QY:

sage: U = QQY.module_morphism(U_on_basis)
sage: D QQY .module_morphism(D_on_basis)

We can check the identity D;1U; — U;_1 D; = I; explicitly on all partitions of ¢ = 3:

sage: for p in Partitions(3):
e b = QQY (p)
et assert D(U(b)) — U(D(b)) == b

We can also check that the coefficient of A - n in U™ () is equal to the number of standard Young tableaux of shape
Al

sage: u = QQY (Partition([]))
sage: for i1 in range(4):
R u = U(u)

B([1, 1, 1, 111 + 3%B[[2, 1, 1]] + 2«B[[2, 2]] + 3xB[[3, 1]] + B[I[4]]

For example, the number of standard Young tableaux of shape (2,1, 1) is 3:

sage: StandardTableaux([2,1,1]).cardinality ()
3

We can test this in general:

sage: for la in u.support():
e assert ulla] == StandardTableaux (la).cardinality ()

We can also check this against the hook length formula (Theorem 8.1):

sage: def hook_length_formula (p) :
e n = p.size()
et return factorial (n) / prod(p.hook_length(xc) for c in p.cells())

sage: for la in u.support():
et assert ulla] == hook_length_formula(la)

RSK Algorithm

Let us now turn to the RSK algorithm. We can verify Example 8.12 as follows:

12.1. Thematic tutorial document tree 33

Thematic Tutorials, Release 8.0

sage: p = Permutation([4,2,7,3,6,1,5])
sage: RSK(p)
reexr, 3, 51, (2, 61, [4, 711, [((%, 3, 51, [2, 41, [6, 711]

The tableaux can also be displayed as tableaux:

sage: P,Q = RSK(p)

sage: P.pp()
1 3 5

2 6

4 7

sage: Q.pp ()
1 3 5

2 4

6 7

The inverse RSK algorithm is implemented as follows:

sage: RSK_inverse(P,Q, output='permutation')
4, 2, 7, 3, 6, 1, 5]

We can verify that the RSK algorithm is a bijection:

sage: def check_RSK(n):

e for p in Permutations (n) :

e assert RSK_inverse (xRSK(p), output='permutation')
sage: for n in range(5):

el check_RSK (n)

Il
Il
o]

12.1.2 Tutorial: Using the Sage notebook, navigating the help system, first exer-
cises

This worksheet is based on William Stein’s JPL0O9__intro_to_sage.sws worksheet and the Sage days 20.5_demo work-
sheet and aims to be an interactive introduction to Sage through exercises. You will learn how to use the notebook and
call the help.

Making this help page into a worksheet

If you are browsing this document as a static web page, you can see all the examples; however you need to copy-paste
them one by one to experiment with them. Use the Upload worksheet button of the notebook and copy-paste the
URL of this page to obtain an editable copy in your notebook.

If you are browsing this document as part of Sage’s live documentation, you can play with the examples directly here;
however your changes will be lost when you close this page. Use Copy worksheet from the File. .. menu at
the top of this page to get an editable copy in your notebook.

Both in the live tutorial and in the notebook, you can clear all output by selecting Delete All Output from the
Action... menunexttothe File. .. menu at the top of the worksheet.

Entering, Editing and Evaluating Input

To evaluate code in the Sage Notebook, type the code into an input cell and press shift—-enter or click the
evaluate link. Try it now with a simple expression (e.g., 2 4+ 3). The first time you evaluate a cell takes longer than
subsequent times since a new Sage process is started:

34 Chapter 12. Documentation

http://modular.math.washington.edu/talks/20090701-sage_graphics_tutorial/JPL09___intro_to_sage.sws
http://wiki.sagemath.org/days20.5

Thematic Tutorials, Release 8.0

sage: 2 + 3

sage: # edit here

sage: # edit here

To create new input cells, click the blue line that appears between cells when you move your mouse around. Try it
now:

sage: 1 + 1
2

sage: # edit here

You can go back and edit any cell by clicking in it (or using the arrow keys on your keyboard to move up or down).
Go back and change your 2 + 3 above to 3 + 3 and re-evaluate it. An empty cell can be deleted with backspace.

You can also edit this text right here by double clicking on it, which will bring up the TinyMCE Javascript text editor.
You can even put embedded mathematics like this $sin(x) - y*3$ by using dollar signs just like in TeX or LaTeX.

Help systems

There are various ways of getting help in Sage.
* navigate through the documentation (there is a link He1p at the top right of the worksheet),
* tab completion,
* contextual help.

We detail below the latter two methods through examples.

Completion and contextual documentation

Start typing something and press the t ab key. The interface tries to complete it with a command name. If there is more
than one completion, then they are all presented to you. Remember that Sage is case sensitive, i.e. it differentiates
upper case from lower case. Hence the t ab completion of k 1ein won’t show you the KleinFourGroup command
that builds the group Z/2 x Z /2 as a permutation group. Try it on the next cells:

sage: klein<tab>

sage: Klein<tab>

To see documentation and examples for a command, type a question mark ? at the end of the command name and
press the tab key as in:

sage: KleinFourGroup?<tab> ‘

Exercise A

What is the largest prime factor of 6008514751437

12.1. Thematic tutorial document tree 35

Thematic Tutorials, Release 8.0

’sage: factor?<tab> ‘

’sage: # edit here

In the above manipulations we have not stored any data for later use. This can be done in Sage with the = symbol as
in:

sage: a = 3
sage: b = 2
sage: atb

5

This can be understood as Sage evaluating the expression to the right of the = sign and creating the appropriate object,
and then associating that object with a label, given by the left-hand side (see the foreword of Tutorial: Objects and
Classes in Python and Sage for details). Multiple assignments can be done at once:

sage: a,b = 2,3

sage: a
2
sage: b
3

This allows us to swap the values of two variables directly:

sage: a,b = 2,3
sage: a,b = b,a
sage: a,b

(3, 2)

We can also assign a common value to several variables simultaneously:

sage: ¢ =d =1
sage: c, d

(1, 1)

sage: d = 2
sage: c, d

(1, 2)

Note that when we use the word variable in the computer-science sense we mean “a label attached to some data
stored by Sage”. Once an object is created, some methods apply to it. This means functions but instead of writing
f(my_object) you write my_object.f():

sage: p = 17
sage: p.is_prime ()
True

See Tutorial: Objects and Classes in Python and Sage for details. To know all methods of an object you can once
more use tab-completion. Write the name of the object followed by a dot and then press t ab:

sage: a.<tab>

sage: # edit here

36 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Exercise B

Create the permutation 51324 and assign it to the variable p.

’sage: Permutation?<tab> ‘

’sage: # edit here ‘

What is the inverse of p?

sage: p.inv<tab>

sage: # edit here

Does p have the pattern 123? What about 1234? And 312? (even if you don’t know what a pattern is, you
should be able to find a command that does this).

sage: p.pat<tab>

sage: # edit here

Some linear algebra

Exercise C

Use the matrix () command to create the following matrix.

1
M =

e =)
= Ut O
=~ O Ot =
O ==

’sage: matrix?<tab> ‘

’sage: # edit here ‘

Then, using methods of the matrix,
1. Compute the determinant of the matrix.
2. Compute the echelon form of the matrix.
3. Compute the eigenvalues of the matrix.
4. Compute the kernel of the matrix.
5

. Compute the LLL decomposition of the matrix (and lookup the documentation for what LLL is if needed!)

sage: # edit here

sage: # edit here

Now that you know how to access the different methods of matrices,

6. Create the vector v = (1,—1,—1,1).

7. Compute the two products: M - v and v - M. What mathematically borderline operation is Sage doing
implicitly?

12.1. Thematic tutorial document tree 37

Thematic Tutorials, Release 8.0

’sage: vector?<tab> ‘

’sage: # edit here

Note: Vectors in Sage are row vectors. A method such as eigenspaces might not return what you expect, so it is
best to specify eigenspaces_left or eigenspaces_right instead. Same thing for kernel (left_kernel
or right_kernel), and so on.

Some Plotting

The plot () command allows you to draw plots of functions. Recall that you can access the documentation by
pressing the tab key after writing plot ? in a cell:

’sage: plot?<tab> ‘

’sage: # edit here ‘

Here is a simple example:

sage: var('x") # make sure x is a symbolic variable
X

sage: plot(sin(x"2), (x,0,10))

Graphics object consisting of 1 graphics primitive

Here is a more complicated plot. Try to change every single input to the plot command in some way, evaluating to see
what happens:

sage: P = plot(sin(x"2), (x,-2,2), rgbcolor=(0.8,0,0.2), thickness=3, linestyle='--",
—~fill="axis")
sage: show (P, gridlines=True)

Above we used the show () command to show a plot after it was created. You can also use P . show instead:

’sage: P.show(gridlines=True) ‘

Try putting the cursor right after P . show (and pressing tab to get a list of the options for how you can change the
values of the given inputs.

’sage: P .show (‘

Plotting multiple functions at once is as easy as adding them together:

sage: Pl = plot(sin(x), (x,0,2+pi))

sage: P2 = plot(cos(x), (x,0,2xpi), rgbcolor='red'")
sage: Pl + P2

Graphics object consisting of 2 graphics primitives

Symbolic Expressions

Here is an example of a symbolic function:

38 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: f(x) = x74 - 8%x"2 — 3xx + 2
sage: f (x)
X"4 - 8xx"2 — 3%xx + 2

sage: f(-3)
20

This is an example of a function in the mathematical variable x. When Sage starts, it defines the symbol x to be a
mathematical variable. If you want to use other symbols for variables, you must define them first:

sage: x"2

X" 2

sage: u + v

Traceback (most recent call last):

NameError: name 'u' is not defined

sage: var('u v')
(u, v)

sage: u + v

u + v

Still, it is possible to define symbolic functions without first defining their variables:

sage: f(w) = w2
sage: f(3)
9

In this case those variables are defined implicitly:

sage: w
w

Exercise D

Define the symbolic function f(x) = axsin(xz?). Plot f on the domain [—3,3] and color it red. Use the
find_root () method to numerically approximate the root of f on the interval [1, 2]:

’sage: # edit here ‘

Compute the tangent line to f at z = 1:

’sage: # edit here ‘

Plot f and the tangent line to f at x = 1 in one image:

sage: # edit here ‘

Exercise E (Advanced)

Solve the following equation for y:

y=1+azy’

There are two solutions, take the one for which lim,_,o y(z) = 1. (Don’t forget to create the variables x and y!).

12.1. Thematic tutorial document tree 39

Thematic Tutorials, Release 8.0

’sage: # edit here ‘

Expand y as a truncated Taylor series around 0 and containing n = 10 terms.

sage: # edit here ‘

Do you recognize the coefficients of the Taylor series expansion? You might want to use the On-Line Encyclopedia
of Integer Sequences, or better yet, Sage’s class OEIS which queries the encyclopedia:

sage: oeis?<tab> ‘

sage: # edit here ‘

Congratulations for completing your first Sage tutorial!

12.1.3 Abelian Sandpile Model

Author: David Perkinson, Reed College

Introduction

These notes provide an introduction to Dhar’s abelian sandpile model (ASM) and to Sage Sandpiles, a collection of
tools in Sage for doing sandpile calculations. For a more thorough introduction to the theory of the ASM, the papers
Chip-Firing and Rotor-Routing on Directed Graphs [H], by Holroyd et al. and Riemann-Roch and Abel-Jacobi Theory
on a Finite Graph by Baker and Norine /[BN] are recommended.

To describe the ASM, we start with a sandpile graph: a directed multigraph I" with a vertex s that is accessible from
every vertex (except possibly s, itself). By multigraph, we mean that each edge of I' is assigned a nonnegative integer
weight. To say s is accessible from some vertex v means that there is a sequence of directed edges starting at v and
ending at s. We call s the sink of the sandpile graph, even though it might have outgoing edges, for reasons that will
be made clear in a moment.

We denoted the vertices of I by V and define V =V \ {s}.

Configurations and divisors

A configuration on I is an element of N V,ie., the assignment of a nonnegative integer to each nonsink vertex. We
think of each integer as a number of grains of sand being placed at the corresponding vertex. A divisor on I' is an
element of ZV, i.e., an element in the free abelian group on all of the vertices. In the context of divisors, it is sometimes
useful to think of assigning dollars to each vertex, with negative integers signifying a debt.

Stabilization

A configuration c is stable at a vertex v € V if ¢(v) < out-degree(v), and c itself is stable if it is stable at each nonsink
vertex. Otherwise, ¢ is unstable. If ¢ is unstable at v, the vertex v can be fired (toppled) by removing out-degree(v)
grains of sand from v and adding grains of sand to the neighbors of sand, determined by the weights of the edges
leaving v.

Despite our best intentions, we sometimes consider firing a stable vertex, resulting in a configuration with a “negative
amount” of sand at that vertex. We may also reverse-firing a vertex, absorbing sand from the vertex’s neighbors.

Example. Consider the graph:

40 Chapter 12. Documentation

http://oeis.org
http://oeis.org

Thematic Tutorials, Release 8.0

Fig. 12.1: T

All edges have weight 1 except for the edge from vertex 1 to vertex 3, which has weight 2. If we let ¢ = (5,0, 1) with
the indicated number of grains of sand on vertices 1, 2, and 3, respectively, then only vertex 1, whose out-degree is 4,
is unstable. Firing vertex 1 gives a new configuration ¢’ = (1, 1, 3). Here, 4 grains have left vertex 1. One of these has
gone to the sink vertex (and forgotten), one has gone to vertex 1, and two have gone to vertex 2, since the edge from 1
to 2 has weight 2. Vertex 3 in the new configuration is now unstable. The Sage code for this example follows.

sage: g = {'sink':{},

et l:{'sink':1, 2:1, 3:2},

et 2:{1:1, 3:1},

et 3:{(1:1, 2:1}}

sage: S = Sandpile(g, 'sink') # create the sandpile
sage: S.show(edge_labels=true) # display the graph

Create the configuration:
sage: c¢ = SandpileConfig(S, {1:5, 2:0, 3:1})
sage: S.out_degree()

{1: 4, 2: 2, 3: 2, 'sink': 0}

Fire vertex one:

sage: c.fire_vertex(1l)
{1: 1, 2: 1, 3: 3}

The configuration is unchanged:

sage: c
{1: 5, 2: 0, 3: 1}

12.1. Thematic tutorial document tree 41

Thematic Tutorials, Release 8.0

Repeatedly fire vertices until the configuration becomes stable:

sage: c.stabilize()
{1: 2, 2: 1, 3: 1}

Alternatives:

sage: ~C # shorthand for c.stabilize()
{1: 2, 2: 1, 3: 1}

sage: c.stabilize(with_firing_vector=true)

[({1: 2, 2: 1, 3: 1}, {1: 2, 2: 2, 3: 3}]

Since vertex 3 has become unstable after firing vertex 1, it can be fired, which causes vertex 2 to become unstable,
etc. Repeated firings eventually lead to a stable configuration. The last line of the Sage code, above, is a list, the first
element of which is the resulting stable configuration, (2,1, 1). The second component records how many times each
vertex fired in the stabilization.

Since the sink is accessible from each nonsink vertex and never fires, every configuration will stabilize after a finite
number of vertex-firings. It is not obvious, but the resulting stabilization is independent of the order in which unstable
vertices are fired. Thus, each configuration stabilizes to a unique stable configuration.

Laplacian

Fix an order on the vertices of I'. The Laplacian of T is
L:=D-A

where D is the diagonal matrix of out-degrees of the vertices and A is the adjacency matrix whose (4, j)-th entry is
the weight of the edge from vertex ¢ to vertex j, which we take to be 0 if there is no edge. The reduced Laplacian, I~/,
is the submatrix of the Laplacian formed by removing the row and column corresponding to the sink vertex. Firing a
vertex of a configuration is the same as subtracting the corresponding row of the reduced Laplacian.

Example. (Continued.)

sage: S.vertices|() # the ordering of the vertices
[1, 2, 3, 'sink']

sage: S.laplacian()

[4 -1 -2 -1]

[-1 2 -1 0]

[-1 -1 2 0]

[O 0 0 0]

sage: S.reduced_laplacian()

[4 -1 -2]
[-1 2 -1]
[-1 -1 2]

The configuration we considered previously:

sage:
sage:
{1: 5, 2: 0, 3: 1}

¢ = SandpileConfig(S, [5,0,1])
c

Firing vertex 1 is the same as subtracting the
corresponding row from the reduced Laplacian:

42 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: c.fire_vertex(1l) .values()

[1, 1, 3]

sage: S.reduced_laplacian() [0]

(4, -1, -2)

sage: vector([5,0,1]) - vector([4,-1,-21])
(1, 1, 3)

Recurrent elements

Imagine an experiment in which grains of sand are dropped one-at-a-time onto a graph, pausing to allow the configu-
ration to stabilize between drops. Some configurations will only be seen once in this process. For example, for most
graphs, once sand is dropped on the graph, no addition of sand+stabilization will result in a graph empty of sand.
Other configurations—the so-called recurrent configurations—will be seen infinitely often as the process is repeated
indefinitely.

To be precise, a configuration c is recurrent if (i) it is stable, and (ii) given any configuration a, there is a configuration
b such that ¢ = stab(a + b), the stabilization of a + b.

The maximal-stable configuration, denoted ¢p,ax is defined by ¢ax(v) = out-degree(v) — 1 for all nonsink vertices
v. Itis clear that c,,ax is recurrent. Further, it is not hard to see that a configuration is recurrent if and only if it has the
form stab(a + ¢iax) for some configuration a.

Example. (Continued.)

sage: S.recurrents (verbose=false)
res, 1, 11, (2, 1, 11, [3, 1, 011
sage: ¢ = SandpileConfig(s, [2,1,1])
sage: cC

{1: 2, 2: 1, 3: 1}

sage: c.is_recurrent ()

True

sage: S.max_stable ()

{1: 3, 2: 1, 3: 1}

Adding any configuration to the max-stable configuration and stabilizing
yields a recurrent configuration.

sage: x = SandpileConfig(s, [1,0,01])
sage: x + S.max_stable()
{1: 4, 2: 1, 3: 1}

Use & to add and stabilize:
sage: ¢ = x & S.max_stable()
sage: c

{1: 3, 2: 1, 3: 0}

sage: c.is_recurrent ()

True

Note the various ways of performing addition + stabilization:

sage: m = S.max_stable()

sage: (x + m).stabilize() == ~(x + m)
True

sage: (x + m).stabilize() == x & m
True

12.1. Thematic tutorial document tree 43

Thematic Tutorials, Release 8.0

Burning Configuration

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix
having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding
burning script gives the integer-linear combination needed to obtain the burning configuration. So if b is the burning
configuration, o is its script, and L is the reduced Laplacian, then o L = b. The minimal burning configuration is
the one with the minimal script (its components are no larger than the components of any other script for a burning
configuration).

The following are equivalent for a configuration ¢ with burning configuration b having script o
e cis recurrent;
e ¢+ b stabilizes to c;
* the firing vector for the stabilization of ¢ 4+ bis o.

The burning configuration and script are computed using a modified version of Speer’s script algorithm. This is a
generalization to directed multigraphs of Dhar’s burning algorithm.

Example.

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},
e 3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}
sage: G = Sandpile(g,0)

sage: G.burning_config()

{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}

sage: G.burning_config() .values()

(2, 0, 1, 1, 0]

sage: G.burning_script ()

{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}

sage: G.burning_script () .values()

(1, 3, 5, 1, 4]

sage: matrix (G.burning_script () .values()) «G.reduced_laplacian()
[2 01 1 0]

Sandpile group

The collection of stable configurations forms a commutative monoid with addition defined as ordinary addition fol-
lowed by stabilization. The identity element is the all-zero configuration. This monoid is a group exactly when the
underlying graph is a DAG (directed acyclic graph).

The recurrent elements form a submonoid which turns out to be a group. This group is called the sandpile group for I,
denoted S(T'). Its identity element is usually not the all-zero configuration (again, only in the case that I' is a DAG).
So finding the identity element is an interesting problem.

Let n = |V| — 1 and fix an ordering of the nonsink vertices. Let L C Z" denote the column-span of Lt, the transpose
of the reduced Laplacian. It is a theorem that

S(I) ~ Z"/L.
Thus, the number of elements of the sandpile group is det L, which by the matrix-tree theorem is the number of
weighted trees directed into the sink.

Example. (Continued.)

44 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: S.group_order ()

3

sage: S.invariant_factors()

[1, 1, 31

sage: S.reduced_laplacian() .dense_matrix().smith_form{()
(

[1 0 0] [0O 0 1] [3 1 4]

[0 1 0] [1 0 0] [4 1 6]

[0 037, [O 1 -11, [4 5]

)

Adding the identity to any recurrent configuration and stabilizing yields
the same recurrent configuration:

sage: S.identity ()

{1: 3, 2: 1, 3: 0}
sage: 1 = S.identity()
sage: m = S.max_stable()
sage: i1 & m

True

== m

Self-organized criticality

The sandpile model was introduced by Bak, Tang, and Wiesenfeld in the paper, Self-organized criticality: an expla-
nation of 1/f noise [BTW]. The term self-organized criticality has no precise definition, but can be loosely taken to
describe a system that naturally evolves to a state that is barely stable and such that the instabilities are described by a
power law. In practice, self-organized criticality is often taken to mean like the sandpile model on a grid-graph. The
grid graph is just a grid with an extra sink vertex. The vertices on the interior of each side have one edge to the sink,
and the corner vertices have an edge of weight 2. Thus, every nonsink vertex has out-degree 4.

Imagine repeatedly dropping grains of sand on and empty grid graph, allowing the sandpile to stabilize in between.
At first there is little activity, but as time goes on, the size and extent of the avalanche caused by a single grain of sand
becomes hard to predict. Computer experiments—I do not think there is a proof, yet—indicate that the distribution of
avalanche sizes obeys a power law with exponent -1. In the example below, the size of an avalanche is taken to be the
sum of the number of times each vertex fires.

Example (distribution of avalanche sizes).

sage: S = sandpiles.Grid(10,10)

sage: m = S.max_stable()

sage: a = []

sage: for i in range(10000): # long time (15s on sage.math, 2012)
et m = m.add_random ()

el m, f = m.stabilize (true)

e a.append (sum(f.values()))

sage: p = list_plot([[log(i+l),log(a.count(i))] for i in [0..max(a)] if a.count(i)])

—~# long time
sage: p.axes_labels(['log(N) ', "log(D(N))']) # long time

sage: p # long time
Graphics object consisting of 1 graphics primitive

Note: In the above code, m.stabilize (true) returns a list consisting of the stabilized configuration and the firing
vector. (Omitting t rue would give just the stabilized configuration.)

12.1. Thematic tutorial document tree 45

Thematic Tutorials, Release 8.0

log(D(N))
8
6 ..
4+ ...-*u
o
. ‘qag:;;
et
2 L %
T e’
1 1 1 | ss apnm .o ls 1 N
1 2 3 4 °g (M)

Fig. 12.2: Distribution of avalanche sizes

Divisors and Discrete Riemann surfaces

A reference for this section is Riemann-Roch and Abel-Jacobi theory on a finite graph [BN].

A divisor on T is an element of the free abelian group on its vertices, including the sink. Suppose, as above, that the
n + 1 vertices of I" have been ordered, and that £ is the column span of the transpose of the Laplacian. A divisor is
then identified with an element D € Z™*! and two divisors are linearly equivalent if they differ by an element of L.
A divisor E is effective, written E > 0, if E(v) > 0 foreachv € V,ie.,if E € N7+l The degree of a divisor, D, is
deg(D) :=), cy D(v). The divisors of degree zero modulo linear equivalence form the Picard group, or Jacobian
of the graph. For an undirected graph, the Picard group is isomorphic to the sandpile group.

The complete linear system for a divisor D, denoted | D/, is the collection of effective divisors linearly equivalent to
D.

Riemann-Roch

To describe the Riemann-Roch theorem in this context, suppose that I' is an undirected, unweighted graph. The
dimension, r(D) of the linear system | D| is —1 if | D| = @) and otherwise is the greatest integer s such that |D — E| # 0
for all effective divisors I of degree s. Define the canonical divisor by K = 3y (deg(v) — 2)v and the genus by
g = #(F) — #(V) + 1. The Riemann-Roch theorem says that for any divisor D,

r(D)—r(K —D)=deg(D)+1—g.

Example.:

sage: G = sandpiles.Complete(5) # the sandpile on the complete graph with 5 vertices

A divisor on the graph:

46 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: D = SandpileDivisor (G, [1,2,2,0,2])

Verify the Riemann-Roch theorem:

sage: K = G.canonical_divisor()

sage: D.rank() - (K - D).rank() == D.deg() + 1 - G.genus()
True

The effective divisors linearly equivalent to D:

sage: D.effective_div (False)
reo, 1, 1, 4, 11, 1%, 2, 2, 0, 21, 14, 0, 0, 3, 0]]

The nonspecial divisors up to linear equivalence (divisors of degree
g-1 with empty linear systems)

sage: N = G.nonspecial_divisors()
sage: [E.values() for E in N[:5]] # the first few
[f(-2, o, 1, 2, 31,

[-1, o0, 1, 3, 2],

[-1, 0, 2, 1, 31,

(-1, 0, 2, 3, 11,

[-1, 0, 3, 1, 2]]
sage: len(N)
24
sage: len(N) == G.h_vector()[-1]
True

Picturing linear systems

Fix a divisor D. There are at least two natural graphs associated with linear system associated with D. First, consider
the directed graph with vertex set |D| and with an edge from vertex F to vertex F' if F is attained from E by firing a
single unstable vertex.

sage: S = Sandpile(graphs.CycleGraph(6),0)

sage: D = SandpileDivisor(s, [1,1,1,1,2,01)

sage: D.is_alive()

True

sage: eff = D.effective_div ()

sage: firing_graph(S,eff) .show3d(edge_size=.005,vertex_size=0.01,iterations=500)

The second graph has the same set of vertices but with an edge from F to F' if F' is obtained from FE by firing all
unstable vertices of F.

sage: S = Sandpile(graphs.CycleGraph(6),0)
sage: D = SandpileDivisor(s, [1,1,1,1,2,0])
sage: eff = D.effective_div()

sage: parallel_firing_graph(S,eff) .show3d(edge_size=.005,vertex_size=0.01,
—iterations=500)

Note that in each of the examples, above, starting at any divisor in the linear system and following edges, one is
eventually led into a cycle of length 6 (cycling the divisor (1,1,1,1,2,0)). Thus, D.alive () returns True. In Sage,
one would be able to rotate the above figures to get a better idea of the structure.

12.1. Thematic tutorial document tree 47

Thematic Tutorials, Release 8.0

Fig. 12.3: Complete linear system for (1,1,1,1,2,0) on Cj: single firings

Fig. 12.4: Complete linear system for (1,1,1,1,2,0) on Cjg: parallel firings

48 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Algebraic geometry of sandpiles

Affine

Let n = |V| — 1, and fix an ordering on the nonsink vertices of I'. let £ C 7" denote the column-span of I:t, the
transpose of the reduced Laplacian. Label vertex ¢ with the indeterminate z;, and let C[T'y] = Clx, ..., z,]. (Here, s
denotes the sink vertex of I'.) The sandpile ideal or toppling ideal, first studied by Cori, Rossin, and Salvy [CRS] for
undirected graphs, is the lattice ideal for L:

I=1IT,):={z"—a":u—veLl}cCC[,
where 2 := [[;_, z* foru € Z".

For each ¢ € Z" define t(c) = 2¢" — ¢ where ¢; = max{c;,0} and ¢~ = max{—¢;,0} so that ¢ = ¢+ — ¢~.

Then, for each o € Z", define T'(c') = t(L'c). It then turns out that
I= (T(€1)7 s ,T(en),xb - 1)

where e; is the i-th standard basis vector and b is any burning configuration.
The affine coordinate ring, C[I's]/I, is isomorphic to the group algebra of the sandpile group, C[S(T")].

The standard term-ordering on C[I'4] is graded reverse lexigraphical order with x; > x; if vertex v; is further from
the sink than vertex v;. (There are choices to be made for vertices equidistant from the sink). If oy is the script for a
burning configuration (not necessarily minimal), then

{T(0):0 <o}

is a Groebner basis for 1.

Projective

Now let C[T'] = C[zg, x1, ..., s, Where g corresponds to the sink vertex. The homogeneous sandpile ideal, denoted
I", is obtaining by homogenizing I with respect to . Let L be the (full) Laplacian, and £ C Z"*! be the column
span of its transpose, L*. Then I" is the lattice ideal for £:

I"=1"I):={z"“—2":u—veL}cC[.
This ideal can be calculated by saturating the ideal
(T(e;):i=0,...n)

with respect to the product of the indeterminates: []"_, ; (extending the T" operator in the obvious way). A Groebner
basis with respect to the degree lexicographic order describe above (with x(the smallest vertex), is obtained by
homogenizing each element of the Groebner basis for the non-homogeneous sandpile ideal with respect to zg.

Example.

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},

el 3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}

sage: S = Sandpile(g, 0)

sage: S.ring/()

Multivariate Polynomial Ring in x5, x4, x3, x2, x1, x0 over Rational Field

The homogeneous sandpile ideal:

12.1. Thematic tutorial document tree 49

Thematic Tutorials, Release 8.0

sage: S.ideal()

Ideal (x2 - x0, x372 - x5%x0, x5xx3 - x072, x472 - x3xx1, x5"2 - x3xx0,
x173 - x4xx3*x0, x4xx1"2 - x5xx072) of Multivariate Polynomial Ring

in x5, x4, x3, x2, x1, x0 over Rational Field

The generators of the ideal:

sage: S.ideal (true)
[x2 - x0,

x3"2 - x5*x0,
x5+%x3 - x072,

x472 - x3*xx1,

x572 - x3*x0,

x1"3 - x4xx3%x0,
x4xx172 — x5%x0"2]

Its resolution:

sage: S.resolution() # long time
'R"l <—— R"7 <—= R"19 <—— R"25 <——= R"16 <—— R"4'

and Betti table:

sage: S.betti() # long time

0 1 2 3 4 5

0: 1 1 - - -

1: - 4 6 2 -

2 - 2 7 7 2 -

3: - - 6 16 14 4
total 1 7 19 25 16 4

The Hilbert function:

sage: S.hilbert_function()
[1, 5, 11, 15]

and its first differences (which counts the number of superstable
configurations in each degree):

sage: S.h_vector ()

[1, 4, 6, 4]

sage: x = [i1.deg() for i in S.superstables()]
sage: sorted(x)

(¢, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3]

The degree in which the Hilbert function equals the Hilbert polynomial, the
latter always being a constant in the case of a sandpile ideal:

sage: S.postulation()
3

50 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Zeros

The zero set for the sandpile ideal I is
Z(I)={peC": f(p)=0forall f € I},

the set of simultaneous zeros of the polynomials in I. Letting S' denote the unit circle in the complex plane, Z (1) is a
finite subgroup of S* x --- x S1 C C", isomorphic to the sandpile group. The zero set is actually linearly isomorphic
to a faithful representation of the sandpile group on C™.

Example. (Continued.)

sage: S = Sandpile({0: {}, 1: {2: 2}, 2: {0: 4, 1: 1}}, 0)
sage: S.ideal() .gens()
[x172 = x272, x1*x2"3 - x074, x275 - x1xx0"4]

Approximation to the zero set (setting "~ "x_0 = 1""):

sage: S.solve()

[[-0.707107 + 0.707107+«I, 0.707107 - 0.707107x1],
[-0.707107 - 0.707107«I, 0.707107 + 0.707107«1I7,
[-I, -II,

[, 11,

[0.707107 + 0.707107«1, -0.707107 - 0.707107«17,
[0.707107 - 0.707107«1, -0.707107 + 0.707107%*11,

[1, 11,

[-1, -11]

sage: len(_) == S.group_order ()
True

The zeros are generated as a group by a single vector:

sage: S.points()
[[(1/2xT + 1/2)xsqrt(2), —(1/2+«I + 1/2)+*sqrt(2)]]

Resolutions

The homogeneous sandpile ideal, I”, has a free resolution graded by the divisors on I" modulo linear equivalence.
(See the section on Discrete Riemann Surfaces for the language of divisors and linear equivalence.) Let S = C[[] =
Clxo, - . ., Zn], as above, and let & denote the group of divisors modulo rational equivalence. Then S is graded by &
by letting deg(z¢) = ¢ € & for each monomial x¢. The minimal free resolution of I" has the form

0+ Ih — @Degs(—D)BO’D — @Degs(—D)’Bl’D R @DGGS(—D)B"D 0.

where the 3; p are the Betti numbers for I".

For each divisor class D € &, define a simplicial complex,
Ap:={I C{0,...,n}: I C supp(E) for some E € |D|}.
The Betti number 3; p equals the dimension over C of the i-th reduced homology group of Ap:

Bi.p = dime H;i(Ap;C).

12.1. Thematic tutorial document tree 51

Thematic Tutorials, Release 8.0

sage: S = Sandpile({0:{},1:{0: 1, 2: 1, 3: 4},2:{3: 5},3:{1: 1, 2: 1}},0)
Representatives of all divisor classes with nontrivial homology:

sage: p = S.betti_complexes ()
sage: p[0]
[{O0: -8, 1: 5, 2: 4, 3: 1},
Simplicial complex with vertex set (1, 2, 3) and facets { (1, 2), (3,)}]

The homology associated with the first divisor in the list:

sage: D = p[0][0]

sage: D.effective_div ()

[{0: 0, 1: 0, 2: 0, 3: 2}, {0: 0, 1: 1, 2: 1, 3: 0}]

sage: [E.support() for E in D.effective_div ()]

[031, [1, 271

sage: D.Dcomplex()

Simplicial complex with vertex set (1, 2, 3) and facets { (1, 2), (3,)}
sage: D.Dcomplex () .homology ()

{0: z, 1: 0}

The minimal free resolution:
sage: S.resolution()

'R"1 <-- R"5 <—= R"5 <—= R"1'"
sage: S.betti()

0 1 2 3

0 1 - - -

1 - 5 5 -

2 - - - 1

total: 1 5 5 1
sage: len(p)

11

The degrees and ranks of the homology groups for each element of the list p
(compare with the Betti table, above):

sage: [[sum(d[0].values()),d[1l].betti()] for d in p]
[[2, {0: 2, 1: 0}],

[3, {0: 1, 1: 1, 2: 0}1,
[2, {0: 2, 1: 0}1],
[3, {0: 1, 1: 1, 2: 0}],
[2, {0: 2, 1: 0}17,
[3, {0: 1, 1: 1, 2: 0}1],
[2, {0: 2, 1: 0}1],
(3, {0: 1, 1: 1}],
[2, {0: 2, 1: 0}1],
[3, {0: 1, 1: 1, 2: 0}],
[5, {0: 1, 1: 0, 2: 1}]]

Complete Intersections and Arithmetically Gorenstein toppling ideals

NOTE: in the previous section note that the resolution always has length n since the ideal is Cohen-Macaulay.

52 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

To do.

Betti numbers for undirected graphs
To do.

Usage

Initialization

There are three main classes for sandpile structures in Sage: Sandpile, SandpileConfig, and
SandpileDivisor. Initialization for Sandpile has the form

sage: S = Sandpile(graph, sink)

where graph represents a graph and sink is the key for the sink vertex. There are four possible forms for graph:

1. a Python dictionary of dictionaries:

sage: g = {0: {}, 1: {0O: 1, 3: 1, 4: 1}, 2: {O: 1, 3: 1, 5: 1},
et 3: {2: 1, 5: 1}, 4: {1: 1, 3: 1}, 5: {2: 1, 3: 1}}

Fig. 12.5: Graph from dictionary of dictionaries.

Each key is the name of a vertex. Next to each vertex name v is a dictionary consisting of pairs: vertex: weight.
Each pair represents a directed edge emanating from v and ending at vertex having (non-negative integer) weight
equal to weight. Loops are allowed. In the example above, all of the weights are 1.

12.1. Thematic tutorial document tree 53

Thematic Tutorials, Release 8.0

2. a Python dictionary of lists:

1 : :
ceea 3: [2, 5], 4: [1, 31, 5: [2, 31}

This is a short-hand when all of the edge-weights are equal to 1. The above example is for the same displayed graph.

3. a Sage graph (of type sage .graphs.graph.Graph):

sage: g = graphs.CycleGraph(5)
sage: S = Sandpile(g, 0)

sage: type (9)

<class 'sage.graphs.graph.Graph'>

To see the types of built-in graphs, type graphs ., including the period, and hit TAB.
4. a Sage digraph:

sage: S = Sandpile(digraphs.RandomDirectedGNC(6), 0)
sage: S.show()

Fig. 12.6: A random graph.

See sage.graphs.graph_generators for more information on the Sage graph library and graph constructors.

Each of these four formats is preprocessed by the Sandpile class so that, internally, the graph is represented by the
dictionary of dictionaries format first presented. This internal format is returned by dict ():

sage: S = Sandpile({O:[], 1:[O0, 3, 41, 2:[0, 3, 51, 3: [2, 51, 4: [1, 31, 5: [2, 31},
—0)

sage: S.dict ()

{0: {1},

54 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

1: {0: 1, 3: 1, 4: 1},
2: {0: 1, 3: 1, 5: 1},
3: {2: 1, 5: 1},
4. {1: 1, 3: 1},
5: {2: 1, 3: 1}}

Note: The user is responsible for assuring that each vertex has a directed path into the designated sink. If the sink has
out-edges, these will be ignored for the purposes of sandpile calculations (but not calculations on divisors).

Code for checking whether a given vertex is a sink:

sage: S = Sandpile({O:[], 1:[0, 3, 41, 2:[0, 3, 51, 3: [2, 51, 4: [1, 31, 5: [2, 31},
—0)

sage: [S.distance(v,0) for v in S.vertices()] # 0 is a sink

(o, 1, 1, 2, 2, 2]

sage: [S.distance(v,1) for v in S.vertices ()] # 1 is not a sink

[+Infinity, 0, +Infinity, +Infinity, 1, +Infinity]

Methods

Here are summaries of Sandpile, SandpileConfig, and SandpileDivisor methods (functions). Each sum-
mary is followed by a list of complete descriptions of the methods. There are many more methods available for a Sand-
pile, e.g., those inherited from the class DiGraph. To see them all, enter dir (Sandpile) or type Sandpile.,
including the period, and hit TAB.

Sandpile

Summary of methods.
e all_k_config — The constant configuration with all values set to k.
* all_k_div — The divisor with all values set to k.
* avalanche_polynomial — The avalanche polynomial.
* betti — The Betti table for the homogeneous toppling ideal.

* betti_complexes

The support-complexes with non-trivial homology.
* burning_config — The minimal burning configuration.

* burning_script — A script for the minimal burning configuration.

e canonical_divisor — The canonical divisor.

* dict — A dictionary of dictionaries representing a directed graph.

» genus — The genus: (# non-loop edges) - (# vertices) + 1.

» groebner — A Groebner basis for the homogeneous toppling ideal.

e group_gens — A minimal list of generators for the sandpile group.

* group_order — The size of the sandpile group.

* h_vector — The number of superstable configurations in each degree.

 help — List of Sandpile-specific methods (not inherited from Graph).

12.1. Thematic tutorial document tree 55

Thematic Tutorials, Release 8.0

hilbert_function — The Hilbert function of the homogeneous toppling ideal.
ideal — The saturated homogeneous toppling ideal.

identity — The identity configuration.

in_degree — The in-degree of a vertex or a list of all in-degrees.
invariant_factors — The invariant factors of the sandpile group.

is_undirected — Is the underlying graph undirected?

Jjacobian_representatives — Representatives for the elements of the Jacobian group.

laplacian — The Laplacian matrix of the graph.

markov_chain — The sandpile Markov chain for configurations or divisors.
max_stable — The maximal stable configuration.

max_stable_div — The maximal stable divisor.

max_superstables — The maximal superstable configurations.
min_recurrents — The minimal recurrent elements.

The nonsink vertices.

nonsink_vertices
nonspecial_divisors — The nonspecial divisors.

out_degree — The out-degree of a vertex or a list of all out-degrees.

picard_representatives — Representatives of the divisor classes of degree d in the Picard group.
points — Generators for the multiplicative group of zeros of the sandpile ideal.

postulation — The postulation number of the toppling ideal.

recurrents — The recurrent configurations.

reduced_laplacian — The reduced Laplacian matrix of the graph.

reorder_vertices — A copy of the sandpile with vertex names permuted.
resolution — A minimal free resolution of the homogeneous toppling ideal.
ring — The ring containing the homogeneous toppling ideal.

show — Draw the underlying graph.

show3d — Draw the underlying graph.

sink — The sink vertex.

smith_form — The Smith normal form for the Laplacian.

solve — Approximations of the complex affine zeros of the sandpile ideal.
stable_configs — Generator for all stable configurations.
stationary_density — The stationary density of the sandpile.

superstables — The superstable configurations.

symmetric_recurrents — The symmetric recurrent configurations.
tutte_polynomial — The Tutte polynomial.
unsaturated_ideal — The unsaturated, homogeneous toppling ideal.

version — The version number of Sage Sandpiles.

56

Chapter 12. Documentation

Thematic Tutorials, Release 8.0

* zero_config — The all-zero configuration.

e zero_div — The all-zero divisor.

Complete descriptions of Sandpile methods.

— all_k_config(k)

The constant configuration with all values set to k.
INPUT:

k — integer

OUTPUT:

SandpileConfig

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: s.all_k_config(7)
{1: 7, 2: 7, 3: 7}

— all_k_div(k)

The divisor with all values set to k.
INPUT:

k — integer

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: S = sandpiles.House ()
sage: S.all_k_div(7)
{¢: 7, 1: 7, 2: 7, 3: 7, 4: T}

— avalanche_polynomial(multivariable=True)
The avalanche polynomial. See NOTE for details.
INPUT:

multivariable — (default: True) boolean
OUTPUT:

polynomial

EXAMPLES:

sage: s = sandpiles.Complete (4)

sage: s.avalanche_polynomial ()

9xx0*x1*x2 + 2*x0+x1 + 2xx0*x2 + 2xx1xx2 + 3%x0 + 3xx1 + 3*x2 + 24
sage: s.avalanche_polynomial (False)

9xx0"3 + 6%xx072 + 9xx0 + 24

12.1. Thematic tutorial document tree 57

Thematic Tutorials, Release 8.0

Note: For each nonsink vertex v, let z,, be an indeterminate. If (7, v) is a pair consisting of a recurrent r and nonsink
vertex v, then for each nonsink vertex w, let n,, be the number of times vertex w fires in the stabilization of r + v. Let
M (r,v) be the monomial [[, 7, i.e., the exponent records the vector of n,, as w ranges over the nonsink vertices.
The avalanche polynomial is then the sum of M (r,v) as r ranges over the recurrents and v ranges over the nonsink
vertices. f multivariable is False, then set all the indeterminates equal to each other (and, thus, only count the
number of vertex firings in the stabilizations, forgetting which particular vertices fired).

— betti(verbose=True)

The Betti table for the homogeneous toppling ideal. If verbose is True, it prints the standard Betti table, otherwise,
it returns a less formated table.

INPUT:
verbose — (default: True) boolean
OUTPUT:

Betti numbers for the sandpile

EXAMPLES:
sage: S = sandpiles.Diamond()
sage: S.betti()
0 1 2 3
0 1 - -
— 2 — —
2 - 4 9 4
total: 1 6 9 4
sage: S.betti(False)
[1, 6, 9, 4]

— betti_complexes()

The support-complexes with non-trivial homology. (See NOTE.)
OUTPUT:

list (of pairs [divisors, corresponding simplicial complex])

EXAMPLES:

sage: S = Sandpile({O:{},1:{0: 1, 2: 1, 3: 4},2:{3: 5},3:{1: 1, 2: 1}},0)

sage: p S.betti_complexes()

sage: pl0]

[{0: -8, 1: 5, 2: 4, 3: 1}, Simplicial complex with vertex set (1, 2, 3) and facets
—{(1, 2), (3,)1}]

sage: S.resolution()

'R*1 <—— R"5 <—— R”"5 <—— R"1"

sage: S.betti()

0 1 2 3
0 1 - - -

— 5 5 —

2 - - - 1

58 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

11

sage: p[0][1].homology ()
{0: z, 1: 0}

sage: p[-1][1].homology ()
{0: 0, 1: 0, 2: Z}

Note: A support-complex is the simplicial complex formed from the supports of the divisors in a linear system.

— burning_config()

The minimal burning configuration.
OUTPUT:

dict (configuration)

EXAMPLES:

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1}, \
3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}

sage: S = Sandpile(g,0)

sage: S.burning_config()

{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}

sage: S.burning_config() .values()

[2, 0, 1, 1, 0]

sage: S.burning_script ()

{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}

sage: script = S.burning_script () .values/()

sage: script

[1, 3, 5, 1, 4]

sage: matrix(script) «S.reduced_laplacian()

[2 01 1 0]

Note: The burning configuration and script are computed using a modified version of Speer’s script algorithm. This
is a generalization to directed multigraphs of Dhar’s burning algorithm.

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix
having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding
burning script gives the integer-linear combination needed to obtain the burning configuration. So if b is the burning
configuration, o is its script, and L is the reduced Laplacian, then o - L = b. The minimal burning configuration is
the one with the minimal script (its components are no larger than the components of any other script for a burning
configuration).

The following are equivalent for a configuration ¢ with burning configuration b having script o
* ¢ is recurrent;
e ¢+ b stabilizes to c;

« the firing vector for the stabilization of ¢ + b is 0.

— burning_script()

A script for the minimal burning configuration.
OUTPUT:

dict

12.1. Thematic tutorial document tree 59

Thematic Tutorials, Release 8.0

EXAMPLES:

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},\
3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}

sage: S = Sandpile(g,0)

sage: S.burning_config()

{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}

sage: S.burning_config() .values()

[2, o, 1, 1, 0]

sage: S.burning_script ()

{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}

sage: script = S.burning_script () .values|()
sage: script

[1, 3, 5, 1, 4]

sage: matrix(script) «S.reduced_laplacian()
[2 01 1 0]

Note: The burning configuration and script are computed using a modified version of Speer’s script algorithm. This
is a generalization to directed multigraphs of Dhar’s burning algorithm.

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix
having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding
burning script gives the integer-linear combination needed to obtain the burning configuration. So if b is the burning
configuration, s is its script, and L,.q is the reduced Laplacian, then s - L,.q = b. The minimal burning configuration
is the one with the minimal script (its components are no larger than the components of any other script for a burning
configuration).

The following are equivalent for a configuration ¢ with burning configuration b having script s:
e (1S recurrent;
e ¢+ b stabilizes to ¢;

* the firing vector for the stabilization of ¢ + b is s.

— canonical_divisor()

The canonical divisor. This is the divisor with deg(v) — 2 grains of sand on each vertex (not counting loops). Only for
undirected graphs.

OUTPUT:
SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Complete (4)

sage: S.canonical_divisor ()

{0: 1, 1: 1, 2: 1, 3: 1}

sage: s = Sandpile({0O:[1,1],1:(0,0,1,1,11},0)

sage: s.canonical_divisor () # loops are disregarded
{0: 0, 1: 0}

Warning: The underlying graph must be undirected.

— dict()

A dictionary of dictionaries representing a directed graph.

60 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

OUTPUT:
dict
EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.dict ()

{0: {1: 1, 2: 1},

1: {0: 1, 2: 1, 3: 1},

2: {0: 1, 1: 1, 3: 1},

3: {1: 1, 2: 1}}
sage: S.sink()
0

— genus()

The genus: (# non-loop edges) - (# vertices) + 1. Only defined for undirected graphs.
OUTPUT:

integer

EXAMPLES:

sage: sandpiles.Complete (4) .genus ()
3

sage: sandpiles.Cycle(5) .genus ()

1

— groebner()

A Groebner basis for the homogeneous toppling ideal. It is computed with respect to the standard sandpile ordering
(see ring).

OUTPUT:
Groebner basis

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: S.groebner ()

[x3*x272 — x1"2%x0, x273 - x3*x1xx0, x3*x1"2 - x272%x0, x173 - x3%x2*x0, x3"2 - x0"2,
—x2+xx1 - x072]

— group_gens(verbose=True)

A minimal list of generators for the sandpile group. If verbose is False then the generators are represented as lists
of integers.

INPUT:

verbose — (default: True) boolean

OUTPUT:

list of SandpileConfig (or of lists of integers if verbose is False)

EXAMPLES:

sage: s = sandpiles.Cycle(5)
sage: s.group_gens ()
[({1: 1, 2: 1, 3: 1, 4: 0}]

12.1. Thematic tutorial document tree 61

Thematic Tutorials, Release 8.0

sage: s.group_gens () [0] .order ()
5
sage: s

sandpiles.Complete (5)

sage: s.group_gens (False)

[z, 2, 3, 21, 12, 3, 2, 21, 13, 2, 2, 211
sage: [i.order() for i in s.group_gens()]
[5, 5, 5]

sage: s.invariant_factors ()

[1, 5, 5, 5]

— group_order()

The size of the sandpile group.
OUTPUT:

integer

EXAMPLES:

sage: S sandpiles.House ()
sage: S.group_order ()
11

— h_vector()

The number of superstable configurations in each degree. Equivalently, this is the list of first differences of the Hilbert
function of the (homogeneous) toppling ideal.

OUTPUT:
list of nonnegative integers

EXAMPLES:

sage: s = sandpiles.Grid(2,2)

sage: s.hilbert_function()

[1, 5, 15, 35, 66, 106, 146, 178, 192]
sage: s.h_vector ()

[1, 4, 10, 20, 31, 40, 40, 32, 14]

— help(verbose=True)

List of Sandpile-specific methods (not inherited from Graph). If verbose, include short descriptions.
INPUT:

verbose — (default: True) boolean

OUTPUT:

printed string

EXAMPLES:

sage: Sandpile.help()
For detailed help with any method FOO listed below,
enter "Sandpile.FOO0?" or enter "S.FOO?" for any Sandpile S.

all_k_config —— The constant configuration with all values set to k.
all k _div —— The divisor with all values set to k.
avalanche_polynomial —— The avalanche polynomial.

betti —— The Betti table for the homogeneous toppling ideal.

62 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

betti_complexes
burning_config
burning_script
canonical_divisor
dict

—graph.

genus

groebner
group_gens
group_order
h_vector

help

—Graph) .
hilbert_function
ideal

identity
in_degree
invariant_factors
is_undirected

jacobian_representatives —-—

laplacian
markov_chain
max_stable
max_stable_div
max_superstables
min_recurrents
nonsink_vertices
nonspecial_divisors
out_degree
picard_representatives
—Picard group.
points

—sandpile ideal.
postulation
recurrents
reduced_laplacian
reorder_vertices
resolution
—ideal.

ring

show

show3d

sink

smith_form

solve

—sandpile ideal.
stable_configs
stationary_density
superstables
symmetric_recurrents
tutte_polynomial
unsaturated_ideal
version
zero_config
zero_div

The support-complexes with non-trivial homology.

The minimal burning configuration.

A script for the minimal burning configuration.

The canonical divisor.

A dictionary of dictionaries representing a directed,

The genus: (# non-loop edges) - (# vertices) + 1.

A Groebner basis for the homogeneous toppling ideal.

A minimal list of generators for the sandpile group.

The size of the sandpile group.

The number of superstable configurations in each degree.
List of Sandpile-specific methods (not inherited from

The Hilbert function of the homogeneous toppling ideal.
The saturated homogeneous toppling ideal.

The identity configuration.

The in-degree of a vertex or a list of all in-degrees.
The invariant factors of the sandpile group.

Is the underlying graph undirected?

Representatives for the elements of the Jacobian group.
The Laplacian matrix of the graph.

The sandpile Markov chain for configurations or divisors.
The maximal stable configuration.

The maximal stable divisor.

The maximal superstable configurations.

The minimal recurrent elements.

The nonsink vertices.

The nonspecial divisors.

The out-degree of a vertex or a list of all out-degrees.
Representatives of the divisor classes of degree d in the

Generators for the multiplicative group of zeros of the

The postulation number of the toppling ideal.

The recurrent configurations.

The reduced Laplacian matrix of the graph.

A copy of the sandpile with vertex names permuted.

A minimal free resolution of the homogeneous toppling,

The ring containing the homogeneous toppling ideal.
Draw the underlying graph.

Draw the underlying graph.

The sink vertex.

The Smith normal form for the Laplacian.
Approximations of the complex affine zeros of the

Generator for all stable configurations.

The stationary density of the sandpile.

The superstable configurations.

The symmetric recurrent configurations.

The Tutte polynomial.

The unsaturated, homogeneous toppling ideal.
The version number of Sage Sandpiles.

The all-zero configuration.

The all-zero divisor.

— hilbert_function()

12.1. Thematic tutorial document tree 63

Thematic Tutorials, Release 8.0

The Hilbert function of the homogeneous toppling ideal.
OUTPUT:
list of nonnegative integers

EXAMPLES:

sage: s = sandpiles.Wheel (5)
sage: s.hilbert_function()
[1, 5, 15, 31, 45]

sage: s.h_vector ()

[1, 4, 10, 16, 14]

— ideal(gens=False)

The saturated homogeneous toppling ideal. If gens is True, the generators for the ideal are returned instead.
INPUT:

gens — (default: False) boolean

OUTPUT:

ideal or, optionally, the generators of an ideal

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: S.ideal()

Ideal (x2xx1 - x072, x3"2 - x072, x1"3 - x3xx2xx0, x3*x1"2 — x2"2%x0, x2"3 - x3xx1xx0,
— x3%x272 - x172%x0) of Multivariate Polynomial Ring in x3, x2, x1, x0 over Rational,
—~Field

sage: S.ideal (True)

[x2xx]1 — x072, x372 - x072, x173 - x3%x2*xx0, x3*x1"2 - x272%x0, x273 - x3*x1xx0,
xX3*x272 = x172*xx0]

sage: S.ideal() .gens() # another way to get the generators

[x2xx]1 — x072, x372 - x072, x173 - x3%x2*xx0, x3%x1"2 - x2"2%xx0, x273 - x3*x1xx0,
xX3*x272 = x172*xx0]

— identity(verbose=True)

The identity configuration. If verbose is False, the configuration are converted to a list of integers.
INPUT:

verbose — (default: True) boolean

OUTPUT:

SandpileConfig or a list of integers If verbose is False, the configuration are converted to a list of integers.

EXAMPLES:

sage: s = sandpiles.Diamond()

sage: s.identity ()

{1: 2, 2: 2, 3: 0}

sage: s.identity (False)

[2, 2, 0]

sage: s.identity () & s.max_stable() == s.max_stable()
True

— in_degree(v=None)

64 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The in-degree of a vertex or a list of all in-degrees.
INPUT:

v — (optional) vertex name

OUTPUT:

integer or dict

EXAMPLES:

sage: s = sandpiles.House ()
sage: s.in_degree ()

{0: 2, 1: 2, 2: 3, 3: 3, 4: 2}
sage: s.in_degree(2)

3

— invariant_factors()

The invariant factors of the sandpile group.
OUTPUT:

list of integers

EXAMPLES:

sage: s = sandpiles.Grid(2,2)
sage: s.invariant_factors ()
(1, 1, 8, 24]

— is_undirected()

Is the underlying graph undirected? True if (u,v) is and edge if and only if (v,w) is an edge, each edge with the
same weight.

OUTPUT:
boolean

EXAMPLES:

sage: sandpiles.Complete(4).is_undirected()

True

sage: s = Sandpile({0O:[1,2], 1:[0,21, 2:[01}, 0O)
sage: s.is_undirected()

False

— jacobian_representatives(verbose=True)

Representatives for the elements of the Jacobian group. If verbose is False, then lists representing the divisors are
returned.

INPUT:

verbose — (default: True) boolean

OUTPUT:

list of SandpileDivisor (or of lists representing divisors)
EXAMPLES:

For an undirected graph, divisors of the form s — deg (s) xsink as s varies over the superstables forms a distinct
set of representatives for the Jacobian group.:

12.1. Thematic tutorial document tree 65

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Complete (3)

sage: s.superstables (False)

(o, o1r, o, 11, [1, 0J]]

sage: s.Jjacobian_representatives (False)
(ro, o, o1, (-1, 0, 11, [-1, 1, 011

If the graph is directed, the representatives described above may by equivalent modulo the rowspan of the Laplacian
matrix:

sage: s = Sandpile({0: {1: 1, 2: 2}, 1: {0: 2, 2: 4}, 2: {0: 4, 1: 2}},0)
sage: s.group_order ()

28

sage: s.Jjacobian_representatives()

[{0: =5, 1: 3, 2: 2}, {0: -4, 1: 3, 2: 1}]

Let 7 be the nonnegative generator of the kernel of the transpose of the Laplacian, and let tau, be it sink component,
then the sandpile group is isomorphic to the direct sum of the cyclic group of order 75 and the Jacobian group. In the
example above, we have:

sage: s.laplacian().left_kernel()

Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:

[14 5 8]

Note: The Jacobian group is the set of all divisors of degree zero modulo the integer rowspan of the Laplacian matrix.

— laplacian()

The Laplacian matrix of the graph. Its rows encode the vertex firing rules.

OUTPUT:

matrix

EXAMPLES:

sage: G = sandpiles.Diamond()
sage: G.laplacian()

[2 -1 -1 0]

[-1 3 -1 -1]
[-1 -1 3 -1]
[0-1 -1 2]

Warning: The function laplacian_matrix should be avoided. It returns the indegree version of the Lapla-
cian.

— markov_chain(state, distrib=None)
The sandpile Markov chain for configurations or divisors. The chain starts at state. See NOTE for details.
INPUT:

e state — SandpileConfig, SandpileDivisor, or list representing one of these

e distrib — (optional) list of nonnegative numbers summing to 1 (representing a prob. dist.)

66 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

OUTPUT:
generator for Markov chain (see NOTE)

EXAMPLES:

sage: s = sandpiles.Complete (4)
sage: m = s.markov_chain([0,0,0])
sage: next (m) # random
{1: 0, 2: 0, 3: 0}

sage: next (m) .values () # random
[0, 0, 0]

sage: next (m) .values () # random
[0, 0, O]

sage: next (m) .values () # random
[0, 0, 0]

sage: next (m) .values () # random
[0, 1, 0]

sage: next (m) .values () # random
[0, 2, 0]

sage: next (m) .values () # random
[0, 2, 1]

sage: next (m) .values () # random
[1, 2, 1]

sage: next (m) .values () # random
[2, 2, 1]

sage: m = s.markov_chain(s.zero_div(), [0.1,0.1,0.1,0.717)
sage: next (m) .values () # random
[0, 0, 0, 1]

sage: next (m) .values () # random
(o, o, 1, 1]

sage: next (m) .values () # random
[0, 0, 1, 2]

sage: next (m) .values () # random
[1, 1, 2, 0]

sage: next (m) .values () # random
(r, 1, 2, 1]

sage: next (m) .values () # random
[1, 1, 2, 2]

sage: next (m) .values () # random
[1, 1, 2, 3]

sage: next (m) .values () # random
(1, 1, 2, 4]

sage: next (m) .values () # random

(1, 1, 3, 4]

Note: The closed sandpile Markov chain has state space consisting of the configurations on a sandpile. It
transitions from a state by choosing a vertex at random (according to the probability distribution di st rib), dropping
a grain of sand at that vertex, and stabilizing. If the chosen vertex is the sink, the chain stays at the current state.

The open sandpile Markov chain has state space consisting of the recurrent elements, i.e., the state space is
the sandpile group. It transitions from the configuration ¢ by choosing a vertex v at random according to distrib.
The next state is the stabilization of ¢ + v. If v is the sink vertex, then the stabilization of ¢ + v is defined to be c.

Note that in either case, if distrib is specified, its length is equal to the total number of vertices (including the sink).

REFERENCES:

12.1. Thematic tutorial document tree 67

Thematic Tutorials, Release 8.0

— max_stable()

The maximal stable configuration.

OUTPUT:

SandpileConfig (the maximal stable configuration)

EXAMPLES:

sage: S = sandpiles.House ()
sage: S.max_stable()
{1: 1, 2: 2, 3: 2, 4: 1}

— max_stable_div()

The maximal stable divisor.

OUTPUT:

SandpileDivisor (the maximal stable divisor)

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: s.max_stable_div ()

{0: 1, 1: 2, 2: 2, 3: 1}
sage: s.out_degree ()

{0: 2, 1: 3, 2: 3, 3: 2}

— max_superstables(verbose=True)

The maximal superstable configurations. If the underlying graph is undirected, these are the superstables of highest
degree. If verbose is False, the configurations are converted to lists of integers.

INPUT:

verbose — (default: True) boolean

OUTPUT:
tuple of SandpileConfig
EXAMPLES:
sage: s = sandpiles.Diamond()
sage: s.superstables (False)
(ro, o, 01,
[o, o, 11,
1, o, 11,
[0, 2, 01,
[2, o0, 01,
o, 1, 11,
[1, o0, 01,
[0, 1, 011
sage: s.max_superstables (False)
(r, o0, 11, [0, 2, 01, [2, O, O], [0, 1, 11]
sage: s.h_vector ()
[1, 3, 4]

— min_recurrents(verbose=True)

The minimal recurrent elements. If the underlying graph is undirected, these are the recurrent elements of least degree.
If verbose is False, the configurations are converted to lists of integers.

68 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

INPUT:

verbose — (default: True) boolean

OUTPUT:
list of SandpileConfig
EXAMPLES:
sage: s = sandpiles.Diamond()
sage: s.recurrents (False)
[z, 2, 11,

[2, 2, 01,

(1, 2, 01,

[2, 0, 17,

[0, 2, 11,

(2, 1, 01,

[1, 2, 11,

[2, 1, 111
sage: s.min_recurrents (False)

rry, 2, o1y, 2, o, 11, [0, 2, 11, [2, 1, 0]]
sage: [i.deg() for i in s.recurrents()]
[51 4I 3/ 3! 3’ 3/ 4/ 4:|

— nonsink_vertices()
The nonsink vertices.
OUTPUT:

list of vertices

EXAMPLES:

sage: s = sandpiles.Grid (2, 3)
sage: s.nonsink_vertices()
[, ny, 1, 2, (1, 3), 2, 1), (2, 2), (2, 3)]

— nonspecial_divisors(verbose=True)

The nonspecial divisors. Only for undirected graphs. (See NOTE.)
INPUT:

verbose — (default: True) boolean

OUTPUT:

list (of divisors)

EXAMPLES:

sage: S = sandpiles.Complete (4)

sage: ns = S.nonspecial_divisors()
sage: D = ns[0]

sage: D.values|()

[-1, 0, 1, 2]

sage: D.deg()

2

sage: [i.effective_div () for i in ns]
tel, 1, 11, 01, 01, [1]

12.1. Thematic tutorial document tree

69

Thematic Tutorials, Release 8.0

Note: The “nonspecial divisors” are those divisors of degree g — 1 with empty linear system. The term is only
defined for undirected graphs. Here, g = |E| — |V| + 1 is the genus of the graph (not counted loops as part of |E|). If
verbose is False, the divisors are converted to lists of integers.

Warning: The underlying graph must be undirected.

— out_degree(v=None)

The out-degree of a vertex or a list of all out-degrees.
INPUT:

v - (optional) vertex name

OUTPUT:

integer or dict

EXAMPLES:

sage: s = sandpiles.House ()
sage: s.out_degree ()

{0: 2, 1: 2, 2: 3, 3: 3, 4: 2}
sage: s.out_degree(2)

3

— picard_representatives(d, verbose=True)

Representatives of the divisor classes of degree d in the Picard group. (Also see the documentation for
jacobian_representatives.)

INPUT:

e d - integer

e verbose — (default: True) boolean
OUTPUT:
list of SandpileDivisors (or lists representing divisors)

EXAMPLES:

sage: s = sandpiles.Complete (3)

sage: s.superstables (False)

(o, o1r, o, 11, (1, 0J]]

sage: s.Jjacobian_representatives (False)
fro, o, o1, [-1, O, 11, [-1, 1, 0]]
sage: s.picard_representatives(3,False)
g3, o, o1, 12, o, 11, 12, 1, 011

— points()

Generators for the multiplicative group of zeros of the sandpile ideal.
OUTPUT:

list of complex numbers

EXAMPLES:

70 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The sandpile group in this example is cyclic, and hence there is a single generator for the group of solutions.

sage: S = sandpiles.Complete (4)
sage: S.points()

[[1/ Ir _IJ! [II lr _IJ]

— postulation()

The postulation number of the toppling ideal. This is the largest weight of a superstable configuration of the graph.
OUTPUT:

nonnegative integer

EXAMPLES:

sage: s = sandpiles.Complete (4)
sage: s.postulation()

3

— recurrents(verbose=True)

The recurrent configurations. If verbose is False, the configurations are converted to lists of integers.
INPUT:

verbose — (default: True) boolean

OUTPUT:

list of recurrent configurations

EXAMPLES:
sage: r = Sandpile (graphs.HouseXGraph(),0) .recurrents ()
sage: r[:3]

({1: 2, 2: 3, 3: 3, 4: 1}, {1: 1, 2: 3, 3: 3, 4: 0}, {1: 1, 2: 3, 3: 3, 4: 1}]
sage: sandpiles.Complete (4) .recurrents (False)
(12, 2, 21,

[2, 2, 11,

2, 1, 21,

1, 2, 21,

[2, 2, 071,

[2, o0, 21,

[o, 2, 21,

[2, 1, 11,

[1, 2, 11,

(1, 1, 21,

[2, 1, 01,

[2, o0, 11,

(1, 2, 01,

(1, 0, 21,

(0, 2, 17,

[0, 1, 211
sage: sandpiles.Cycle(4) .recurrents (False)
rr, 1, 11, 0, 1, 11, [, O, 11, [1, 1, 0]]

— reduced_laplacian()
The reduced Laplacian matrix of the graph.
OUTPUT:

12.1. Thematic tutorial document tree 71

Thematic Tutorials, Release 8.0

matrix

EXAMPLES:

sage: S = sandpiles.Diamond/()
sage: S.laplacian()

[2 -1 -1 0]

[-1 3 -1 -1]

[-1 -1 3 -1]

[0 -1 -1 2]

sage: S.reduced_laplacian()
[3 -1 -1]

[-1 3 -1]

[-1 -1 2]

Note: This is the Laplacian matrix with the row and column indexed by the sink vertex removed.

— reorder_vertices()

A copy of the sandpile with vertex names permuted. After reordering, vertex v comes before vertex v in the list of
vertices if u is closer to the sink.

OUTPUT:
Sandpile
EXAMPLES:

sage: S = Sandpile({0:[1], 2:[0,1]1, 1:[2]1})
sage: S.dict ()

{0: {1: 1}, 1: {2: 1}, 2: {0: 1, 1: 1}}
sage: T = S.reorder_vertices|()

The vertices 1 and 2 have been swapped:

sage: T.dict ()
{0: {1: 1}, 1: {0: 1, 2: 1}, 2: {0: 1}}

— resolution(verbose=False)

A minimal free resolution of the homogeneous toppling ideal. If verbose is True, then all of the mappings are
returned. Otherwise, the resolution is summarized.

INPUT:

verbose — (default: False) boolean
OUTPUT:

free resolution of the toppling ideal

EXAMPLES:

sage: S = Sandpile({O: {}, 1: {0O: 1, 2: 1, 3: 4}, 2: {3: 5}, 3: {1: 1, 2: 1}},0)
sage: S.resolution() # a Gorenstein sandpile graph

'Rl <—— R"5 <—— R"5 <—— R"1'

sage: S.resolution(True)

[

[x172 - x3xx0 x3*xx1 - x2+x0 x37"2 - x2xx1 x2+x3 - x072 x272 - x1+%x0],

72 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

[X272 — x1xx0]
[-x2%x3 + x0"2]
[-x3"2 + x2*x1]
[x3*%x]1 — x2*x0]
[x1"2 - x3%x0]

sage: r = S.resolution(True)
sage: r[0]*r[1l]

[00 0 0 0]

sage: r[l]l*r[2]

— ring()

The ring containing the homogeneous toppling ideal.
OUTPUT:

ring

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: S.ring/()

Multivariate Polynomial Ring in x3, x2, x1, x0 over Rational Field
sage: S.ring() .gens()

(x3, x2, x1, x0)

Note: The indeterminate xi corresponds to the i-th vertex as listed my the method vertices. The term-ordering
is degrevlex with indeterminates ordered according to their distance from the sink (larger indeterminates are further
from the sink).

— show(**kwds)

Draw the underlying graph.

INPUT:

kwds — (optional) arguments passed to the show method for Graph or DiGraph
EXAMPLES:

sage: S = Sandpile({O:[], 1:[0,3,41, 2:[0,3,51, 3:12,51, 4:[1,11, 5:[2,41})
sage: S.show()
sage: S.show(graph_border=True, edge_labels=True)

— show3d(**kwds)

Draw the underlying graph.

INPUT:

kwds — (optional) arguments passed to the show method for Graph or DiGraph
EXAMPLES:

12.1. Thematic tutorial document tree 73

Thematic Tutorials, Release 8.0

sage: S = sandpiles.House ()
sage: S.show3d()

— sink()
The sink vertex.
OUTPUT:

sink vertex

EXAMPLES:

sage: G = sandpiles.House()
sage: G.sink ()

0

sage: H = sandpiles.Grid(2,2)
sage: H.sink ()

(0, 0)

sage: type(H.sink())

<... 'tuple'>

— smith_form()

The Smith normal form for the Laplacian. In detail: a list of integer matrices D, U, V such that ULV = D where L is
the transpose of the Laplacian, D is diagonal, and U and V" are invertible over the integers.

OUTPUT:
list of integer matrices

EXAMPLES:

sage: s = sandpiles.Complete (4)
sage: D,U,V = s.smith_form()
sage: D
[1 0O
[0 40
[0 O 4
[0 0O
sage: U
True

.laplacian()*V == D # laplacian symmetric => tranpose not necessary

— solve()

Approximations of the complex affine zeros of the sandpile ideal.
OUTPUT:

list of complex numbers

EXAMPLES:

sage: S = Sandpile({0: {}, 1: {2: 2}, 2: {0: 4, 1: 1}}, 0)

sage: S.solve()

[[-0.707107 + 0.707107+«I, 0.707107 - 0.707107«1], [-0.707107 - 0.707107«I, 0.707107 +_
-0.707107%11, [-I, -I1, [I, I1, [0.707107 4+ 0.707107+«I, -0.707107 - 0.707107«I], [O.
707107 - 0.707107«1, -0.707107 + 0.707107%11, [1, 11, [-1, =111

sage: len(_)

8

sage: S.group_order ()

8

74 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note: The solutions form a multiplicative group isomorphic to the sandpile group. Generators for this group are
given exactly by points ().

— stable_configs(smax=None)

Generator for all stable configurations. If smax is provided, then the generator gives all stable configurations less than
or equal to smax. If smax does not represent a stable configuration, then each component of smax is replaced by the
corresponding component of the maximal stable configuration.

INPUT:
smax — (optional) SandpileConfig or list representing a SandpileConfig
OUTPUT:

generator for all stable configurations

EXAMPLES:
sage: s = sandpiles.Complete (3)
sage: a = s.stable_configs()

sage: next (a)

{1: 0, 2: 0}

sage: [i.values() for i in a]
(o, 11, (1, o1, [1, 11]

sage: b = s.stable_configs([1,01])
sage: list (b)

[{1: 0, 2: 0}, {1: 1, 2: 0}]

— stationary_density()

The stationary density of the sandpile.
OUTPUT:

rational number

EXAMPLES:

sage: s = sandpiles.Complete(3)
sage: s.stationary_density ()

10/9
sage:

0

= Sandpile (digraphs.DeBruijn(2,2),'00")
sage: s.stationary_density ()
9/8

Note: The stationary density of a sandpile is the sum) _(deg(c) + deg(s)) where deg(s) is the degree of the sink
and the sum is over all recurrent configurations.

REFERENCES:
— superstables(verbose=True)

The superstable configurations. If verbose is False, the configurations are converted to lists of integers. Supersta-
bles for undirected graphs are also known as G-parking functions.

INPUT:

verbose — (default: True) boolean

12.1. Thematic tutorial document tree 75

Thematic Tutorials, Release 8.0

OUTPUT:
list of SandpileConfig

EXAMPLES:

sage: sp = Sandpile (graphs.HouseXGraph(),0) .superstables()
sage: spl[:3]

[{x: o0, 2: 0, 3: 0, 4: 0}, {1: 1, 2: 0, 3: 0, 4: 1}, {(1: 1, 2: 0, 3: 0, 4: 0}]
sage: sandpiles.Complete (4) .superstables (False)
[to, o, ol,

[o, o, 11,

[o, 1, o1,

[, o, 0],

[o, o, 21,

[o, 2, 01,

[2, 0, 0],

[o, 1, 11,

(1, o, 11,

[, 1, o031,

[o, 1, 21,

[0, 2, 11,

[, o, 21,

[, 2, 01,

(2, 0, 11,

(2, 1, 011

sage: sandpiles.Cycle (4) .superstables (False)
rro, o, oj, 1, o, o1, [0, 1, 01, [0, O, 111
— symmetric_recurrents(orbits)

The symmetric recurrent configurations.

INPUT:

orbits - list of lists partitioning the vertices

OUTPUT:

list of recurrent configurations

EXAMPLES:

sage: S = Sandpile({0: {},

1: {0: 1, 2: 1, 3: 1},

2: {1: 1, 3: 1, 4: 1},

3: {1: 1, 2: 1, 4: 1},

4: {2: 1, 3: 1}1})

sage: S.symmetric_recurrents([[1],[2,3]1,1[411)
[{1: 2, 2: 2, 3: 2, 4: 1}, {1: 2, 2: 2, 3: 2, 4: 0}]
sage: S.recurrents()

[{1: 2, 2: 2, 3: 2, 4: 1},

{1: 2, 2: 2, 3: 2, 4: 0},

{1: 2, 2: 1, 3: 2, 4: 0},

{1: 2, 2: 2, 3: 0, 4: 1},

{1: 2, 2: 0, 3: 2, 4: 1},

{1: 2, 2: 2, 3: 1, 4: 0},

{1: 2, 2: 1, 3: 2, 4: 1},

{1: 2, 2: 2, 3: 1, 4: 1}]

76

Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note: The user is responsible for ensuring that the list of orbits comes from a group of symmetries of the underlying
graph.

— tutte_polynomial()

The Tutte polynomial. Only defined for undirected sandpile graphs.
OUTPUT:

polynomial

EXAMPLES:

sage: s = sandpiles.Complete (4)
sage: s.tutte_polynomial ()
X3 4+ Y3+ 3xx7M2 + Axxxy + 3xy72 4+ 2xx + 24y

sage: s.tutte_polynomial () .subs (x=1)

yi3 4+ 3%xy"2 + 6%y + 6

sage: s.tutte_polynomial () .subs(x=1).coefficients() == s.h_vector()
True

— unsaturated_ideal()

The unsaturated, homogeneous toppling ideal.
OUTPUT:

ideal

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: S.unsaturated_ideal () .gens/()

[x173 = x3%x2%x0, %273 - x3xx1xx0, x3"2 - x2xx1]

sage: S.ideal () .gens()

[x2xx]1 - x072, %372 - x072, x173 — x3%x2+xx0, x3*x1"2 - x272%xx0, x273 - x3*x1xx0,
SxX3*x272 — x172%x0]

— version()

The version number of Sage Sandpiles.
OUTPUT:

string

EXAMPLES:

sage: Sandpile.version()

Sage Sandpiles Version 2.4
sage: S = sandpiles.Complete(3)
sage: S.version()

Sage Sandpiles Version 2.4

— zero_config()

The all-zero configuration.
OUTPUT:

SandpileConfig
EXAMPLES:

12.1. Thematic tutorial document tree 77

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Diamond()
sage: s.zero_config()
{1: 0, 2: 0, 3: 0}

— zero_div()

The all-zero divisor.
OUTPUT:
SandpileDivisor

EXAMPLES:

sage: S = sandpiles.House ()
sage: S.zero_div ()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0}

SandpileConfig

Summary of methods.
e + — Addition of configurations.
e & — The stabilization of the sum.

e greater-equal — True if every component of self is at least that of other.

 greater — True if every component of self is at least that of other and the two configurations are not equal.
e ~ — The stabilized configuration.

* less-equal — True if every component of self is at most that of other.

¢ less — True if every component of self is at most that of ot her and the two configurations are not equal.

e *— The recurrent element equivalent to the sum.

» A — Exponentiation for the *-operator.

* - — The additive inverse of the configuration.

¢ - — Subtraction of configurations.

e add_random — Add one grain of sand to a random vertex.

* burst_size — The burst size of the configuration with respect to the given vertex.

* deg — The degree of the configuration.

* dualize — The difference with the maximal stable configuration.

e equivalent_recurrent — The recurrent configuration equivalent to the given configuration.
* equivalent_superstable — The equivalent superstable configuration.

* fire_script — Fire the given script.

* fire_unstable — Fire all unstable vertices.

* fire_vertex — Fire the given vertex.

* help — List of SandpileConfig methods.

78 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

is_recurrent — Is the configuration recurrent?
is_stable — Is the configuration stable?

is_superstable — Is the configuration superstable?
is_symmetric — Is the configuration symmetric?

order — The order of the equivalent recurrent element.
sandpile — The configuration’s underlying sandpile.
show — Show the configuration.

stabilize — The stabilized configuration.

support — The vertices containing sand.

unstable — The unstable vertices.

values — The values of the configuration as a list.

Complete descriptions of SandpileConfig methods.

—+

Addition of configurations.
INPUT:

other — SandpileConfig
OUTPUT:

sum of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: c¢ = SandpileConfig (S, [1,2])
sage: d = SandpileConfig (S, [3,2])
sage: c¢c + d

{1: 4, 2: 4}

— &

The stabilization of the sum.
INPUT:

other — SandpileConfig
OUTPUT:

SandpileConfig
EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: ¢ = SandpileConfig(Ss, [1,0,01])
sage: ¢ + ¢ # ordinary addition

{1: 2, 2: 0, 3: 0}
sage: c & ¢ # add and stabilize
{1: 0, 2: 1, 3: 0}

sage: c*xc # add and find equivalent recurrent

12.1.

Thematic tutorial document tree

79

Thematic Tutorials, Release 8.0

— >=
True if every component of self is at least that of ot her.
INPUT:
other — SandpileConfig
OUTPUT:
boolean
EXAMPLES:
sage: S = sandpiles.Cycle(3)
sage: c¢ = SandpileConfig(S, [1,2])
sage: d = SandpileConfig (S, [2,3])
sage: e = SandpileConfig (S, [2,0])
sage: c >= C
True
sage: d >= ¢
True
sage: c >=d
False
sage: e >= C
False
sage: c >= e
False

— >
True if every component of self is at least that of ot her and the two configurations are not equal.
INPUT:
other — SandpileConfig
OUTPUT:
boolean
EXAMPLES:
sage: S = sandpiles.Cycle(3)
sage: c¢ = SandpileConfig (S, [1,2])
sage: d = SandpileConfig(S, [1,31])
sage: c > C
False
sage: d > ¢
True
sage: ¢ > d
False
The stabilized configuration.

OUTPUT:
80 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

SandpileConfig

EXAMPLES:

sage: S = sandpiles.House ()

sage: ¢ = S.max_stable() + S.identity()
sage: ~c == c.stabilize()

True

— <=

True if every component of self is at most that of other.

INPUT:
other — SandpileConfig

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: c¢ = SandpileConfig(S, [1,2])
sage: d = SandpileConfig (S, [2,3])
sage: e = SandpileConfig(S, [2,01])
sage: c <= C

True

sage: c <= d

True

sage: d <= ¢

False

sage: c <= e

False

sage: e <= C

False

True if every component of self is at most that of ot her and the two configurations are not equal.

INPUT:
other — SandpileConfig

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: c¢ = SandpileConfig(S, [1,2])
sage: d = SandpileConfig (S, [2,3])
sage: c < c

False

sage: c < d

True

sage: d < ¢

False

sage: S = Sandpile(graphs.CycleGraph(3), 0)
sage: c¢ = SandpileConfig (S, [1,2])

12.1.

Thematic tutorial document tree

81

Thematic Tutorials, Release 8.0

sage: d = SandpileConfig (S, [2,3])
sage: c < c

False

sage: c < d

True

sage: d < c

False

If other is an configuration, the recurrent element equivalent to the sum. If other is an integer, the
sum of configuration with itself ot her times.

INPUT:

other — SandpileConfig or Integer
OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: ¢ = SandpileConfig(Ss, [1,0,01])
sage: ¢ + ¢ # ordinary addition

{1: 2, 2: 0, 3: 0}
sage: c & ¢ # add and stabilize
{1: 0, 2: 1, 3: 0}

sage: c*xc # add and find equivalent recurrent
{1: 1, 2: 1, 3: 1}

sage: (cx*c).ils_recurrent ()
True

sage: cx(-c) == S.identity()
True

sage: cC

{1: 1, 2: 0, 3: 0}
sage: c*3
{1: 3, 2: 0, 3: 0}

The recurrent element equivalent to the sum of the configuration with itself k£ times. If k is negative, do
the same for the negation of the configuration. If k is zero, return the identity of the sandpile group.

INPUT:
k — SandpileConfig

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)

sage: ¢ = SandpileConfig(Ss, [1,0,01])

sage: c”3

{l: 1, 2: 1, 3: 0}

sage: (¢ + ¢ + ¢c) == c"3

False

sage: (c + ¢ + c).equivalent_recurrent() == c”3

82

Chapter 12. Documentation

Thematic Tutorials, Release 8.0

True

sage: c”(-1)

{1: 1, 2: 1, 3: 0}

sage: c¢”0 == S.identity ()
True

The additive inverse of the configuration.
OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: c¢ = SandpileConfig (S, [1,2])
sage: -c

{1: -1, 2: -2}

Subtraction of configurations.
INPUT:

other — SandpileConfig
OUTPUT:

sum of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: c¢ = SandpileConfig (S, [1,2])
sage: d = SandpileConfig(S, [3,21])
sage: ¢ — d

{1: =2, 2: 0}

— add_random(distrib=None)

Add one grain of sand to a random vertex. Optionally, a probability distribution, distrib, may be placed on the
vertices or the nonsink vertices. See NOTE for details.

INPUT:

distrib — (optional) list of nonnegative numbers summing to 1 (representing a prob. dist.)
OUTPUT:

SandpileConfig

EXAMPLES:

sage: s = sandpiles.Complete (4)

sage: ¢ = s.zero_config()

sage: c.add_random() # random

{1: 0, 2: 1, 3: 0}

sage: cC

{1: 0, 2: 0, 3: 0}

sage: c.add_random([0.1,0.1,0.8]) # random
{1: 0, 2: 0, 3: 1}

12.1. Thematic tutorial document tree 83

Thematic Tutorials, Release 8.0

sage: c.add_random([0.7,0.1,0.1,0.1]) # random
{1: 0, 2: 0, 3: 0}

We compute the “sizes” of the avalanches caused by adding random grains of sand to the maximal stable configuration
on a grid graph. The function stabilize () returns the firing vector of the stabilization, a dictionary whose values
say how many times each vertex fires in the stabilization.:

sage: S = sandpiles.Grid(10,10)
sage: m = S.max_stable()
sage: a = []
sage: for i1 in range(1000):
m = m.add_random()
m, f = m.stabilize (True)
a.append (sum(f.values()))

sage: p = list_plot([[log(i+l),log(a.count(i))] for i in [0..max(a)] if a.count(i)])

sage: p.axes_labels(['log(N)', "log(D(N))'])
sage: t = text("Distribution of avalanche sizes", (2,2), rgbcolor=(1,0,0))

sage: show (pt+t,axes_labels=['log(N)', 'log(D(N))"])

Note: If distrib is None, then the probability is the uniform probability on the nonsink vertices. Otherwise, there
are two possibilities:

(i) the length of distrib is equal to the number of vertices, and distrib represents a probability distribution on
all of the vertices. In that case, the sink may be chosen at random, in which case, the configuration is unchanged.

(ii) Otherwise, the length of distrib must be equal to the number of nonsink vertices, and distrib represents a
probability distribution on the nonsink vertices.

Warning: If distrib != None, the user is responsible for assuring the sum of its entries is 1 and that its
length is equal to the number of sink vertices or the number of nonsink vertices.

— burst_size(v)

The burst size of the configuration with respect to the given vertex.
INPUT:

v — vertex

OUTPUT:

integer

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: [i.burst_size(0) for i in s.recurrents()]
(., 1, 1, 1, 1, 1, 1, 1]
sage: [i.burst_size(l) for i in s.recurrents()]
o, o, 1, 2, 1, 2, 0, 2]

Note: To define c.burst (v), if v is not the sink, let ¢’ be the unique recurrent for which the stabilization of ¢’ + v
is c. The burst size is then the amount of sand that goes into the sink during this stabilization. If v is the sink, the burst

84 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

size is defined to be 1.

REFERENCES:

— deg()

The degree of the configuration.
OUTPUT:

integer

EXAMPLES:

sage: S = sandpiles.Complete (3)
sage: ¢ = SandpileConfig (S, [1,2])
sage: c.deg()

3

— dualize()

The difference with the maximal stable configuration.
OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: c¢ = SandpileConfig(S, [1,2])
sage: S.max_stable ()

{1: 1, 2: 1}

sage: c.dualize ()

{1: 0, 2: -1}

sage: S.max_stable() - ¢ == c.dualize()
True

— equivalent_recurrent(with_firing_vector=False)

The recurrent configuration equivalent to the given configuration. Optionally, return the corresponding firing vector.
INPUT:

with_firing_vector — (default: False) boolean

OUTPUT:

SandpileConfig or [SandpileConfig, firing_vector]

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: ¢ = SandpileConfig(S, [0,0,01)

sage: c.equivalent_recurrent () == S.identity ()

True

sage: x = c.equivalent_recurrent (True)

sage: r = vector ([x[0][v] for v in S.nonsink_vertices()])
sage: f = vector([x[1][v] for v in S.nonsink_vertices()])
sage: cv = vector(c.values())

sage: r == cv - fxS.reduced_laplacian()

True

12.1. Thematic tutorial document tree 85

Thematic Tutorials, Release 8.0

Note: Let L be the reduced Laplacian, c the initial configuration, r the returned configuration, and f the firing vector.
Thenr =c— f- L.

— equivalent_superstable(with_firing_vector=False)

The equivalent superstable configuration. Optionally, return the corresponding firing vector.
INPUT:

with_firing_vector - (default: False) boolean

OUTPUT:

SandpileConfig or [SandpileConfig, firing_vector]

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: m = S.max_stable()
sage: m.equivalent_superstable () .is_superstable ()

True

sage: x = m.equivalent_superstable (True)
sage: s = vector (x[0].values())

sage: f = vector(x[1l].values())

sage: mv = vector (m.values())

sage: s == mv - fxS.reduced_laplacian()
True

Note: Let L be the reduced Laplacian, c the initial configuration, s the returned configuration, and f the firing vector.
Thens=c— f- L.

— fire_script(sigma)

Fire the given script. In other words, fire each vertex the number of times indicated by sigma.
INPUT:

sigma — SandpileConfig or (list or dict representing a SandpileConfig)

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle (4)

sage: c¢ = SandpileConfig(S, [1,2,31])

sage: c.unstable()

[2, 3]

sage: c.fire_script (SandpileConfig (S, [0,1,11))

{1: 2, 2: 1, 3: 2}

sage: c.fire_script (SandpileConfig(S,[2,0,0])) == c.fire_vertex(l).fire_vertex(1l)
True

— fire_unstable()
Fire all unstable vertices.

OUTPUT:

86 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

SandpileConfig
EXAMPLES:

sage: S = sandpiles.Cycle (4)

sage: c¢ = SandpileConfig(S, [1,2,31])
sage: c.fire_unstable()

{1: 2, 2: 1, 3: 2}

— fire_vertex(v)
Fire the given vertex.
INPUT:

v — vertex

OUTPUT:
SandpileConfig
EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: ¢ = SandpileConfig (S, [1,2])
sage: c.fire_vertex(2)

{1: 2, 2: 0}

— help(verbose=True)

List of SandpileConfig methods. If verbose, include short descriptions.
INPUT:

verbose — (default: True) boolean

OUTPUT:

printed string

EXAMPLES:

sage: SandpileConfig.help ()
Shortcuts for SandpileConfig operations:

~C —— stabilize

c & d —— add and stabilize

c » ¢ —— add and find equivalent recurrent

c "k -— add k times and find equivalent recurrent

(taking inverse if k is negative)

For detailed help with any method FOO listed below,
enter "SandpileConfig.FOO?" or enter "c.FOO?" for any SandpileConfig c.

add_random —— Add one grain of sand to a random vertex.

burst_size —— The burst size of the configuration with respect to the_
—glven vertex.

deg —-— The degree of the configuration.

dualize —— The difference with the maximal stable configuration.
equivalent_recurrent —— The recurrent configuration equivalent to the given,
—configuration.

equivalent_superstable —-- The equivalent superstable configuration.

fire_script —— Fire the given script.

fire_unstable -— Fire all unstable vertices.

12.1. Thematic tutorial document tree 87

Thematic Tutorials, Release 8.0

fire vertex —-— Fire the given vertex.

help —-— List of SandpileConfig methods.
is_recurrent —— Is the configuration recurrent?

is_stable —— Is the configuration stable?
is_superstable —-— Is the configuration superstable?
is_symmetric —— Is the configuration symmetric?

order —— The order of the equivalent recurrent element.
sandpile —— The configuration's underlying sandpile.
show —— Show the configuration.

stabilize —— The stabilized configuration.

support —-— The vertices containing sand.

unstable —— The unstable vertices.

values —— The values of the configuration as a list.

— is_recurrent()

Is the configuration recurrent?
OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: S.identity () .is_recurrent ()
True

sage: S.zero_config().is_recurrent ()
False

— is_stable()

Is the configuration stable?

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: S.max_stable() .is_stable()

True

sage: (2+S.max_stable()) .is_stable()

False

sage: (S.max_stable() & S.max_stable()).is_stable()
True

— is_superstable()

Is the configuration superstable?
OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Diamond/()
sage: S.zero_config() .is_superstable()
True

88 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

— is_symmetric(orbits)

Is the configuration symmetric? Return True if the values of the configuration are constant over the vertices in each
sublist of orbits.

INPUT:

orbits —list of lists of vertices

OUTPUT:

boolean

EXAMPLES:

sage: S = Sandpile({0: {},

el 1: {0: 1, 2: 1, 3: 1},
e 2: {1: 1, 3: 1, 4: 1},
el 3: {1: 1, 2: 1, 4: 1},
et 4: {2: 1, 3: 1}1})
sage: ¢ = SandpileConfig(s, [1, 2, 2, 31)
sage: c.is_symmetric([[2,3]1])

True

— order()

The order of the equivalent recurrent element.
OUTPUT:

integer

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: ¢ = SandpileConfig(S,[2,0,1])

sage: c.order ()

4

sage: ~(c + ¢ + ¢ + ¢c) == S.identity()
True

sage: ¢ = SandpileConfig(s,[1,1,0])

sage: c.order ()

1

sage: c.is_recurrent ()

False

sage: c.equivalent_recurrent () == S.identity ()
True

— sandpile()

The configuration’s underlying sandpile.

OUTPUT:

Sandpile

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: ¢ = S.identity()

sage: c.sandpile()

Diamond sandpile graph: 4 vertices, sink = 0
sage: c.sandpile() ==

True

12.1. Thematic tutorial document tree 89

Thematic Tutorials, Release 8.0

— show(sink=True, colors=True, heights=False, directed=None, **kwds)

Show the configuration.

INPUT:

¢ sink — (default: True) whether to show the sink

colors — (default: True) whether to color-code the amount of sand on each vertex

heights — (default: False) whether to label each vertex with the amount of sand

directed - (optional) whether to draw directed edges

kwds — (optional) arguments passed to the show method for Graph

EXAMPLES:

sage: S = sandpiles.Diamond()

sage: c = S.identity()

sage: c.show()

sage: c.show(directed=False)

sage: c.show(sink=False,colors=False,heights=True)

— stabilize(with_firing_vector=False)

The stabilized configuration. Optionally returns the corresponding firing vector.

INPUT:

with_firing_ vector — (default: False) boolean

OUTPUT:

SandpileConfigor [SandpileConfig, firing_ vector]

EXAMPLES:

sage: S = sandpiles.House ()

sage: c = 2xS.max_stable()

sage: c._set_stabilize()

sage: '_stabilize' in c.__dict__

True

sage: S = sandpiles.House ()

sage: ¢ = S.max_stable() + S.identity()

sage: c.stabilize (True)

({1: 1, 2: 2, 3: 2, 4: 1}y, {1: 2, 2: 2, 3: 3, 4: 3}]
sage: S.max_stable() & S.identity () == c.stabilize()
True

sage: ~c == c.stabilize()

True

— support()

The vertices containing sand.

OUTPUT:

list - support of the configuration

EXAMPLES:

90

Chapter 12.

Documentation

Thematic Tutorials, Release 8.0

sage: S = sandpiles.Diamond()
sage: ¢ = S.identity()
sage: c

{1: 2, 2: 2, 3: 0}
sage: c.support ()
[1, 2]

— unstable()

The unstable vertices.

OUTPUT:

list of

vertices

EXAMPLES:

sage: S = sandpiles.Cycle (4)

sage: c¢ = SandpileConfig(S, [1,2,31)

sage: c.unstable()
[z, 3]

— values()

The values of the configuration as a list. The list is sorted in the order of the vertices.

OUTPUT:

list of

integers

boolean

EXAMPLES:

sage:
sage:
sage:

S = Sandpile({'a':[1,'b"'], 'b':[1,'a']l,
c = SandpileConfig(s, {'b':1,

C

{1: 2, '"b': 1}

sage:

c.values ()

(2, 1]

sage:
[11 !

S.nonsink_vertices ()
b']

1:{"a']},"a")

Sand

pileDivisor

Summary of methods.

+ — Addition of divisors.

greater-equal — True if every component of self is at least that of ot her.

greater

True if every component of self is at least that of other and the two divisors are not equal.

less-equal — True if every component of self is at most that of other.

less — True if every component of self is at most that of ot her and the two divisors are not equal.

- — The additive inverse of the divisor.

- — Subtraction of divisors.

12.1.

Thematic tutorial document tree

91

Thematic Tutorials, Release 8.0

* Dcomplex — The support-complex.
* add_random — Add one grain of sand to a random vertex.

e betti — The Betti numbers for the support-complex.

* deg — The degree of the divisor.

* dualize — The difference with the maximal stable divisor.
* effective_div — All linearly equivalent effective divisors.
* fire_script — Fire the given script.

e fire_unstable — Fire all unstable vertices.

e fire_vertex — Fire the given vertex.

* help — List of SandpileDivisor methods.

e is_alive — Is the divisor stabilizable?

e is_linearly_equivalent — Is the given divisor linearly equivalent?

* is_q_reduced — Is the divisor q-reduced?

e is_symmetric — Is the divisor symmetric?

* is_weierstrass_pt — Is the given vertex a Weierstrass point?

* polytope — The polytope determinining the complete linear system.

* polytope_integer_pts — The integer points inside divisor’s polytope.

¢ g_reduced — The linearly equivalent q-reduced divisor.

* rank — The rank of the divisor.

* sandpile — The divisor’s underlying sandpile.

* show — Show the divisor.

o simulate_threshold — The first unstabilizable divisor in the closed Markov chain.
* stabilize — The stabilization of the divisor.

» support — List of vertices at which the divisor is nonzero.

* unstable — The unstable vertices.

* values — The values of the divisor as a list.

* weierstrass_div — The Weierstrass divisor.

* weierstrass_gap_seq — The Weierstrass gap sequence at the given vertex.
* weierstrass_pts — The Weierstrass points (vertices).

* weierstrass_rank_seq — The Weierstrass rank sequence at the given vertex.

Complete descriptions of SandpileDivisor methods.
— +

Addition of divisors.

INPUT:

other — SandpileDivisor

92 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

OUTPUT:

sum of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor(S, [1,2,31])
sage: E = SandpileDivisor (S, [3,2,11)
sage: D + E

{0: 4, 1: 4, 2: 4}

— >=

True if every component of self is at least that of ot her.

INPUT:

other — SandpileDivisor

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor(Ss, [1,2,31)
sage: E = SandpileDivisor (S, [2,3,4])
sage: F = SandpileDivisor (S, [2,0,41)
sage: D >= D

True

sage: E >= D

True

sage: D >= E

False

sage: F >= D

False

sage: D >= F

False

True if every component of self is at least that of ot her and the two divisors are not equal.

INPUT:

other — SandpileDivisor

OUTPUT:
boolean
EXAMPLES:
sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor (s, [1,2,3])
sage: E = SandpileDivisor (S, [1,3,41)
sage: D > D
False
sage: E > D
True
sage: D > E
False
12.1. Thematic tutorial document tree 93

Thematic Tutorials, Release 8.0

[

— <=
True if every component of self is at most that of other.
INPUT:
other — SandpileDivisor
OUTPUT:
boolean
EXAMPLES:
sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor (s, [1,2,3])
sage: E = SandpileDivisor (S, [2,3,41)
sage: F = SandpileDivisor (S, [2,0,41)
sage: D <= D
True
sage: D <= E
True
sage: E <= D
False
sage: D <= F
False
sage: F <= D
False

— <
True if every component of self is at most that of ot her and the two divisors are not equal.
INPUT:
other — SandpileDivisor
OUTPUT:
boolean
EXAMPLES:
sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor (S, [1,2,3])
sage: E = SandpileDivisor(S, [2,3,41)
sage: D < D
False
sage: D < E
True
sage: E < D
False
The additive inverse of the divisor.

OUTPUT:
SandpileDivisor
EXAMPLES:
94 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor (s, [1,2,31)
sage: -D

{0: -1, 1: -2, 2: -3}

Subtraction of divisors.
INPUT:

other — SandpileDivisor
OUTPUT:

Difference of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor(S, [1,2,31])
sage: E = SandpileDivisor (S, [3,2,11)
sage: D - E

{0: -2, 1: 0, 2: 2}

— Dcomplex()

The support-complex. (See NOTE.)
OUTPUT:

simplicial complex

EXAMPLES:

sage: S = sandpiles.House ()

sage: p = SandpileDivisor(s, [1,2,1,0,0]) .Dcomplex()
sage: p.homology ()

{0: 0, 1: 2 x Z, 2: 0}

sage: p.f_vector()

[1, 5, 10, 4]

sage: p.betti()

{0: 1, 1: 2, 2: 0}

Note: The “support-complex” is the simplicial complex determined by the supports of the linearly equivalent effective
divisors.

— add_random(distrib=None)

Add one grain of sand to a random vertex.

INPUT:

distrib — (optional) list of nonnegative numbers representing a probability distribution on the vertices
OUTPUT:

SandpileDivisor

EXAMPLES:

12.1. Thematic tutorial document tree 95

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Complete (4)

sage: D = s.zero_div()

sage: D.add_random() # random

{0: 0, 1: 0, 2: 1, 3: 0}

sage: D.add_random([0.1,0.1,0.1,0.7]1) # random
{0: 0, 1: 0, 2: 0, 3: 1}

Warning: If distrib is not None, the user is responsible for assuring the sum of its entries is 1.

— betti()

The Betti numbers for the support-complex. (See NOTE.)
OUTPUT:

dictionary of integers

EXAMPLES:

sage: S = sandpiles.Cycle (3)

sage: D = SandpileDivisor (S, [2,0,1])
sage: D.betti()

{0: 1, 1: 1}

Note: The “support-complex” is the simplicial complex determined by the supports of the linearly equivalent effective
divisors.

— deg()

The degree of the divisor.
OUTPUT:

integer

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor(S, [1,2,3])
sage: D.deg()

6

— dualize()

The difference with the maximal stable divisor.
OUTPUT:

SandpileDivisor

EXAMPLES:: sage: S = sandpiles.Cycle(3) sage: D = SandpileDivisor(S, [1,2,3]) sage: D.dualize() {0: O, 1: -1, 2:
-2} sage: S.max_stable_div() - D == D.dualize() True

— effective_div(verbose=True, with_firing_vectors=False)

All linearly equivalent effective divisors. If verbose is False, the divisors are converted to lists of integers. If
with_firing_vectorsis True then a list of firing vectors is also given, each of which prescribes the vertices to
be fired in order to obtain an effective divisor.

96 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

INPUT:

e verbose — (default: True) boolean

e with_firing_vectors — (default: False) boolean
OUTPUT:

list (of divisors)

EXAMPLES:
sage: s = sandpiles.Complete (4)
sage: D = SandpileDivisor(s,[4,2,0,01)
sage: sorted(D.effective_div (), key=str)
[{0: 0, 1: 2, 2: 0, 3: 4},
{0: 0, 1: 2, 2: 4, 3: 0},
{0: 0, 1: 6, 2: 0, 3: 0},
{0: 1, 1: 3, 2: 1, 3: 1},
{0: 2, 1: 0, 2: 2, 3: 2},
{0: 4, 1: 2, 2: 0, 3: 0}]
sage: sorted(D.effective_div (False))
(o, 2, o, 4j,
[o, 2, 4, 01,
[o, 6, 0, 01,
(1, 3, 1, 1],
[2, o, 2, 21,
[4, 2, 0, 011
sage: sorted(D.effective_div(with_firing_vectors=True), key=str)
[¢({06: 0, 1: 2, 2: 0, 3: 4}, (0, -1, -1, -2)),
({0: 0, 1: 2, 2: 4, 3: 0}, (0, -1, -2, -1)),
({0: 0, 1: 6, 2: 0, 3: 0}, (0, -2, -1, -1)),
({0: 1, 1: 3, 2: 1, 3: 1}, (0, -1, -1, -1)),
({0: 2, 1: 0, 2: 2, 3: 2}, (0, 0, -1, -1)),
({0: 4, 1: 2, 2: 0, 3: 0}, (0, O, 0, 0))]
sage: a = _[2]
sage: al[0].values|()
[0, 6, 0, 0]
sage: vector (D.values()) - s.laplacian()~*all]
(0, 6, 0, 0)
sage: sorted(D.effective_div(False, True))
r¢ro, 2, o, 41, (0, -1, -1, -2y,
(o, 2, 4, 01, (0, -1, -2, -1)),
(o, o, 0, 01, (0, -2, -1, -1)),
(r1, 3, 1, 11, (O, -1, -1, -1)),
({2, o0, 2, 21, (0, 0, -1, -1)),
(4, 2, o, 01, (0, 0, 0, 0))]
sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.effective_div(False, True)

L]

— fire_script(sigma)

Fire the given script. In other words, fire each vertex the number of times indicated by sigma.
INPUT:

sigma — SandpileDivisor or (list or dict representing a SandpileDivisor)

OUTPUT:

SandpileDivisor

12.1. Thematic tutorial document tree 97

Thematic Tutorials, Release 8.0

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor (S, [1,2,3])

sage: D.unstable ()

[1, 2]

sage: D.fire_script([0,1,1])

{0: 3, 1: 1, 2: 2}

sage: D.fire_script (SandpileDivisor (S, [2,0,0])) == D.fire_vertex(0).fire_vertex(0)
True

— fire_unstable()

Fire all unstable vertices.
OUTPUT:
SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Cycle (3)

sage: D = SandpileDivisor(Ss, [1,2,3])
sage: D.fire_unstable()

{0: 3, 1: 1, 2: 2}

— fire_vertex(v)
Fire the given vertex.
INPUT:

v — vertex

OUTPUT:
SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor(s, [1,2,3])
sage: D.fire_vertex (1)

{0: 2, 1: 0, 2: 4}

— help(verbose=True)

List of SandpileDivisor methods. If verbose, include short descriptions.
INPUT:

verbose — (default: True) boolean

OUTPUT:

printed string

EXAMPLES:

sage: SandpileDivisor.help()
For detailed help with any method FOO listed below,
enter "SandpileDivisor.FOO?" or enter "D.FOO?" for any SandpileDivisor D.

Dcomplex —— The support-complex.

98 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

add_random

betti
deg
dualize

effective_div

fire_script

fire_unstable

fire_vertex

help
is_alive

is_linearly_equivalent --
is_g_reduced
is_symmetric

is_weierstrass_pt
linear_system
—integer_pts").

polytope

polytope_integer_pts

g_reduce
r of_D
rank
sandpile
show

d

simulate_threshold

stabiliz
support
unstable
values

weierstrass_div
weierstrass_gap_seq

e

weierstrass_pts

welerstrass_rank_seq

Add
The
The
The
All
Fir
Fir
Fir
Lis
Is
Is
Is
Is
Is
The

The
The
The
The
The
The
Sho
The
The
Lis
The
The
The
The
The
The

one grain of sand to a random vertex.
Betti numbers for the support-complex.
degree of the divisor.
difference with the maximal stable divisor.
linearly equivalent effective divisors.
e the given script.
e all unstable vertices.
e the given vertex.
t of SandpileDivisor methods.
the divisor stabilizable?
the given divisor linearly equivalent?
the divisor g-reduced?
the divisor symmetric?
the given vertex a Weierstrass point?
complete linear system (deprecated: use "polytope_

polytope determinining the complete linear system.
integer points inside divisor's polytope.

linearly equivalent g-reduced divisor.

rank of the divisor (deprecated: use "rank", instead).
rank of the divisor.

divisor's underlying sandpile.
w the divisor.

first unstabilizable divisor in the closed Markov chain.
stabilization of the divisor.
t of vertices at which the divisor is nonzero.

unstable vertices.

values of the divisor as a list.

Weierstrass divisor.

Weierstrass gap sequence at the given vertex.
Weierstrass points (vertices).

Weierstrass rank sequence at the given vertex.

— is_alive(cycle=False)

Is the divisor stabilizable? In other words, will the divisor stabilize under repeated firings of all unstable vertices?
Optionally returns the resulting cycle.

INPUT:

cycle — (default: False) boolean

OUTPUT:

boolean or optionally, a list of SandpileDivisors

EXAMPLES:

sage: S = sandpiles.Complete (4)

sage: D = SandpileDivisor(s, {0: 4, 1: 3, 2: 3, 3: 2})

sage: D.is_alive()

True

sage: D.is_alive (True)

[{0: 4, 1: 3, 2: 3, 3: 2}, {0: 3, 1: 2, 2: 2, 3: 5}, {0: 1, 1: 4, 2: 4, 3: 3}]

— is_linearly_equivalent(D, with_firing_vector=False)

Is the given divisor linearly equivalent? Optionally, returns the firing vector. (See NOTE.)

INPUT:

12.1. Thematic tutorial document tree 99

Thematic Tutorials, Release 8.0

* D — SandpileDivisor or list, tuple, etc. representing a divisor
e with_firing_vector — (default: False) boolean
OUTPUT:
boolean or integer vector

EXAMPLES:

sage:

n

= sandpiles.Complete (3)

sage: D = SandpileDivisor(s,[2,0,01])

sage: D.is_linearly_equivalent ([0,1,1])

True

sage: D.is_linearly_equivalent ([0,1,1],True)

(1, 0, 0)

sage: v = vector(D.is_linearly_equivalent ([0,1,1],True))
sage: vector (D.values()) - s.laplacian()*v

(0, 1, 1)

sage: D.is_linearly_equivalent ([0,0,0])

False

sage: D.is_linearly_equivalent ([0,0,0], True)

0

Note:
e Ifwith_firing_vectoris False, returns either True or False.

e Ifwith_firing_vectoris True then: (i) if self is linearly equivalent to D, returns a vector v such that
self - vsself.laplacian() .transpose () = D.Otherwise, (ii) if self is not linearly equivalent
to D, the output is the empty vector, ().

— is_q_reduced()

Is the divisor g-reduced? This would mean that sel f = ¢ + kq where c is superstable, k is an integer, and ¢ is the sink
vertex.

OUTPUT:

boolean

EXAMPLES:

sage: s = sandpiles.Complete (4)

sage: D = SandpileDivisor(s,[2,-3,2,0])

sage: D.is_qg_reduced()

False

sage: SandpileDivisor(s, [10,0,1,2]) .is_g_reduced()
True

For undirected or, more generally, Eulerian graphs, g-reduced divisors are linearly equivalent if and only if they are
equal. The same does not hold for general directed graphs:

sage: s = Sandpile({0:[1],1:[1,11})
sage: D = SandpileDivisor(s,[-1,1])
sage: Z = s.zero_div()

sage: D.is_qg_reduced()

True

sage: Z.is_qg_reduced()

True

100 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: D == 7

False

sage: D.is_linearly_equivalent (2)
True

— is_symmetric(orbits)

Is the divisor symmetric? Return True if the values of the configuration are constant over the vertices in each sublist
of orbits.

INPUT:

orbits —list of lists of vertices
OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.House ()
sage: S.dict ()
{O: {1: 1, 2: 1}!

1: {0: 1, 3: 1},

2: {0: 1, 3: 1, 4: 1},

3: {1: 1, 2: 1, 4: 1},

4: {2: 1, 3: 1}}
sage: D = SandpileDivisor(s, [0,0,1,1,3])
sage: D.is_symmetric([[2,3], [411])
True

— is_weierstrass_pt(v="sink’)

Is the given vertex a Weierstrass point?
INPUT:

v — (default: sink) vertex

OUTPUT:

boolean

EXAMPLES:

sage: s = sandpiles.House ()

sage: K = s.canonical_divisor()

sage: K.weierstrass_rank_seq() # sequence at the sink vertex, 0
(1, 0, -1)

sage: K.is_weierstrass_pt ()

False

sage: K.welerstrass_rank_seq(4)

(1, 0, 0, -1)

sage: K.is_weierstrass_pt (4)

True

Note: The vertex v is a (generalized) Weierstrass point for divisor D if the sequence of ranks (D — nv) for
n=0,1,2,...isnotr(D),r(D)—1,...,0,—1,—1,...

— polytope()

12.1. Thematic tutorial document tree 101

Thematic Tutorials, Release 8.0

The polytope determinining the complete linear system.

OUTPUT:

polytope

EXAMPLES:

sage: s = sandpiles.Complete (4)

sage: D = SandpileDivisor(s,[4,2,0,01])
sage: p = D.polytope ()

sage: p.inequalities()
(An inequality (-3, 1, 1) x + 2 >= 0,
An inequality (1, 1, 1) x + 4 >= 0,

An inequality (1, -3, 1) x + 0 >= 0,
An inequality (1, 1, -3) x + 0 >= 0)
sage: D = SandpileDivisor(s,[-1,0,0,0])

sage: D.polytope ()
The empty polyhedron in QQ"3

Note: For a divisor D, this is the intersection of (i) the polyhedron determined by the system of inequalities Ltz < D
where L! is the transpose of the Laplacian with (ii) the hyperplane Tsink_vertex = 0. The polytope is thought of as
sitting in (n — 1)-dimensional Euclidean space where n is the number of vertices.

— polytope_integer_pts()

The integer points inside divisor’s polytope. The polytope referred to here is the one determining the divisor’s complete
linear system (see the documentation for polytope).

OUTPUT:

tuple of integer vectors

EXAMPLES:
sage: s = sandpiles.Complete (4)
sage: D = SandpileDivisor(s,[4,2,0,0])

sage: sorted(D.polytope_integer_pts())
[(_27 _11 -1

(0, 0, 0)]
sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.polytope_integer_pts()

()

— ¢_reduced(verbose=True)

The linearly equivalent g-reduced divisor.

INPUT:

verbose — (default: True) boolean

OUTPUT:

SandpileDivisor or list representing SandpileDivisor

EXAMPLES:

102 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Complete (4)

sage: D = SandpileDivisor(s,[2,-3,2,0])
sage: D.g_reduced()

{0: -2, 1: 1, 2: 2, 3: 0}

sage: D.g_reduced(False)

[-2, 1, 2, 0]

Note: The divisor D is greducedif‘D = ¢ + kq where c is superstable, & is an integer, and g is the sink.

— rank(with_witness=False)

The rank of the divisor. Optionally returns an effective divisor E such that D — E is not winnable (has an empty
complete linear system).

INPUT:

with_witness — (default: False) boolean
OUTPUT:

integer or (integer, SandpileDivisor)

EXAMPLES:

sage: S = sandpiles.Complete (4)

sage: D = SandpileDivisor(S,[4,2,0,0])
sage: D.rank ()
3

sage: D.rank (True)

(3, {0: 3, 1: 0, 2: 1, 3: 0})
sage: E = _[1]

sage: (D — E).rank()

-1

Riemann—-Roch theorem::

sage: D.rank() - (S.canonical_divisor()-D).rank() == D.deg() + 1 — S.genus()
True

Riemann—-Roch theorem::

sage: D.rank () - (S.canonical_divisor()-D).rank() == D.deg() + 1 - S.genus()

True

sage: S = Sandpile({O:[1,1,1,2],1:(0,0,0,1,1,1,2,21,2:12,2,1,1,01},0) # multigraph,_,
—with loops

sage: D = SandpileDivisor (S, [4,2,0])

sage: D.rank (True)

(2, {0: 1, 1: 1, 2: 1})

sage: S = Sandpile({0O:[1,2], 1:[0,2,2], 2: [0,11},0) # directed graph

sage: S.is_undirected()

False

sage: D = SandpileDivisor (S, [0,2,0])

sage: D.effective_div ()

[{0: 0, 1: 2, 2: 0}, {0: 2, 1: 0, 2: 0}]

sage: D.rank (True)

(0, {0: 0, 1: 0, 2: 1})

sage: E = D.rank(True) [1]

12.1. Thematic tutorial document tree 103

Thematic Tutorials, Release 8.0

sage: (D - E).effective_div ()
[]

Note: The rank of a divisor D is -1 if D is not linearly equivalent to an effective divisor (i.e., the dollar game
represented by D is unwinnable). Otherwise, the rank of D is the largest integer r such that D — E is linearly
equivalent to an effective divisor for all effective divisors E with deg(E) = r.

— sandpile()

The divisor’s underlying sandpile.
OUTPUT:

Sandpile

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: D = SandpileDivisor(S,[1,-2,0,31])
sage: D.sandpile ()

Diamond sandpile graph: 4 vertices, sink = 0
sage: D.sandpile() ==
True

— show(heights=True, directed=None, **kwds)

Show the divisor.

INPUT:
¢ heights — (default: True) whether to label each vertex with the amount of sand
* directed — (optional) whether to draw directed edges
* kwds — (optional) arguments passed to the show method for Graph

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: D = SandpileDivisor(S,[1,-2,0,2])
sage: D.show(graph_border=True,vertex_size=700,directed=False)

— simulate_threshold(distrib=None)

The first unstabilizable divisor in the closed Markov chain. (See NOTE.)

INPUT:

distrib — (optional) list of nonnegative numbers representing a probability distribution on the vertices

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: s = sandpiles.Complete (4)

sage: D = s.zero_div ()

sage: D.simulate_threshold() # random

{0: 2, 1: 3, 2: 1, 3: 2}

sage: n(mean ([D.simulate_threshold().deg() for _ in range(10)])) # random

7.10000000000000

104 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: n(s.stationary_density () *s.num_verts())
6.93750000000000

Note: Starting at self, repeatedly choose a vertex and add a grain of sand to it. Return the first unstabilizable divisor
that is reached. Also see the markov_chain method for the underlying sandpile.

— stabilize(with_firing_vector=False)
The stabilization of the divisor. If not stabilizable, return an error.
INPUT:

with_firing_ vector — (default: False) boolean

EXAMPLES:
sage: s = sandpiles.Complete (4)
sage: D = SandpileDivisor (s, [0,3,0,0])

sage: D.stabilize()

{0: 1, 1: 0, 2: 1, 3: 1}

sage: D.stabilize(with_firing vector=True)

[{6: 1, 1: 0, 2: 1, 3: 1}, {0: 0, 1: 1, 2: 0, 3: 0}]

— support()

List of vertices at which the divisor is nonzero.
OUTPUT:
list representing the support of the divisor

EXAMPLES:

sage: S = sandpiles.Cycle (4)

sage: D = SandpileDivisor(s, [0,0,1,1])
sage: D.support ()

[2, 3]

sage: S.vertices ()

[0, 1, 2, 3]

— unstable()

The unstable vertices.
OUTPUT:

list of vertices

EXAMPLES:

sage: S = sandpiles.Cycle(3)

sage: D = SandpileDivisor (s, [1,2,3])
sage: D.unstable ()

[1, 2]

— values()
The values of the divisor as a list. The list is sorted in the order of the vertices.

OUTPUT:

12.1. Thematic tutorial document tree 105

Thematic Tutorials, Release 8.0

list of integers

boolean

EXAMPLES:

sage: S = Sandpile({'a':[1,'b"'], 'b':[1,'a'l, 1l:['a'l},'a")
sage: D = SandpileDivisor (S, {'a':0, 'b':1, 1:2})

sage: D

{'a': 0, 1: 2, 'b': 1}

sage: D.values()

[2, 0, 1]

sage: S.vertices()
(1, 'a', 'b']

— weierstrass_div(verbose=True)

The Weierstrass divisor. Its value at a vertex is the weight of that vertex as a Weierstrass point. (See
SandpileDivisor.welerstrass_gap_seq.)

INPUT:

verbose — (default: True) boolean

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: s = sandpiles.Diamond()

sage: D = SandpileDivisor(s,[4,2,1,0])

sage: [D.welerstrass_rank_seqg(v) for v in s]
[(51 4! 3! 2/ 1/ Or Or _1)1

(51 4! 3! 2/ 11 OI 71)!

(51 4! 3/ 2/ 1/ Or OI OI 71)/

(51 4! 3! 2/ 1/ Or Or _1)]

sage: D.welerstrass_div ()

{0: 1, 1: 0, 2: 2, 3: 1}

sage: k5 = sandpiles.Complete(5)
sage: K = kb.canonical_divisor ()
sage: K.weilerstrass_div ()

{0: 9, 1: 9, 2: 9, 3: 9, 4: 9}

— weierstrass_gap_seq(v="sink’, weight=True)

The Weierstrass gap sequence at the given vertex. If weight is True, then also compute the weight of each gap
value.

INPUT:

¢ v — (default: sink) vertex

¢ weight — (default: True) boolean
OUTPUT:

list or (list of list) of integers

EXAMPLES:
sage: s = sandpiles.Cycle (4)
sage: D = SandpileDivisor(s,[2,0,0,01)

sage: [D.welerstrass_gap_seqg(v,False) for v in s.vertices()]

106 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

0, 3, (1, 2, (1, 3), (1, 2)]

sage: [D.welerstrass_gap_seq(v) for v in s.vertices()]

[, 3, 1), (1, 2), 0), (1, 3), 1), (1, 2), 0)]

sage: D.welerstrass_gap_seq() # gap sequence at sink vertex, 0
((1, 3), 1)

sage: D.weierstrass_rank_seq() # rank sequence at the sink vertex

(ll OI Or 71)

Note: The integer k is a Weierstrass gap for the divisor D at vertex v if the rank of D — (k — 1)v does not equal the
rank of D — kv. Let r be the rank of D and let k; be the i-th gap at v. The Weierstrass weight of v for D is the sum of
(k; — 1) as i ranges from 1 to r + 1. It measure the difference between the sequence r,r — 1,...,0,—1, —1, ... and the
rank sequence rank(D), rank(D — v), rank(D — 2v), ...

— weierstrass_pts(with_rank_seq=False)

The Weierstrass points (vertices). Optionally, return the corresponding rank sequences.
INPUT:

with_rank_seq - (default: False) boolean

OUTPUT:

tuple of vertices or list of (vertex, rank sequence)

EXAMPLES:

sage: s = sandpiles.House ()
sage: K = s.canonical_divisor()
sage: K.welerstrass_pts()

(4,)

sage: K.welerstrass_pts (True)
[(4, (1, 0, 0, -1))]

Note: The vertex v is a (generalized) Weierstrass point for divisor D if the sequence of ranks r(D — nv) for
n=0,1,2,...%isnot (D), r(D) —1,...,0,—1,—1,...

— weierstrass_rank_seq(v="sink”)

The Weierstrass rank sequence at the given vertex. Computes the rank of the divisor D — nw starting with n = 0 and
ending when the rank is —1.

INPUT:
v — (default: sink) vertex
OUTPUT:

tuple of int

EXAMPLES:
sage: s = sandpiles.House ()
sage: K = s.canonical_divisor()

sage: [K.welerstrass_rank_seqg(v) for v in s.vertices()]
[(11 Or _l)r (11 Or _l)r (11 Or _l)r (11 Or _l)r (11 Or Or _1)]

12.1. Thematic tutorial document tree 107

Thematic Tutorials, Release 8.0

Other

* firing_graph — The firing graph.
e parallel_firing_graph — The parallel-firing graph.
e random_DAG — A random directed acyclic graph.

* sandpiles — Some examples of sandpiles.

* wilmes_algorithm — Find matrix with the same integer row span as M that is the reduced Laplacian of a digraph.

Complete descriptions of methods. firing_graph(S, eff)

Creates a digraph with divisors as vertices and edges between two divisors D and F if firing a single
vertex in D gives E.

INPUT:

S — Sandpile e f £ — list of divisors
OUTPUT:

DiGraph

EXAMPLES:

sage: S sandpiles.Cycle (6)

sage: D = SandpileDivisor(s, [1,1,1,1,2,0])

sage: eff = D.effective_div()

sage: firing_graph(S,eff) .show3d(edge_size=.005,vertex_size=0.01)

— parallel_firing_graph(S,eff)

Creates a digraph with divisors as vertices and edges between two divisors D and E if firing all unstable
vertices in D gives E.

INPUT:

S - Sandpile ef £ - list of divisors
OUTPUT:

DiGraph

EXAMPLES:

sage: S = Sandpile(graphs.CycleGraph(6),0)

sage: D = SandpileDivisor(s, [1,1,1,1,2,0])

sage: eff = D.effective_div()

sage: parallel_firing graph(S,eff) .show3d(edge_size=.005,vertex_size=0.01)

— random_DAG(num_verts,p=1/2,weight_max=1)

Returns a random directed acyclic graph with num_verts vertices. The method starts with the sink
vertex and adds vertices one at a time. Each vertex is connected only to only previously defined vertices,
and the probability of each possible connection is given by the argument p. The weight of an edge is a
random integer between 1 and weight_max.

INPUT:
* num_verts - positive integer

* p - number between 0 and 1

108

Chapter 12. Documentation

Thematic Tutorials, Release 8.0

* weight_max — integer greater than 0
OUTPUT:
directed acyclic graph with sink 0
EXAMPLES:

sage: S = random_DAG (5, 0.3)

— sandpiles

Some examples of sandpiles.

Here are the available examples; you can also type “sandpiles.” and hit tab to get a list:
* “Complete()”
e “Cycle()”
e “Diamond()”
e “Grid()”
¢ “House()”

EXAMPLES:

sage: s = sandpiles.Complete (4)
sage: s.invariant_factors()

[1, 4, 4]

sage: s.laplacian()

[3 -1 -1 -1]

[-1 3 -1 -1]

[-1 -1 3 -1]

[-1 -1 -1 3]

— wilmes_algorithm(M)

Computes an integer matrix L with the same integer row span as M and such that L is the reduced laplacian
of a directed multigraph.

INPUT:
M - square integer matrix of full rank
OUTPUT:

L - integer matrix

EXAMPLES:

sage: P matrix([[2,3,-7,-3],15,2,-5,5],18,2,5,4]1,[-5,-9,6,611)
sage: wilmes_algorithm (P)

[1642 -13 -1627 -1]

[-1 1980 -1582 -397]

[0 -1 1650 -1649]

[0 0 -1658 1658]

NOTES:

The algorithm is due to John Wilmes.

12.1. Thematic tutorial document tree 109

Thematic Tutorials, Release 8.0

Help

Documentation for each method is available through the Sage online help system:

sage: SandpileConfig.fire_vertex?

Base Class: <type 'instancemethod'>

String Form: <unbound method SandpileConfig.fire_vertex>

Namespace: Interactive

File: /usr/local/sage—-4.7/local/lib/python2.6/site-packages/sage/sandpiles/
—sandpile.py

Definition: SandpileConfig.fire_vertex(self, v)

Docstring:

Fire the vertex "~ "v'°
INPUT:
‘v - vertex

OUTPUT:

SandpileConfig

EXAMPLES:
sage: S = Sandpile(graphs.CycleGraph(3), 0)
sage: c¢ = SandpileConfig (S, [1,2])

sage: c.fire_vertex(2)
{1: 2, 2: 0}

Note: An alternative to SandpileConfig.fire_vertex? in the preceding code example would be c.
fire_vertex?,if c is any SandpileConfig.

Enter Sandpile.help (), SandpileConfig.help (), and SandpileDivisor.help () for lists of avail-
able Sandpile-specific methods.

General Sage documentation can be found at http://doc.sagemath.org/html/en/.

Contact

Please contact davidp@reed.edu with questions, bug reports, and suggestions for additional features and other im-
provements.

12.1.4 Group Theory and Sage

Author: Robert A. Beezer, University of Puget Sound

This compilation collects Sage commands that are useful for a student in an introductory course on group theory. It
is not intended to teach Sage or to teach group theory. (There are many introductory texts on group theory and more
information on Sage can be found via www.sagemath.org) Rather, by presenting commands roughly in the order a
student would learn the corresponding mathematics they might be encouraged to experiment and learn more about
mathematics and learn more about Sage. Not coincidentally, when Sage was the acronym SAGE, the “E” in Sage
stood for “Experimentation.”

110 Chapter 12. Documentation

http://doc.sagemath.org/html/en/
mailto:davidp@reed.edu

Thematic Tutorials, Release 8.0

This guide is also distributed in PDF format and as a Sage worksheet. The worksheet version can be imported into
the Sage notebook environment running in a web browser, and then the displayed chunks of code may be executed by
Sage if one clicks on the small “evaluate” link below each cell, for a fully interactive experience. A PDF and Sage
worksheet versions of this tutorial are available at http://abstract.ups.edu/sage-aata.html.

Table of contents

* Group Theory and Sage
— Basic properties of the integers
— Permutation groups
— Group functions
— Subgroups
— Symmetry groups
— Normal subgroups
— Conjugacy
— Sylow subgroups

— Groups of small order as permutation groups

Acknowledgements

Changelog:
* 2009/01/30 Version 1.0, first complete release
* 2009/03/03 Version 1.1, added cyclic group size interact
* 2010/03/10 Version 1.3, dropped US on license, some edits.

Basic properties of the integers

Integer division

The command a % b will return the remainder upon division of a by b. In other words, the value is the unique integer
7 such that:

1. 0 <r <b;and
2. a = bq + r for some integer q (the quotient).

Then (a — r)/b will equal ¢q. For example:

sage: r = 14 % 3

sage: g = (14 - r) / 3
sage: r, g
(2, 4)

will return 2 for the value of r and 4 for the value of g. Note that the “/” is integer division, where any remainder is
cast away and the result is always an integer. So, for example, 14 / 3 will again equal 4, not 4.66666.

12.1. Thematic tutorial document tree 111

http://abstract.ups.edu/sage-aata.html

Thematic Tutorials, Release 8.0

Greatest common divisor

The greatest common divisor of a and b is obtained with the command gcd (a, b), where in our first uses, a and b
are integers. Later, a and b can be other objects with a notion of divisibility and “greatness,” such as polynomials. For
example:

sage: gcd (2776, 2452)
4

Extended greatest common divisor

The command xgcd (a, b) (“eXtended GCD”) returns a triple where the first element is the greatest common
divisor of a and b (as with the gcd (a, b) command above), but the next two elements are the values of r and s
such that ra + sb = ged(a, b). For example, xgcd (633, 331) returns (1, 194, -371). Portions of the triple
can be extracted using [] to access the entries of the triple, starting with the first as number 0. For example, the
following should return the result True (even if you change the values of a and b). Studying this block of code will
go a long way towards helping you get the most out of Sage’s output. (Note that “="is how a value is assigned to a
variable, while as in the last line, “==""is how we determine equality of two items.)

sage: a = 633

sage: b = 331

sage: extended = xgcd(a, b)
sage: g = extended[0]

sage: r = extended[1]

sage: s = extended[2]

sage: g == r+*a + s*b

True

Divisibility

A remainder of zero indicates divisibility. So (a % b) == 0 will return True if b divides a, and will otherwise
return False. For example, (9 $ 3) == 0is True,but (9 % 4) == 0is False. Try predicting the output

of the following before executing it in Sage.

sage: answerl ((20 % 5) == 0)
sage: answer2 = ((17 % 4) == 0)
sage: answerl, answer?2

(True, False)

Factoring

As promised by the Fundamental Theorem of Arithmetic, factor (a) will return a unique expression for a as a
product of powers of primes. It will print in a nicely-readable form, but can also be manipulated with Python as a list
of pairs (p;, e;) containing primes as bases, and their associated exponents. For example:

sage: factor (2600)
273 x 572 % 13

If you just want the prime divisors of an integer, then use the prime_divisors (a) command, which will return a
list of all the prime divisors of a. For example:

112 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: prime_divisors (2600)
[2, 5, 13]

We can strip off other pieces of the prime decomposition using two levels of []. This is another good example to
study in order to learn about how to drill down into Python lists.

sage: n = 2600

sage: decomposition = factor (n)

sage: print ("{} decomposes as {}".format (n, decomposition))
2600 decomposes as 2”3 * 572 x 13

sage: secondterm = decomposition([1]

sage: print ("Base and exponent (pair) for second prime: "+str (secondterm))
Base and exponent (pair) for second prime: (5, 2)

sage: base = secondterm[0]

sage: exponent = secondterm[1]

sage: print ("Base is "+str (base))

Base is 5

sage: print ("Exponent is "+str (exponent))

Exponent is 2

sage: thirdbase = decomposition[2][0]

sage: thirdexponent = decomposition([2][1]

sage: print ("Base of third term is {} with exponent {}".format (thirdbase,
—thirdexponent))

Base of third term is 13 with exponent 1

With a bit more work, the factor () command can be used to factor more complicated items, such as polynomials.

Multiplicative inverse, modular arithmetic

The command inverse_mod (a, n) yields the multiplicative inverse of @ mod n (or an error if it doesn’t exist).
For example:

sage: inverse_mod (352, 917)
508

(As a check, find the integer m such that 352+x508 == mx917+1.) Then try

sage: inverse_mod (4, 24)
Traceback (most recent call last):

ZeroDivisionError: Inverse does not exist.

and explain the result.

Powers with modular arithmetic

The command power_mod (a, m, n) yields a™ mod n. For example:

sage: power_mod(l5, 831, 23)
10

If m = —1, then this command will duplicate the function of inverse_mod ().

12.1. Thematic tutorial document tree 113

Thematic Tutorials, Release 8.0

Euler ¢-function

The command euler_phi (n) will return the number of positive integers less than n and relatively prime to n (i.e.
having greatest common divisor with n equal to 1). For example:

sage: euler_phi (345)
176

Experiment by running the following code several times:

sage: m = random_prime (10000)

sage: n = random_prime (10000)

sage: euler_phi (mx*n) == euler_phi(m) * euler_phi (n)
True

Feel a conjecture coming on? Can you generalize this result?

Primes

The command is_prime (a) returns True or False depending on if a is prime or not. For example,

sage: is_prime(117371)
True

while

sage: is_prime (14547073)
False

since 14547073 = 1597 *« 9109 (as you could determine with the factor () command).

The command random_prime (a, True) will return a random prime between 2 and a. Experiment with:

sage: p = random_prime (10721, True)
sage: is_prime (p)
True

(Replacing True by False will speed up the search, but there will be a very small probability the result will not be
prime.)

The command prime_range (a, b) returns an ordered list of all the primes from a to b — 1, inclusive. For
example,

sage: prime_range (500, 550)
[503, 509, 521, 523, 541, 547]

The commands next_prime (a) and previous_prime (a) are other ways to get a single prime number of a
desired size. Give them a try.

Permutation groups

A good portion of Sage’s support for group theory is based on routines from GAP (Groups, Algorithms, and Pro-
gramming at http://www.gap-system.org. Groups can be described in many different ways, such as sets of matrices
or sets of symbols subject to a few defining relations. A very concrete way to represent groups is via permutations
(one-to-one and onto functions of the integers 1 through n), using function composition as the operation in the group.

114 Chapter 12. Documentation

http://www.gap-system.org

Thematic Tutorials, Release 8.0

Sage has many routines designed to work with groups of this type and they are also a good way for those learning
group theory to gain experience with the basic ideas of group theory. For both these reasons, we will concentrate on
these types of groups.

Writing permutations

Sage uses “disjoint cycle notation” for permutations, see any introductory text on group theory (such as Judson, Section
4.1) for more on this. Composition occurs left to right, which is not what you might expect and is exactly the reverse
of what Judson and many others use. (There are good reasons to support either direction, you just need to be certain
you know which one is in play.) There are two ways to write the permutation o = (13)(254):

1. As atext string (include quotes): " (1,3) (2,5,4)"
2. As aPython list of “tuples™ [(1,3), (2,5,4)]

Groups

Sage knows many popular groups as sets of permutations. More are listed below, but for starters, the full “symmetric
group” of all possible permutations of 1 through n can be built with the command SymmetricGroup (n).

Permutation elements Elements of a group can be created, and composed, as follows

sage: G = SymmetricGroup (5)
sage: sigma = G("(1,3) (2,5,4)")
sage: rho = G([(2,4), (1,5)])
sage: rho”(-1) = sigma * rho
(1,2,4) (3,5)

Available functions for elements of a permutation group include finding the order of an element, i.e. for a permutation
o the order is the smallest power of k such that o equals the identity element (). For example:

sage: G = SymmetricGroup (5)
sage: sigma = G("(1,3) (2,5,4)")
sage: sigma.order ()

6

The sign of the permutation o is defined to be 1 for an even permutation and —1 for an odd permutation. For example:

sage: G = SymmetricGroup (5)
sage: sigma = G("(1,3) (2,5,4)™)
sage: sigma.sign()

-1

since o is an odd permutation.

Many more available functions that can be applied to a permutation can be found via “tab-completion.” With sigma
defined as an element of a permutation group, in a Sage cell, type sigma. (Note the “.”) and then press the tab key.
You will get a list of available functions (you may need to scroll down to see the whole list). Experiment and explore!

It is what Sage is all about. You really cannot break anything.

Creating groups

This is an annotated list of some small well-known permutation groups that can be created simply in Sage. You can
find more in the source code file

12.1. Thematic tutorial document tree 115

Thematic Tutorials, Release 8.0

SAGE_ROOT/src/sage/groups/perm_gps/permgroup_named.py

e SymmetricGroup (n): All n! permutations on n symbols.

* DihedralGroup (n): Symmetries of an n-gon. Rotations and flips, 2n in total.

e CyclicPermutationGroup (n): Rotations of an n-gon (no flips), n in total.

* AlternatingGroup (n): Alternating group on n symbols having n!/2 elements.

* KleinFourGroup (): The non-cyclic group of order 4.

Group functions

Individual elements of permutation groups are important, but we primarily wish to study groups as objects on their
own. So a wide variety of computations are available for groups. Define a group, for example

sage: H = DihedralGroup (6)
sage: H
Dihedral group of order 12 as a permutation group

and then a variety of functions become available.

After trying the examples below, experiment with tab-completion. Having defined H, type H. (note the ““.”’) and then
press the tab key. You will get a list of available functions (you may need to scroll down to see the whole list). As
before, experiment and explore—it is really hard to break anything.

Here is another couple of ways to experiment and explore. Find a function that looks interesting, say is_abelian ().
Type H.is_abelian? (note the question mark) followed by the enter key. This will display a portion of the source
code for the is_abelian () function, describing the inputs and output, possibly illustrated with example uses.

If you want to learn more about how Sage works, or possibly extend its functionality, then you can start by examining
the complete Python source code. For example, try H. is_abelian??, which will allow you to determine that the
is_abelian () function is basically riding on GAP’s IsAbelian () command and asking GAP do the heavy-
lifting for us. (To get the maximum advantage of using Sage it helps to know some basic Python programming, but it
is not required.)

OK, on to some popular command for groups. If you are using the worksheet, be sure you have defined the group H
as the dihedral group Dg, since we will not keep repeating its definition below.

Abelian?

The command

sage: H = DihedralGroup (6)
sage: H.is_abelian()
False

will return False since Dg is a non-abelian group.

Order

The command

116 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: H = DihedralGroup (6)

sage: H.order ()

12

will return 12 since Dg is a group of with 12 elements.

All elements

The command

sage: H = DihedralGroup (6)
sage: H.list ()

L0,

1,6)(2,5) (3,4),

(

(

(1,5) (2,4),
(2,6) (3,5),
(1,3,5)(2,4,6),
(1,4)(2,3) (5,6),
(1,6,5,4,3,2),
(1,4)(2,5)(3,6),
(1,2) (3,6) (4,5),
(1,5,3)(2,6,4),
(1,3) (4,6)]

will return all of the elements of H in a fixed order as a Python list. Indexing ([1) can be used to extract the
individual elements of the list, remembering that counting the elements of the list begins at zero.

sage: H = DihedralGroup (6)
sage: elements =

sage: elements|[2]
(1,2,3,4,5,6)

H.list ()

Cayley table

The command

sage: H = DihedralGroup (6)
sage: H.cayley_table()
x abcdefghijkl

al a b cd
bl] b aeh
cl ¢cd f g
dl d c b a
el eh jk
fl £ gil
gl g £ dc
hl] he ab
il 1 1 k j
il 3k 1i
k]l kK j h e
1l 1 igf

AR D QU 0 O Q0

0 v QO o QO ~F O F W

QO O QU T H&FQ

L H D Hh A Q OCQ Y oD
O Qo 0O DQ U R
oQ 9 oA O QB0 e

O H O Q FuUL oSO~
OO0 0oWQ 50 H AW P

12.1. Thematic tutorial document tree

117

Thematic Tutorials, Release 8.0

will construct the Cayley table (or “multiplication table”) of H. By default the table uses lowercase Latin letters to
name the elements of the group. The actual elements used can be found using the row_keys () or column_keys ()
commands for the table. For example to determine the fifth element in the table, the element named e:

sage: H = DihedralGroup (6)
sage: T = H.cayley_table()

sage: headings = T.row_keys()
sage: headings[4]

(2,6) (3,5)

Center

The command H. center () will return a subgroup that is the center of the group H (see Exercise 2.46 in Judson).
Try

sage: H = DihedralGroup (6)
sage: H.center().list ()
[O), (1,4)(2,5)(3,6)]

to see which elements of [/ commute with every element of .

Cayley graph

For fun, try show (H.cayley_graph()).
Subgroups

Cyclic subgroups

If G is a group and a is an element of the group (try a = G.random_element ()), then

a = G.random_element ()
H = G.subgroup([a])

will create H as the cyclic subgroup of G with generator a.
For example the code below will:
1. create G as the symmetric group on five symbols;
2. specify sigma as an element of G;
3. use sigma as the generator of a cyclic subgroup H;
4. list all the elements of H.

In more mathematical notation, we might write ((123)(45)) = H C G = S5.

sage: G = SymmetricGroup (5)

sage: sigma = G("(1,2,3) (4,5 ")

sage: H = G.subgroup([sigmal)

sage: H.list()

(¢, (1,2,3)4,5, ((1,3,2), (4,5, (1,2,3), (1,3,2)(4,5)]

Experiment by trying different permutations for sigma and observing the effect on H.

118 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Cyclic groups

Groups that are cyclic themselves are both important and rich in structure. The command
CyclicPermutationGroup (n) will create a permutation group that is cyclic with n elements. Consider
the following example (note that the indentation of the third line is critical) which will list the elements of a cyclic
group of order 20, preceded by the order of each element.

sage: n = 20

sage: CN = CyclicPermutationGroup (n)

sage: for g in CN:

e print ("{} {1".format (g.order (), 9g))

1 ()

20 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)

10 (1,3,5,7,9,11,13,15,17,19) (2,4,6,8,10,12,14,16,18,20)
20 (1,4,7,10,13,16,19,2,5,8,11,14,17,20,3,6,9,12,15,18)

5 (1,5,9,13,17) (2,6,10,14,18) (3,7,11,15,19) (4,8,12,16,20)
4 (1,6,11,16) (2,7,12,17) (3,8,13,18) (4,9,14,19) (5,10,15,20)
10 (1,7,13,19,5,11,17,3,9,15) (2,8,14,20,6,12,18,4,10,16)
20 (1,8,15,2,9,16,3,10,17,4,11,18,5,12,19,6,13,20,7,14)

5 (1,9,17,5,13) (2,10,18,6,14) (3,11,19,7,15) (4,12,20,8,16)
20 (1,10,19,8,17,6,15,4,13,2,11,20,9,18,7,16,5,14,3,12)

2 (1,11) (2,12) (3,13) (4,14) (5,15) (6,16) (7,17) (8,18) (9,19) (10,20)
20 (1,12,3,14,5,16,7,18,9,20,11,2,13,4,15,6,17,8,19,10)

5 (1,13,5,17,9) (2,14,6,18,10) (3,15,7,19,11) (4,16,8,20,12)
20 (1,14,7,20,13,6,19,12,5,18,11,4,17,10,3,16,9,2,15,8)

10 (1,15,9,3,17,11,5,19,13,7) (2,16,10,4,18,12,6,20,14,8)

4 (1,16,11,6) (2,17,12,7) (3,18,13,8) (4,19,14,9) (5,20,15,10)
5 (1,17,13,9,5) (2,18,14,10,6) (3,19,15,11,7) (4,20,16,12,8)
20 (1,18,15,12,9,6,3,20,17,14,11,8,5,2,19,16,13,10,7,4)

10 (1,19,17,15,13,11,9,7,5,3) (2,20,18,16,14,12,10,8, 6, 4)
20 (1,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)

By varying the size of the group (change the value of n) you can begin to illustrate some of the structure of a cyclic
group (for example, try a prime).

We can cut/paste an element of order 5 from the output above (in the case when the cyclic group has 20 elements) and
quickly build a subgroup:

sage: C20 = CyclicPermutationGroup (20)

sage: rho = C20("(1,17,13,9,5) (2,18,14,10,6) (3,19,15,11,7) (4,20,16,12,8)")
sage: H = C20.subgroup([rho])

sage: H.list ()

L0y
1,17,13,9,5
1,13,5,17,9
1,9,17,5,13
1,5,9,13,17

2,18,14,10,6
2,14,6,18,10
2,10,18,6,14
2,6,10,14,18

3,19,15,11,7

((4,20,16,12,8),
(3,15,7,19,11

(

(

)
(4,16,8,20,12),

3,11,19,7,15)

3,7,11,15,19)

(4,12,20,8,16

(
(
(
((4,8,12,16,20

) ())
) ())
) ())
) ())

]

For a cyclic group, the following command will list all of the subgroups.

sage: C20 = CyclicPermutationGroup (20)

sage: C20.conjugacy_classes_subgroups ()

[Subgroup of (Cyclic group of order 20 as a permutation group) generated by [()],.
—Subgroup of (Cyclic group of order 20 as a permutation group) generated by [(1,
—11) (2,12) (3,13) (4,14) (5,15) (6,16) (7,17) (8,18) (9,19) (10,20)]1, Subgroup of (Cyclic,
—group of order 20 as a permutation group) generated by [(1,6,11,16)(2,7,12,17) (3,8,
—13,18) (4,9,14,19) (5,10,15,20)], Subgroup of (Cyclic group of order 20 as a_
—permutation group) generated by [(1,5,9,13,17) (2,6,10,14,18) (3,7,11,15,19) (4,8,12,

16 20V 1 [«EER2N £ (OCzel 1o ryeaaey £ rder 20 =Y o ratad
=T 77 = A} A

wharouo Sermatat i on oroe) n 12N
VA= ASTSAS E=aSacy Sy T3 FESUPE E= ¥ ¥ o S—a—pPeEMttta o R—group—geRetracea oY

-[(,3,57,9,11,13,15,17,19) (2,4,6,8,10,12,14,16,18,20)], Subgroup of (Cyclic group,,
NS der iD a.gexmutatio roup) generated by [(1,2,3,4,5,6,7,8,9,10,11,12,13,1
1311; ?@em’a ic ﬁl.gt,c%éi]c]?ocumenil tree 119

Thematic Tutorials, Release 8.0

Be careful, this command uses some more advanced ideas and will not usually list all of the subgroups of a group.
Here we are relying on special properties of cyclic groups (but see the next section).

If you are viewing this as a PDF, you can safely skip over the next bit of code. However, if you are viewing this as a
worksheet in Sage, then this is a place where you can experiment with the structure of the subgroups of a cyclic group.
In the input box, enter the order of a cyclic group (numbers between 1 and 40 are good initial choices) and Sage will

list each subgroup as a cyclic group with its generator. The factorization at the bottom might help you formulate a
conjecture.

Fauto
@interact
def _(n input_box (default=12, label = "Cyclic group of order:", type=Integer)):
cyclic = CyclicPermutationGroup (n)
subgroups = cyclic.conjugacy_classes_subgroups ()
html ("All subgroups of a cyclic group of order $%s$\n" % latex(n))
table = "$\\begin{array}{I11}"
for sg in subgroups:
table table + latex(sg.order()) + \
" & \\left\\langle" + latex(sg.gens()[0]) + \
"\\right\\rangle\\\\"
table = table + "\\end/array}s"
html (table)
html ("\nHint: $%¢s$ factors as $%s$" % (latex(n), latex(factor(n))))

All subgroups

If H is a subgroup of G and g € G, then gHg~! = {ghg™! | h € G} will also be a subgroup of G. If G is a group,
then the command G.conjugacy_classes_subgroups () will return a list of subgroups of G, but not all of

the subgroups. However, every subgroup can be constructed from one on the list by the gH g~ construction with a
suitable g. As an illustration, the code below:

1. creates K as the dihedral group of order 24, D1o;

2. stores the list of subgroups output by K. conjugacy_classes_subgroups () in the variable sg;

3. prints the elements of the list;

4. selects the second subgroup in the list, and lists its elements.

sage: K = DihedralGroup(12)

sage: sg K.conjugacy_classes_subgroups ()

sage: sg

[Subgroup of (Dihedral group of order 24 as a permutation group) generated by [()],.
—Subgroup of (Dihedral group of order 24 as a permutation group) generated by [(1,

—2)(3,12) (4,11) (5,10) (6,9) (7,8)1, Subgroup of (Dihedral group of order 24 as a_
—permutation group) generated by [(1,7) (2,8) (3,9) (4,10) (5,11) (6,12)], Subgroup of_,
— (Dihedral group of order 24 as a permutation group) generated by [(2,12) (3,11) (4,
—10) (5,9) (6,8)], Subgroup of (Dihedral group of order 24 as a permutation group),,
—generated by [(1,5,9) (2,6,10) (3,7,11) (4,8,12)], Subgroup of (Dihedral group of
—order 24 as a permutation group) generated by [(2,12) (3,11) (4,10) (5,9) (6,8), (1,
—7)(2,8) (3,9) (4,10) (5,11) (6,12)]1, Subgroup of (Dihedral group of order 24 as a_
—permutation group) generated by [(1,2) (3,12) (4,11) (5,10) (6,9) (7,8), (1,7)(2,8) (3,
—9) (4,10) (5,11) (6,12)], Subgroup of (Dihedral group of order 24 as a permutation,
—group) generated by [(1,7) (2,8)(3,9) (4,10) (5,11) (6,12), (1,10,7,4) (2,11,8,5)(3,12,9,
—6)], Subgroup of (Dihedral group of order 24 as a permutation group) generated by,
—[(,3,57,9,11) (2,4,6,8,10,12), (1,5,9)(2,6,10)(3,7,11) (4,8,12)], Subgroup of_

— (Dihedral group of order 24 as a permutation group) generated by [(1,2) (3,12) (4,
—11) (5,10) (6,9) (7,8), (1,5,9)(2,6,10) (3,7,11) (4,8,12)]1, Subgroup of (Dihedral group,,

—oforder—24—as o permutationr group) generated by (2,23t t4 0596, 8 <t —
120, 9) (2,6,10) (3,7,11) (4,8,12)]1, Subgroup of (Dihedral group oChapter 12. Dogcumentation
—permutation group) generated by [(2,12) (3,11) (4,10) (5,9) (6,8), (1,7)(2,8)(3,9) (4,
—-10) (5,11) (6,12), (1,10,7,4)(2,11,8,5)(3,12,9,6)]1, Subgroup of (Dihedral group of_
—order 24 as a permutation group) generated by [(2,12) (3,11) (4,10) (5,9) (6,8), (1,3,5,

—_— o~ P~ e o~ o~ —_— oA o~

Thematic Tutorials, Release 8.0

sage: print ("An order two subgroup:\n{}".format (sg[l].list()))
An order two subgroup:
[0, (1,2)(3,12) (4,11) (5,10) (6,9) (7,8)]

It is important to note that this is a nice long list of subgroups, but will rarely create every such subgroup. For example,
the code below:

1. creates rho as an element of the group K;
2. creates L as a cyclic subgroup of K;
3. prints the two elements of L; and finally

4. tests to see if this subgroup is part of the output of the list sg created just above (it is not).

sage: K = DihedralGroup (12)

sage: sg = K.conjugacy_classes_subgroups ()

sage: rho = K("(1,4) (2,3) (5,12) (6,11) (7,10) (8,9)™)
sage: L = PermutationGroup ([rho])

sage: L.list ()

[0, (1,4)(2,3)(5,12) (6,11) (7,10) (8,9)]

sage: L in sg

False

Symmetry groups

You can give Sage a short list of elements of a permutation group and Sage will find the smallest subgroup that contains
those elements. We say the list “generates” the subgroup. We list a few interesting subgroups you can create this way.

Symmetries of an equilateral triangle

Label the vertices of an equilateral triangle as 1, 2 and 3. Then any permutation of the vertices will be a symmetry of
the triangle. So either SymmetricGroup (3) or DihedralGroup (3) will create the full symmetry group.

Symmetries of an n-gon

A regular, n-sided figure in the plane (an n-gon) has 2n symmetries, comprised of n rotations (including the trivial
one) and n “flips” about various axes. The dihedral group DihedralGroup (n) is frequently defined as exactly the
symmetry group of an n-gon.

Symmetries of a tetrahedron

Label the 4 vertices of a regular tetrahedron as 1, 2, 3 and 4. Fix the vertex labeled 4 and rotate the opposite face
through 120 degrees. This will create the permutation/symmetry (123). Similarly, fixing vertex 1, and rotating the
opposite face will create the permutation (2 34). These two permutations are enough to generate the full group of the
twelve symmetries of the tetrahedron. Another symmetry can be visualized by running an axis through the midpoint
of an edge of the tetrahedron through to the midpoint of the opposite edge, and then rotating by 180 degrees about this
axis. For example, the 1-2 edge is opposite the 3—4 edge, and the symmetry is described by the permutation (12)(34).
This permutation, along with either of the above permutations will also generate the group. So here are two ways to
create this group:

12.1. Thematic tutorial document tree 121

Thematic Tutorials, Release 8.0

sage: tetra_one = PermutationGroup (["(1,2,3)", "(2,3,4)"])
sage: tetra_one

Permutation Group with generators [(2,3,4), (1,2,3)]

sage: tetra_two = PermutationGroup (["(1,2,3)", "(1,2)(3,4)"])
sage: tetra_two

Permutation Group with generators [(1,2) (3,4), (1,2,3)]

This group has a variety of interesting properties, so it is worth experimenting with. You may also know it as the
“alternating group on 4 symbols,” which Sage will create with the command AlternatingGroup (4).

Symmetries of a cube

Label vertices of one face of a cube with 1, 2, 3 and 4, and on the opposite face label the vertices 5, 6, 7 and 8 (5
opposite 1, 6 opposite 2, etc.). Consider three axes that run from the center of a face to the center of the opposite face,
and consider a quarter-turn rotation about each axis. These three rotations will construct the entire symmetry group.
Use

sage: cube = PermutationGroup([" (3,2,6,7) (4,1,5,8)",
"(1,2,6,5)(4,3,7,8)", "(1,2,3,4)(5,6,7,8)"])
sage: cube.list ()

(1,2,3,4)(5,6,7,8),
(1,2,6,5)(3,7,8,4),
(1,5,8,4)(2,6,7,3),
(1,6,8)(2,7,4),
(1,3,8)(2,7,5),
(1,6,3) (4,5, 7),
(1,6)(2,5)(3,8)(4,7),
(2,5,4) (3,6,8),
(1,3)(2,4)(5,7) (6,8),
(1,8)(2,7) (3,6) (4,5),
(1,7)(2,3) (4,6) (5,8),
(1,5,6,2)(3,4,8,7),
(1,7)(2,6) (3,5) (4,8),
(1,7)(2,8)(3,4) (5,6),
(1,4,3,2)(5,8,7,6),
(1,4)(2,8)(3,5)(6,7),
(1,5)(2,8)(3,7) (4,6),
(1,4,8,5)(2,3,7,6),
(1,2)(3,5) (4,06) (7,8),
(1,8,6)(2,4,7),
(1,3,6)(4,7,5),
(2,4,5) (3,8,6),
(1,8,3)(2,5,7)]

~

A cube has four distinct diagonals (joining opposite vertices through the center of the cube). Each symmetry of the
cube will cause the diagonals to arrange differently. In this way, we can view an element of the symmetry group as a
permutation of four “symbols”—the diagonals. It happens that each of the 24 permutations of the diagonals is created
by exactly one symmetry of the 8 vertices of the cube. So this subgroup of Sg is “the same as” Sy. In Sage:

sage: cube = PermutationGroup(["(3,2,6,7)(4,1,5,8)",
e "(1,2,6,5)(4,3,7,8)", "(1,2,3,4)(5,6,7,8)"])
sage: cube.is_isomorphic (SymmetricGroup (4))

True

will test to see if the group of symmetries of the cube are “the same as” .S, and so will return True.

122 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Here is an another way to create the symmetries of a cube. Number the six faces of the cube as follows: 1 on top, 2
on the bottom, 3 in front, 4 on the right, 5 in back, 6 on the left. Now the same rotations as before (quarter-turns about
axes through the centers of two opposite faces) can be used as generators of the symmetry group:

sage: cubeface PermutationGroup ([" (1,3,2,5)", "(1,4,2,6)", "(3,4,5,6)"])
sage: cubeface.list ()
L0,

(3,4,5,6),
(1,4,2,6),

(1, 3 2,5),

(1,) (2,5,6),
(l,)(2 5,4),
(1,2) (3 5),
(1,4,5)(2,6,3),
(1,5,6)(2 3,4),
(3,5) (4,6),

(1,2) (4,6),
(1,5,2,3),
(1,6)(2,4)(3,5),
(1,4)(2,6) (3,5),
(1,2) (3,4) (5,6),
(1,3)(2,5) (4,6),
(3,6,5,4),
(1,5)(2,3) (4,6),
(1,6,2,4),

(1,2) (3,6) (4,5),
(1,6,3)(2,4,5),
(1,6,5)(2,4,3),
(1,5,4)(2,3,6),
(1,4,3)(2,6,5)]

~
~

Again, this subgroup of S is “same as” the full symmetric group, Sy:

sage: cubeface = PermutationGroup(["(1,3,2,5)", "(1,4,2,6)", "(3,4,5,6)"])
sage: cubeface.is_isomorphic (SymmetricGroup (4))
True

It turns out that in each of the above constructions, it is sufficient to use just two of the three generators (any two). But
one generator is not enough. Give it a try and use Sage to convince yourself that a generator can be sacrificed in each
case.

Normal subgroups

Checking normality

The code below:
1. begins with the alternating group Ay;

2. specifies three elements of the group (the three symmetries of the tetrahedron that are 180 degree rotations about
axes through midpoints of opposite edges);

3. uses these three elements to generate a subgroup; and finally

4. illustrates the command for testing if the subgroup H is a normal subgroup of the group A4.

sage: A4 = AlternatingGroup (4)
sage: rl = A4("(1,2) (3,4)™)

12.1. Thematic tutorial document tree 123

Thematic Tutorials, Release 8.0

sage: r2 = A4("(1,3) (2,4)")

sage: r3 = A4 (" (1,4) (2,3)")

sage: H = A4.subgroup([rl, r2, r3])
sage: H.is_normal (A4)

True

Quotient group

Extending the previous example, we can create the quotient (factor) group of A, by H. The commands

sage: A4 = AlternatingGroup (4)

sage: rl = A4("(1,2) (3,4)")

sage: r2 = A4("(1,3) (2,4)M)

sage: r3 = A4 (" (1,4) (2,3)"M)

sage: H = A4.subgroup([rl, r2, r3])

sage: Ad.quotient (H)

Permutation Group with generators [(1,2,3)]

returns a permutation group generated by (1, 2, 3). As expected this is a group of order 3. Notice that we do not get
back a group of the actual cosets, but instead we get a group isomorphic to the factor group.

Simple groups

It is easy to check to see if a group is void of any normal subgroups. The commands

sage: AlternatingGroup (5) .is_simple ()
True
sage: AlternatingGroup (4) .is_simple ()
False

prints True and then False.

Composition series

For any group, it is easy to obtain a composition series. There is an element of randomness in the algorithm, so you
may not always get the same results. (But the list of factor groups is unique, according to the Jordan-Holder theorem.)
Also, the subgroups generated sometimes have more generators than necessary, so you might want to “study” each
subgroup carefully by checking properties like its order.

An interesting example is:

DihedralGroup (105) .composition_series ()

The output will be a list of 5 subgroups of D5, each a normal subgroup of its predecessor.
Several other series are possible, such as the derived series. Use tab-completion to see the possibilities.
Conjugacy

Given a group G, we can define a relation ~ on G by: for a,b € G, a ~ b if and only if there exists an element g € G
such that gag~! = b.

124 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Since this is an equivalence relation, there is an associated partition of the elements of G into equivalence
classes. For this very important relation, the classes are known as “conjugacy classes.”” A representative
of each of these equivalence classes can be found as follows. Suppose G is a permutation group, then G.
conjugacy_classes_representatives () will return a list of elements of GS, one per conjugacy class.

Given an element g € G, the “centralizer” of g is the set C(g) = {h € G | hgh™! = g}, which is a subgroup of G. A
theorem tells us that the size of each conjugacy class is the order of the group divided by the order of the centralizer
of an element of the class. With the following code we can determine the size of the conjugacy classes of the full
symmetric group on 5 symbols:

sage: G = SymmetricGroup (5)

sage: group_order = G.order ()

sage: reps = G.conjugacy_classes_representatives()

sage: class_sizes = []

sage: for g in reps:

..... class_sizes.append (group_order / G.centralizer (g).order())
sage: class_sizes

[1, 10, 15, 20, 20, 30, 24]

This should produce the list [1, 10, 15, 20, 20, 30, 24] which you can check sums to 120, the order of
the group. You might be able to produce this list by counting elements of the group S5 with identical cycle structure
(which will require a few simple combinatorial arguments).

Sylow subgroups

Sylow’s Theorems assert the existence of certain subgroups. For example, if p is a prime, and p” divides the order
of a group G, then G must have a subgroup of order p”. Such a subgroup could be found among the output of the
conjugacy_classes_subgroups () command by checking the orders of the subgroups produced. The map ()
command is a quick way to do this. The symmetric group on 7 symbols, S7, has order 7! = 5040 and is divisible by
2% = 16. Let’s find one example of a subgroup of permutations on 4 symbols with order 16:

sage: G = SymmetricGroup (7)

sage: subgroups = G.conjugacy_classes_subgroups ()

sage: list (map (order, subgroups))

[, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8,
-8, 8, 9, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 16, 18,
- 18, 18, 20, 20, 20, 21, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 36,
- 36, 36, 36, 40, 42, 48, 48, 48, ©0, 60, 72, 72, 72, 72, 120, 120, 120, 120, 144,
—168, 240, 360, 720, 2520, 5040]

The map (order, subgroups) command will apply the order () function to each of the subgroups in the list
subgroups. The output is thus a large list of the orders of many subgroups (96 to be precise). If you count carefully,
you will see that the 49-th subgroup has order 16. You can retrieve this group for further study by referencing it as
subgroups [48] (remember that counting starts at zero).

If p” is the highest power of p to divide the order of GG, then a subgroup of order p" is known as a “Sy-
low p-subgroup.” Sylow’s Theorems also say any two Sylow p-subgroups are conjugate, so the output of
conjugacy_classes_subgroups () should only contain each Sylow p-subgroup once. But there is an eas-
ier way, sylow_subgroup (p) will return one. Notice that the argument of the command is just the prime p, not
the full power p". Failure to use a prime will generate an informative error message.

Groups of small order as permutation groups

We list here constructions, as permutation groups, for all of the groups of order less than 16.

12.1. Thematic tutorial document tree 125

Thematic Tutorials, Release 8.0

QO 00 ~J oy o) U i D WDN -

O W 0

10
10
11
12
12

12
12

SymmetricGroup (1)
SymmetricGroup (2)
CyclicPermutationGroup (3)
CyclicPermutationGroup (4)
KleinFourGroup ()
CyclicPermutationGroup (5)
CyclicPermutationGroup (6)
SymmetricGroup (3)
CyclicPermutationGroup (7)
CyclicPermutationGroup (8)

D1 CyclicPermutationGroup (4)
D2 = CyclicPermutationGroup (2)
G = direct_product_permgroups ([D1,D2])
D1 = CyclicPermutationGroup (2)
D2 CyclicPermutationGroup (2)
D3 CyclicPermutationGroup (2)

G = direct_product_permgroups ([D1,D2,D3])

DihedralGroup (4)

QuaternionGroup ()
CyclicPermutationGroup (9)

D1 = CyclicPermutationGroup (3)

D2 = CyclicPermutationGroup (3)

G = direct_product_permgroups ([D1,D2])
CyclicPermutationGroup (10)
DihedralGroup (5)
CyclicPermutationGroup(11)
CyclicPermutationGroup (12)

D1 = CyclicPermutationGroup (6)

D2 = CyclicPermutationGroup (2)

G = direct_product_permgroups ([D1,D2])
DihedralGroup (6)

AlternatingGroup (4)

—tetrahedron

12

DiCyclicGroup (3)

—~\rtimes Z_4$

13
14
14
15

CyclicPermutationGroup (13)
CyclicPermutationGroup (14)
DihedralGroup (7)

CyclicPermutationGroup (15)

Trivial

Also CyclicPermutationGroup (2)

Prime order
Cyclic

Abelian, non-—

Prime order
Cyclic
Non—-abelian,
Prime order
Cyclic

Abelian, non-—

Abelian, non-—

Non—-abelian
Quaternions,
Cyclic

Abelian, non-—

Cyclic
Non-abelian
Prime order
Cyclic

Abelian, non-

Non-abelian
Non—-abelian,

Non-abelian

Also semi-direct

Prime order
Cyclic
Non-abelian
Cyclic

cyclic

also DihedralGroup (3)

cyclic

cyclic

also DiCyclicGroup (2)

cyclic

cyclic

symmetries of |

product $Z_3 |

Acknowledgements

The construction of Sage is the work of many people, and the group theory portion is made possible by the extensive
work of the creators of GAP. However, we will single out three people from the Sage team to thank for major con-
tributions toward bringing you the group theory portion of Sage: David Joyner, William Stein, and Robert Bradshaw.

Thanks!

126

Chapter 12. Documentation

Thematic Tutorials, Release 8.0

12.1.5 Lie Methods and Related Combinatorics in Sage
Author: Daniel Bump (Stanford University), Ben Salisbury (Central Michigan University), and Anne Schilling (UC
Davis)

These notes explain how to use the mathematical software Sage for Lie group computations. Sage also contains many
combinatorial algorithms. We will cover only some of these.

The Scope of this Document

Lie groups and algebras

Sage can be used to do standard computations for Lie groups and Lie algebras. The following categories of represen-
tations are equivalent:

» Complex representations of a compact, semisimple simply connected Lie group G.

» Complex representations of its Lie algebra g. This is a real Lie algebra, so representations are not required to be
complex linear maps.

* Complex representations of its complexified Lie algebra go = C ® g. This is a complex Lie algebra and
representations are required to be complex linear transformations.

¢ The complex analytic representations of the semisimple simply-connected complex analytic group G ¢ having
gc as its Lie algebra.

* Modules of the universal enveloping algebra U (gc).
* Modules of the quantized enveloping algebra U, (gc).

For example, we could take G = SU(n), g = sl(n,R), gc = sl(n,C) and G¢ = SL(n,C). Because these
categories are the same, their representations may be studied simultaneously. The above equivalences may be expanded
to include reductive groups like U (n) and GL(n) with a bit of care.

Here are some typical problems that can be solved using Sage:
* Decompose a module in any one of these categories into irreducibles.
» Compute the Frobenius-Schur indicator of an irreducible module.
¢ Compute the tensor product of two modules.

* If H is a subgroup of G, study the restriction of modules for G to H. The solution to this problem is called a
branching rule.

* Find the multiplicities of the weights of the representation.

In addition to its representations, which we may study as above, a Lie group has various related structures. These
include:

* The Weyl Group W

* The Weight Lattice.

* The Root System

e The Cartan Type.

* The Dynkin diagram.

¢ The extended Dynkin diagram.

12.1. Thematic tutorial document tree 127

Thematic Tutorials, Release 8.0

Sage contains methods for working with these structures.

If there is something you need that is not implemented, getting it added to Sage will likely be possible. You may
write your own algorithm for an unimplemented task, and if it is something others will be interested in, it is probably
possible to get it added to Sage.

Combinatorics

Sage supports a great many related mathematical objects. Some of these properly belong to combinatorics. It is
beyond the scope of these notes to cover all the combinatorics in Sage, but we will try to touch on those combinatorial
methods which have some connection with Lie groups and representation theory. These include:

* The affine Weyl group, an infinite group containing W'

» Kashiwara crystals, which are combinatorial analogs of modules in the above categories.

» Coxeter group methods applicable to Weyl groups and the affine Weyl group, such as Bruhat order.

* The Iwahori Hecke algebras, which are deformations of the group algebras of W and the affine Weyl group.

» Kazhdan-Lusztig polynomials.

Lie Group Basics

Goals of this section

Since we must be brief here, this is not really a place to learn about Lie groups or Lie algebras. Rather, the point of
this section is to outline what you need to know to use Sage effectively for Lie computations, and to fix ideas and
notations.

Semisimple and reductive groups

If g € GL(n, C), then g may be uniquely factored as g1 g» where g1 and g2 commute, with g; semisimple (diagonal-
izable) and go unipotent (all its eigenvalues equal to 1). This follows from the Jordan canonical form. If g = g; then
g is called semisimple and if g = go then g is called unipotent.

We consider a Lie group G and a class of representations such that if an element g € G is unipotent (resp. semisimple)
in one faithful representation from the class, then it is unipotent (resp. semisimple) in every faithful representation of
the class. Thus the notion of being semisimple or unipotent is intrinsic. Examples:

* Compact Lie groups with continuous representations
* Complex analytic groups with analytic representations
* Algebraic groups over R with algebraic representations.

A subgroup of G is called unipotent if it is connected and all its elements are unipotent. It is called a torus if it is
connected, abelian, and all its elements are semisimple. The group G is called reductive if it has no nontrivial normal
unipotent subgroup. For example, GL(2, C) is reductive, but its subgroup:

("))

is not since it has a normal unipotent subgroup

128 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

A group has a unique largest normal unipotent subgroup, called the unipotent radical, so it is reductive if and only if
the unipotent radical is trivial.

A Lie group is called semisimple it is reductive and furthermore has no nontrivial normal tori. For example GL(2, C)
is reductive but not semisimple because it has a normal torus:

(")}

The group SL(2, C) is semisimple.

Fundamental group and center

If G is a semisimple Lie group then its center and fundamental group are finite abelian groups. The universal covering
group G is therefore a finite extension with the same Lie algebra. Any representation of G' may be reinterpreted as
a representation of the simply connected G. Therefore we may as well consider representations of G, and restrict
ourselves to the simply connected group.

Parabolic subgroups and Levi subgroups

Let G be a reductive complex analytic group. A maximal solvable subgroup of G is called a Borel subgroup. All Borel
subgroups are conjugate. Any subgroup P containing a Borel subgroup is called a parabolic subgroup. We may write
P as a semidirect product of its maximal normal unipotent subgroup or unipotent radical P and a reductive subgroup
M, which is determined up to conjugacy. The subgroup M is called a Levi subgroup.

Example: Let G = GL,(C) and let rq, ..., 7 be integers whose sum is n. Then we may consider matrices of the
form:
gl * PR *
g2 *
Gr

where g; € GL(r;, C). The unipotent radical consists of the subgroup in which all g; = I,.,. The Levi subgroup
(determined up to conjugacy) is:

g1
g2

9r
and is isomorphic to M = GL(ry,C) x - -+ x GL(rg, C). Therefore M is a Levi subgroup.

The notion of a Levi subgroup can be extended to compact Lie groups. Thus U(r1) X --- x U(ry) is a Levi subgroup
of U(n). However parabolic subgroups do not exist for compact Lie groups.

Cartan types

Semisimple Lie groups are classified by their Cartan types. There are both reducible and irreducible Cartan types in
Sage. Let us start with the irreducible types. Such a type is implemented in Sage as a pair ['X', r] where ‘X’ is
one of A, B, C, D, E, For G and r is a positive integer. If ‘X’ is ‘D’ then we must have » > 1 and if ‘X’ is one of the
exceptional types ‘E’, ‘F’ or ‘G’ then r is limited to only a few possibilities. The exceptional types are:

12.1. Thematic tutorial document tree 129

Thematic Tutorials, Release 8.0

t'et, 21, 'e', 41, ('e', 6], ['E', 7] oxr ['E', 8].

A simply-connected semisimple group is a direct product of simple Lie groups, which are given by the following table.
The integer r is called the rank, and is the dimension of the maximal torus.

Here are the Lie groups corresponding to the classical types:

compact group | complex analytic group | Cartan type
SU(r+1) SL(r+1,C) A,
spin(2r + 1) spin(2r +1,C) B,
Sp(2r) Sp(2r, C) C.
spin(2r) spin(2r, C) D,

You may create these Cartan types and their Dynkin diagrams as follows:

sage: ct = CartanType("D5"); ct
['D"', 5]

Here "D5" is an abbreviation for ['D', 5]. The group spin(n) is the simply-connected double cover of the orthog-
onal group SO(n).

Dual Cartan types

Every Cartan type has a dual, which you can get from within Sage:

sage: CartanType ("B4") .dual ()
[('et, 4]

Types other than B,. and C,. for r > 2 are self-dual in the sense that the dual is isomorphic to the original type; however
the isomorphism of a Cartan type with its dual might relabel the vertices. We can see this as follows:

sage: CartanType ("F4") .dynkin_diagram()
0———0=>=0-—-0

1 2 3 4

F4

sage: CartanType ("F4") .dual ()

['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: CartanType ("F4") .dual () .dynkin_diagram()
0———0=>=0-—-0

4 3 2 1

F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

Reducible Cartan types

If G is a Lie group of finite index in G; x G2, where G; and G are Lie groups of positive dimension, then G is
called reducible. In this case, the root system of G is the disjoint union of the root systems of G; and G5, which lie in
orthogonal subspaces of the ambient space of the weight space of G. The Cartan type of G is thus reducible.

Reducible Cartan types are supported in Sage as follows:

sage: RootSystem ("AlxA1l")

Root system of type AlxAl

sage: WeylCharacterRing ("AlxAl")

The Weyl Character Ring of Type AlxAl with Integer Ring coefficients

130 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Low dimensional Cartan types

There are some isomorphisms that occur in low degree.

Cartan Type | Group | Equivalent Type | Isomorphic Group
By spin(b) | Cs Sp(4)

Ds spin(6) | As SL(4)

Dy spin(4) | Al x A4 SL(2) x SL(2)

B spin(3) | Ay SL(2)

4 Sp(2) Aq SL(2)

Sometimes the redundant Cartan types such as D3 and D, are excluded from the list of Cartan types. However Sage
allows them since excluding them leads to exceptions having to be made in algorithms. A better approach, which
is followed by Sage, is to allow the redundant Cartan types, but to implement the isomorphisms explicitly as special
cases of branching rules. The utility of this approach may be seen by considering that the rank one group SL(2) has
different natural weight lattices realizations depending on whether we consider it to be SL(2), spin(2) or Sp(2):

sage: RootSystem("Al") .ambient_space () .simple_roots ()
Finite family {1: (1, -1)}

sage: RootSystem("B1") .ambient_space () .simple_roots /()
Finite family {1: (1)}

sage: RootSystem("C1l") .ambient_space () .simple_roots()

Finite family {1: (2)}

Relabeled Cartan types

By default Sage uses the labeling of the Dynkin diagram from [Bourbaki46]. There is another labeling of the vertices
due to Dynkin. Most of the literature follows [Bourbaki46], though [Kac] follows Dynkin.

If you need to use Dynkin’s labeling, you should be aware that Sage does support relabeled Cartan types. See the
documentation in sage . combinat.root_system.type_relabel for further information.

Standard realizations of the ambient spaces
These realizations follow the Appendix in [Bourbaki46]. See the Root system plot tutorial for how to visualize them.
Type A

For type A, we use an r + 1 dimensional ambient space. This means that we are modeling the Lie group U(r + 1) or
GL(r + 1, C) rather than SU(r + 1) or SL(r + 1, C). The ambient space is identified with Q"*+1:

sage: RootSystem("A3") .ambient_space () .simple_roots()

Finite family {1: (1, -1, 0, 0), 2: (0O, 1, -1, 0), 3: (0, 0, 1, -1)}

sage: RootSystem("A3") .ambient_space () .fundamental_weights ()

Finite family {1: (1, O, O, 0), 2: (1, 1, O, 0), 3: (1, 1, 1, 0)}

sage: RootSystem("A3") .ambient_space () .rho()

(3, 2, 1, 0)

The dominant weights consist of integer r 4+ 1-tuples A = (A1,..., A\.41) such that Ay > -+ > A\, 11.

See SL versus GL for further remarks about Type A.

12.1. Thematic tutorial document tree 131

Thematic Tutorials, Release 8.0

Type B

For the remaining classical Cartan types B,., C, and D, we use an r-dimensional ambient space:

sage: RootSystem("B3") .ambient_space () .simple_roots ()

Finite family {1: (1, -1, 0), 2: (0, 1, -1), 3: (0, 0, 1)}
sage: RootSystem("B3") .ambient_space () .fundamental_weights ()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}
sage: RootSystem("B3") .ambient_space () .rho()

(5/2, 3/2, 1/2)

This is the Cartan type of spin(2r + 1). The last fundamental weight (1/2, 1/2, ..., 1/2) is the high-
est weight of the 2" dimensional spin representation. All the other fundamental representations factor through the
homomorphism spin(2r + 1) — SO(2r + 1) and are representations of the orthogonal group.

The dominant weights consist of r-tuples of integers or half-integers (A1, ..., A.) such that Ay > Ay--- > A, >0,
and such that the differences \; — \; € Z.

Type C

sage: RootSystem("C3") .ambient_space () .simple_roots ()

Finite family {1: (1, -1, 0), 2: (0, 1, -1), 3: (0, 0, 2)}
sage: RootSystem("C3").ambient_space () .fundamental_weights ()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1, 1, 1)}
sage: RootSystem("C3") .ambient_space () .rho ()

(3, 2, 1)

This is the Cartan type of the symplectic group Sp(2r).

The dominant weights consist of 7-tuples of integers A = (A1,...,Ay11) suchthat A\; > --- > \. > 0.

Type D

sage: RootSystem("D4") .ambient_space () .simple_roots ()

Finite family {1: (1, -1, 0, 0), 2: (0O, 1, -1, 0), 3: (0, 0O, 1, -1), 4: (0, 0, 1, 1)}
sage: RootSystem("D4") .ambient_space () .fundamental_weights ()

Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1/2, 1/2, 1/2, -1/2), 4: (1/2, 1/

2, 1/2, 1/2)}
sage: RootSystem("D4") .ambient_space () .rho()
(31 2[ll O)

This is the Cartan type of spin(2r). The last two fundamental weights are the highest weights of the two 2"~1-
dimensional spin representations.

The dominant weights consist of r-tuples of integers A = (A1,..., Apq1) suchthat Ay > -+ > A1 > |\

Exceptional Types

We leave the reader to examine the exceptional types. You can use Sage to list the fundamental dominant weights and
simple roots.

132 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Weights and the ambient space

Let G be areductive complex analytic group. Let 7" be a maximal torus, A = X *(T") be its group of analytic characters.
Then 7' = (C*)" for some r and A = Z7".

Example 1: Let G = GL,.;1(C). Then T is the diagonal subgroup and X*(7T) = Z" 1. If A = (\1,..., \,,) then
is identified with the rational character

ty

t = %Htf

n
Example 2: Let G = SL,.,;(C). Again T is the diagonal subgroup but now if A € Z» = {(d, - -- ,d)|d € Z} C Z"*!
then []t) = det(t)? = 1,s0 X*(T) = Z"+1/Z~ = 7.
¢ Elements of A are called weights.

o If 7 : G — GL(V) is any representation we may restrict 7 to 7. Then the characters of 7" that occur in this
restriction are called the weights of .

¢ (acts on its Lie algebra by conjugation (the adjoint representation).
* The nonzero weights of the adjoint representation are called roots.

e The ambient space of A is Q ® A.

The root system

As we have mentioned, G acts on its complexified Lie algebra g by the adjoint representation. The zero weight space
gc(0) is just the Lie algebra of T itself. The other nonzero weights each appear with multiplicity one and form an
interesting configuration of vectors called the root system ®.

It is convenient to partition ® into two sets ®+ and &~ such that ®T consists of all roots lying on one side of a
hyperplane. Often we arrange things so that G is embedded in GL(n, C) in such a way that the positive weights
correspond to upper triangular matrices. Thus if « is a positive root, its weight space gc(«) is spanned by a vector
X, and the exponential of this eigenspace in G is a one-parameter subgroup of unipotent matrices. It is always
possible to arrange that this one-parameter subgroup consists of upper triangular matrices.

If « is a positive root that cannot be decomposed as a sum of other positive roots, then « is called a simple root. If G
is semisimple of rank r, then 7 is the number of positive roots. Let a1, . . . , - be these.

The Weyl group

Let G be a complex analytic group. Let T' be a maximal torus, and let N (T") be its normalizer. Let W = N(T)/T
be the Weyl group. It acts on T" by conjugation; therefore it acts on the weight lattice A and its ambient space. The
ambient space admits an inner product that is invariant under this action. Let (v|w) denote this inner product. If « is
a root let r,, denote the reflection in the hyperplane of the ambient space that is perpendicular to a. If & = ¢ is a
simple root, then we use the notation s; to denote r,.

Then si,..., s, generate W, which is a Coxeter group. This means that it is generated by elements s; of order two
and that if m(z, j) is the order of s;s;, then

W= <8z‘ |2 =1, (s;8;)") = 1>

is a presentation. An important function ¢ : W — Z is the length function, where ¢(w) is the length of the shortest
decomposition of w into a product of simple reflections.

12.1. Thematic tutorial document tree 133

Thematic Tutorials, Release 8.0

The dual root system

The coroots are certain linear functionals on the ambient space that also form a root system. Since the ambient space
admits a TW-invariant inner product (|), they may be identified with elements of the ambient space itself. Then they
are proportional to the roots, though if the roots have different lengths, long roots correspond to short coroots and
conversely. The coroot corresponding to the root « is

2¢
oV =

(ala)’
We can also describe the natural pairing between coroots and roots using this invariant inner product as

(alB)

A= oy

The Dynkin diagram

The Dynkin diagram is a graph whose vertices are in bijection with the set simple roots. We connect the vertices
corresponding to roots that are not orthogonal. Usually two such roots (vertices) make an angle of 27 /3, in which case
we connect them with a single bond. Occasionally they may make an angle of 37 /4 in which case we connect them
with a double bond, or 57/6 in which case we connect them with a triple bond. If the bond is single, the roots have
the same length with respect to the inner product on the ambient space. In the case of a double or triple bond, the two
simple roots in questions have different length, and the bond is drawn as an arrow from the long root to the short root.
Only the exceptional group G has a triple bond.

There are various ways to get the Dynkin diagram in Sage:

sage: DynkinDiagram("D5")
O 5
\

\
0---0---0---0
3

1 2 4

D5

sage: ct = CartanType ("E6"); ct
['E", 6]

sage: ct.dynkin_diagram/()

o 2
\
\
0---0---0---0---0
1 3 4 5 6
E6
sage: B4 = WeylCharacterRing("B4"); B4
The Weyl Character Ring of Type B4 with Integer Ring coefficients
sage: B4.dynkin_diagram/()

B4

sage: RootSystem("G2") .dynkin_diagram()
3

0=<=0

1 2

G2

134 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The Cartan matrix

Consider the natural pairing (,) between coroots and roots, then the defining matrix of this pairing is called the
Cartan matrix. That is to say, the Cartan matrix A = (a;;);; is given by

ai; = (o],).
This uniquely corresponds to a root system/Dynkin diagram/Lie group.

We note that we have made a convention choice, and the opposite convention corresponds to taking the transpose of
the Cartan matrix.

Fundamental weights and the Weyl vector

There are certain weights w1, . . . ,w, that:

{wj, a;) =2
If G is semisimple then these are uniquely determined, whereas if G is reductive but not semisimple we may choose
them conveniently.

Let p be the sum of the fundamental dominant weights. If G is semisimple, then p is half the sum of the positive
roots. In case G is not semisimple, we have noted, the fundamental weights are not completely determined by the
inner product condition given above. If we make a different choice, then p is altered by a vector that is orthogonal to
all roots. This is a harmless change for many purposes such as the Weyl character formula.

In Sage, this issue arises only for Cartan type A,.. See SL versus GL.

Representations and characters

Let T be a maximal torus and A = X*(T") be the group of rational characters. Then A = Z".
¢ Recall that elements of A = Z" are called weights.
* The Weyl group W = N(T')/T acts on T, hence on A and its ambient space by conjugation.

* The ambient space Q ® X*(T') = Q" has a fundamental domain CT for the Weyl group W called the positive
Weyl chamber. Weights in C are called dominant.

* Then C* consists of all vectors such that («|v) > 0 for all positive roots a.
* Itis useful to embed A in R" and consider weights as lattice points.

o If (m,V) is a representation then restricting to 7', the module V' decomposes into a direct sum of weight
eigenspaces V' (u) with multiplicity m(u) for weight p.

¢ There is a unique highest weight \ with respect to the partial order. We have A € C and m(\) = 1.
e V <—) gives a bijection between irreducible representations and weights A in CT.

Assuming that G is simply-connected (or more generally, reductive with a simply-connected derived group) every
dominant weight) is the highest weight of a unique irreducible representation 7y, and A — 7 gives a parametrization
of the isomorphism classes of irreducible representations of G by the dominant weights.

The character of) is the function x(g) = tr(mx(g)). It is determined by its values on 7. If (z) € T and u € A, let
us write z* for the value of 1 on z. Then the character:

Xa(z) =Y m(u) 2,

peA

12.1. Thematic tutorial document tree 135

Thematic Tutorials, Release 8.0

Sometimes this is written

X\ = Z m(p) et

pHEAN

The meaning of e’ is subject to interpretation, but we may regard it as the image of the additive group A in its group
algebra. The character is then regarded as an element of this ring, the group algebra of A.

Representations: an example

. . . o)\
. ® ® @ .
. ® @® .

. ® .

. .

In this example, G = SL(3, C). We have drawn the weights of an irreducible representation with highest weight .
The shaded region is CT. X is a dominant weight, and the labeled vertices are the weights with positive multiplicity in
V(X). The weights weights on the outside have m(u) = 1, while the six interior weights (with double circles) have
m(p) = 2.

Partitions and Schur polynomials

The considerations of this section are particular to type A. We review the relationship between characters of GL(n, C)
and symmetric function theory.

A partition) is a sequence of descending nonnegative integers:
)‘:()‘1;)‘2,-~~7>\n)7)\12)\222)\7120

We do not distinguish between two partitions if they differ only by some trailing zeros, so (3,2) = (3,2,0). If l is the
last integer such that \; > 0 then we say that [is the length of \. If k =) \; then we say that X is a partition of k
and write A\ - k.

A partition of length < n = r + 1 is therefore a dominant weight of type ['A',r]. Not every dominant
weight is a partition, since the coefficients in a dominant weight could be negative. Let us say that an element

136 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

= (p1, 2, ,upn) of the ["A", r] root lattice is effective if the p; > 0. Thus an effective dominant weight
of ['A', r] is a partition of length < n, where n = r 4 1.

Let A be a dominant weight, and let x be the character of GL(n, C) with highest weight . If k is any integer we
may consider the weight ;1 = (A1 +k, ..., A, + k) obtained by adding k to each entry. Then x,, = det” @x. Clearly
by choosing k large enough, we may make p effective.

So the characters of irreducible representations of GL(n,C) do not all correspond to partitions, but the characters
indexed by partitions (effective dominant weights) are enough that we can write any character det™* Xy Where pis a
partition. If we take £ = —)\,, we could also arrange that the last entry in A is zero.

If X is an effective dominant weight, then every weight that appears in x is effective. (Indeed, it lies in the convex
hull of w(A) where w runs through the Weyl group W = S,,.) This means that if

z1
g= € GL(n,C)

Zn

then xx(g) is a polynomial in the eigenvalues of g. This is the Schur polynomial sy(z1, . .., zp).

Affine Cartan types

There are also affine Cartan types, which correspond to (infinite dimensional) affine Lie algebras. There are affine
Cartan types of the form ["X*, r, 1]ifX=A,B,C,D,E,F,Gand [X, r] isan ordinary Cartan type. There
are also twisted affine types of the form [X, r, k], where k = 2 or 3 if the Dynkin diagram of the ordinary Cartan
type [X, r] has an automorphism of degree k. When k = 1, the affine Cartan type is said to be untwisted.

[lustrating some of the methods available for the untwisted affine Cartan type ['A', 4, 1]:

sage: ct = CartanType(['A',4,1]1); ct
['A', 4, 1]

sage: ct.dual()

['a', 4, 1]

sage: ct.classical()

['A', 4]

sage: ct.dynkin_diagram/()

The twisted affine Cartan types are relabeling of the duals of certain untwisted Cartan types:

sage: CartanType(['A',3,21)

['B', 2, 11"~

sage: CartanType(['D',4,3])

['G'", 2, 1]17% relabelled by {0: 0, 1: 2, 2: 1}

The affine root and the extended Dynkin diagram

For the extended Dynkin diagram, we add one negative root «y. For the untwisted types, this is the root whose
negative is the highest weight in the adjoint representation. Sometimes this is called the affine root. We make the

12.1. Thematic tutorial document tree 137

Thematic Tutorials, Release 8.0

Dynkin diagram as before by measuring the angles between the roots. This extended Dynkin diagram is useful for
many purposes, such as finding maximal subgroups and for describing the affine Weyl group.

In particular, the hyperplane for the reflection r¢, used in generating the affine Weyl group is translated off the origin
(so it becomes an affine hyperplane). Now the root system is not described as linear transformations on an Euclidean
space, but instead by affine transformations. Thus the dominant chamber has finite volume and tiles the Eucledian
space. Moreover, each such tile corresponds to a unique element in the affine Weyl group.

The extended Dynkin diagram may be obtained as the Dynkin diagram of the corresponding untwisted affine type:

sage: ct = CartanType("E6"); ct

['E', 6]
sage: ct.affine()
['E', 6, 1]
sage: ct.affine() == CartanType(['E',6,1])
True
sage: ct.affine() .dynkin_diagram()
00
\
\
o 2
\

\
0-———-0--—-0---0---0
1 3 4 5 6
E6~

The extended Dynkin diagram is also a method of the Wey1lCharacterRing:

sage: WeylCharacterRing ("E7") .extended_dynkin_diagram/()
o 2
\
\

0-—-——0--—-0-——-0-——-0-—-—-0-—-—-0

0 1 3 4 5 6 7

E7~

We note the following important distinctions from the classical cases:

* The affine Weyl groups are all infinte.

* Type Agl) has two anti-parallel roots with distinct reflections. The Dynkin diagram in this case is represented
by a double bond with arrows going in both directions.

Twisted affine root systems

For the construction of « in the twisted types, we refer the reader to Chaper 8 of [Kac]. As mentioned above, most

twisted types can be constructed by the taking the dual root system of an untwisted type. However the type Ag“;) root
system which can only be constructed by the twisting procedure defined in /Kac]. It has the following properties:

¢ The Dynkin diagram of type A(22) has a quadruple bond with an arrow pointing from the short root to the long
root.
(2)

* Type A;,) for n > 1 has 3 different root lengths.

138 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Further Generalizations

If a root system (on an Euclidean space) has only the angles 7/2, 27 /3, 37w /4, 57 /6 between its roots, then we call the
root system crystallographic (on Wikipedia article Root_system, this condition is called integrality since for any two
roots we have (3,) € Z). So if we look at the reflection group generated by the roots (this is not a Weyl group), we
get general Coxeter groups (with non-infinite labels) and non-crystallographic Coxeter groups are not connected with
Lie theory.

However we can generalize Dynkin diagrams (equivalently Cartan matrices) to have all its edges labelled by (a, b)
where a,b € Z~(and corresponds to having a arrows point one way and b arrows pointing the other. For example in
type Agl), we have one edge of (2,2), or in type Agz), we have one edge of (1,4) (equivalently (4,1)). These edge
label between i and j corresponds to the entries a;; and a;; in the Cartan matrix. These are used to construct a class
of (generally infinite dimensional) Lie algebras called Kac-Moody (Lie) algebras, which in turn are used to construct
quantum groups. We refer the reader to [Kac] and [HongKang2002] for more information.

The Weyl Character Ring
Weyl character rings

The Weyl character ring is the representation ring of a compact Lie group. It has a basis consisting of the irreducible
representations of GG, or equivalently, their characters. The addition and multiplication in the Weyl character ring
correspond to direct sum and tensor product of representations.

Methods of the ambient space

In Sage, many useful features of the Lie group are available as methods of the ambient space:

sage: S = RootSystem("B2") .ambient_space(); S

Ambient space of the Root system of type ['B', 2]

sage: S.roots()

[, -1, ¢, 1, (, 0, ¢, 1), -1, 1), (1, -1), (=1, 0), (0, -1)]
sage: S.fundamental_weights ()

Finite family {1: (1, 0), 2: (1/2, 1/2)}

sage: S.positive_roots()

[, -1, (1, 1), (1, 0, (0, 1)]

sage: S.weyl_group ()

Weyl Group of type ['B', 2] (as a matrix group acting on the ambient space)

Methods of the Weyl character ring

If you are going to work with representations, you may want to create a Weyl Character ring. Many methods of the
ambient space are available as methods of the Weyl character ring:

sage: B3 = WeylCharacterRing("B3")

sage: B3.fundamental_weights ()

Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}
sage: B3.simple_roots /()

Finite family {1: (1, -1, 0), 2: (0, 1, -1), 3: (0, 0, 1)}
sage: B3.dynkin_diagram/()

0---0=>=0
1 2 3
B3

12.1. Thematic tutorial document tree 139

https://en.wikipedia.org/wiki/Root_system
https://en.wikipedia.org/wiki/Coxeter_group

Thematic Tutorials, Release 8.0

Other useful methods of the Weyl character ring include:
* cartan_type
* highest_root
* positive_root
s extended_dynkin_diagram
* rank

Some methods of the ambient space are not implemented as methods of the Weyl character ring. However, the ambient
space itself is a method, and so you have access to its methods from the Weyl character ring:

sage: B3 = WeylCharacterRing("B3")

sage: B3.space () .weyl_group ()

Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
sage: B3.space()

Ambient space of the Root system of type ['B', 3]

sage: B3.space () .rho()

(5/2, 3/2, 1/2)

sage: B3.cartan_type ()

['B', 3]

Coroot notation

It is useful to give the Weyl character ring a name that corresponds to its Cartan type. This has the effect that the ring
can parse its own output:

sage: G2 = WeylCharacterRing("G2")
sage: [2 (fw) for fw in G2.fundamental_weights ()]
[G2 (1 1) G2(2,-1,-1)1]
sage' (1 -1)
2(1, O -1)

Actually the prefix for the ring is configurable, so you don’t really have to call this ring G2. Type
WeylCharacterRing? at the sage: prompt for details.

There is one important option that you may want to know about. This is coroot notation. You select this by speci-
fying the option style="coroots" when you create the ring. With the coroot style, the fundamental weights are
represented (1,0,0, ...), (0,1,0,...) instead of as vectors in the ambient space:

sage: B3 = WeylCharacterRing("B3", style="coroots")
sage: [B3(fw) for fw in B3.fundamental_weights ()]
[B3(1,0,0), B3(0,1,0), B3(0,0,1)]

sage: B3(0,0,1)

B3(0,0,1)
sage: B3(0,0,1).degree()
8

The last representation is the eight dimensional spin representation of G = spin(7), the double cover of the orthogonal
group SO(7). In the default notation it would be represented B3 (1/2,1/2,1/2)

With the coroot notation every irreducible representation is represented B3 (a, b, c) where a, b and ¢ are nonnegative
integers. This is often convenient. For many purposes the coroot style is preferable.

One disadvantage: in the coroot style the Lie group or Lie algebra is treated as semisimple, so you lose the distinction
between GL(n) and SL(n); you also some information about representations of E6 and E7 for the same reason.

140 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Tensor products of representations

The multiplication in the Weyl character ring corresponds to tensor product. This gives us a convenient way of
decomposing a tensor product into irreducibles:

sage: B3 = WeylCharacterRing("B3")
sage: fw B3.fundamental_weights ()
sage: spinweight = fw[3]; spinweight
(1/2, 1/2, 1/2)

sage: spin = B3 (spinweight); spin
B3(1/2,1/2,1/2)

sage: spin.degree ()

8

The element spin of the WeylCharacterRing is the representation corresponding to the third highest weight represen-
tation, the eight-dimensional spin representation of spin(7). We could just as easily construct it with the commmand:

sage: spin = B3(1/2,1/2,1/2)

We may comp