
Thematic Tutorials
Release 8.0

The Sage Development Team

Jul 23, 2017

CONTENTS

1 Introduction to Sage 3

2 Introduction to Python 5

3 Calculus and plotting 7

4 Algebra 9

5 Number Theory 11

6 Geometry 13

7 Combinatorics 15

8 Algebraic Combinatorics 17

9 Parents/Elements, Categories and algebraic structures 19

10 Numerical computations 21

11 Advanced programming 23

12 Documentation 25

Bibliography 403

i

ii

Thematic Tutorials, Release 8.0

Here you will find Sage demonstrations, quick reference cards, primers, and thematic tutorials,

• A quickref (or quick reference card) is a one page document with the essential examples, and pointers to the
main entry points.

• A primer is a document meant for a user to get started by himself on a theme in a matter of minutes.

• A tutorial is more in-depth and could take as much as an hour or more to get through.

This documentation is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

CONTENTS 1

http://creativecommons.org/licenses/by-sa/3.0/

Thematic Tutorials, Release 8.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO SAGE

• Logging on to a Sage Server and Creating a Worksheet (PREP)

• Introductory Sage Tutorial (PREP)

• Tutorial: Using the Sage notebook, navigating the help system, first exercises

• Sage’s main tutorial

3

Thematic Tutorials, Release 8.0

4 Chapter 1. Introduction to Sage

CHAPTER

TWO

INTRODUCTION TO PYTHON

• Tutorial: Sage Introductory Programming (PREP)

• Tutorial: Programming in Python and Sage

• Tutorial: Comprehensions, Iterators, and Iterables

• Tutorial: Objects and Classes in Python and Sage

• Functional Programming for Mathematicians

5

Thematic Tutorials, Release 8.0

6 Chapter 2. Introduction to Python

CHAPTER

THREE

CALCULUS AND PLOTTING

• Tutorial: Symbolics and Plotting (PREP)

• Tutorial: Calculus (PREP)

• Tutorial: Advanced-2D Plotting (PREP)

7

Thematic Tutorials, Release 8.0

8 Chapter 3. Calculus and plotting

CHAPTER

FOUR

ALGEBRA

• Group Theory and Sage

• Lie Methods and Related Combinatorics in Sage

• Tutorial: Using Free Modules and Vector Spaces

9

Thematic Tutorials, Release 8.0

10 Chapter 4. Algebra

CHAPTER

FIVE

NUMBER THEORY

• Number Theory and the RSA Public Key Cryptosystem

• Introduction to the -adics

• Three Lectures about Explicit Methods in Number Theory Using Sage

11

Thematic Tutorials, Release 8.0

12 Chapter 5. Number Theory

CHAPTER

SIX

GEOMETRY

• A Brief Introduction to Polytopes in Sage

• Draw polytopes in LateX using TikZ

13

Thematic Tutorials, Release 8.0

14 Chapter 6. Geometry

CHAPTER

SEVEN

COMBINATORICS

• Introduction to combinatorics in Sage

• Coding Theory in Sage

• How to write your own classes for coding theory

15

Thematic Tutorials, Release 8.0

16 Chapter 7. Combinatorics

CHAPTER

EIGHT

ALGEBRAIC COMBINATORICS

• Algebraic Combinatorics in Sage

• Tutorial: Symmetric Functions

• Lie Methods and Related Combinatorics in Sage

• Tutorial: visualizing root systems

• Abelian Sandpile Model

17

Thematic Tutorials, Release 8.0

18 Chapter 8. Algebraic Combinatorics

CHAPTER

NINE

PARENTS/ELEMENTS, CATEGORIES AND ALGEBRAIC
STRUCTURES

• How to implement new algebraic structures in Sage

• Elements, parents, and categories in Sage: a (draft of) primer

• Implementing a new parent: a (draft of) tutorial

• Tutorial: Implementing Algebraic Structures

19

Thematic Tutorials, Release 8.0

20 Chapter 9. Parents/Elements, Categories and algebraic structures

CHAPTER

TEN

NUMERICAL COMPUTATIONS

• Numerical Computing with Sage

• Linear Programming (Mixed Integer)

21

Thematic Tutorials, Release 8.0

22 Chapter 10. Numerical computations

CHAPTER

ELEVEN

ADVANCED PROGRAMMING

• How to call a C code (or a compiled library) from Sage ?

• Profiling in Sage

23

Thematic Tutorials, Release 8.0

24 Chapter 11. Advanced programming

CHAPTER

TWELVE

DOCUMENTATION

• Creating a Tutorial from a Worksheet

12.1 Thematic tutorial document tree

12.1.1 Algebraic Combinatorics in Sage

Author: Anne Schilling (UC Davis)

These notes provide some Sage examples for Stanley’s book:

A free pdf version of the book without exercises can be found on Stanley’s homepage.

Preparation of this document was supported in part by NSF grants DMS–1001256 and OCI–1147247.

I would like to thank Federico Castillo (who wrote a first version of the 𝑛-cube section) and Nicolas M. Thiery (who
wrote a slightly different French version of the Tsetlin library section) for their help.

Walks in graphs

This section provides some examples on Chapter 1 of Stanley’s book [Stanley2013].

We begin by creating a graph with 4 vertices:

sage: G = Graph(4)
sage: G
Graph on 4 vertices

This graph has no edges yet:

sage: G.vertices()
[0, 1, 2, 3]
sage: G.edges()
[]

Before we can add edges, we need to tell Sage that our graph can have loops and multiple edges.:

sage: G.allow_loops(True)
sage: G.allow_multiple_edges(True)

Now we are ready to add our edges by specifying a tuple of vertices that are connected by an edge. If there are multiple
edges, we need to add the tuple with multiplicity.:

25

http://www-math.mit.edu/~rstan/algcomb/index.html

Thematic Tutorials, Release 8.0

sage: G.add_edges([(0,0),(0,0),(0,1),(0,3),(1,3),(1,3)])

Now let us look at the graph!

sage: G.plot()
Graphics object consisting of 11 graphics primitives

We can construct the adjacency matrix:

sage: A = G.adjacency_matrix()
sage: A
[2 1 0 1]
[1 0 0 2]
[0 0 0 0]
[1 2 0 0]

The entry in row 𝑖 and column 𝑗 of the ℓ-th power of 𝐴 gives us the number of paths of length ℓ from vertex 𝑖 to vertex
𝑗. Let us verify this:

sage: A**2
[6 4 0 4]
[4 5 0 1]
[0 0 0 0]
[4 1 0 5]

There are 4 paths of length 2 from vertex 0 to vertex 1: take either loop at 0 and then the edge (0, 1) (2 choices) or
take the edge (0, 3) and then either of the two edges (3, 1) (two choices):

sage: (A**2)[0,1]
4

To count the number of closed walks, we can also look at the sum of the ℓ-th powers of the eigenvalues. Even though
the eigenvalues are not integers, we find that the sum of their squares is an integer:

sage: A.eigenvalues()
[0, -2, 0.5857864376269049?, 3.414213562373095?]
sage: sum(la**2 for la in A.eigenvalues())
16.00000000000000?

We can achieve the same by looking at the trace of the ℓ-th power of the matrix:

sage: (A**2).trace()
16

26 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

𝑛-Cube

This section provides some examples on Chapter 2 of Stanley’s book [Stanley2013], which deals with 𝑛-cubes, the
Radon transform, and combinatorial formulas for walks on the 𝑛-cube.

The vertices of the 𝑛-cube can be described by vectors in Z𝑛
2 . First we define the addition of two vectors 𝑢, 𝑣 ∈ Z𝑛

2

via the following distance:

sage: def dist(u,v):
....: h = [(u[i]+v[i])%2 for i in range(len(u))]
....: return sum(h)

The distance function measures in how many slots two vectors in Z𝑛
2 differ:

sage: u=(1,0,1,1,1,0)
sage: v=(0,0,1,1,0,0)
sage: dist(u,v)
2

Now we are going to define the 𝑛-cube as the graph with vertices in Z𝑛
2 and edges between vertex 𝑢 and vertex 𝑣 if

they differ in one slot, that is, the distance function is 1:

sage: def cube(n):
....: G = Graph(2**n)
....: vertices = Tuples([0,1],n)
....: for i in range(2**n):
....: for j in range(2**n):
....: if dist(vertices[i],vertices[j]) == 1:
....: G.add_edge(i,j)
....: return G

We can plot the 3 and 4-cube:

sage: cube(3).plot()
Graphics object consisting of 21 graphics primitives

sage: cube(4).plot()
Graphics object consisting of 49 graphics primitives

12.1. Thematic tutorial document tree 27

Thematic Tutorials, Release 8.0

Next we can experiment and check Corollary 2.4 in Stanley’s book, which states the 𝑛-cube has 𝑛 choose 𝑖 eigenvalues
equal to 𝑛− 2𝑖:

sage: G = cube(2)
sage: G.adjacency_matrix().eigenvalues()
[2, -2, 0, 0]

sage: G = cube(3)
sage: G.adjacency_matrix().eigenvalues()
[3, -3, 1, 1, 1, -1, -1, -1]

sage: G = cube(4)
sage: G.adjacency_matrix().eigenvalues()
[4, -4, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0]

It is now easy to slightly vary this problem and change the edge set by connecting vertices 𝑢 and 𝑣 if their distance is
2 (see Problem 4 in Chapter 2):

sage: def cube_2(n):
....: G = Graph(2**n)
....: vertices = Tuples([0,1],n)
....: for i in range(2**n):
....: for j in range(2**n):
....: if dist(vertices[i],vertices[j]) == 2:
....: G.add_edge(i,j)
....: return G

sage: G = cube_2(2)
sage: G.adjacency_matrix().eigenvalues()
[1, 1, -1, -1]

sage: G = cube_2(4)
sage: G.adjacency_matrix().eigenvalues()
[6, 6, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0]

Note that the graph is in fact disconnected. Do you understand why?

sage: cube_2(4).plot()
Graphics object consisting of 65 graphics primitives

28 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The Tsetlin library

Introduction

In this section, we study a simple random walk (or Markov chain), called the Tsetlin library. It will give us the
opportunity to see the interplay between combinatorics, linear algebra, representation theory and computer exploration,
without requiring heavy theoretical background. I hope this encourages everyone to play around with this or similar
systems and investigate their properties! Formal theorems and proofs can be found in the references at the end of this
section.

It has been known for several years that the theory of group representations can facilitate the study of systems whose
evolution is random (Markov chains), breaking them down into simpler systems. More recently it was realized that
generalizing this (namely replacing the invertibility axiom for groups by other axioms) explains the behavior of other
particularly simple Markov chains such as the Tsetlin library.

The Tsetlin library

Consider a bookshelf in a library containing 𝑛 distinct books. When a person borrows a book and then returns it, it
gets placed back on the shelf to the right of all books. This is what we naturally do with our pile of shirts in the closet:
after use and cleaning, the shirt is placed on the top of its pile. Hence the most popular books/shirts will more likely
appear on the right/top of the shelf/pile.

This type of organization has the advantage of being self-adaptive:

• The books most often used accumulate on the right and thus can easily be found.

• If the use changes over time, the system adapts.

In fact, this type of strategy is used not only in everyday life, but also in computer science. The natural questions that
arise are:

• Stationary distribution: To which state(s) does the system converge to? This, among other things, is used to
evaluate the average access time to a book.

• The rate of convergence: How fast does the system adapt to a changing environment .

Let us formalize the description. The Tsetlin library is a discrete Markov chain (discrete time, discrete state space)
described by:

• The state space Ω𝑛 is given by the set of all permutations of the 𝑛 books.

• The transition operators are denoted by 𝜕𝑖 : Ω𝑛 → Ω𝑛. When 𝜕𝑖 is applied to a permutation 𝜎, the number 𝑖 is
moved to the end of the permutation.

• We assign parameters 𝑥𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛 with
∑︀𝑛

𝑖=1 𝑥𝑖 = 1. The parameter 𝑥𝑖 indicates the probability
of choosing the operator 𝜕𝑖.

12.1. Thematic tutorial document tree 29

Thematic Tutorials, Release 8.0

Transition graph and matrix

One can depict the action of the operators 𝜕𝑖 on the state space Ω𝑛 by a digraph. The following picture shows the
action of 𝜕1, 𝜕2, 𝜕3 on Ω3:

The above picture can be reproduced in Sage as follows:

sage: P = Poset(([1,2,3],[]))

This is the antichain poset. Its linear extensions are all permutations of {1, 2, 3}:

sage: L = P.linear_extensions()
sage: L
The set of all linear extensions of Finite poset containing 3 elements
sage: L.list()
[[3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2], [1, 2, 3]]

The graph is produced via:

sage: G = L.markov_chain_digraph(labeling='source'); G
Looped multi-digraph on 6 vertices
sage: view(G) # not tested

We can now look at the transition matrix and see whether we notice anything about its eigenvalue and eigenvectors:

sage: M = L.markov_chain_transition_matrix(labeling='source')
sage: M
[-x1 - x2 x0 0 0 x0 0]
[x1 -x0 - x2 x1 0 0 0]
[0 0 -x1 - x2 x0 0 x0]
[x2 0 x2 -x0 - x1 0 0]
[0 0 0 x1 -x0 - x2 x1]
[0 x2 0 0 x2 -x0 - x1]

This matrix is normalized so that all columns add to 0. So we need to add (𝑥0 + 𝑥1 + 𝑥2) times the 6 × 6 identity
matrix to get the probability matrix:

sage: x = M.base_ring().gens()
sage: Mt = (x[0]+x[1]+x[2])*matrix.identity(6)+M
sage: Mt
[x0 x0 0 0 x0 0]
[x1 x1 x1 0 0 0]

30 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

[0 0 x0 x0 0 x0]
[x2 0 x2 x2 0 0]
[0 0 0 x1 x1 x1]
[0 x2 0 0 x2 x2]

Since the 𝑥𝑖 are formal variables, we need to compute the eigenvalues and eigenvectors in the symbolic ring SR:

sage: Mt.change_ring(SR).eigenvalues()
[x2, x1, x0, x0 + x1 + x2, 0, 0]

Do you see any pattern? In fact, if you start playing with bigger values of 𝑛 (the size of the underlying permutations),
you might observe that there is an eigenvalue for every subset 𝑆 of {1, 2, . . . , 𝑛} and the multiplicity is given by a
derangement number 𝑑𝑛−|𝑆|. Derangment numbers count permutations without fixed point. For the eigenvectors we
obtain:

sage: Mt.change_ring(SR).eigenvectors_right()
[(x2, [(0, 0, 0, 1, 0, -1)], 1),
(x1, [(0, 1, 0, 0, -1, 0)], 1),
(x0, [(1, 0, -1, 0, 0, 0)], 1),
(x0 + x1 + x2,
[(1, (x1 + x2)/(x0 + x2), x2/x1, (x1*x2 + x2^2)/(x0*x1 + x1^2),
(x1*x2 + x2^2)/(x0^2 + x0*x2), (x1*x2 + x2^2)/(x0^2 + x0*x1))], 1),
(0, [(1, 0, -1, 0, -1, 1), (0, 1, -1, 1, -1, 0)], 2)]

The stationary distribution is the eigenvector of eigenvalues 1 = 𝑥0 + 𝑥1 + 𝑥2. Do you see a pattern?

Optional exercices: Study of the transition operators and graph

Instead of using the methods that are already in Sage, try to build the state space Ω𝑛 and the transition operators 𝜕𝑖
yourself as follows.

1. For technical reasons, it is most practical in Sage to label the 𝑛 books in the library by 0, 1, · · · , 𝑛− 1, and to
represent each state in the Markov chain by a permutation of the set {0, . . . , 𝑛− 1} as a tuple. Construct the
state space Ω𝑛 as:

sage: list(map(tuple, Permutations(range(3))))
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]

2. Write a function transition_operator(sigma, i) which implements the operator 𝜕𝑖 which takes
as input a tuple sigma and integer 𝑖 ∈ {1, 2, . . . , 𝑛} and outputs a new tuple. It might be useful to extract
subtuples (sigma[i:j]) and concatentation.

3. Write a function tsetlin_digraph(n) which constructs the (multi digraph) as described as shown
above. This can be achieved using DiGraph.

4. Verify for which values of 𝑛 the digraph is strongly connected (i.e., you can go from any vertex to any other
vertex by going in the direction of the arrow). This indicates whether the Markov chain is irreducible.

Conclusion

The Tsetlin library was studied from the viewpoint of monoids in [Bidigare1997] and [Brown2000]. Precise state-
ments of the eigenvalues and the stationary distribution of the probability matrix as well as proofs of the statements
are given in these papers. Generalizations of the Tsetlin library from the antichain to arbitrary posets was given in
[AKS2013].

12.1. Thematic tutorial document tree 31

Thematic Tutorials, Release 8.0

Young’s lattice and the RSK algorithm

This section provides some examples on Young’s lattice and the RSK (Robinson-Schensted-Knuth) algorithm ex-
plained in Chapter 8 of Stanley’s book [Stanley2013].

Young’s Lattice

We begin by creating the first few levels of Young’s lattice 𝑌 . For this, we need to define the elements and the order
relation for the poset, which is containment of partitions:

sage: level = 6
sage: elements = [b for n in range(level) for b in Partitions(n)]
sage: ord = lambda x,y: y.contains(x)
sage: Y = Poset((elements,ord), facade=True)
sage: H = Y.hasse_diagram()
sage: view(H) # optional - dot2tex graphviz

We can now define the up and down operators 𝑈 and 𝐷 on Q𝑌 . First we do so on partitions, which form a basis for
Q𝑌 :

sage: QQY = CombinatorialFreeModule(QQ,elements)

sage: def U_on_basis(la):
....: covers = Y.upper_covers(la)
....: return QQY.sum_of_monomials(covers)

sage: def D_on_basis(la):
....: covers = Y.lower_covers(la)
....: return QQY.sum_of_monomials(covers)

As a shorthand, one also can write the above as:

32 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: U_on_basis = QQY.sum_of_monomials * Y.upper_covers
sage: D_on_basis = QQY.sum_of_monomials * Y.lower_covers

Here is the result when we apply the operators to the partition (2, 1):

sage: la = Partition([2,1])
sage: U_on_basis(la)
B[[2, 1, 1]] + B[[2, 2]] + B[[3, 1]]
sage: D_on_basis(la)
B[[1, 1]] + B[[2]]

Now we define the up and down operator on Q𝑌 :

sage: U = QQY.module_morphism(U_on_basis)
sage: D = QQY.module_morphism(D_on_basis)

We can check the identity 𝐷𝑖+1𝑈𝑖 − 𝑈𝑖−1𝐷𝑖 = 𝐼𝑖 explicitly on all partitions of 𝑖 = 3:

sage: for p in Partitions(3):
....: b = QQY(p)
....: assert D(U(b)) - U(D(b)) == b

We can also check that the coefficient of 𝜆 ⊢ 𝑛 in 𝑈𝑛(∅) is equal to the number of standard Young tableaux of shape
𝜆:

sage: u = QQY(Partition([]))
sage: for i in range(4):
....: u = U(u)
sage: u
B[[1, 1, 1, 1]] + 3*B[[2, 1, 1]] + 2*B[[2, 2]] + 3*B[[3, 1]] + B[[4]]

For example, the number of standard Young tableaux of shape (2, 1, 1) is 3:

sage: StandardTableaux([2,1,1]).cardinality()
3

We can test this in general:

sage: for la in u.support():
....: assert u[la] == StandardTableaux(la).cardinality()

We can also check this against the hook length formula (Theorem 8.1):

sage: def hook_length_formula(p):
....: n = p.size()
....: return factorial(n) / prod(p.hook_length(*c) for c in p.cells())

sage: for la in u.support():
....: assert u[la] == hook_length_formula(la)

RSK Algorithm

Let us now turn to the RSK algorithm. We can verify Example 8.12 as follows:

12.1. Thematic tutorial document tree 33

Thematic Tutorials, Release 8.0

sage: p = Permutation([4,2,7,3,6,1,5])
sage: RSK(p)
[[[1, 3, 5], [2, 6], [4, 7]], [[1, 3, 5], [2, 4], [6, 7]]]

The tableaux can also be displayed as tableaux:

sage: P,Q = RSK(p)
sage: P.pp()
1 3 5
2 6
4 7
sage: Q.pp()
1 3 5
2 4
6 7

The inverse RSK algorithm is implemented as follows:

sage: RSK_inverse(P,Q, output='permutation')
[4, 2, 7, 3, 6, 1, 5]

We can verify that the RSK algorithm is a bijection:

sage: def check_RSK(n):
....: for p in Permutations(n):
....: assert RSK_inverse(*RSK(p), output='permutation') == p
sage: for n in range(5):
....: check_RSK(n)

12.1.2 Tutorial: Using the Sage notebook, navigating the help system, first exer-
cises

This worksheet is based on William Stein’s JPL09__intro_to_sage.sws worksheet and the Sage days 20.5_demo work-
sheet and aims to be an interactive introduction to Sage through exercises. You will learn how to use the notebook and
call the help.

Making this help page into a worksheet

If you are browsing this document as a static web page, you can see all the examples; however you need to copy-paste
them one by one to experiment with them. Use the Upload worksheet button of the notebook and copy-paste the
URL of this page to obtain an editable copy in your notebook.

If you are browsing this document as part of Sage’s live documentation, you can play with the examples directly here;
however your changes will be lost when you close this page. Use Copy worksheet from the File... menu at
the top of this page to get an editable copy in your notebook.

Both in the live tutorial and in the notebook, you can clear all output by selecting Delete All Output from the
Action... menu next to the File... menu at the top of the worksheet.

Entering, Editing and Evaluating Input

To evaluate code in the Sage Notebook, type the code into an input cell and press shift-enter or click the
evaluate link. Try it now with a simple expression (e.g., 2 + 3). The first time you evaluate a cell takes longer than
subsequent times since a new Sage process is started:

34 Chapter 12. Documentation

http://modular.math.washington.edu/talks/20090701-sage_graphics_tutorial/JPL09___intro_to_sage.sws
http://wiki.sagemath.org/days20.5

Thematic Tutorials, Release 8.0

sage: 2 + 3
5

sage: # edit here

sage: # edit here

To create new input cells, click the blue line that appears between cells when you move your mouse around. Try it
now:

sage: 1 + 1
2

sage: # edit here

You can go back and edit any cell by clicking in it (or using the arrow keys on your keyboard to move up or down).
Go back and change your 2 + 3 above to 3 + 3 and re-evaluate it. An empty cell can be deleted with backspace.

You can also edit this text right here by double clicking on it, which will bring up the TinyMCE Javascript text editor.
You can even put embedded mathematics like this $sin(x) - y^3$ by using dollar signs just like in TeX or LaTeX.

Help systems

There are various ways of getting help in Sage.

• navigate through the documentation (there is a link Help at the top right of the worksheet),

• tab completion,

• contextual help.

We detail below the latter two methods through examples.

Completion and contextual documentation

Start typing something and press the tab key. The interface tries to complete it with a command name. If there is more
than one completion, then they are all presented to you. Remember that Sage is case sensitive, i.e. it differentiates
upper case from lower case. Hence the tab completion of kleinwon’t show you the KleinFourGroup command
that builds the group Z/2× Z/2 as a permutation group. Try it on the next cells:

sage: klein<tab>

sage: Klein<tab>

To see documentation and examples for a command, type a question mark ? at the end of the command name and
press the tab key as in:

sage: KleinFourGroup?<tab>

sage: # edit here

Exercise A

What is the largest prime factor of 600851475143?

12.1. Thematic tutorial document tree 35

Thematic Tutorials, Release 8.0

sage: factor?<tab>

sage: # edit here

In the above manipulations we have not stored any data for later use. This can be done in Sage with the = symbol as
in:

sage: a = 3
sage: b = 2
sage: a+b
5

This can be understood as Sage evaluating the expression to the right of the = sign and creating the appropriate object,
and then associating that object with a label, given by the left-hand side (see the foreword of Tutorial: Objects and
Classes in Python and Sage for details). Multiple assignments can be done at once:

sage: a,b = 2,3
sage: a
2
sage: b
3

This allows us to swap the values of two variables directly:

sage: a,b = 2,3
sage: a,b = b,a
sage: a,b
(3, 2)

We can also assign a common value to several variables simultaneously:

sage: c = d = 1
sage: c, d
(1, 1)
sage: d = 2
sage: c, d
(1, 2)

Note that when we use the word variable in the computer-science sense we mean “a label attached to some data
stored by Sage”. Once an object is created, some methods apply to it. This means functions but instead of writing
f(my_object) you write my_object.f():

sage: p = 17
sage: p.is_prime()
True

See Tutorial: Objects and Classes in Python and Sage for details. To know all methods of an object you can once
more use tab-completion. Write the name of the object followed by a dot and then press tab:

sage: a.<tab>

sage: # edit here

36 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Exercise B

Create the permutation 51324 and assign it to the variable p.

sage: Permutation?<tab>

sage: # edit here

What is the inverse of p?

sage: p.inv<tab>

sage: # edit here

Does p have the pattern 123? What about 1234? And 312? (even if you don’t know what a pattern is, you
should be able to find a command that does this).

sage: p.pat<tab>

sage: # edit here

Some linear algebra

Exercise C

Use the matrix() command to create the following matrix.

𝑀 =

⎛⎜⎜⎝
10 4 1 1
4 6 5 1
1 5 6 4
1 1 4 10

⎞⎟⎟⎠
sage: matrix?<tab>

sage: # edit here

Then, using methods of the matrix,

1. Compute the determinant of the matrix.

2. Compute the echelon form of the matrix.

3. Compute the eigenvalues of the matrix.

4. Compute the kernel of the matrix.

5. Compute the LLL decomposition of the matrix (and lookup the documentation for what LLL is if needed!)

sage: # edit here

sage: # edit here

Now that you know how to access the different methods of matrices,

6. Create the vector 𝑣 = (1,−1,−1, 1).

7. Compute the two products: 𝑀 · 𝑣 and 𝑣 · 𝑀 . What mathematically borderline operation is Sage doing
implicitly?

12.1. Thematic tutorial document tree 37

Thematic Tutorials, Release 8.0

sage: vector?<tab>

sage: # edit here

Note: Vectors in Sage are row vectors. A method such as eigenspaces might not return what you expect, so it is
best to specify eigenspaces_left or eigenspaces_right instead. Same thing for kernel (left_kernel
or right_kernel), and so on.

Some Plotting

The plot() command allows you to draw plots of functions. Recall that you can access the documentation by
pressing the tab key after writing plot? in a cell:

sage: plot?<tab>

sage: # edit here

Here is a simple example:

sage: var('x') # make sure x is a symbolic variable
x
sage: plot(sin(x^2), (x,0,10))
Graphics object consisting of 1 graphics primitive

Here is a more complicated plot. Try to change every single input to the plot command in some way, evaluating to see
what happens:

sage: P = plot(sin(x^2), (x,-2,2), rgbcolor=(0.8,0,0.2), thickness=3, linestyle='--',
→˓fill='axis')
sage: show(P, gridlines=True)

Above we used the show() command to show a plot after it was created. You can also use P.show instead:

sage: P.show(gridlines=True)

Try putting the cursor right after P.show(and pressing tab to get a list of the options for how you can change the
values of the given inputs.

sage: P.show(

Plotting multiple functions at once is as easy as adding them together:

sage: P1 = plot(sin(x), (x,0,2*pi))
sage: P2 = plot(cos(x), (x,0,2*pi), rgbcolor='red')
sage: P1 + P2
Graphics object consisting of 2 graphics primitives

Symbolic Expressions

Here is an example of a symbolic function:

38 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: f(x) = x^4 - 8*x^2 - 3*x + 2
sage: f(x)
x^4 - 8*x^2 - 3*x + 2

sage: f(-3)
20

This is an example of a function in the mathematical variable 𝑥. When Sage starts, it defines the symbol 𝑥 to be a
mathematical variable. If you want to use other symbols for variables, you must define them first:

sage: x^2
x^2
sage: u + v
Traceback (most recent call last):
...
NameError: name 'u' is not defined

sage: var('u v')
(u, v)
sage: u + v
u + v

Still, it is possible to define symbolic functions without first defining their variables:

sage: f(w) = w^2
sage: f(3)
9

In this case those variables are defined implicitly:

sage: w
w

Exercise D

Define the symbolic function 𝑓(𝑥) = 𝑥 sin(𝑥2). Plot 𝑓 on the domain [−3, 3] and color it red. Use the
find_root() method to numerically approximate the root of 𝑓 on the interval [1, 2]:

sage: # edit here

Compute the tangent line to 𝑓 at 𝑥 = 1:

sage: # edit here

Plot 𝑓 and the tangent line to 𝑓 at 𝑥 = 1 in one image:

sage: # edit here

Exercise E (Advanced)

Solve the following equation for 𝑦:

𝑦 = 1 + 𝑥𝑦2

There are two solutions, take the one for which lim𝑥→0 𝑦(𝑥) = 1. (Don’t forget to create the variables 𝑥 and 𝑦!).

12.1. Thematic tutorial document tree 39

Thematic Tutorials, Release 8.0

sage: # edit here

Expand 𝑦 as a truncated Taylor series around 0 and containing 𝑛 = 10 terms.

sage: # edit here

Do you recognize the coefficients of the Taylor series expansion? You might want to use the On-Line Encyclopedia
of Integer Sequences, or better yet, Sage’s class OEIS which queries the encyclopedia:

sage: oeis?<tab>

sage: # edit here

Congratulations for completing your first Sage tutorial!

12.1.3 Abelian Sandpile Model

Author: David Perkinson, Reed College

Introduction

These notes provide an introduction to Dhar’s abelian sandpile model (ASM) and to Sage Sandpiles, a collection of
tools in Sage for doing sandpile calculations. For a more thorough introduction to the theory of the ASM, the papers
Chip-Firing and Rotor-Routing on Directed Graphs [H], by Holroyd et al. and Riemann-Roch and Abel-Jacobi Theory
on a Finite Graph by Baker and Norine [BN] are recommended.

To describe the ASM, we start with a sandpile graph: a directed multigraph Γ with a vertex 𝑠 that is accessible from
every vertex (except possibly 𝑠, itself). By multigraph, we mean that each edge of Γ is assigned a nonnegative integer
weight. To say 𝑠 is accessible from some vertex 𝑣 means that there is a sequence of directed edges starting at 𝑣 and
ending at 𝑠. We call 𝑠 the sink of the sandpile graph, even though it might have outgoing edges, for reasons that will
be made clear in a moment.

We denoted the vertices of Γ by 𝑉 and define 𝑉 = 𝑉 ∖ {𝑠}.

Configurations and divisors

A configuration on Γ is an element of N𝑉 , i.e., the assignment of a nonnegative integer to each nonsink vertex. We
think of each integer as a number of grains of sand being placed at the corresponding vertex. A divisor on Γ is an
element of Z𝑉 , i.e., an element in the free abelian group on all of the vertices. In the context of divisors, it is sometimes
useful to think of assigning dollars to each vertex, with negative integers signifying a debt.

Stabilization

A configuration 𝑐 is stable at a vertex 𝑣 ∈ 𝑉 if 𝑐(𝑣) < out-degree(𝑣), and 𝑐 itself is stable if it is stable at each nonsink
vertex. Otherwise, 𝑐 is unstable. If 𝑐 is unstable at 𝑣, the vertex 𝑣 can be fired (toppled) by removing out-degree(𝑣)
grains of sand from 𝑣 and adding grains of sand to the neighbors of sand, determined by the weights of the edges
leaving 𝑣.

Despite our best intentions, we sometimes consider firing a stable vertex, resulting in a configuration with a “negative
amount” of sand at that vertex. We may also reverse-firing a vertex, absorbing sand from the vertex’s neighbors.

Example. Consider the graph:

40 Chapter 12. Documentation

http://oeis.org
http://oeis.org

Thematic Tutorials, Release 8.0

Fig. 12.1: Γ

All edges have weight 1 except for the edge from vertex 1 to vertex 3, which has weight 2. If we let 𝑐 = (5, 0, 1) with
the indicated number of grains of sand on vertices 1, 2, and 3, respectively, then only vertex 1, whose out-degree is 4,
is unstable. Firing vertex 1 gives a new configuration 𝑐′ = (1, 1, 3). Here, 4 grains have left vertex 1. One of these has
gone to the sink vertex (and forgotten), one has gone to vertex 1, and two have gone to vertex 2, since the edge from 1
to 2 has weight 2. Vertex 3 in the new configuration is now unstable. The Sage code for this example follows.

sage: g = {'sink':{},
....: 1:{'sink':1, 2:1, 3:2},
....: 2:{1:1, 3:1},
....: 3:{1:1, 2:1}}
sage: S = Sandpile(g, 'sink') # create the sandpile
sage: S.show(edge_labels=true) # display the graph

Create the configuration:

sage: c = SandpileConfig(S, {1:5, 2:0, 3:1})
sage: S.out_degree()
{1: 4, 2: 2, 3: 2, 'sink': 0}

Fire vertex one:

sage: c.fire_vertex(1)
{1: 1, 2: 1, 3: 3}

The configuration is unchanged:

sage: c
{1: 5, 2: 0, 3: 1}

12.1. Thematic tutorial document tree 41

Thematic Tutorials, Release 8.0

Repeatedly fire vertices until the configuration becomes stable:

sage: c.stabilize()
{1: 2, 2: 1, 3: 1}

Alternatives:

sage: ~c # shorthand for c.stabilize()
{1: 2, 2: 1, 3: 1}
sage: c.stabilize(with_firing_vector=true)
[{1: 2, 2: 1, 3: 1}, {1: 2, 2: 2, 3: 3}]

Since vertex 3 has become unstable after firing vertex 1, it can be fired, which causes vertex 2 to become unstable,
etc. Repeated firings eventually lead to a stable configuration. The last line of the Sage code, above, is a list, the first
element of which is the resulting stable configuration, (2, 1, 1). The second component records how many times each
vertex fired in the stabilization.

Since the sink is accessible from each nonsink vertex and never fires, every configuration will stabilize after a finite
number of vertex-firings. It is not obvious, but the resulting stabilization is independent of the order in which unstable
vertices are fired. Thus, each configuration stabilizes to a unique stable configuration.

Laplacian

Fix an order on the vertices of Γ. The Laplacian of Γ is

𝐿 := 𝐷 −𝐴

where 𝐷 is the diagonal matrix of out-degrees of the vertices and 𝐴 is the adjacency matrix whose (𝑖, 𝑗)-th entry is
the weight of the edge from vertex 𝑖 to vertex 𝑗, which we take to be 0 if there is no edge. The reduced Laplacian, 𝐿̃,
is the submatrix of the Laplacian formed by removing the row and column corresponding to the sink vertex. Firing a
vertex of a configuration is the same as subtracting the corresponding row of the reduced Laplacian.

Example. (Continued.)

sage: S.vertices() # the ordering of the vertices
[1, 2, 3, 'sink']
sage: S.laplacian()
[4 -1 -2 -1]
[-1 2 -1 0]
[-1 -1 2 0]
[0 0 0 0]
sage: S.reduced_laplacian()
[4 -1 -2]
[-1 2 -1]
[-1 -1 2]

The configuration we considered previously:

sage: c = SandpileConfig(S, [5,0,1])
sage: c
{1: 5, 2: 0, 3: 1}

Firing vertex 1 is the same as subtracting the
corresponding row from the reduced Laplacian:

42 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: c.fire_vertex(1).values()
[1, 1, 3]
sage: S.reduced_laplacian()[0]
(4, -1, -2)
sage: vector([5,0,1]) - vector([4,-1,-2])
(1, 1, 3)

Recurrent elements

Imagine an experiment in which grains of sand are dropped one-at-a-time onto a graph, pausing to allow the configu-
ration to stabilize between drops. Some configurations will only be seen once in this process. For example, for most
graphs, once sand is dropped on the graph, no addition of sand+stabilization will result in a graph empty of sand.
Other configurations—the so-called recurrent configurations—will be seen infinitely often as the process is repeated
indefinitely.

To be precise, a configuration 𝑐 is recurrent if (i) it is stable, and (ii) given any configuration 𝑎, there is a configuration
𝑏 such that 𝑐 = stab(𝑎+ 𝑏), the stabilization of 𝑎+ 𝑏.

The maximal-stable configuration, denoted 𝑐max is defined by 𝑐max(𝑣) = out-degree(𝑣) − 1 for all nonsink vertices
𝑣. It is clear that 𝑐max is recurrent. Further, it is not hard to see that a configuration is recurrent if and only if it has the
form stab(𝑎+ 𝑐max) for some configuration 𝑎.

Example. (Continued.)

sage: S.recurrents(verbose=false)
[[3, 1, 1], [2, 1, 1], [3, 1, 0]]
sage: c = SandpileConfig(S, [2,1,1])
sage: c
{1: 2, 2: 1, 3: 1}
sage: c.is_recurrent()
True
sage: S.max_stable()
{1: 3, 2: 1, 3: 1}

Adding any configuration to the max-stable configuration and stabilizing
yields a recurrent configuration.

sage: x = SandpileConfig(S, [1,0,0])
sage: x + S.max_stable()
{1: 4, 2: 1, 3: 1}

Use & to add and stabilize:

sage: c = x & S.max_stable()
sage: c
{1: 3, 2: 1, 3: 0}
sage: c.is_recurrent()
True

Note the various ways of performing addition + stabilization:

sage: m = S.max_stable()
sage: (x + m).stabilize() == ~(x + m)
True
sage: (x + m).stabilize() == x & m
True

12.1. Thematic tutorial document tree 43

Thematic Tutorials, Release 8.0

Burning Configuration

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix
having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding
burning script gives the integer-linear combination needed to obtain the burning configuration. So if 𝑏 is the burning
configuration, 𝜎 is its script, and 𝐿̃ is the reduced Laplacian, then 𝜎 𝐿̃ = 𝑏. The minimal burning configuration is
the one with the minimal script (its components are no larger than the components of any other script for a burning
configuration).

The following are equivalent for a configuration 𝑐 with burning configuration 𝑏 having script 𝜎:

• 𝑐 is recurrent;

• 𝑐+ 𝑏 stabilizes to 𝑐;

• the firing vector for the stabilization of 𝑐+ 𝑏 is 𝜎.

The burning configuration and script are computed using a modified version of Speer’s script algorithm. This is a
generalization to directed multigraphs of Dhar’s burning algorithm.

Example.

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},
....: 3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}
sage: G = Sandpile(g,0)
sage: G.burning_config()
{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}
sage: G.burning_config().values()
[2, 0, 1, 1, 0]
sage: G.burning_script()
{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}
sage: G.burning_script().values()
[1, 3, 5, 1, 4]
sage: matrix(G.burning_script().values())*G.reduced_laplacian()
[2 0 1 1 0]

Sandpile group

The collection of stable configurations forms a commutative monoid with addition defined as ordinary addition fol-
lowed by stabilization. The identity element is the all-zero configuration. This monoid is a group exactly when the
underlying graph is a DAG (directed acyclic graph).

The recurrent elements form a submonoid which turns out to be a group. This group is called the sandpile group for Γ,
denoted 𝒮(Γ). Its identity element is usually not the all-zero configuration (again, only in the case that Γ is a DAG).
So finding the identity element is an interesting problem.

Let 𝑛 = |𝑉 | − 1 and fix an ordering of the nonsink vertices. Let ℒ̃ ⊂ Z𝑛 denote the column-span of 𝐿̃𝑡, the transpose
of the reduced Laplacian. It is a theorem that

𝒮(Γ) ≈ Z𝑛/ℒ̃.

Thus, the number of elements of the sandpile group is det 𝐿̃, which by the matrix-tree theorem is the number of
weighted trees directed into the sink.

Example. (Continued.)

44 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: S.group_order()
3
sage: S.invariant_factors()
[1, 1, 3]
sage: S.reduced_laplacian().dense_matrix().smith_form()
(
[1 0 0] [0 0 1] [3 1 4]
[0 1 0] [1 0 0] [4 1 6]
[0 0 3], [0 1 -1], [4 1 5]
)

Adding the identity to any recurrent configuration and stabilizing yields
the same recurrent configuration:

sage: S.identity()
{1: 3, 2: 1, 3: 0}
sage: i = S.identity()
sage: m = S.max_stable()
sage: i & m == m
True

Self-organized criticality

The sandpile model was introduced by Bak, Tang, and Wiesenfeld in the paper, Self-organized criticality: an expla-
nation of 1/ƒ noise [BTW]. The term self-organized criticality has no precise definition, but can be loosely taken to
describe a system that naturally evolves to a state that is barely stable and such that the instabilities are described by a
power law. In practice, self-organized criticality is often taken to mean like the sandpile model on a grid-graph. The
grid graph is just a grid with an extra sink vertex. The vertices on the interior of each side have one edge to the sink,
and the corner vertices have an edge of weight 2. Thus, every nonsink vertex has out-degree 4.

Imagine repeatedly dropping grains of sand on and empty grid graph, allowing the sandpile to stabilize in between.
At first there is little activity, but as time goes on, the size and extent of the avalanche caused by a single grain of sand
becomes hard to predict. Computer experiments—I do not think there is a proof, yet—indicate that the distribution of
avalanche sizes obeys a power law with exponent -1. In the example below, the size of an avalanche is taken to be the
sum of the number of times each vertex fires.

Example (distribution of avalanche sizes).

sage: S = sandpiles.Grid(10,10)
sage: m = S.max_stable()
sage: a = []
sage: for i in range(10000): # long time (15s on sage.math, 2012)
....: m = m.add_random()
....: m, f = m.stabilize(true)
....: a.append(sum(f.values()))
...
sage: p = list_plot([[log(i+1),log(a.count(i))] for i in [0..max(a)] if a.count(i)])
→˓# long time
sage: p.axes_labels(['log(N)','log(D(N))']) # long time
sage: p # long time
Graphics object consisting of 1 graphics primitive

Note: In the above code, m.stabilize(true) returns a list consisting of the stabilized configuration and the firing
vector. (Omitting true would give just the stabilized configuration.)

12.1. Thematic tutorial document tree 45

Thematic Tutorials, Release 8.0

Fig. 12.2: Distribution of avalanche sizes

Divisors and Discrete Riemann surfaces

A reference for this section is Riemann-Roch and Abel-Jacobi theory on a finite graph [BN].

A divisor on Γ is an element of the free abelian group on its vertices, including the sink. Suppose, as above, that the
𝑛 + 1 vertices of Γ have been ordered, and that ℒ is the column span of the transpose of the Laplacian. A divisor is
then identified with an element 𝐷 ∈ Z𝑛+1 and two divisors are linearly equivalent if they differ by an element of ℒ.
A divisor 𝐸 is effective, written 𝐸 ≥ 0, if 𝐸(𝑣) ≥ 0 for each 𝑣 ∈ 𝑉 , i.e., if 𝐸 ∈ N𝑛+1. The degree of a divisor, 𝐷, is
𝑑𝑒𝑔(𝐷) :=

∑︀
𝑣∈𝑉 𝐷(𝑣). The divisors of degree zero modulo linear equivalence form the Picard group, or Jacobian

of the graph. For an undirected graph, the Picard group is isomorphic to the sandpile group.

The complete linear system for a divisor 𝐷, denoted |𝐷|, is the collection of effective divisors linearly equivalent to
𝐷.

Riemann-Roch

To describe the Riemann-Roch theorem in this context, suppose that Γ is an undirected, unweighted graph. The
dimension, 𝑟(𝐷) of the linear system |𝐷| is−1 if |𝐷| = ∅ and otherwise is the greatest integer 𝑠 such that |𝐷−𝐸| ≠ 0
for all effective divisors 𝐸 of degree 𝑠. Define the canonical divisor by 𝐾 =

∑︀
𝑣∈𝑉 (deg(𝑣) − 2)𝑣 and the genus by

𝑔 = #(𝐸)−#(𝑉) + 1. The Riemann-Roch theorem says that for any divisor 𝐷,

𝑟(𝐷)− 𝑟(𝐾 −𝐷) = deg(𝐷) + 1− 𝑔.

Example.:

sage: G = sandpiles.Complete(5) # the sandpile on the complete graph with 5 vertices

A divisor on the graph:

46 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: D = SandpileDivisor(G, [1,2,2,0,2])

Verify the Riemann-Roch theorem:

sage: K = G.canonical_divisor()
sage: D.rank() - (K - D).rank() == D.deg() + 1 - G.genus()
True

The effective divisors linearly equivalent to D:

sage: D.effective_div(False)
[[0, 1, 1, 4, 1], [1, 2, 2, 0, 2], [4, 0, 0, 3, 0]]

The nonspecial divisors up to linear equivalence (divisors of degree
g-1 with empty linear systems)

sage: N = G.nonspecial_divisors()
sage: [E.values() for E in N[:5]] # the first few
[[-1, 0, 1, 2, 3],
[-1, 0, 1, 3, 2],
[-1, 0, 2, 1, 3],
[-1, 0, 2, 3, 1],
[-1, 0, 3, 1, 2]]

sage: len(N)
24
sage: len(N) == G.h_vector()[-1]
True

Picturing linear systems

Fix a divisor 𝐷. There are at least two natural graphs associated with linear system associated with 𝐷. First, consider
the directed graph with vertex set |𝐷| and with an edge from vertex 𝐸 to vertex 𝐹 if 𝐹 is attained from 𝐸 by firing a
single unstable vertex.

sage: S = Sandpile(graphs.CycleGraph(6),0)
sage: D = SandpileDivisor(S, [1,1,1,1,2,0])
sage: D.is_alive()
True
sage: eff = D.effective_div()
sage: firing_graph(S,eff).show3d(edge_size=.005,vertex_size=0.01,iterations=500)

The second graph has the same set of vertices but with an edge from 𝐸 to 𝐹 if 𝐹 is obtained from 𝐸 by firing all
unstable vertices of 𝐸.

sage: S = Sandpile(graphs.CycleGraph(6),0)
sage: D = SandpileDivisor(S, [1,1,1,1,2,0])
sage: eff = D.effective_div()
sage: parallel_firing_graph(S,eff).show3d(edge_size=.005,vertex_size=0.01,
→˓iterations=500)

Note that in each of the examples, above, starting at any divisor in the linear system and following edges, one is
eventually led into a cycle of length 6 (cycling the divisor (1,1,1,1,2,0)). Thus, D.alive() returns True. In Sage,
one would be able to rotate the above figures to get a better idea of the structure.

12.1. Thematic tutorial document tree 47

Thematic Tutorials, Release 8.0

Fig. 12.3: Complete linear system for (1,1,1,1,2,0) on 𝐶6: single firings

Fig. 12.4: Complete linear system for (1,1,1,1,2,0) on 𝐶6: parallel firings

48 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Algebraic geometry of sandpiles

Affine

Let 𝑛 = |𝑉 | − 1, and fix an ordering on the nonsink vertices of Γ. let ℒ̃ ⊂ Z𝑛 denote the column-span of 𝐿̃𝑡, the
transpose of the reduced Laplacian. Label vertex 𝑖 with the indeterminate 𝑥𝑖, and let C[Γ𝑠] = C[𝑥1, . . . , 𝑥𝑛]. (Here, 𝑠
denotes the sink vertex of Γ.) The sandpile ideal or toppling ideal, first studied by Cori, Rossin, and Salvy [CRS] for
undirected graphs, is the lattice ideal for ℒ̃:

𝐼 = 𝐼(Γ𝑠) := {𝑥𝑢 − 𝑥𝑣 : 𝑢− 𝑣 ∈ ℒ̃} ⊂ C[Γ𝑠],

where 𝑥𝑢 :=
∏︀𝑛

𝑖=1 𝑥
𝑢𝑖 for 𝑢 ∈ Z𝑛.

For each 𝑐 ∈ Z𝑛 define 𝑡(𝑐) = 𝑥𝑐
+ − 𝑥𝑐− where 𝑐+𝑖 = max{𝑐𝑖, 0} and 𝑐− = max{−𝑐𝑖, 0} so that 𝑐 = 𝑐+ − 𝑐−.

Then, for each 𝜎 ∈ Z𝑛, define 𝑇 (𝜎) = 𝑡(𝐿̃𝑡𝜎). It then turns out that

𝐼 = (𝑇 (𝑒1), . . . , 𝑇 (𝑒𝑛), 𝑥𝑏 − 1)

where 𝑒𝑖 is the 𝑖-th standard basis vector and 𝑏 is any burning configuration.

The affine coordinate ring, C[Γ𝑠]/𝐼, is isomorphic to the group algebra of the sandpile group, C[𝒮(Γ)].

The standard term-ordering on C[Γ𝑠] is graded reverse lexigraphical order with 𝑥𝑖 > 𝑥𝑗 if vertex 𝑣𝑖 is further from
the sink than vertex 𝑣𝑗 . (There are choices to be made for vertices equidistant from the sink). If 𝜎𝑏 is the script for a
burning configuration (not necessarily minimal), then

{𝑇 (𝜎) : 𝜎 ≤ 𝜎𝑏}

is a Groebner basis for 𝐼 .

Projective

Now let C[Γ] = C[𝑥0, 𝑥1, . . . , 𝑥𝑛], where 𝑥0 corresponds to the sink vertex. The homogeneous sandpile ideal, denoted
𝐼ℎ, is obtaining by homogenizing 𝐼 with respect to 𝑥0. Let 𝐿 be the (full) Laplacian, and ℒ ⊂ Z𝑛+1 be the column
span of its transpose, 𝐿𝑡. Then 𝐼ℎ is the lattice ideal for ℒ:

𝐼ℎ = 𝐼ℎ(Γ) := {𝑥𝑢 − 𝑥𝑣 : 𝑢− 𝑣 ∈ ℒ} ⊂ C[Γ].

This ideal can be calculated by saturating the ideal

(𝑇 (𝑒𝑖) : 𝑖 = 0, . . . 𝑛)

with respect to the product of the indeterminates:
∏︀𝑛

𝑖=0 𝑥𝑖 (extending the 𝑇 operator in the obvious way). A Groebner
basis with respect to the degree lexicographic order describe above (with 𝑥0 the smallest vertex), is obtained by
homogenizing each element of the Groebner basis for the non-homogeneous sandpile ideal with respect to 𝑥0.

Example.

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},
....: 3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}
sage: S = Sandpile(g, 0)
sage: S.ring()
Multivariate Polynomial Ring in x5, x4, x3, x2, x1, x0 over Rational Field

The homogeneous sandpile ideal:

12.1. Thematic tutorial document tree 49

Thematic Tutorials, Release 8.0

sage: S.ideal()
Ideal (x2 - x0, x3^2 - x5*x0, x5*x3 - x0^2, x4^2 - x3*x1, x5^2 - x3*x0,
x1^3 - x4*x3*x0, x4*x1^2 - x5*x0^2) of Multivariate Polynomial Ring
in x5, x4, x3, x2, x1, x0 over Rational Field

The generators of the ideal:

sage: S.ideal(true)
[x2 - x0,
x3^2 - x5*x0,
x5*x3 - x0^2,
x4^2 - x3*x1,
x5^2 - x3*x0,
x1^3 - x4*x3*x0,
x4*x1^2 - x5*x0^2]

Its resolution:

sage: S.resolution() # long time
'R^1 <-- R^7 <-- R^19 <-- R^25 <-- R^16 <-- R^4'

and Betti table:

sage: S.betti() # long time
0 1 2 3 4 5

--
0: 1 1 - - - -
1: - 4 6 2 - -
2: - 2 7 7 2 -
3: - - 6 16 14 4

--
total: 1 7 19 25 16 4

The Hilbert function:

sage: S.hilbert_function()
[1, 5, 11, 15]

and its first differences (which counts the number of superstable
configurations in each degree):

sage: S.h_vector()
[1, 4, 6, 4]
sage: x = [i.deg() for i in S.superstables()]
sage: sorted(x)
[0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3]

The degree in which the Hilbert function equals the Hilbert polynomial, the
latter always being a constant in the case of a sandpile ideal:

sage: S.postulation()
3

50 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Zeros

The zero set for the sandpile ideal 𝐼 is

𝑍(𝐼) = {𝑝 ∈ C𝑛 : 𝑓(𝑝) = 0 for all 𝑓 ∈ 𝐼},

the set of simultaneous zeros of the polynomials in 𝐼. Letting 𝑆1 denote the unit circle in the complex plane, 𝑍(𝐼) is a
finite subgroup of 𝑆1× · · · ×𝑆1 ⊂ C𝑛, isomorphic to the sandpile group. The zero set is actually linearly isomorphic
to a faithful representation of the sandpile group on C𝑛.

Example. (Continued.)

sage: S = Sandpile({0: {}, 1: {2: 2}, 2: {0: 4, 1: 1}}, 0)
sage: S.ideal().gens()
[x1^2 - x2^2, x1*x2^3 - x0^4, x2^5 - x1*x0^4]

Approximation to the zero set (setting ``x_0 = 1``):

sage: S.solve()
[[-0.707107 + 0.707107*I, 0.707107 - 0.707107*I],
[-0.707107 - 0.707107*I, 0.707107 + 0.707107*I],
[-I, -I],
[I, I],
[0.707107 + 0.707107*I, -0.707107 - 0.707107*I],
[0.707107 - 0.707107*I, -0.707107 + 0.707107*I],
[1, 1],
[-1, -1]]
sage: len(_) == S.group_order()
True

The zeros are generated as a group by a single vector:

sage: S.points()
[[(1/2*I + 1/2)*sqrt(2), -(1/2*I + 1/2)*sqrt(2)]]

Resolutions

The homogeneous sandpile ideal, 𝐼ℎ, has a free resolution graded by the divisors on Γ modulo linear equivalence.
(See the section on Discrete Riemann Surfaces for the language of divisors and linear equivalence.) Let 𝑆 = C[Γ] =
C[𝑥0, . . . , 𝑥𝑛], as above, and let S denote the group of divisors modulo rational equivalence. Then 𝑆 is graded by S
by letting deg(𝑥𝑐) = 𝑐 ∈ S for each monomial 𝑥𝑐. The minimal free resolution of 𝐼ℎ has the form

0← 𝐼ℎ ← ⊕𝐷∈S𝑆(−𝐷)𝛽0,𝐷 ← ⊕𝐷∈S𝑆(−𝐷)𝛽1,𝐷 ← · · · ← ⊕𝐷∈S𝑆(−𝐷)𝛽𝑟,𝐷 ← 0.

where the 𝛽𝑖,𝐷 are the Betti numbers for 𝐼ℎ.

For each divisor class 𝐷 ∈ S, define a simplicial complex,

∆𝐷 := {𝐼 ⊆ {0, . . . , 𝑛} : 𝐼 ⊆ supp(𝐸) for some 𝐸 ∈ |𝐷|}.

The Betti number 𝛽𝑖,𝐷 equals the dimension over C of the 𝑖-th reduced homology group of ∆𝐷:

𝛽𝑖,𝐷 = dimC 𝐻̃𝑖(∆𝐷;C).

12.1. Thematic tutorial document tree 51

Thematic Tutorials, Release 8.0

sage: S = Sandpile({0:{},1:{0: 1, 2: 1, 3: 4},2:{3: 5},3:{1: 1, 2: 1}},0)

Representatives of all divisor classes with nontrivial homology:

sage: p = S.betti_complexes()
sage: p[0]
[{0: -8, 1: 5, 2: 4, 3: 1},
Simplicial complex with vertex set (1, 2, 3) and facets {(1, 2), (3,)}]

The homology associated with the first divisor in the list:

sage: D = p[0][0]
sage: D.effective_div()
[{0: 0, 1: 0, 2: 0, 3: 2}, {0: 0, 1: 1, 2: 1, 3: 0}]
sage: [E.support() for E in D.effective_div()]
[[3], [1, 2]]
sage: D.Dcomplex()
Simplicial complex with vertex set (1, 2, 3) and facets {(1, 2), (3,)}
sage: D.Dcomplex().homology()
{0: Z, 1: 0}

The minimal free resolution:

sage: S.resolution()
'R^1 <-- R^5 <-- R^5 <-- R^1'
sage: S.betti()

0 1 2 3

0: 1 - - -
1: - 5 5 -
2: - - - 1

total: 1 5 5 1
sage: len(p)
11

The degrees and ranks of the homology groups for each element of the list p
(compare with the Betti table, above):

sage: [[sum(d[0].values()),d[1].betti()] for d in p]
[[2, {0: 2, 1: 0}],
[3, {0: 1, 1: 1, 2: 0}],
[2, {0: 2, 1: 0}],
[3, {0: 1, 1: 1, 2: 0}],
[2, {0: 2, 1: 0}],
[3, {0: 1, 1: 1, 2: 0}],
[2, {0: 2, 1: 0}],
[3, {0: 1, 1: 1}],
[2, {0: 2, 1: 0}],
[3, {0: 1, 1: 1, 2: 0}],
[5, {0: 1, 1: 0, 2: 1}]]

Complete Intersections and Arithmetically Gorenstein toppling ideals

NOTE: in the previous section note that the resolution always has length 𝑛 since the ideal is Cohen-Macaulay.

52 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

To do.

Betti numbers for undirected graphs

To do.

Usage

Initialization

There are three main classes for sandpile structures in Sage: Sandpile, SandpileConfig, and
SandpileDivisor. Initialization for Sandpile has the form

sage: S = Sandpile(graph, sink)

where graph represents a graph and sink is the key for the sink vertex. There are four possible forms for graph:

1. a Python dictionary of dictionaries:

sage: g = {0: {}, 1: {0: 1, 3: 1, 4: 1}, 2: {0: 1, 3: 1, 5: 1},
....: 3: {2: 1, 5: 1}, 4: {1: 1, 3: 1}, 5: {2: 1, 3: 1}}

Fig. 12.5: Graph from dictionary of dictionaries.

Each key is the name of a vertex. Next to each vertex name 𝑣 is a dictionary consisting of pairs: vertex: weight.
Each pair represents a directed edge emanating from 𝑣 and ending at vertex having (non-negative integer) weight
equal to weight. Loops are allowed. In the example above, all of the weights are 1.

12.1. Thematic tutorial document tree 53

Thematic Tutorials, Release 8.0

2. a Python dictionary of lists:

sage: g = {0: [], 1: [0, 3, 4], 2: [0, 3, 5],
....: 3: [2, 5], 4: [1, 3], 5: [2, 3]}

This is a short-hand when all of the edge-weights are equal to 1. The above example is for the same displayed graph.

3. a Sage graph (of type sage.graphs.graph.Graph):

sage: g = graphs.CycleGraph(5)
sage: S = Sandpile(g, 0)
sage: type(g)
<class 'sage.graphs.graph.Graph'>

To see the types of built-in graphs, type graphs., including the period, and hit TAB.

4. a Sage digraph:

sage: S = Sandpile(digraphs.RandomDirectedGNC(6), 0)
sage: S.show()

Fig. 12.6: A random graph.

See sage.graphs.graph_generators for more information on the Sage graph library and graph constructors.

Each of these four formats is preprocessed by the Sandpile class so that, internally, the graph is represented by the
dictionary of dictionaries format first presented. This internal format is returned by dict():

sage: S = Sandpile({0:[], 1:[0, 3, 4], 2:[0, 3, 5], 3: [2, 5], 4: [1, 3], 5: [2, 3]},
→˓0)
sage: S.dict()
{0: {},

54 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

1: {0: 1, 3: 1, 4: 1},
2: {0: 1, 3: 1, 5: 1},
3: {2: 1, 5: 1},
4: {1: 1, 3: 1},
5: {2: 1, 3: 1}}

Note: The user is responsible for assuring that each vertex has a directed path into the designated sink. If the sink has
out-edges, these will be ignored for the purposes of sandpile calculations (but not calculations on divisors).

Code for checking whether a given vertex is a sink:

sage: S = Sandpile({0:[], 1:[0, 3, 4], 2:[0, 3, 5], 3: [2, 5], 4: [1, 3], 5: [2, 3]},
→˓0)
sage: [S.distance(v,0) for v in S.vertices()] # 0 is a sink
[0, 1, 1, 2, 2, 2]
sage: [S.distance(v,1) for v in S.vertices()] # 1 is not a sink
[+Infinity, 0, +Infinity, +Infinity, 1, +Infinity]

Methods

Here are summaries of Sandpile, SandpileConfig, and SandpileDivisor methods (functions). Each sum-
mary is followed by a list of complete descriptions of the methods. There are many more methods available for a Sand-
pile, e.g., those inherited from the class DiGraph. To see them all, enter dir(Sandpile) or type Sandpile.,
including the period, and hit TAB.

Sandpile

Summary of methods.

• all_k_config — The constant configuration with all values set to k.

• all_k_div — The divisor with all values set to k.

• avalanche_polynomial — The avalanche polynomial.

• betti — The Betti table for the homogeneous toppling ideal.

• betti_complexes — The support-complexes with non-trivial homology.

• burning_config — The minimal burning configuration.

• burning_script — A script for the minimal burning configuration.

• canonical_divisor — The canonical divisor.

• dict — A dictionary of dictionaries representing a directed graph.

• genus — The genus: (# non-loop edges) - (# vertices) + 1.

• groebner — A Groebner basis for the homogeneous toppling ideal.

• group_gens — A minimal list of generators for the sandpile group.

• group_order — The size of the sandpile group.

• h_vector — The number of superstable configurations in each degree.

• help — List of Sandpile-specific methods (not inherited from Graph).

12.1. Thematic tutorial document tree 55

Thematic Tutorials, Release 8.0

• hilbert_function — The Hilbert function of the homogeneous toppling ideal.

• ideal — The saturated homogeneous toppling ideal.

• identity — The identity configuration.

• in_degree — The in-degree of a vertex or a list of all in-degrees.

• invariant_factors — The invariant factors of the sandpile group.

• is_undirected — Is the underlying graph undirected?

• jacobian_representatives — Representatives for the elements of the Jacobian group.

• laplacian — The Laplacian matrix of the graph.

• markov_chain — The sandpile Markov chain for configurations or divisors.

• max_stable — The maximal stable configuration.

• max_stable_div — The maximal stable divisor.

• max_superstables — The maximal superstable configurations.

• min_recurrents — The minimal recurrent elements.

• nonsink_vertices — The nonsink vertices.

• nonspecial_divisors — The nonspecial divisors.

• out_degree — The out-degree of a vertex or a list of all out-degrees.

• picard_representatives — Representatives of the divisor classes of degree d in the Picard group.

• points — Generators for the multiplicative group of zeros of the sandpile ideal.

• postulation — The postulation number of the toppling ideal.

• recurrents — The recurrent configurations.

• reduced_laplacian — The reduced Laplacian matrix of the graph.

• reorder_vertices — A copy of the sandpile with vertex names permuted.

• resolution — A minimal free resolution of the homogeneous toppling ideal.

• ring — The ring containing the homogeneous toppling ideal.

• show — Draw the underlying graph.

• show3d — Draw the underlying graph.

• sink — The sink vertex.

• smith_form — The Smith normal form for the Laplacian.

• solve — Approximations of the complex affine zeros of the sandpile ideal.

• stable_configs — Generator for all stable configurations.

• stationary_density — The stationary density of the sandpile.

• superstables — The superstable configurations.

• symmetric_recurrents — The symmetric recurrent configurations.

• tutte_polynomial — The Tutte polynomial.

• unsaturated_ideal — The unsaturated, homogeneous toppling ideal.

• version — The version number of Sage Sandpiles.

56 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

• zero_config — The all-zero configuration.

• zero_div — The all-zero divisor.

Complete descriptions of Sandpile methods.

— all_k_config(k)

The constant configuration with all values set to 𝑘.

INPUT:

k – integer

OUTPUT:

SandpileConfig

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: s.all_k_config(7)
{1: 7, 2: 7, 3: 7}

— all_k_div(k)

The divisor with all values set to 𝑘.

INPUT:

k – integer

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: S = sandpiles.House()
sage: S.all_k_div(7)
{0: 7, 1: 7, 2: 7, 3: 7, 4: 7}

— avalanche_polynomial(multivariable=True)

The avalanche polynomial. See NOTE for details.

INPUT:

multivariable – (default: True) boolean

OUTPUT:

polynomial

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: s.avalanche_polynomial()
9*x0*x1*x2 + 2*x0*x1 + 2*x0*x2 + 2*x1*x2 + 3*x0 + 3*x1 + 3*x2 + 24
sage: s.avalanche_polynomial(False)
9*x0^3 + 6*x0^2 + 9*x0 + 24

12.1. Thematic tutorial document tree 57

Thematic Tutorials, Release 8.0

Note: For each nonsink vertex 𝑣, let 𝑥𝑣 be an indeterminate. If (𝑟, 𝑣) is a pair consisting of a recurrent 𝑟 and nonsink
vertex 𝑣, then for each nonsink vertex 𝑤, let 𝑛𝑤 be the number of times vertex 𝑤 fires in the stabilization of 𝑟+ 𝑣. Let
𝑀(𝑟, 𝑣) be the monomial

∏︀
𝑤 𝑥

𝑛𝑤
𝑤 , i.e., the exponent records the vector of 𝑛𝑤 as 𝑤 ranges over the nonsink vertices.

The avalanche polynomial is then the sum of 𝑀(𝑟, 𝑣) as 𝑟 ranges over the recurrents and 𝑣 ranges over the nonsink
vertices. If multivariable is False, then set all the indeterminates equal to each other (and, thus, only count the
number of vertex firings in the stabilizations, forgetting which particular vertices fired).

— betti(verbose=True)

The Betti table for the homogeneous toppling ideal. If verbose is True, it prints the standard Betti table, otherwise,
it returns a less formated table.

INPUT:

verbose – (default: True) boolean

OUTPUT:

Betti numbers for the sandpile

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.betti()

0 1 2 3

0: 1 - - -
1: - 2 - -
2: - 4 9 4

total: 1 6 9 4
sage: S.betti(False)
[1, 6, 9, 4]

— betti_complexes()

The support-complexes with non-trivial homology. (See NOTE.)

OUTPUT:

list (of pairs [divisors, corresponding simplicial complex])

EXAMPLES:

sage: S = Sandpile({0:{},1:{0: 1, 2: 1, 3: 4},2:{3: 5},3:{1: 1, 2: 1}},0)
sage: p = S.betti_complexes()
sage: p[0]
[{0: -8, 1: 5, 2: 4, 3: 1}, Simplicial complex with vertex set (1, 2, 3) and facets
→˓{(1, 2), (3,)}]
sage: S.resolution()
'R^1 <-- R^5 <-- R^5 <-- R^1'
sage: S.betti()

0 1 2 3

0: 1 - - -
1: - 5 5 -
2: - - - 1

total: 1 5 5 1
sage: len(p)

58 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

11
sage: p[0][1].homology()
{0: Z, 1: 0}
sage: p[-1][1].homology()
{0: 0, 1: 0, 2: Z}

Note: A support-complex is the simplicial complex formed from the supports of the divisors in a linear system.

— burning_config()

The minimal burning configuration.

OUTPUT:

dict (configuration)

EXAMPLES:

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1}, \
3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}

sage: S = Sandpile(g,0)
sage: S.burning_config()
{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}
sage: S.burning_config().values()
[2, 0, 1, 1, 0]
sage: S.burning_script()
{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}
sage: script = S.burning_script().values()
sage: script
[1, 3, 5, 1, 4]
sage: matrix(script)*S.reduced_laplacian()
[2 0 1 1 0]

Note: The burning configuration and script are computed using a modified version of Speer’s script algorithm. This
is a generalization to directed multigraphs of Dhar’s burning algorithm.

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix
having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding
burning script gives the integer-linear combination needed to obtain the burning configuration. So if 𝑏 is the burning
configuration, 𝜎 is its script, and 𝐿̃ is the reduced Laplacian, then 𝜎 · 𝐿̃ = 𝑏. The minimal burning configuration is
the one with the minimal script (its components are no larger than the components of any other script for a burning
configuration).

The following are equivalent for a configuration 𝑐 with burning configuration 𝑏 having script 𝜎:

• 𝑐 is recurrent;

• 𝑐+ 𝑏 stabilizes to 𝑐;

• the firing vector for the stabilization of 𝑐+ 𝑏 is 𝜎.

— burning_script()

A script for the minimal burning configuration.

OUTPUT:

dict

12.1. Thematic tutorial document tree 59

Thematic Tutorials, Release 8.0

EXAMPLES:

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},\
3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}
sage: S = Sandpile(g,0)
sage: S.burning_config()
{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}
sage: S.burning_config().values()
[2, 0, 1, 1, 0]
sage: S.burning_script()
{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}
sage: script = S.burning_script().values()
sage: script
[1, 3, 5, 1, 4]
sage: matrix(script)*S.reduced_laplacian()
[2 0 1 1 0]

Note: The burning configuration and script are computed using a modified version of Speer’s script algorithm. This
is a generalization to directed multigraphs of Dhar’s burning algorithm.

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix
having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding
burning script gives the integer-linear combination needed to obtain the burning configuration. So if 𝑏 is the burning
configuration, 𝑠 is its script, and 𝐿red is the reduced Laplacian, then 𝑠 · 𝐿red = 𝑏. The minimal burning configuration
is the one with the minimal script (its components are no larger than the components of any other script for a burning
configuration).

The following are equivalent for a configuration 𝑐 with burning configuration 𝑏 having script 𝑠:

• 𝑐 is recurrent;

• 𝑐+ 𝑏 stabilizes to 𝑐;

• the firing vector for the stabilization of 𝑐+ 𝑏 is 𝑠.

— canonical_divisor()

The canonical divisor. This is the divisor with deg(𝑣)− 2 grains of sand on each vertex (not counting loops). Only for
undirected graphs.

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Complete(4)
sage: S.canonical_divisor()
{0: 1, 1: 1, 2: 1, 3: 1}
sage: s = Sandpile({0:[1,1],1:[0,0,1,1,1]},0)
sage: s.canonical_divisor() # loops are disregarded
{0: 0, 1: 0}

Warning: The underlying graph must be undirected.

— dict()

A dictionary of dictionaries representing a directed graph.

60 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

OUTPUT:

dict

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.dict()
{0: {1: 1, 2: 1},
1: {0: 1, 2: 1, 3: 1},
2: {0: 1, 1: 1, 3: 1},
3: {1: 1, 2: 1}}

sage: S.sink()
0

— genus()

The genus: (# non-loop edges) - (# vertices) + 1. Only defined for undirected graphs.

OUTPUT:

integer

EXAMPLES:

sage: sandpiles.Complete(4).genus()
3
sage: sandpiles.Cycle(5).genus()
1

— groebner()

A Groebner basis for the homogeneous toppling ideal. It is computed with respect to the standard sandpile ordering
(see ring).

OUTPUT:

Groebner basis

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.groebner()
[x3*x2^2 - x1^2*x0, x2^3 - x3*x1*x0, x3*x1^2 - x2^2*x0, x1^3 - x3*x2*x0, x3^2 - x0^2,
→˓x2*x1 - x0^2]

— group_gens(verbose=True)

A minimal list of generators for the sandpile group. If verbose is False then the generators are represented as lists
of integers.

INPUT:

verbose – (default: True) boolean

OUTPUT:

list of SandpileConfig (or of lists of integers if verbose is False)

EXAMPLES:

sage: s = sandpiles.Cycle(5)
sage: s.group_gens()
[{1: 1, 2: 1, 3: 1, 4: 0}]

12.1. Thematic tutorial document tree 61

Thematic Tutorials, Release 8.0

sage: s.group_gens()[0].order()
5
sage: s = sandpiles.Complete(5)
sage: s.group_gens(False)
[[2, 2, 3, 2], [2, 3, 2, 2], [3, 2, 2, 2]]
sage: [i.order() for i in s.group_gens()]
[5, 5, 5]
sage: s.invariant_factors()
[1, 5, 5, 5]

— group_order()

The size of the sandpile group.

OUTPUT:

integer

EXAMPLES:

sage: S = sandpiles.House()
sage: S.group_order()
11

— h_vector()

The number of superstable configurations in each degree. Equivalently, this is the list of first differences of the Hilbert
function of the (homogeneous) toppling ideal.

OUTPUT:

list of nonnegative integers

EXAMPLES:

sage: s = sandpiles.Grid(2,2)
sage: s.hilbert_function()
[1, 5, 15, 35, 66, 106, 146, 178, 192]
sage: s.h_vector()
[1, 4, 10, 20, 31, 40, 40, 32, 14]

— help(verbose=True)

List of Sandpile-specific methods (not inherited from Graph). If verbose, include short descriptions.

INPUT:

verbose – (default: True) boolean

OUTPUT:

printed string

EXAMPLES:

sage: Sandpile.help()
For detailed help with any method FOO listed below,
enter "Sandpile.FOO?" or enter "S.FOO?" for any Sandpile S.

all_k_config -- The constant configuration with all values set to k.
all_k_div -- The divisor with all values set to k.
avalanche_polynomial -- The avalanche polynomial.
betti -- The Betti table for the homogeneous toppling ideal.

62 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

betti_complexes -- The support-complexes with non-trivial homology.
burning_config -- The minimal burning configuration.
burning_script -- A script for the minimal burning configuration.
canonical_divisor -- The canonical divisor.
dict -- A dictionary of dictionaries representing a directed
→˓graph.
genus -- The genus: (# non-loop edges) - (# vertices) + 1.
groebner -- A Groebner basis for the homogeneous toppling ideal.
group_gens -- A minimal list of generators for the sandpile group.
group_order -- The size of the sandpile group.
h_vector -- The number of superstable configurations in each degree.
help -- List of Sandpile-specific methods (not inherited from
→˓Graph).
hilbert_function -- The Hilbert function of the homogeneous toppling ideal.
ideal -- The saturated homogeneous toppling ideal.
identity -- The identity configuration.
in_degree -- The in-degree of a vertex or a list of all in-degrees.
invariant_factors -- The invariant factors of the sandpile group.
is_undirected -- Is the underlying graph undirected?
jacobian_representatives -- Representatives for the elements of the Jacobian group.
laplacian -- The Laplacian matrix of the graph.
markov_chain -- The sandpile Markov chain for configurations or divisors.
max_stable -- The maximal stable configuration.
max_stable_div -- The maximal stable divisor.
max_superstables -- The maximal superstable configurations.
min_recurrents -- The minimal recurrent elements.
nonsink_vertices -- The nonsink vertices.
nonspecial_divisors -- The nonspecial divisors.
out_degree -- The out-degree of a vertex or a list of all out-degrees.
picard_representatives -- Representatives of the divisor classes of degree d in the
→˓Picard group.
points -- Generators for the multiplicative group of zeros of the
→˓sandpile ideal.
postulation -- The postulation number of the toppling ideal.
recurrents -- The recurrent configurations.
reduced_laplacian -- The reduced Laplacian matrix of the graph.
reorder_vertices -- A copy of the sandpile with vertex names permuted.
resolution -- A minimal free resolution of the homogeneous toppling
→˓ideal.
ring -- The ring containing the homogeneous toppling ideal.
show -- Draw the underlying graph.
show3d -- Draw the underlying graph.
sink -- The sink vertex.
smith_form -- The Smith normal form for the Laplacian.
solve -- Approximations of the complex affine zeros of the
→˓sandpile ideal.
stable_configs -- Generator for all stable configurations.
stationary_density -- The stationary density of the sandpile.
superstables -- The superstable configurations.
symmetric_recurrents -- The symmetric recurrent configurations.
tutte_polynomial -- The Tutte polynomial.
unsaturated_ideal -- The unsaturated, homogeneous toppling ideal.
version -- The version number of Sage Sandpiles.
zero_config -- The all-zero configuration.
zero_div -- The all-zero divisor.

— hilbert_function()

12.1. Thematic tutorial document tree 63

Thematic Tutorials, Release 8.0

The Hilbert function of the homogeneous toppling ideal.

OUTPUT:

list of nonnegative integers

EXAMPLES:

sage: s = sandpiles.Wheel(5)
sage: s.hilbert_function()
[1, 5, 15, 31, 45]
sage: s.h_vector()
[1, 4, 10, 16, 14]

— ideal(gens=False)

The saturated homogeneous toppling ideal. If gens is True, the generators for the ideal are returned instead.

INPUT:

gens – (default: False) boolean

OUTPUT:

ideal or, optionally, the generators of an ideal

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.ideal()
Ideal (x2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3*x2*x0, x3*x1^2 - x2^2*x0, x2^3 - x3*x1*x0,
→˓ x3*x2^2 - x1^2*x0) of Multivariate Polynomial Ring in x3, x2, x1, x0 over Rational
→˓Field
sage: S.ideal(True)
[x2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3*x2*x0, x3*x1^2 - x2^2*x0, x2^3 - x3*x1*x0,
→˓x3*x2^2 - x1^2*x0]
sage: S.ideal().gens() # another way to get the generators
[x2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3*x2*x0, x3*x1^2 - x2^2*x0, x2^3 - x3*x1*x0,
→˓x3*x2^2 - x1^2*x0]

— identity(verbose=True)

The identity configuration. If verbose is False, the configuration are converted to a list of integers.

INPUT:

verbose – (default: True) boolean

OUTPUT:

SandpileConfig or a list of integers If verbose is False, the configuration are converted to a list of integers.

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: s.identity()
{1: 2, 2: 2, 3: 0}
sage: s.identity(False)
[2, 2, 0]
sage: s.identity() & s.max_stable() == s.max_stable()
True

— in_degree(v=None)

64 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The in-degree of a vertex or a list of all in-degrees.

INPUT:

v – (optional) vertex name

OUTPUT:

integer or dict

EXAMPLES:

sage: s = sandpiles.House()
sage: s.in_degree()
{0: 2, 1: 2, 2: 3, 3: 3, 4: 2}
sage: s.in_degree(2)
3

— invariant_factors()

The invariant factors of the sandpile group.

OUTPUT:

list of integers

EXAMPLES:

sage: s = sandpiles.Grid(2,2)
sage: s.invariant_factors()
[1, 1, 8, 24]

— is_undirected()

Is the underlying graph undirected? True if (𝑢, 𝑣) is and edge if and only if (𝑣, 𝑢) is an edge, each edge with the
same weight.

OUTPUT:

boolean

EXAMPLES:

sage: sandpiles.Complete(4).is_undirected()
True
sage: s = Sandpile({0:[1,2], 1:[0,2], 2:[0]}, 0)
sage: s.is_undirected()
False

— jacobian_representatives(verbose=True)

Representatives for the elements of the Jacobian group. If verbose is False, then lists representing the divisors are
returned.

INPUT:

verbose – (default: True) boolean

OUTPUT:

list of SandpileDivisor (or of lists representing divisors)

EXAMPLES:

For an undirected graph, divisors of the form s - deg(s)*sink as s varies over the superstables forms a distinct
set of representatives for the Jacobian group.:

12.1. Thematic tutorial document tree 65

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Complete(3)
sage: s.superstables(False)
[[0, 0], [0, 1], [1, 0]]
sage: s.jacobian_representatives(False)
[[0, 0, 0], [-1, 0, 1], [-1, 1, 0]]

If the graph is directed, the representatives described above may by equivalent modulo the rowspan of the Laplacian
matrix:

sage: s = Sandpile({0: {1: 1, 2: 2}, 1: {0: 2, 2: 4}, 2: {0: 4, 1: 2}},0)
sage: s.group_order()
28
sage: s.jacobian_representatives()
[{0: -5, 1: 3, 2: 2}, {0: -4, 1: 3, 2: 1}]

Let 𝜏 be the nonnegative generator of the kernel of the transpose of the Laplacian, and let 𝑡𝑎𝑢𝑠 be it sink component,
then the sandpile group is isomorphic to the direct sum of the cyclic group of order 𝜏𝑠 and the Jacobian group. In the
example above, we have:

sage: s.laplacian().left_kernel()
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[14 5 8]

Note: The Jacobian group is the set of all divisors of degree zero modulo the integer rowspan of the Laplacian matrix.

— laplacian()

The Laplacian matrix of the graph. Its rows encode the vertex firing rules.

OUTPUT:

matrix

EXAMPLES:

sage: G = sandpiles.Diamond()
sage: G.laplacian()
[2 -1 -1 0]
[-1 3 -1 -1]
[-1 -1 3 -1]
[0 -1 -1 2]

Warning: The function laplacian_matrix should be avoided. It returns the indegree version of the Lapla-
cian.

— markov_chain(state, distrib=None)

The sandpile Markov chain for configurations or divisors. The chain starts at state. See NOTE for details.

INPUT:

• state – SandpileConfig, SandpileDivisor, or list representing one of these

• distrib – (optional) list of nonnegative numbers summing to 1 (representing a prob. dist.)

66 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

OUTPUT:

generator for Markov chain (see NOTE)

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: m = s.markov_chain([0,0,0])
sage: next(m) # random
{1: 0, 2: 0, 3: 0}
sage: next(m).values() # random
[0, 0, 0]
sage: next(m).values() # random
[0, 0, 0]
sage: next(m).values() # random
[0, 0, 0]
sage: next(m).values() # random
[0, 1, 0]
sage: next(m).values() # random
[0, 2, 0]
sage: next(m).values() # random
[0, 2, 1]
sage: next(m).values() # random
[1, 2, 1]
sage: next(m).values() # random
[2, 2, 1]
sage: m = s.markov_chain(s.zero_div(), [0.1,0.1,0.1,0.7])
sage: next(m).values() # random
[0, 0, 0, 1]
sage: next(m).values() # random
[0, 0, 1, 1]
sage: next(m).values() # random
[0, 0, 1, 2]
sage: next(m).values() # random
[1, 1, 2, 0]
sage: next(m).values() # random
[1, 1, 2, 1]
sage: next(m).values() # random
[1, 1, 2, 2]
sage: next(m).values() # random
[1, 1, 2, 3]
sage: next(m).values() # random
[1, 1, 2, 4]
sage: next(m).values() # random
[1, 1, 3, 4]

Note: The closed sandpile Markov chain has state space consisting of the configurations on a sandpile. It
transitions from a state by choosing a vertex at random (according to the probability distribution distrib), dropping
a grain of sand at that vertex, and stabilizing. If the chosen vertex is the sink, the chain stays at the current state.

The open sandpile Markov chain has state space consisting of the recurrent elements, i.e., the state space is
the sandpile group. It transitions from the configuration 𝑐 by choosing a vertex 𝑣 at random according to distrib.
The next state is the stabilization of 𝑐+ 𝑣. If 𝑣 is the sink vertex, then the stabilization of 𝑐+ 𝑣 is defined to be 𝑐.

Note that in either case, if distrib is specified, its length is equal to the total number of vertices (including the sink).

REFERENCES:

12.1. Thematic tutorial document tree 67

Thematic Tutorials, Release 8.0

— max_stable()

The maximal stable configuration.

OUTPUT:

SandpileConfig (the maximal stable configuration)

EXAMPLES:

sage: S = sandpiles.House()
sage: S.max_stable()
{1: 1, 2: 2, 3: 2, 4: 1}

— max_stable_div()

The maximal stable divisor.

OUTPUT:

SandpileDivisor (the maximal stable divisor)

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: s.max_stable_div()
{0: 1, 1: 2, 2: 2, 3: 1}
sage: s.out_degree()
{0: 2, 1: 3, 2: 3, 3: 2}

— max_superstables(verbose=True)

The maximal superstable configurations. If the underlying graph is undirected, these are the superstables of highest
degree. If verbose is False, the configurations are converted to lists of integers.

INPUT:

verbose – (default: True) boolean

OUTPUT:

tuple of SandpileConfig

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: s.superstables(False)
[[0, 0, 0],
[0, 0, 1],
[1, 0, 1],
[0, 2, 0],
[2, 0, 0],
[0, 1, 1],
[1, 0, 0],
[0, 1, 0]]

sage: s.max_superstables(False)
[[1, 0, 1], [0, 2, 0], [2, 0, 0], [0, 1, 1]]
sage: s.h_vector()
[1, 3, 4]

— min_recurrents(verbose=True)

The minimal recurrent elements. If the underlying graph is undirected, these are the recurrent elements of least degree.
If verbose is False, the configurations are converted to lists of integers.

68 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

INPUT:

verbose – (default: True) boolean

OUTPUT:

list of SandpileConfig

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: s.recurrents(False)
[[2, 2, 1],
[2, 2, 0],
[1, 2, 0],
[2, 0, 1],
[0, 2, 1],
[2, 1, 0],
[1, 2, 1],
[2, 1, 1]]

sage: s.min_recurrents(False)
[[1, 2, 0], [2, 0, 1], [0, 2, 1], [2, 1, 0]]
sage: [i.deg() for i in s.recurrents()]
[5, 4, 3, 3, 3, 3, 4, 4]

— nonsink_vertices()

The nonsink vertices.

OUTPUT:

list of vertices

EXAMPLES:

sage: s = sandpiles.Grid(2,3)
sage: s.nonsink_vertices()
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)]

— nonspecial_divisors(verbose=True)

The nonspecial divisors. Only for undirected graphs. (See NOTE.)

INPUT:

verbose – (default: True) boolean

OUTPUT:

list (of divisors)

EXAMPLES:

sage: S = sandpiles.Complete(4)
sage: ns = S.nonspecial_divisors()
sage: D = ns[0]
sage: D.values()
[-1, 0, 1, 2]
sage: D.deg()
2
sage: [i.effective_div() for i in ns]
[[], [], [], [], [], []]

12.1. Thematic tutorial document tree 69

Thematic Tutorials, Release 8.0

Note: The “nonspecial divisors” are those divisors of degree 𝑔 − 1 with empty linear system. The term is only
defined for undirected graphs. Here, 𝑔 = |𝐸| − |𝑉 |+ 1 is the genus of the graph (not counted loops as part of |𝐸|). If
verbose is False, the divisors are converted to lists of integers.

Warning: The underlying graph must be undirected.

— out_degree(v=None)

The out-degree of a vertex or a list of all out-degrees.

INPUT:

v - (optional) vertex name

OUTPUT:

integer or dict

EXAMPLES:

sage: s = sandpiles.House()
sage: s.out_degree()
{0: 2, 1: 2, 2: 3, 3: 3, 4: 2}
sage: s.out_degree(2)
3

— picard_representatives(d, verbose=True)

Representatives of the divisor classes of degree 𝑑 in the Picard group. (Also see the documentation for
jacobian_representatives.)

INPUT:

• d – integer

• verbose – (default: True) boolean

OUTPUT:

list of SandpileDivisors (or lists representing divisors)

EXAMPLES:

sage: s = sandpiles.Complete(3)
sage: s.superstables(False)
[[0, 0], [0, 1], [1, 0]]
sage: s.jacobian_representatives(False)
[[0, 0, 0], [-1, 0, 1], [-1, 1, 0]]
sage: s.picard_representatives(3,False)
[[3, 0, 0], [2, 0, 1], [2, 1, 0]]

— points()

Generators for the multiplicative group of zeros of the sandpile ideal.

OUTPUT:

list of complex numbers

EXAMPLES:

70 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The sandpile group in this example is cyclic, and hence there is a single generator for the group of solutions.

sage: S = sandpiles.Complete(4)
sage: S.points()
[[1, I, -I], [I, 1, -I]]

— postulation()

The postulation number of the toppling ideal. This is the largest weight of a superstable configuration of the graph.

OUTPUT:

nonnegative integer

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: s.postulation()
3

— recurrents(verbose=True)

The recurrent configurations. If verbose is False, the configurations are converted to lists of integers.

INPUT:

verbose – (default: True) boolean

OUTPUT:

list of recurrent configurations

EXAMPLES:

sage: r = Sandpile(graphs.HouseXGraph(),0).recurrents()
sage: r[:3]
[{1: 2, 2: 3, 3: 3, 4: 1}, {1: 1, 2: 3, 3: 3, 4: 0}, {1: 1, 2: 3, 3: 3, 4: 1}]
sage: sandpiles.Complete(4).recurrents(False)
[[2, 2, 2],
[2, 2, 1],
[2, 1, 2],
[1, 2, 2],
[2, 2, 0],
[2, 0, 2],
[0, 2, 2],
[2, 1, 1],
[1, 2, 1],
[1, 1, 2],
[2, 1, 0],
[2, 0, 1],
[1, 2, 0],
[1, 0, 2],
[0, 2, 1],
[0, 1, 2]]

sage: sandpiles.Cycle(4).recurrents(False)
[[1, 1, 1], [0, 1, 1], [1, 0, 1], [1, 1, 0]]

— reduced_laplacian()

The reduced Laplacian matrix of the graph.

OUTPUT:

12.1. Thematic tutorial document tree 71

Thematic Tutorials, Release 8.0

matrix

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.laplacian()
[2 -1 -1 0]
[-1 3 -1 -1]
[-1 -1 3 -1]
[0 -1 -1 2]
sage: S.reduced_laplacian()
[3 -1 -1]
[-1 3 -1]
[-1 -1 2]

Note: This is the Laplacian matrix with the row and column indexed by the sink vertex removed.

— reorder_vertices()

A copy of the sandpile with vertex names permuted. After reordering, vertex 𝑢 comes before vertex 𝑣 in the list of
vertices if 𝑢 is closer to the sink.

OUTPUT:

Sandpile

EXAMPLES:

sage: S = Sandpile({0:[1], 2:[0,1], 1:[2]})
sage: S.dict()
{0: {1: 1}, 1: {2: 1}, 2: {0: 1, 1: 1}}
sage: T = S.reorder_vertices()

The vertices 1 and 2 have been swapped:

sage: T.dict()
{0: {1: 1}, 1: {0: 1, 2: 1}, 2: {0: 1}}

— resolution(verbose=False)

A minimal free resolution of the homogeneous toppling ideal. If verbose is True, then all of the mappings are
returned. Otherwise, the resolution is summarized.

INPUT:

verbose – (default: False) boolean

OUTPUT:

free resolution of the toppling ideal

EXAMPLES:

sage: S = Sandpile({0: {}, 1: {0: 1, 2: 1, 3: 4}, 2: {3: 5}, 3: {1: 1, 2: 1}},0)
sage: S.resolution() # a Gorenstein sandpile graph
'R^1 <-- R^5 <-- R^5 <-- R^1'
sage: S.resolution(True)
[
[x1^2 - x3*x0 x3*x1 - x2*x0 x3^2 - x2*x1 x2*x3 - x0^2 x2^2 - x1*x0],

72 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

[x3 x2 0 x0 0] [x2^2 - x1*x0]
[-x1 -x3 x2 0 -x0] [-x2*x3 + x0^2]
[x0 x1 0 x2 0] [-x3^2 + x2*x1]
[0 0 -x1 -x3 x2] [x3*x1 - x2*x0]
[0 0 x0 x1 -x3], [x1^2 - x3*x0]
]
sage: r = S.resolution(True)
sage: r[0]*r[1]
[0 0 0 0 0]
sage: r[1]*r[2]
[0]
[0]
[0]
[0]
[0]

— ring()

The ring containing the homogeneous toppling ideal.

OUTPUT:

ring

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.ring()
Multivariate Polynomial Ring in x3, x2, x1, x0 over Rational Field
sage: S.ring().gens()
(x3, x2, x1, x0)

Note: The indeterminate xi corresponds to the 𝑖-th vertex as listed my the method vertices. The term-ordering
is degrevlex with indeterminates ordered according to their distance from the sink (larger indeterminates are further
from the sink).

— show(**kwds)

Draw the underlying graph.

INPUT:

kwds – (optional) arguments passed to the show method for Graph or DiGraph

EXAMPLES:

sage: S = Sandpile({0:[], 1:[0,3,4], 2:[0,3,5], 3:[2,5], 4:[1,1], 5:[2,4]})
sage: S.show()
sage: S.show(graph_border=True, edge_labels=True)

— show3d(**kwds)

Draw the underlying graph.

INPUT:

kwds – (optional) arguments passed to the show method for Graph or DiGraph

EXAMPLES:

12.1. Thematic tutorial document tree 73

Thematic Tutorials, Release 8.0

sage: S = sandpiles.House()
sage: S.show3d()

— sink()

The sink vertex.

OUTPUT:

sink vertex

EXAMPLES:

sage: G = sandpiles.House()
sage: G.sink()
0
sage: H = sandpiles.Grid(2,2)
sage: H.sink()
(0, 0)
sage: type(H.sink())
<... 'tuple'>

— smith_form()

The Smith normal form for the Laplacian. In detail: a list of integer matrices 𝐷,𝑈, 𝑉 such that 𝑈𝐿𝑉 = 𝐷 where 𝐿 is
the transpose of the Laplacian, 𝐷 is diagonal, and 𝑈 and 𝑉 are invertible over the integers.

OUTPUT:

list of integer matrices

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D,U,V = s.smith_form()
sage: D
[1 0 0 0]
[0 4 0 0]
[0 0 4 0]
[0 0 0 0]
sage: U*s.laplacian()*V == D # laplacian symmetric => tranpose not necessary
True

— solve()

Approximations of the complex affine zeros of the sandpile ideal.

OUTPUT:

list of complex numbers

EXAMPLES:

sage: S = Sandpile({0: {}, 1: {2: 2}, 2: {0: 4, 1: 1}}, 0)
sage: S.solve()
[[-0.707107 + 0.707107*I, 0.707107 - 0.707107*I], [-0.707107 - 0.707107*I, 0.707107 +
→˓0.707107*I], [-I, -I], [I, I], [0.707107 + 0.707107*I, -0.707107 - 0.707107*I], [0.
→˓707107 - 0.707107*I, -0.707107 + 0.707107*I], [1, 1], [-1, -1]]
sage: len(_)
8
sage: S.group_order()
8

74 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note: The solutions form a multiplicative group isomorphic to the sandpile group. Generators for this group are
given exactly by points().

— stable_configs(smax=None)

Generator for all stable configurations. If smax is provided, then the generator gives all stable configurations less than
or equal to smax. If smax does not represent a stable configuration, then each component of smax is replaced by the
corresponding component of the maximal stable configuration.

INPUT:

smax – (optional) SandpileConfig or list representing a SandpileConfig

OUTPUT:

generator for all stable configurations

EXAMPLES:

sage: s = sandpiles.Complete(3)
sage: a = s.stable_configs()
sage: next(a)
{1: 0, 2: 0}
sage: [i.values() for i in a]
[[0, 1], [1, 0], [1, 1]]
sage: b = s.stable_configs([1,0])
sage: list(b)
[{1: 0, 2: 0}, {1: 1, 2: 0}]

— stationary_density()

The stationary density of the sandpile.

OUTPUT:

rational number

EXAMPLES:

sage: s = sandpiles.Complete(3)
sage: s.stationary_density()
10/9
sage: s = Sandpile(digraphs.DeBruijn(2,2),'00')
sage: s.stationary_density()
9/8

Note: The stationary density of a sandpile is the sum
∑︀

𝑐(deg(𝑐) + deg(𝑠)) where deg(𝑠) is the degree of the sink
and the sum is over all recurrent configurations.

REFERENCES:

— superstables(verbose=True)

The superstable configurations. If verbose is False, the configurations are converted to lists of integers. Supersta-
bles for undirected graphs are also known as G-parking functions.

INPUT:

verbose – (default: True) boolean

12.1. Thematic tutorial document tree 75

Thematic Tutorials, Release 8.0

OUTPUT:

list of SandpileConfig

EXAMPLES:

sage: sp = Sandpile(graphs.HouseXGraph(),0).superstables()
sage: sp[:3]
[{1: 0, 2: 0, 3: 0, 4: 0}, {1: 1, 2: 0, 3: 0, 4: 1}, {1: 1, 2: 0, 3: 0, 4: 0}]
sage: sandpiles.Complete(4).superstables(False)
[[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
[0, 0, 2],
[0, 2, 0],
[2, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 0],
[0, 1, 2],
[0, 2, 1],
[1, 0, 2],
[1, 2, 0],
[2, 0, 1],
[2, 1, 0]]

sage: sandpiles.Cycle(4).superstables(False)
[[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]

— symmetric_recurrents(orbits)

The symmetric recurrent configurations.

INPUT:

orbits - list of lists partitioning the vertices

OUTPUT:

list of recurrent configurations

EXAMPLES:

sage: S = Sandpile({0: {},
....: 1: {0: 1, 2: 1, 3: 1},
....: 2: {1: 1, 3: 1, 4: 1},
....: 3: {1: 1, 2: 1, 4: 1},
....: 4: {2: 1, 3: 1}})
sage: S.symmetric_recurrents([[1],[2,3],[4]])
[{1: 2, 2: 2, 3: 2, 4: 1}, {1: 2, 2: 2, 3: 2, 4: 0}]
sage: S.recurrents()
[{1: 2, 2: 2, 3: 2, 4: 1},
{1: 2, 2: 2, 3: 2, 4: 0},
{1: 2, 2: 1, 3: 2, 4: 0},
{1: 2, 2: 2, 3: 0, 4: 1},
{1: 2, 2: 0, 3: 2, 4: 1},
{1: 2, 2: 2, 3: 1, 4: 0},
{1: 2, 2: 1, 3: 2, 4: 1},
{1: 2, 2: 2, 3: 1, 4: 1}]

76 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note: The user is responsible for ensuring that the list of orbits comes from a group of symmetries of the underlying
graph.

— tutte_polynomial()

The Tutte polynomial. Only defined for undirected sandpile graphs.

OUTPUT:

polynomial

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: s.tutte_polynomial()
x^3 + y^3 + 3*x^2 + 4*x*y + 3*y^2 + 2*x + 2*y
sage: s.tutte_polynomial().subs(x=1)
y^3 + 3*y^2 + 6*y + 6
sage: s.tutte_polynomial().subs(x=1).coefficients() == s.h_vector()
True

— unsaturated_ideal()

The unsaturated, homogeneous toppling ideal.

OUTPUT:

ideal

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.unsaturated_ideal().gens()
[x1^3 - x3*x2*x0, x2^3 - x3*x1*x0, x3^2 - x2*x1]
sage: S.ideal().gens()
[x2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3*x2*x0, x3*x1^2 - x2^2*x0, x2^3 - x3*x1*x0,
→˓x3*x2^2 - x1^2*x0]

— version()

The version number of Sage Sandpiles.

OUTPUT:

string

EXAMPLES:

sage: Sandpile.version()
Sage Sandpiles Version 2.4
sage: S = sandpiles.Complete(3)
sage: S.version()
Sage Sandpiles Version 2.4

— zero_config()

The all-zero configuration.

OUTPUT:

SandpileConfig

EXAMPLES:

12.1. Thematic tutorial document tree 77

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Diamond()
sage: s.zero_config()
{1: 0, 2: 0, 3: 0}

— zero_div()

The all-zero divisor.

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: S = sandpiles.House()
sage: S.zero_div()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0}

—

SandpileConfig

Summary of methods.

• + — Addition of configurations.

• & — The stabilization of the sum.

• greater-equal — True if every component of self is at least that of other.

• greater — True if every component of self is at least that of other and the two configurations are not equal.

• ~ — The stabilized configuration.

• less-equal — True if every component of self is at most that of other.

• less — True if every component of self is at most that of other and the two configurations are not equal.

• * — The recurrent element equivalent to the sum.

• ^ — Exponentiation for the *-operator.

• - — The additive inverse of the configuration.

• - — Subtraction of configurations.

• add_random — Add one grain of sand to a random vertex.

• burst_size — The burst size of the configuration with respect to the given vertex.

• deg — The degree of the configuration.

• dualize — The difference with the maximal stable configuration.

• equivalent_recurrent — The recurrent configuration equivalent to the given configuration.

• equivalent_superstable — The equivalent superstable configuration.

• fire_script — Fire the given script.

• fire_unstable — Fire all unstable vertices.

• fire_vertex — Fire the given vertex.

• help — List of SandpileConfig methods.

78 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

• is_recurrent — Is the configuration recurrent?

• is_stable — Is the configuration stable?

• is_superstable — Is the configuration superstable?

• is_symmetric — Is the configuration symmetric?

• order — The order of the equivalent recurrent element.

• sandpile — The configuration’s underlying sandpile.

• show — Show the configuration.

• stabilize — The stabilized configuration.

• support — The vertices containing sand.

• unstable — The unstable vertices.

• values — The values of the configuration as a list.

Complete descriptions of SandpileConfig methods.

— +

Addition of configurations.

INPUT:

other – SandpileConfig

OUTPUT:

sum of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: d = SandpileConfig(S, [3,2])
sage: c + d
{1: 4, 2: 4}

— &

The stabilization of the sum.

INPUT:

other – SandpileConfig

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,0,0])
sage: c + c # ordinary addition
{1: 2, 2: 0, 3: 0}
sage: c & c # add and stabilize
{1: 0, 2: 1, 3: 0}
sage: c*c # add and find equivalent recurrent

12.1. Thematic tutorial document tree 79

Thematic Tutorials, Release 8.0

{1: 1, 2: 1, 3: 1}
sage: ~(c + c) == c & c
True

— >=

True if every component of self is at least that of other.

INPUT:

other – SandpileConfig

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: d = SandpileConfig(S, [2,3])
sage: e = SandpileConfig(S, [2,0])
sage: c >= c
True
sage: d >= c
True
sage: c >= d
False
sage: e >= c
False
sage: c >= e
False

— >

True if every component of self is at least that of other and the two configurations are not equal.

INPUT:

other – SandpileConfig

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: d = SandpileConfig(S, [1,3])
sage: c > c
False
sage: d > c
True
sage: c > d
False

— ~

The stabilized configuration.

OUTPUT:

80 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

SandpileConfig

EXAMPLES:

sage: S = sandpiles.House()
sage: c = S.max_stable() + S.identity()
sage: ~c == c.stabilize()
True

— <=

True if every component of self is at most that of other.

INPUT:

other – SandpileConfig

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: d = SandpileConfig(S, [2,3])
sage: e = SandpileConfig(S, [2,0])
sage: c <= c
True
sage: c <= d
True
sage: d <= c
False
sage: c <= e
False
sage: e <= c
False

— <

True if every component of self is at most that of other and the two configurations are not equal.

INPUT:

other – SandpileConfig

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: d = SandpileConfig(S, [2,3])
sage: c < c
False
sage: c < d
True
sage: d < c
False
sage: S = Sandpile(graphs.CycleGraph(3), 0)
sage: c = SandpileConfig(S, [1,2])

12.1. Thematic tutorial document tree 81

Thematic Tutorials, Release 8.0

sage: d = SandpileConfig(S, [2,3])
sage: c < c
False
sage: c < d
True
sage: d < c
False

— *

If other is an configuration, the recurrent element equivalent to the sum. If other is an integer, the
sum of configuration with itself other times.

INPUT:

other – SandpileConfig or Integer

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,0,0])
sage: c + c # ordinary addition
{1: 2, 2: 0, 3: 0}
sage: c & c # add and stabilize
{1: 0, 2: 1, 3: 0}
sage: c*c # add and find equivalent recurrent
{1: 1, 2: 1, 3: 1}
sage: (c*c).is_recurrent()
True
sage: c*(-c) == S.identity()
True
sage: c
{1: 1, 2: 0, 3: 0}
sage: c*3
{1: 3, 2: 0, 3: 0}

— ^

The recurrent element equivalent to the sum of the configuration with itself 𝑘 times. If 𝑘 is negative, do
the same for the negation of the configuration. If 𝑘 is zero, return the identity of the sandpile group.

INPUT:

k – SandpileConfig

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,0,0])
sage: c^3
{1: 1, 2: 1, 3: 0}
sage: (c + c + c) == c^3
False
sage: (c + c + c).equivalent_recurrent() == c^3

82 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

True
sage: c^(-1)
{1: 1, 2: 1, 3: 0}
sage: c^0 == S.identity()
True

— _

The additive inverse of the configuration.

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: -c
{1: -1, 2: -2}

— -

Subtraction of configurations.

INPUT:

other – SandpileConfig

OUTPUT:

sum of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: d = SandpileConfig(S, [3,2])
sage: c - d
{1: -2, 2: 0}

— add_random(distrib=None)

Add one grain of sand to a random vertex. Optionally, a probability distribution, distrib, may be placed on the
vertices or the nonsink vertices. See NOTE for details.

INPUT:

distrib – (optional) list of nonnegative numbers summing to 1 (representing a prob. dist.)

OUTPUT:

SandpileConfig

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: c = s.zero_config()
sage: c.add_random() # random
{1: 0, 2: 1, 3: 0}
sage: c
{1: 0, 2: 0, 3: 0}
sage: c.add_random([0.1,0.1,0.8]) # random
{1: 0, 2: 0, 3: 1}

12.1. Thematic tutorial document tree 83

Thematic Tutorials, Release 8.0

sage: c.add_random([0.7,0.1,0.1,0.1]) # random
{1: 0, 2: 0, 3: 0}

We compute the “sizes” of the avalanches caused by adding random grains of sand to the maximal stable configuration
on a grid graph. The function stabilize() returns the firing vector of the stabilization, a dictionary whose values
say how many times each vertex fires in the stabilization.:

sage: S = sandpiles.Grid(10,10)
sage: m = S.max_stable()
sage: a = []
sage: for i in range(1000):
... m = m.add_random()
... m, f = m.stabilize(True)
... a.append(sum(f.values()))
...
sage: p = list_plot([[log(i+1),log(a.count(i))] for i in [0..max(a)] if a.count(i)])
sage: p.axes_labels(['log(N)','log(D(N))'])
sage: t = text("Distribution of avalanche sizes", (2,2), rgbcolor=(1,0,0))
sage: show(p+t,axes_labels=['log(N)','log(D(N))'])

Note: If distrib is None, then the probability is the uniform probability on the nonsink vertices. Otherwise, there
are two possibilities:

(i) the length of distrib is equal to the number of vertices, and distrib represents a probability distribution on
all of the vertices. In that case, the sink may be chosen at random, in which case, the configuration is unchanged.

(ii) Otherwise, the length of distrib must be equal to the number of nonsink vertices, and distrib represents a
probability distribution on the nonsink vertices.

Warning: If distrib != None, the user is responsible for assuring the sum of its entries is 1 and that its
length is equal to the number of sink vertices or the number of nonsink vertices.

— burst_size(v)

The burst size of the configuration with respect to the given vertex.

INPUT:

v – vertex

OUTPUT:

integer

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: [i.burst_size(0) for i in s.recurrents()]
[1, 1, 1, 1, 1, 1, 1, 1]
sage: [i.burst_size(1) for i in s.recurrents()]
[0, 0, 1, 2, 1, 2, 0, 2]

Note: To define c.burst(v), if 𝑣 is not the sink, let 𝑐′ be the unique recurrent for which the stabilization of 𝑐′ + 𝑣
is 𝑐. The burst size is then the amount of sand that goes into the sink during this stabilization. If 𝑣 is the sink, the burst

84 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

size is defined to be 1.

REFERENCES:

— deg()

The degree of the configuration.

OUTPUT:

integer

EXAMPLES:

sage: S = sandpiles.Complete(3)
sage: c = SandpileConfig(S, [1,2])
sage: c.deg()
3

— dualize()

The difference with the maximal stable configuration.

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: S.max_stable()
{1: 1, 2: 1}
sage: c.dualize()
{1: 0, 2: -1}
sage: S.max_stable() - c == c.dualize()
True

— equivalent_recurrent(with_firing_vector=False)

The recurrent configuration equivalent to the given configuration. Optionally, return the corresponding firing vector.

INPUT:

with_firing_vector – (default: False) boolean

OUTPUT:

SandpileConfig or [SandpileConfig, firing_vector]

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = SandpileConfig(S, [0,0,0])
sage: c.equivalent_recurrent() == S.identity()
True
sage: x = c.equivalent_recurrent(True)
sage: r = vector([x[0][v] for v in S.nonsink_vertices()])
sage: f = vector([x[1][v] for v in S.nonsink_vertices()])
sage: cv = vector(c.values())
sage: r == cv - f*S.reduced_laplacian()
True

12.1. Thematic tutorial document tree 85

Thematic Tutorials, Release 8.0

Note: Let 𝐿 be the reduced Laplacian, 𝑐 the initial configuration, 𝑟 the returned configuration, and 𝑓 the firing vector.
Then 𝑟 = 𝑐− 𝑓 · 𝐿.

— equivalent_superstable(with_firing_vector=False)

The equivalent superstable configuration. Optionally, return the corresponding firing vector.

INPUT:

with_firing_vector – (default: False) boolean

OUTPUT:

SandpileConfig or [SandpileConfig, firing_vector]

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: m = S.max_stable()
sage: m.equivalent_superstable().is_superstable()
True
sage: x = m.equivalent_superstable(True)
sage: s = vector(x[0].values())
sage: f = vector(x[1].values())
sage: mv = vector(m.values())
sage: s == mv - f*S.reduced_laplacian()
True

Note: Let 𝐿 be the reduced Laplacian, 𝑐 the initial configuration, 𝑠 the returned configuration, and 𝑓 the firing vector.
Then 𝑠 = 𝑐− 𝑓 · 𝐿.

— fire_script(sigma)

Fire the given script. In other words, fire each vertex the number of times indicated by sigma.

INPUT:

sigma – SandpileConfig or (list or dict representing a SandpileConfig)

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,2,3])
sage: c.unstable()
[2, 3]
sage: c.fire_script(SandpileConfig(S,[0,1,1]))
{1: 2, 2: 1, 3: 2}
sage: c.fire_script(SandpileConfig(S,[2,0,0])) == c.fire_vertex(1).fire_vertex(1)
True

— fire_unstable()

Fire all unstable vertices.

OUTPUT:

86 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,2,3])
sage: c.fire_unstable()
{1: 2, 2: 1, 3: 2}

— fire_vertex(v)

Fire the given vertex.

INPUT:

v – vertex

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: c.fire_vertex(2)
{1: 2, 2: 0}

— help(verbose=True)

List of SandpileConfig methods. If verbose, include short descriptions.

INPUT:

verbose – (default: True) boolean

OUTPUT:

printed string

EXAMPLES:

sage: SandpileConfig.help()
Shortcuts for SandpileConfig operations:
~c -- stabilize
c & d -- add and stabilize
c * c -- add and find equivalent recurrent
c^k -- add k times and find equivalent recurrent

(taking inverse if k is negative)

For detailed help with any method FOO listed below,
enter "SandpileConfig.FOO?" or enter "c.FOO?" for any SandpileConfig c.

add_random -- Add one grain of sand to a random vertex.
burst_size -- The burst size of the configuration with respect to the
→˓given vertex.
deg -- The degree of the configuration.
dualize -- The difference with the maximal stable configuration.
equivalent_recurrent -- The recurrent configuration equivalent to the given
→˓configuration.
equivalent_superstable -- The equivalent superstable configuration.
fire_script -- Fire the given script.
fire_unstable -- Fire all unstable vertices.

12.1. Thematic tutorial document tree 87

Thematic Tutorials, Release 8.0

fire_vertex -- Fire the given vertex.
help -- List of SandpileConfig methods.
is_recurrent -- Is the configuration recurrent?
is_stable -- Is the configuration stable?
is_superstable -- Is the configuration superstable?
is_symmetric -- Is the configuration symmetric?
order -- The order of the equivalent recurrent element.
sandpile -- The configuration's underlying sandpile.
show -- Show the configuration.
stabilize -- The stabilized configuration.
support -- The vertices containing sand.
unstable -- The unstable vertices.
values -- The values of the configuration as a list.

— is_recurrent()

Is the configuration recurrent?

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.identity().is_recurrent()
True
sage: S.zero_config().is_recurrent()
False

— is_stable()

Is the configuration stable?

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.max_stable().is_stable()
True
sage: (2*S.max_stable()).is_stable()
False
sage: (S.max_stable() & S.max_stable()).is_stable()
True

— is_superstable()

Is the configuration superstable?

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.zero_config().is_superstable()
True

88 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

— is_symmetric(orbits)

Is the configuration symmetric? Return True if the values of the configuration are constant over the vertices in each
sublist of orbits.

INPUT:

orbits – list of lists of vertices

OUTPUT:

boolean

EXAMPLES:

sage: S = Sandpile({0: {},
....: 1: {0: 1, 2: 1, 3: 1},
....: 2: {1: 1, 3: 1, 4: 1},
....: 3: {1: 1, 2: 1, 4: 1},
....: 4: {2: 1, 3: 1}})
sage: c = SandpileConfig(S, [1, 2, 2, 3])
sage: c.is_symmetric([[2,3]])
True

— order()

The order of the equivalent recurrent element.

OUTPUT:

integer

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = SandpileConfig(S,[2,0,1])
sage: c.order()
4
sage: ~(c + c + c + c) == S.identity()
True
sage: c = SandpileConfig(S,[1,1,0])
sage: c.order()
1
sage: c.is_recurrent()
False
sage: c.equivalent_recurrent() == S.identity()
True

— sandpile()

The configuration’s underlying sandpile.

OUTPUT:

Sandpile

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = S.identity()
sage: c.sandpile()
Diamond sandpile graph: 4 vertices, sink = 0
sage: c.sandpile() == S
True

12.1. Thematic tutorial document tree 89

Thematic Tutorials, Release 8.0

— show(sink=True, colors=True, heights=False, directed=None, **kwds)

Show the configuration.

INPUT:

• sink – (default: True) whether to show the sink

• colors – (default: True) whether to color-code the amount of sand on each vertex

• heights – (default: False) whether to label each vertex with the amount of sand

• directed – (optional) whether to draw directed edges

• kwds – (optional) arguments passed to the show method for Graph

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = S.identity()
sage: c.show()
sage: c.show(directed=False)
sage: c.show(sink=False,colors=False,heights=True)

— stabilize(with_firing_vector=False)

The stabilized configuration. Optionally returns the corresponding firing vector.

INPUT:

with_firing_vector – (default: False) boolean

OUTPUT:

SandpileConfig or [SandpileConfig, firing_vector]

EXAMPLES:

sage: S = sandpiles.House()
sage: c = 2*S.max_stable()
sage: c._set_stabilize()
sage: '_stabilize' in c.__dict__
True
sage: S = sandpiles.House()
sage: c = S.max_stable() + S.identity()
sage: c.stabilize(True)
[{1: 1, 2: 2, 3: 2, 4: 1}, {1: 2, 2: 2, 3: 3, 4: 3}]
sage: S.max_stable() & S.identity() == c.stabilize()
True
sage: ~c == c.stabilize()
True

— support()

The vertices containing sand.

OUTPUT:

list - support of the configuration

EXAMPLES:

90 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: S = sandpiles.Diamond()
sage: c = S.identity()
sage: c
{1: 2, 2: 2, 3: 0}
sage: c.support()
[1, 2]

— unstable()

The unstable vertices.

OUTPUT:

list of vertices

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,2,3])
sage: c.unstable()
[2, 3]

— values()

The values of the configuration as a list. The list is sorted in the order of the vertices.

OUTPUT:

list of integers

boolean

EXAMPLES:

sage: S = Sandpile({'a':[1,'b'], 'b':[1,'a'], 1:['a']},'a')
sage: c = SandpileConfig(S, {'b':1, 1:2})
sage: c
{1: 2, 'b': 1}
sage: c.values()
[2, 1]
sage: S.nonsink_vertices()
[1, 'b']

—

SandpileDivisor

Summary of methods.

• + — Addition of divisors.

• greater-equal — True if every component of self is at least that of other.

• greater — True if every component of self is at least that of other and the two divisors are not equal.

• less-equal — True if every component of self is at most that of other.

• less — True if every component of self is at most that of other and the two divisors are not equal.

• - — The additive inverse of the divisor.

• - — Subtraction of divisors.

12.1. Thematic tutorial document tree 91

Thematic Tutorials, Release 8.0

• Dcomplex — The support-complex.

• add_random — Add one grain of sand to a random vertex.

• betti — The Betti numbers for the support-complex.

• deg — The degree of the divisor.

• dualize — The difference with the maximal stable divisor.

• effective_div — All linearly equivalent effective divisors.

• fire_script — Fire the given script.

• fire_unstable — Fire all unstable vertices.

• fire_vertex — Fire the given vertex.

• help — List of SandpileDivisor methods.

• is_alive — Is the divisor stabilizable?

• is_linearly_equivalent — Is the given divisor linearly equivalent?

• is_q_reduced — Is the divisor q-reduced?

• is_symmetric — Is the divisor symmetric?

• is_weierstrass_pt — Is the given vertex a Weierstrass point?

• polytope — The polytope determinining the complete linear system.

• polytope_integer_pts — The integer points inside divisor’s polytope.

• q_reduced — The linearly equivalent q-reduced divisor.

• rank — The rank of the divisor.

• sandpile — The divisor’s underlying sandpile.

• show — Show the divisor.

• simulate_threshold — The first unstabilizable divisor in the closed Markov chain.

• stabilize — The stabilization of the divisor.

• support — List of vertices at which the divisor is nonzero.

• unstable — The unstable vertices.

• values — The values of the divisor as a list.

• weierstrass_div — The Weierstrass divisor.

• weierstrass_gap_seq — The Weierstrass gap sequence at the given vertex.

• weierstrass_pts — The Weierstrass points (vertices).

• weierstrass_rank_seq — The Weierstrass rank sequence at the given vertex.

Complete descriptions of SandpileDivisor methods.

— +

Addition of divisors.

INPUT:

other – SandpileDivisor

92 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

OUTPUT:

sum of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: E = SandpileDivisor(S, [3,2,1])
sage: D + E
{0: 4, 1: 4, 2: 4}

— >=

True if every component of self is at least that of other.

INPUT:

other – SandpileDivisor

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: E = SandpileDivisor(S, [2,3,4])
sage: F = SandpileDivisor(S, [2,0,4])
sage: D >= D
True
sage: E >= D
True
sage: D >= E
False
sage: F >= D
False
sage: D >= F
False

— >

True if every component of self is at least that of other and the two divisors are not equal.

INPUT:

other – SandpileDivisor

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: E = SandpileDivisor(S, [1,3,4])
sage: D > D
False
sage: E > D
True
sage: D > E
False

12.1. Thematic tutorial document tree 93

Thematic Tutorials, Release 8.0

— <=

True if every component of self is at most that of other.

INPUT:

other – SandpileDivisor

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: E = SandpileDivisor(S, [2,3,4])
sage: F = SandpileDivisor(S, [2,0,4])
sage: D <= D
True
sage: D <= E
True
sage: E <= D
False
sage: D <= F
False
sage: F <= D
False

— <

True if every component of self is at most that of other and the two divisors are not equal.

INPUT:

other – SandpileDivisor

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: E = SandpileDivisor(S, [2,3,4])
sage: D < D
False
sage: D < E
True
sage: E < D
False

— -

The additive inverse of the divisor.

OUTPUT:

SandpileDivisor

EXAMPLES:

94 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: -D
{0: -1, 1: -2, 2: -3}

— -

Subtraction of divisors.

INPUT:

other – SandpileDivisor

OUTPUT:

Difference of self and other

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: E = SandpileDivisor(S, [3,2,1])
sage: D - E
{0: -2, 1: 0, 2: 2}

— Dcomplex()

The support-complex. (See NOTE.)

OUTPUT:

simplicial complex

EXAMPLES:

sage: S = sandpiles.House()
sage: p = SandpileDivisor(S, [1,2,1,0,0]).Dcomplex()
sage: p.homology()
{0: 0, 1: Z x Z, 2: 0}
sage: p.f_vector()
[1, 5, 10, 4]
sage: p.betti()
{0: 1, 1: 2, 2: 0}

Note: The “support-complex” is the simplicial complex determined by the supports of the linearly equivalent effective
divisors.

— add_random(distrib=None)

Add one grain of sand to a random vertex.

INPUT:

distrib – (optional) list of nonnegative numbers representing a probability distribution on the vertices

OUTPUT:

SandpileDivisor

EXAMPLES:

12.1. Thematic tutorial document tree 95

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Complete(4)
sage: D = s.zero_div()
sage: D.add_random() # random
{0: 0, 1: 0, 2: 1, 3: 0}
sage: D.add_random([0.1,0.1,0.1,0.7]) # random
{0: 0, 1: 0, 2: 0, 3: 1}

Warning: If distrib is not None, the user is responsible for assuring the sum of its entries is 1.

— betti()

The Betti numbers for the support-complex. (See NOTE.)

OUTPUT:

dictionary of integers

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [2,0,1])
sage: D.betti()
{0: 1, 1: 1}

Note: The “support-complex” is the simplicial complex determined by the supports of the linearly equivalent effective
divisors.

— deg()

The degree of the divisor.

OUTPUT:

integer

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.deg()
6

— dualize()

The difference with the maximal stable divisor.

OUTPUT:

SandpileDivisor

EXAMPLES:: sage: S = sandpiles.Cycle(3) sage: D = SandpileDivisor(S, [1,2,3]) sage: D.dualize() {0: 0, 1: -1, 2:
-2} sage: S.max_stable_div() - D == D.dualize() True

— effective_div(verbose=True, with_firing_vectors=False)

All linearly equivalent effective divisors. If verbose is False, the divisors are converted to lists of integers. If
with_firing_vectors is True then a list of firing vectors is also given, each of which prescribes the vertices to
be fired in order to obtain an effective divisor.

96 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

INPUT:

• verbose – (default: True) boolean

• with_firing_vectors – (default: False) boolean

OUTPUT:

list (of divisors)

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[4,2,0,0])
sage: sorted(D.effective_div(), key=str)
[{0: 0, 1: 2, 2: 0, 3: 4},
{0: 0, 1: 2, 2: 4, 3: 0},
{0: 0, 1: 6, 2: 0, 3: 0},
{0: 1, 1: 3, 2: 1, 3: 1},
{0: 2, 1: 0, 2: 2, 3: 2},
{0: 4, 1: 2, 2: 0, 3: 0}]

sage: sorted(D.effective_div(False))
[[0, 2, 0, 4],
[0, 2, 4, 0],
[0, 6, 0, 0],
[1, 3, 1, 1],
[2, 0, 2, 2],
[4, 2, 0, 0]]

sage: sorted(D.effective_div(with_firing_vectors=True), key=str)
[({0: 0, 1: 2, 2: 0, 3: 4}, (0, -1, -1, -2)),
({0: 0, 1: 2, 2: 4, 3: 0}, (0, -1, -2, -1)),
({0: 0, 1: 6, 2: 0, 3: 0}, (0, -2, -1, -1)),
({0: 1, 1: 3, 2: 1, 3: 1}, (0, -1, -1, -1)),
({0: 2, 1: 0, 2: 2, 3: 2}, (0, 0, -1, -1)),
({0: 4, 1: 2, 2: 0, 3: 0}, (0, 0, 0, 0))]

sage: a = _[2]
sage: a[0].values()
[0, 6, 0, 0]
sage: vector(D.values()) - s.laplacian()*a[1]
(0, 6, 0, 0)
sage: sorted(D.effective_div(False, True))
[([0, 2, 0, 4], (0, -1, -1, -2)),
([0, 2, 4, 0], (0, -1, -2, -1)),
([0, 6, 0, 0], (0, -2, -1, -1)),
([1, 3, 1, 1], (0, -1, -1, -1)),
([2, 0, 2, 2], (0, 0, -1, -1)),
([4, 2, 0, 0], (0, 0, 0, 0))]

sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.effective_div(False,True)
[]

— fire_script(sigma)

Fire the given script. In other words, fire each vertex the number of times indicated by sigma.

INPUT:

sigma – SandpileDivisor or (list or dict representing a SandpileDivisor)

OUTPUT:

SandpileDivisor

12.1. Thematic tutorial document tree 97

Thematic Tutorials, Release 8.0

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.unstable()
[1, 2]
sage: D.fire_script([0,1,1])
{0: 3, 1: 1, 2: 2}
sage: D.fire_script(SandpileDivisor(S,[2,0,0])) == D.fire_vertex(0).fire_vertex(0)
True

— fire_unstable()

Fire all unstable vertices.

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.fire_unstable()
{0: 3, 1: 1, 2: 2}

— fire_vertex(v)

Fire the given vertex.

INPUT:

v – vertex

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.fire_vertex(1)
{0: 2, 1: 0, 2: 4}

— help(verbose=True)

List of SandpileDivisor methods. If verbose, include short descriptions.

INPUT:

verbose – (default: True) boolean

OUTPUT:

printed string

EXAMPLES:

sage: SandpileDivisor.help()
For detailed help with any method FOO listed below,
enter "SandpileDivisor.FOO?" or enter "D.FOO?" for any SandpileDivisor D.

Dcomplex -- The support-complex.

98 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

add_random -- Add one grain of sand to a random vertex.
betti -- The Betti numbers for the support-complex.
deg -- The degree of the divisor.
dualize -- The difference with the maximal stable divisor.
effective_div -- All linearly equivalent effective divisors.
fire_script -- Fire the given script.
fire_unstable -- Fire all unstable vertices.
fire_vertex -- Fire the given vertex.
help -- List of SandpileDivisor methods.
is_alive -- Is the divisor stabilizable?
is_linearly_equivalent -- Is the given divisor linearly equivalent?
is_q_reduced -- Is the divisor q-reduced?
is_symmetric -- Is the divisor symmetric?
is_weierstrass_pt -- Is the given vertex a Weierstrass point?
linear_system -- The complete linear system (deprecated: use "polytope_
→˓integer_pts").
polytope -- The polytope determinining the complete linear system.
polytope_integer_pts -- The integer points inside divisor's polytope.
q_reduced -- The linearly equivalent q-reduced divisor.
r_of_D -- The rank of the divisor (deprecated: use "rank", instead).
rank -- The rank of the divisor.
sandpile -- The divisor's underlying sandpile.
show -- Show the divisor.
simulate_threshold -- The first unstabilizable divisor in the closed Markov chain.
stabilize -- The stabilization of the divisor.
support -- List of vertices at which the divisor is nonzero.
unstable -- The unstable vertices.
values -- The values of the divisor as a list.
weierstrass_div -- The Weierstrass divisor.
weierstrass_gap_seq -- The Weierstrass gap sequence at the given vertex.
weierstrass_pts -- The Weierstrass points (vertices).
weierstrass_rank_seq -- The Weierstrass rank sequence at the given vertex.

— is_alive(cycle=False)

Is the divisor stabilizable? In other words, will the divisor stabilize under repeated firings of all unstable vertices?
Optionally returns the resulting cycle.

INPUT:

cycle – (default: False) boolean

OUTPUT:

boolean or optionally, a list of SandpileDivisors

EXAMPLES:

sage: S = sandpiles.Complete(4)
sage: D = SandpileDivisor(S, {0: 4, 1: 3, 2: 3, 3: 2})
sage: D.is_alive()
True
sage: D.is_alive(True)
[{0: 4, 1: 3, 2: 3, 3: 2}, {0: 3, 1: 2, 2: 2, 3: 5}, {0: 1, 1: 4, 2: 4, 3: 3}]

— is_linearly_equivalent(D, with_firing_vector=False)

Is the given divisor linearly equivalent? Optionally, returns the firing vector. (See NOTE.)

INPUT:

12.1. Thematic tutorial document tree 99

Thematic Tutorials, Release 8.0

• D – SandpileDivisor or list, tuple, etc. representing a divisor

• with_firing_vector – (default: False) boolean

OUTPUT:

boolean or integer vector

EXAMPLES:

sage: s = sandpiles.Complete(3)
sage: D = SandpileDivisor(s,[2,0,0])
sage: D.is_linearly_equivalent([0,1,1])
True
sage: D.is_linearly_equivalent([0,1,1],True)
(1, 0, 0)
sage: v = vector(D.is_linearly_equivalent([0,1,1],True))
sage: vector(D.values()) - s.laplacian()*v
(0, 1, 1)
sage: D.is_linearly_equivalent([0,0,0])
False
sage: D.is_linearly_equivalent([0,0,0],True)
()

Note:

• If with_firing_vector is False, returns either True or False.

• If with_firing_vector is True then: (i) if self is linearly equivalent to 𝐷, returns a vector 𝑣 such that
self - v*self.laplacian().transpose() = D. Otherwise, (ii) if self is not linearly equivalent
to 𝐷, the output is the empty vector, ().

— is_q_reduced()

Is the divisor 𝑞-reduced? This would mean that 𝑠𝑒𝑙𝑓 = 𝑐+ 𝑘𝑞 where 𝑐 is superstable, 𝑘 is an integer, and 𝑞 is the sink
vertex.

OUTPUT:

boolean

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[2,-3,2,0])
sage: D.is_q_reduced()
False
sage: SandpileDivisor(s,[10,0,1,2]).is_q_reduced()
True

For undirected or, more generally, Eulerian graphs, 𝑞-reduced divisors are linearly equivalent if and only if they are
equal. The same does not hold for general directed graphs:

sage: s = Sandpile({0:[1],1:[1,1]})
sage: D = SandpileDivisor(s,[-1,1])
sage: Z = s.zero_div()
sage: D.is_q_reduced()
True
sage: Z.is_q_reduced()
True

100 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: D == Z
False
sage: D.is_linearly_equivalent(Z)
True

— is_symmetric(orbits)

Is the divisor symmetric? Return True if the values of the configuration are constant over the vertices in each sublist
of orbits.

INPUT:

orbits – list of lists of vertices

OUTPUT:

boolean

EXAMPLES:

sage: S = sandpiles.House()
sage: S.dict()
{0: {1: 1, 2: 1},
1: {0: 1, 3: 1},
2: {0: 1, 3: 1, 4: 1},
3: {1: 1, 2: 1, 4: 1},
4: {2: 1, 3: 1}}

sage: D = SandpileDivisor(S, [0,0,1,1,3])
sage: D.is_symmetric([[2,3], [4]])
True

— is_weierstrass_pt(v=’sink’)

Is the given vertex a Weierstrass point?

INPUT:

v – (default: sink) vertex

OUTPUT:

boolean

EXAMPLES:

sage: s = sandpiles.House()
sage: K = s.canonical_divisor()
sage: K.weierstrass_rank_seq() # sequence at the sink vertex, 0
(1, 0, -1)
sage: K.is_weierstrass_pt()
False
sage: K.weierstrass_rank_seq(4)
(1, 0, 0, -1)
sage: K.is_weierstrass_pt(4)
True

Note: The vertex 𝑣 is a (generalized) Weierstrass point for divisor 𝐷 if the sequence of ranks 𝑟(𝐷 − 𝑛𝑣) for
𝑛 = 0, 1, 2, . . . is not 𝑟(𝐷), 𝑟(𝐷)− 1, . . . , 0,−1,−1, . . .

— polytope()

12.1. Thematic tutorial document tree 101

Thematic Tutorials, Release 8.0

The polytope determinining the complete linear system.

OUTPUT:

polytope

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[4,2,0,0])
sage: p = D.polytope()
sage: p.inequalities()
(An inequality (-3, 1, 1) x + 2 >= 0,
An inequality (1, 1, 1) x + 4 >= 0,
An inequality (1, -3, 1) x + 0 >= 0,
An inequality (1, 1, -3) x + 0 >= 0)

sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.polytope()
The empty polyhedron in QQ^3

Note: For a divisor 𝐷, this is the intersection of (i) the polyhedron determined by the system of inequalities 𝐿𝑡𝑥 ≤ 𝐷
where 𝐿𝑡 is the transpose of the Laplacian with (ii) the hyperplane 𝑥sink_vertex = 0. The polytope is thought of as
sitting in (𝑛− 1)-dimensional Euclidean space where 𝑛 is the number of vertices.

— polytope_integer_pts()

The integer points inside divisor’s polytope. The polytope referred to here is the one determining the divisor’s complete
linear system (see the documentation for polytope).

OUTPUT:

tuple of integer vectors

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[4,2,0,0])
sage: sorted(D.polytope_integer_pts())
[(-2, -1, -1),
(-1, -2, -1),
(-1, -1, -2),
(-1, -1, -1),
(0, -1, -1),
(0, 0, 0)]

sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.polytope_integer_pts()
()

— q_reduced(verbose=True)

The linearly equivalent 𝑞-reduced divisor.

INPUT:

verbose – (default: True) boolean

OUTPUT:

SandpileDivisor or list representing SandpileDivisor

EXAMPLES:

102 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[2,-3,2,0])
sage: D.q_reduced()
{0: -2, 1: 1, 2: 2, 3: 0}
sage: D.q_reduced(False)
[-2, 1, 2, 0]

Note: The divisor 𝐷 is 𝑞𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑖𝑓 ‘𝐷 = 𝑐+ 𝑘𝑞 where 𝑐 is superstable, 𝑘 is an integer, and 𝑞 is the sink.

— rank(with_witness=False)

The rank of the divisor. Optionally returns an effective divisor 𝐸 such that 𝐷 − 𝐸 is not winnable (has an empty
complete linear system).

INPUT:

with_witness – (default: False) boolean

OUTPUT:

integer or (integer, SandpileDivisor)

EXAMPLES:

sage: S = sandpiles.Complete(4)
sage: D = SandpileDivisor(S,[4,2,0,0])
sage: D.rank()
3
sage: D.rank(True)
(3, {0: 3, 1: 0, 2: 1, 3: 0})
sage: E = _[1]
sage: (D - E).rank()
-1

Riemann-Roch theorem::

sage: D.rank() - (S.canonical_divisor()-D).rank() == D.deg() + 1 - S.genus()
True

Riemann-Roch theorem::

sage: D.rank() - (S.canonical_divisor()-D).rank() == D.deg() + 1 - S.genus()
True
sage: S = Sandpile({0:[1,1,1,2],1:[0,0,0,1,1,1,2,2],2:[2,2,1,1,0]},0) # multigraph

→˓with loops
sage: D = SandpileDivisor(S,[4,2,0])
sage: D.rank(True)
(2, {0: 1, 1: 1, 2: 1})
sage: S = Sandpile({0:[1,2], 1:[0,2,2], 2: [0,1]},0) # directed graph
sage: S.is_undirected()
False
sage: D = SandpileDivisor(S,[0,2,0])
sage: D.effective_div()
[{0: 0, 1: 2, 2: 0}, {0: 2, 1: 0, 2: 0}]
sage: D.rank(True)
(0, {0: 0, 1: 0, 2: 1})
sage: E = D.rank(True)[1]

12.1. Thematic tutorial document tree 103

Thematic Tutorials, Release 8.0

sage: (D - E).effective_div()
[]

Note: The rank of a divisor 𝐷 is -1 if 𝐷 is not linearly equivalent to an effective divisor (i.e., the dollar game
represented by 𝐷 is unwinnable). Otherwise, the rank of 𝐷 is the largest integer 𝑟 such that 𝐷 − 𝐸 is linearly
equivalent to an effective divisor for all effective divisors 𝐸 with deg(𝐸) = 𝑟.

— sandpile()

The divisor’s underlying sandpile.

OUTPUT:

Sandpile

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: D = SandpileDivisor(S,[1,-2,0,3])
sage: D.sandpile()
Diamond sandpile graph: 4 vertices, sink = 0
sage: D.sandpile() == S
True

— show(heights=True, directed=None, **kwds)

Show the divisor.

INPUT:

• heights – (default: True) whether to label each vertex with the amount of sand

• directed – (optional) whether to draw directed edges

• kwds – (optional) arguments passed to the show method for Graph

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: D = SandpileDivisor(S,[1,-2,0,2])
sage: D.show(graph_border=True,vertex_size=700,directed=False)

— simulate_threshold(distrib=None)

The first unstabilizable divisor in the closed Markov chain. (See NOTE.)

INPUT:

distrib – (optional) list of nonnegative numbers representing a probability distribution on the vertices

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D = s.zero_div()
sage: D.simulate_threshold() # random
{0: 2, 1: 3, 2: 1, 3: 2}
sage: n(mean([D.simulate_threshold().deg() for _ in range(10)])) # random
7.10000000000000

104 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: n(s.stationary_density()*s.num_verts())
6.93750000000000

Note: Starting at self, repeatedly choose a vertex and add a grain of sand to it. Return the first unstabilizable divisor
that is reached. Also see the markov_chain method for the underlying sandpile.

— stabilize(with_firing_vector=False)

The stabilization of the divisor. If not stabilizable, return an error.

INPUT:

with_firing_vector – (default: False) boolean

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[0,3,0,0])
sage: D.stabilize()
{0: 1, 1: 0, 2: 1, 3: 1}
sage: D.stabilize(with_firing_vector=True)
[{0: 1, 1: 0, 2: 1, 3: 1}, {0: 0, 1: 1, 2: 0, 3: 0}]

— support()

List of vertices at which the divisor is nonzero.

OUTPUT:

list representing the support of the divisor

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: D = SandpileDivisor(S, [0,0,1,1])
sage: D.support()
[2, 3]
sage: S.vertices()
[0, 1, 2, 3]

— unstable()

The unstable vertices.

OUTPUT:

list of vertices

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.unstable()
[1, 2]

— values()

The values of the divisor as a list. The list is sorted in the order of the vertices.

OUTPUT:

12.1. Thematic tutorial document tree 105

Thematic Tutorials, Release 8.0

list of integers

boolean

EXAMPLES:

sage: S = Sandpile({'a':[1,'b'], 'b':[1,'a'], 1:['a']},'a')
sage: D = SandpileDivisor(S, {'a':0, 'b':1, 1:2})
sage: D
{'a': 0, 1: 2, 'b': 1}
sage: D.values()
[2, 0, 1]
sage: S.vertices()
[1, 'a', 'b']

— weierstrass_div(verbose=True)

The Weierstrass divisor. Its value at a vertex is the weight of that vertex as a Weierstrass point. (See
SandpileDivisor.weierstrass_gap_seq.)

INPUT:

verbose – (default: True) boolean

OUTPUT:

SandpileDivisor

EXAMPLES:

sage: s = sandpiles.Diamond()
sage: D = SandpileDivisor(s,[4,2,1,0])
sage: [D.weierstrass_rank_seq(v) for v in s]
[(5, 4, 3, 2, 1, 0, 0, -1),
(5, 4, 3, 2, 1, 0, -1),
(5, 4, 3, 2, 1, 0, 0, 0, -1),
(5, 4, 3, 2, 1, 0, 0, -1)]

sage: D.weierstrass_div()
{0: 1, 1: 0, 2: 2, 3: 1}
sage: k5 = sandpiles.Complete(5)
sage: K = k5.canonical_divisor()
sage: K.weierstrass_div()
{0: 9, 1: 9, 2: 9, 3: 9, 4: 9}

— weierstrass_gap_seq(v=’sink’, weight=True)

The Weierstrass gap sequence at the given vertex. If weight is True, then also compute the weight of each gap
value.

INPUT:

• v – (default: sink) vertex

• weight – (default: True) boolean

OUTPUT:

list or (list of list) of integers

EXAMPLES:

sage: s = sandpiles.Cycle(4)
sage: D = SandpileDivisor(s,[2,0,0,0])
sage: [D.weierstrass_gap_seq(v,False) for v in s.vertices()]

106 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

[(1, 3), (1, 2), (1, 3), (1, 2)]
sage: [D.weierstrass_gap_seq(v) for v in s.vertices()]
[((1, 3), 1), ((1, 2), 0), ((1, 3), 1), ((1, 2), 0)]
sage: D.weierstrass_gap_seq() # gap sequence at sink vertex, 0
((1, 3), 1)
sage: D.weierstrass_rank_seq() # rank sequence at the sink vertex
(1, 0, 0, -1)

Note: The integer 𝑘 is a Weierstrass gap for the divisor 𝐷 at vertex 𝑣 if the rank of 𝐷 − (𝑘 − 1)𝑣 does not equal the
rank of 𝐷− 𝑘𝑣. Let 𝑟 be the rank of 𝐷 and let 𝑘𝑖 be the 𝑖-th gap at 𝑣. The Weierstrass weight of 𝑣 for 𝐷 is the sum of
(𝑘𝑖 − 𝑖) as 𝑖 ranges from 1 to 𝑟 + 1. It measure the difference between the sequence 𝑟, 𝑟 − 1, ..., 0,−1,−1, ... and the
rank sequence rank(𝐷), rank(𝐷 − 𝑣), rank(𝐷 − 2𝑣), . . .

— weierstrass_pts(with_rank_seq=False)

The Weierstrass points (vertices). Optionally, return the corresponding rank sequences.

INPUT:

with_rank_seq – (default: False) boolean

OUTPUT:

tuple of vertices or list of (vertex, rank sequence)

EXAMPLES:

sage: s = sandpiles.House()
sage: K = s.canonical_divisor()
sage: K.weierstrass_pts()
(4,)
sage: K.weierstrass_pts(True)
[(4, (1, 0, 0, -1))]

Note: The vertex 𝑣 is a (generalized) Weierstrass point for divisor 𝐷 if the sequence of ranks 𝑟(𝐷 − 𝑛𝑣) for
𝑛 = 0, 1, 2, . . . ‘ is not 𝑟(𝐷), 𝑟(𝐷)− 1, . . . , 0,−1,−1, . . .

— weierstrass_rank_seq(v=’sink’)

The Weierstrass rank sequence at the given vertex. Computes the rank of the divisor 𝐷 − 𝑛𝑣 starting with 𝑛 = 0 and
ending when the rank is −1.

INPUT:

v – (default: sink) vertex

OUTPUT:

tuple of int

EXAMPLES:

sage: s = sandpiles.House()
sage: K = s.canonical_divisor()
sage: [K.weierstrass_rank_seq(v) for v in s.vertices()]
[(1, 0, -1), (1, 0, -1), (1, 0, -1), (1, 0, -1), (1, 0, 0, -1)]

—

12.1. Thematic tutorial document tree 107

Thematic Tutorials, Release 8.0

Other

• firing_graph — The firing graph.

• parallel_firing_graph — The parallel-firing graph.

• random_DAG — A random directed acyclic graph.

• sandpiles — Some examples of sandpiles.

• wilmes_algorithm — Find matrix with the same integer row span as M that is the reduced Laplacian of a digraph.

Complete descriptions of methods. firing_graph(S, eff)

Creates a digraph with divisors as vertices and edges between two divisors 𝐷 and 𝐸 if firing a single
vertex in 𝐷 gives 𝐸.

INPUT:

S – Sandpile eff – list of divisors

OUTPUT:

DiGraph

EXAMPLES:

sage: S = sandpiles.Cycle(6)
sage: D = SandpileDivisor(S, [1,1,1,1,2,0])
sage: eff = D.effective_div()
sage: firing_graph(S,eff).show3d(edge_size=.005,vertex_size=0.01)

— parallel_firing_graph(S,eff)

Creates a digraph with divisors as vertices and edges between two divisors D and E if firing all unstable
vertices in D gives E.

INPUT:

S - Sandpile eff - list of divisors

OUTPUT:

DiGraph

EXAMPLES:

sage: S = Sandpile(graphs.CycleGraph(6),0)
sage: D = SandpileDivisor(S, [1,1,1,1,2,0])
sage: eff = D.effective_div()
sage: parallel_firing_graph(S,eff).show3d(edge_size=.005,vertex_size=0.01)

— random_DAG(num_verts,p=1/2,weight_max=1)

Returns a random directed acyclic graph with num_verts vertices. The method starts with the sink
vertex and adds vertices one at a time. Each vertex is connected only to only previously defined vertices,
and the probability of each possible connection is given by the argument p. The weight of an edge is a
random integer between 1 and weight_max.

INPUT:

• num_verts - positive integer

• p - number between 0 and 1

108 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

• weight_max – integer greater than 0

OUTPUT:

directed acyclic graph with sink 0

EXAMPLES:

sage: S = random_DAG(5, 0.3)

— sandpiles

Some examples of sandpiles.

Here are the available examples; you can also type “sandpiles.” and hit tab to get a list:

• “Complete()”

• “Cycle()”

• “Diamond()”

• “Grid()”

• “House()”

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: s.invariant_factors()
[1, 4, 4]
sage: s.laplacian()
[3 -1 -1 -1]
[-1 3 -1 -1]
[-1 -1 3 -1]
[-1 -1 -1 3]

— wilmes_algorithm(M)

Computes an integer matrix L with the same integer row span as M and such that L is the reduced laplacian
of a directed multigraph.

INPUT:

M - square integer matrix of full rank

OUTPUT:

L - integer matrix

EXAMPLES:

sage: P = matrix([[2,3,-7,-3],[5,2,-5,5],[8,2,5,4],[-5,-9,6,6]])
sage: wilmes_algorithm(P)
[1642 -13 -1627 -1]
[-1 1980 -1582 -397]
[0 -1 1650 -1649]
[0 0 -1658 1658]

NOTES:

The algorithm is due to John Wilmes.

12.1. Thematic tutorial document tree 109

Thematic Tutorials, Release 8.0

Help

Documentation for each method is available through the Sage online help system:

sage: SandpileConfig.fire_vertex?
Base Class: <type 'instancemethod'>
String Form: <unbound method SandpileConfig.fire_vertex>
Namespace: Interactive
File: /usr/local/sage-4.7/local/lib/python2.6/site-packages/sage/sandpiles/
→˓sandpile.py
Definition: SandpileConfig.fire_vertex(self, v)
Docstring:

Fire the vertex ``v``.

INPUT:

``v`` - vertex

OUTPUT:

SandpileConfig

EXAMPLES:

sage: S = Sandpile(graphs.CycleGraph(3), 0)
sage: c = SandpileConfig(S, [1,2])
sage: c.fire_vertex(2)
{1: 2, 2: 0}

Note: An alternative to SandpileConfig.fire_vertex? in the preceding code example would be c.
fire_vertex?, if c is any SandpileConfig.

Enter Sandpile.help(), SandpileConfig.help(), and SandpileDivisor.help() for lists of avail-
able Sandpile-specific methods.

General Sage documentation can be found at http://doc.sagemath.org/html/en/.

Contact

Please contact davidp@reed.edu with questions, bug reports, and suggestions for additional features and other im-
provements.

12.1.4 Group Theory and Sage

Author: Robert A. Beezer, University of Puget Sound

This compilation collects Sage commands that are useful for a student in an introductory course on group theory. It
is not intended to teach Sage or to teach group theory. (There are many introductory texts on group theory and more
information on Sage can be found via www.sagemath.org) Rather, by presenting commands roughly in the order a
student would learn the corresponding mathematics they might be encouraged to experiment and learn more about
mathematics and learn more about Sage. Not coincidentally, when Sage was the acronym SAGE, the “E” in Sage
stood for “Experimentation.”

110 Chapter 12. Documentation

http://doc.sagemath.org/html/en/
mailto:davidp@reed.edu

Thematic Tutorials, Release 8.0

This guide is also distributed in PDF format and as a Sage worksheet. The worksheet version can be imported into
the Sage notebook environment running in a web browser, and then the displayed chunks of code may be executed by
Sage if one clicks on the small “evaluate” link below each cell, for a fully interactive experience. A PDF and Sage
worksheet versions of this tutorial are available at http://abstract.ups.edu/sage-aata.html.

Table of contents

• Group Theory and Sage

– Basic properties of the integers

– Permutation groups

– Group functions

– Subgroups

– Symmetry groups

– Normal subgroups

– Conjugacy

– Sylow subgroups

– Groups of small order as permutation groups

– Acknowledgements

Changelog:

• 2009/01/30 Version 1.0, first complete release

• 2009/03/03 Version 1.1, added cyclic group size interact

• 2010/03/10 Version 1.3, dropped US on license, some edits.

Basic properties of the integers

Integer division

The command a % b will return the remainder upon division of 𝑎 by 𝑏. In other words, the value is the unique integer
𝑟 such that:

1. 0 ≤ 𝑟 < 𝑏; and

2. 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞 (the quotient).

Then (𝑎− 𝑟)/𝑏 will equal 𝑞. For example:

sage: r = 14 % 3
sage: q = (14 - r) / 3
sage: r, q
(2, 4)

will return 2 for the value of r and 4 for the value of q. Note that the “/” is integer division, where any remainder is
cast away and the result is always an integer. So, for example, 14 / 3 will again equal 4, not 4.66666.

12.1. Thematic tutorial document tree 111

http://abstract.ups.edu/sage-aata.html

Thematic Tutorials, Release 8.0

Greatest common divisor

The greatest common divisor of 𝑎 and 𝑏 is obtained with the command gcd(a,b), where in our first uses, 𝑎 and 𝑏
are integers. Later, 𝑎 and 𝑏 can be other objects with a notion of divisibility and “greatness,” such as polynomials. For
example:

sage: gcd(2776, 2452)
4

Extended greatest common divisor

The command xgcd(a, b) (“eXtended GCD”) returns a triple where the first element is the greatest common
divisor of 𝑎 and 𝑏 (as with the gcd(a, b) command above), but the next two elements are the values of 𝑟 and 𝑠
such that 𝑟𝑎+ 𝑠𝑏 = gcd(𝑎, 𝑏). For example, xgcd(633, 331) returns (1, 194, -371). Portions of the triple
can be extracted using [] to access the entries of the triple, starting with the first as number 0. For example, the
following should return the result True (even if you change the values of a and b). Studying this block of code will
go a long way towards helping you get the most out of Sage’s output. (Note that “=” is how a value is assigned to a
variable, while as in the last line, “==” is how we determine equality of two items.)

sage: a = 633
sage: b = 331
sage: extended = xgcd(a, b)
sage: g = extended[0]
sage: r = extended[1]
sage: s = extended[2]
sage: g == r*a + s*b
True

Divisibility

A remainder of zero indicates divisibility. So (a % b) == 0 will return True if 𝑏 divides 𝑎, and will otherwise
return False. For example, (9 % 3) == 0 is True, but (9 % 4) == 0 is False. Try predicting the output
of the following before executing it in Sage.

sage: answer1 = ((20 % 5) == 0)
sage: answer2 = ((17 % 4) == 0)
sage: answer1, answer2
(True, False)

Factoring

As promised by the Fundamental Theorem of Arithmetic, factor(a) will return a unique expression for 𝑎 as a
product of powers of primes. It will print in a nicely-readable form, but can also be manipulated with Python as a list
of pairs (𝑝𝑖, 𝑒𝑖) containing primes as bases, and their associated exponents. For example:

sage: factor(2600)
2^3 * 5^2 * 13

If you just want the prime divisors of an integer, then use the prime_divisors(a) command, which will return a
list of all the prime divisors of 𝑎. For example:

112 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: prime_divisors(2600)
[2, 5, 13]

We can strip off other pieces of the prime decomposition using two levels of []. This is another good example to
study in order to learn about how to drill down into Python lists.

sage: n = 2600
sage: decomposition = factor(n)
sage: print("{} decomposes as {}".format(n, decomposition))
2600 decomposes as 2^3 * 5^2 * 13
sage: secondterm = decomposition[1]
sage: print("Base and exponent (pair) for second prime: "+str(secondterm))
Base and exponent (pair) for second prime: (5, 2)
sage: base = secondterm[0]
sage: exponent = secondterm[1]
sage: print("Base is "+str(base))
Base is 5
sage: print("Exponent is "+str(exponent))
Exponent is 2
sage: thirdbase = decomposition[2][0]
sage: thirdexponent = decomposition[2][1]
sage: print("Base of third term is {} with exponent {}".format(thirdbase,
→˓thirdexponent))
Base of third term is 13 with exponent 1

With a bit more work, the factor() command can be used to factor more complicated items, such as polynomials.

Multiplicative inverse, modular arithmetic

The command inverse_mod(a, n) yields the multiplicative inverse of 𝑎 mod 𝑛 (or an error if it doesn’t exist).
For example:

sage: inverse_mod(352, 917)
508

(As a check, find the integer 𝑚 such that 352*508 == m*917+1.) Then try

sage: inverse_mod(4, 24)
Traceback (most recent call last):
...
ZeroDivisionError: Inverse does not exist.

and explain the result.

Powers with modular arithmetic

The command power_mod(a, m, n) yields 𝑎𝑚 mod 𝑛. For example:

sage: power_mod(15, 831, 23)
10

If 𝑚 = −1, then this command will duplicate the function of inverse_mod().

12.1. Thematic tutorial document tree 113

Thematic Tutorials, Release 8.0

Euler 𝜑-function

The command euler_phi(n) will return the number of positive integers less than 𝑛 and relatively prime to 𝑛 (i.e.
having greatest common divisor with 𝑛 equal to 1). For example:

sage: euler_phi(345)
176

Experiment by running the following code several times:

sage: m = random_prime(10000)
sage: n = random_prime(10000)
sage: euler_phi(m*n) == euler_phi(m) * euler_phi(n)
True

Feel a conjecture coming on? Can you generalize this result?

Primes

The command is_prime(a) returns True or False depending on if 𝑎 is prime or not. For example,

sage: is_prime(117371)
True

while

sage: is_prime(14547073)
False

since 14547073 = 1597 * 9109 (as you could determine with the factor() command).

The command random_prime(a, True) will return a random prime between 2 and 𝑎. Experiment with:

sage: p = random_prime(10^21, True)
sage: is_prime(p)
True

(Replacing True by False will speed up the search, but there will be a very small probability the result will not be
prime.)

The command prime_range(a, b) returns an ordered list of all the primes from 𝑎 to 𝑏 − 1, inclusive. For
example,

sage: prime_range(500, 550)
[503, 509, 521, 523, 541, 547]

The commands next_prime(a) and previous_prime(a) are other ways to get a single prime number of a
desired size. Give them a try.

Permutation groups

A good portion of Sage’s support for group theory is based on routines from GAP (Groups, Algorithms, and Pro-
gramming at http://www.gap-system.org. Groups can be described in many different ways, such as sets of matrices
or sets of symbols subject to a few defining relations. A very concrete way to represent groups is via permutations
(one-to-one and onto functions of the integers 1 through 𝑛), using function composition as the operation in the group.

114 Chapter 12. Documentation

http://www.gap-system.org

Thematic Tutorials, Release 8.0

Sage has many routines designed to work with groups of this type and they are also a good way for those learning
group theory to gain experience with the basic ideas of group theory. For both these reasons, we will concentrate on
these types of groups.

Writing permutations

Sage uses “disjoint cycle notation” for permutations, see any introductory text on group theory (such as Judson, Section
4.1) for more on this. Composition occurs left to right, which is not what you might expect and is exactly the reverse
of what Judson and many others use. (There are good reasons to support either direction, you just need to be certain
you know which one is in play.) There are two ways to write the permutation 𝜎 = (1 3)(2 5 4):

1. As a text string (include quotes): "(1,3) (2,5,4)"

2. As a Python list of “tuples”: [(1,3), (2,5,4)]

Groups

Sage knows many popular groups as sets of permutations. More are listed below, but for starters, the full “symmetric
group” of all possible permutations of 1 through 𝑛 can be built with the command SymmetricGroup(n).

Permutation elements Elements of a group can be created, and composed, as follows

sage: G = SymmetricGroup(5)
sage: sigma = G("(1,3) (2,5,4)")
sage: rho = G([(2,4), (1,5)])
sage: rho^(-1) * sigma * rho
(1,2,4)(3,5)

Available functions for elements of a permutation group include finding the order of an element, i.e. for a permutation
𝜎 the order is the smallest power of 𝑘 such that 𝜎𝑘 equals the identity element (). For example:

sage: G = SymmetricGroup(5)
sage: sigma = G("(1,3) (2,5,4)")
sage: sigma.order()
6

The sign of the permutation 𝜎 is defined to be 1 for an even permutation and−1 for an odd permutation. For example:

sage: G = SymmetricGroup(5)
sage: sigma = G("(1,3) (2,5,4)")
sage: sigma.sign()
-1

since 𝜎 is an odd permutation.

Many more available functions that can be applied to a permutation can be found via “tab-completion.” With sigma
defined as an element of a permutation group, in a Sage cell, type sigma. (Note the “.”) and then press the tab key.
You will get a list of available functions (you may need to scroll down to see the whole list). Experiment and explore!
It is what Sage is all about. You really cannot break anything.

Creating groups

This is an annotated list of some small well-known permutation groups that can be created simply in Sage. You can
find more in the source code file

12.1. Thematic tutorial document tree 115

Thematic Tutorials, Release 8.0

SAGE_ROOT/src/sage/groups/perm_gps/permgroup_named.py

• SymmetricGroup(n): All 𝑛! permutations on 𝑛 symbols.

• DihedralGroup(n): Symmetries of an 𝑛-gon. Rotations and flips, 2𝑛 in total.

• CyclicPermutationGroup(n): Rotations of an 𝑛-gon (no flips), 𝑛 in total.

• AlternatingGroup(n): Alternating group on 𝑛 symbols having 𝑛!/2 elements.

• KleinFourGroup(): The non-cyclic group of order 4.

Group functions

Individual elements of permutation groups are important, but we primarily wish to study groups as objects on their
own. So a wide variety of computations are available for groups. Define a group, for example

sage: H = DihedralGroup(6)
sage: H
Dihedral group of order 12 as a permutation group

and then a variety of functions become available.

After trying the examples below, experiment with tab-completion. Having defined H, type H. (note the “.”) and then
press the tab key. You will get a list of available functions (you may need to scroll down to see the whole list). As
before, experiment and explore—it is really hard to break anything.

Here is another couple of ways to experiment and explore. Find a function that looks interesting, say is_abelian().
Type H.is_abelian? (note the question mark) followed by the enter key. This will display a portion of the source
code for the is_abelian() function, describing the inputs and output, possibly illustrated with example uses.

If you want to learn more about how Sage works, or possibly extend its functionality, then you can start by examining
the complete Python source code. For example, try H.is_abelian??, which will allow you to determine that the
is_abelian() function is basically riding on GAP’s IsAbelian() command and asking GAP do the heavy-
lifting for us. (To get the maximum advantage of using Sage it helps to know some basic Python programming, but it
is not required.)

OK, on to some popular command for groups. If you are using the worksheet, be sure you have defined the group 𝐻
as the dihedral group 𝐷6, since we will not keep repeating its definition below.

Abelian?

The command

sage: H = DihedralGroup(6)
sage: H.is_abelian()
False

will return False since 𝐷6 is a non-abelian group.

Order

The command

116 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: H = DihedralGroup(6)
sage: H.order()
12

will return 12 since 𝐷6 is a group of with 12 elements.

All elements

The command

sage: H = DihedralGroup(6)
sage: H.list()
[(),
(1,6)(2,5)(3,4),
(1,2,3,4,5,6),
(1,5)(2,4),
(2,6)(3,5),
(1,3,5)(2,4,6),
(1,4)(2,3)(5,6),
(1,6,5,4,3,2),
(1,4)(2,5)(3,6),
(1,2)(3,6)(4,5),
(1,5,3)(2,6,4),
(1,3)(4,6)]

will return all of the elements of 𝐻 in a fixed order as a Python list. Indexing ([]) can be used to extract the
individual elements of the list, remembering that counting the elements of the list begins at zero.

sage: H = DihedralGroup(6)
sage: elements = H.list()
sage: elements[2]
(1,2,3,4,5,6)

Cayley table

The command

sage: H = DihedralGroup(6)
sage: H.cayley_table()

* a b c d e f g h i j k l
+------------------------

a| a b c d e f g h i j k l
b| b a e h c j k d l f g i
c| c d f g b i l a k e h j
d| d c b a f e h g j i l k
e| e h j k a l i b g c d f
f| f g i l d k j c h b a e
g| g f d c i b a l e k j h
h| h e a b j c d k f l i g
i| i l k j g h e f a d c b
j| j k l i h g f e d a b c
k| k j h e l a b i c g f d
l| l i g f k d c j b h e a

12.1. Thematic tutorial document tree 117

Thematic Tutorials, Release 8.0

will construct the Cayley table (or “multiplication table”) of 𝐻 . By default the table uses lowercase Latin letters to
name the elements of the group. The actual elements used can be found using the row_keys() or column_keys()
commands for the table. For example to determine the fifth element in the table, the element named e:

sage: H = DihedralGroup(6)
sage: T = H.cayley_table()
sage: headings = T.row_keys()
sage: headings[4]
(2,6)(3,5)

Center

The command H.center() will return a subgroup that is the center of the group 𝐻 (see Exercise 2.46 in Judson).
Try

sage: H = DihedralGroup(6)
sage: H.center().list()
[(), (1,4)(2,5)(3,6)]

to see which elements of 𝐻 commute with every element of 𝐻 .

Cayley graph

For fun, try show(H.cayley_graph()).

Subgroups

Cyclic subgroups

If G is a group and a is an element of the group (try a = G.random_element()), then

a = G.random_element()
H = G.subgroup([a])

will create H as the cyclic subgroup of G with generator a.

For example the code below will:

1. create G as the symmetric group on five symbols;

2. specify sigma as an element of G;

3. use sigma as the generator of a cyclic subgroup H;

4. list all the elements of H.

In more mathematical notation, we might write ⟨(1 2 3)(4 5)⟩ = 𝐻 ⊆ 𝐺 = 𝑆5.

sage: G = SymmetricGroup(5)
sage: sigma = G("(1,2,3) (4,5)")
sage: H = G.subgroup([sigma])
sage: H.list()
[(), (1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5)]

Experiment by trying different permutations for sigma and observing the effect on H.

118 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Cyclic groups

Groups that are cyclic themselves are both important and rich in structure. The command
CyclicPermutationGroup(n) will create a permutation group that is cyclic with n elements. Consider
the following example (note that the indentation of the third line is critical) which will list the elements of a cyclic
group of order 20, preceded by the order of each element.

sage: n = 20
sage: CN = CyclicPermutationGroup(n)
sage: for g in CN:
....: print("{} {}".format(g.order(), g))
1 ()
20 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)
10 (1,3,5,7,9,11,13,15,17,19)(2,4,6,8,10,12,14,16,18,20)
20 (1,4,7,10,13,16,19,2,5,8,11,14,17,20,3,6,9,12,15,18)
5 (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)
4 (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)
10 (1,7,13,19,5,11,17,3,9,15)(2,8,14,20,6,12,18,4,10,16)
20 (1,8,15,2,9,16,3,10,17,4,11,18,5,12,19,6,13,20,7,14)
5 (1,9,17,5,13)(2,10,18,6,14)(3,11,19,7,15)(4,12,20,8,16)
20 (1,10,19,8,17,6,15,4,13,2,11,20,9,18,7,16,5,14,3,12)
2 (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)
20 (1,12,3,14,5,16,7,18,9,20,11,2,13,4,15,6,17,8,19,10)
5 (1,13,5,17,9)(2,14,6,18,10)(3,15,7,19,11)(4,16,8,20,12)
20 (1,14,7,20,13,6,19,12,5,18,11,4,17,10,3,16,9,2,15,8)
10 (1,15,9,3,17,11,5,19,13,7)(2,16,10,4,18,12,6,20,14,8)
4 (1,16,11,6)(2,17,12,7)(3,18,13,8)(4,19,14,9)(5,20,15,10)
5 (1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)
20 (1,18,15,12,9,6,3,20,17,14,11,8,5,2,19,16,13,10,7,4)
10 (1,19,17,15,13,11,9,7,5,3)(2,20,18,16,14,12,10,8,6,4)
20 (1,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)

By varying the size of the group (change the value of n) you can begin to illustrate some of the structure of a cyclic
group (for example, try a prime).

We can cut/paste an element of order 5 from the output above (in the case when the cyclic group has 20 elements) and
quickly build a subgroup:

sage: C20 = CyclicPermutationGroup(20)
sage: rho = C20("(1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)")
sage: H = C20.subgroup([rho])
sage: H.list()
[(),
(1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8),
(1,13,5,17,9)(2,14,6,18,10)(3,15,7,19,11)(4,16,8,20,12),
(1,9,17,5,13)(2,10,18,6,14)(3,11,19,7,15)(4,12,20,8,16),
(1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)]

For a cyclic group, the following command will list all of the subgroups.

sage: C20 = CyclicPermutationGroup(20)
sage: C20.conjugacy_classes_subgroups()
[Subgroup of (Cyclic group of order 20 as a permutation group) generated by [()],
→˓Subgroup of (Cyclic group of order 20 as a permutation group) generated by [(1,
→˓11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)], Subgroup of (Cyclic
→˓group of order 20 as a permutation group) generated by [(1,6,11,16)(2,7,12,17)(3,8,
→˓13,18)(4,9,14,19)(5,10,15,20)], Subgroup of (Cyclic group of order 20 as a
→˓permutation group) generated by [(1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,
→˓16,20)], Subgroup of (Cyclic group of order 20 as a permutation group) generated by
→˓[(1,3,5,7,9,11,13,15,17,19)(2,4,6,8,10,12,14,16,18,20)], Subgroup of (Cyclic group
→˓of order 20 as a permutation group) generated by [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,
→˓15,16,17,18,19,20)]]

12.1. Thematic tutorial document tree 119

Thematic Tutorials, Release 8.0

Be careful, this command uses some more advanced ideas and will not usually list all of the subgroups of a group.
Here we are relying on special properties of cyclic groups (but see the next section).

If you are viewing this as a PDF, you can safely skip over the next bit of code. However, if you are viewing this as a
worksheet in Sage, then this is a place where you can experiment with the structure of the subgroups of a cyclic group.
In the input box, enter the order of a cyclic group (numbers between 1 and 40 are good initial choices) and Sage will
list each subgroup as a cyclic group with its generator. The factorization at the bottom might help you formulate a
conjecture.

%auto
@interact
def _(n = input_box(default=12, label = "Cyclic group of order:", type=Integer)):

cyclic = CyclicPermutationGroup(n)
subgroups = cyclic.conjugacy_classes_subgroups()
html("All subgroups of a cyclic group of order $%s$\n" % latex(n))
table = "$\\begin{array}{ll}"
for sg in subgroups:

table = table + latex(sg.order()) + \
" & \\left\\langle" + latex(sg.gens()[0]) + \
"\\right\\rangle\\\\"

table = table + "\\end{array}$"
html(table)
html("\nHint: $%s$ factors as $%s$" % (latex(n), latex(factor(n))))

All subgroups

If 𝐻 is a subgroup of 𝐺 and 𝑔 ∈ 𝐺, then 𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 | ℎ ∈ 𝐺} will also be a subgroup of 𝐺. If G is a group,
then the command G.conjugacy_classes_subgroups() will return a list of subgroups of G, but not all of
the subgroups. However, every subgroup can be constructed from one on the list by the 𝑔𝐻𝑔−1 construction with a
suitable 𝑔. As an illustration, the code below:

1. creates K as the dihedral group of order 24, 𝐷12;

2. stores the list of subgroups output by K.conjugacy_classes_subgroups() in the variable sg;

3. prints the elements of the list;

4. selects the second subgroup in the list, and lists its elements.

sage: K = DihedralGroup(12)
sage: sg = K.conjugacy_classes_subgroups()
sage: sg
[Subgroup of (Dihedral group of order 24 as a permutation group) generated by [()],
→˓Subgroup of (Dihedral group of order 24 as a permutation group) generated by [(1,
→˓2)(3,12)(4,11)(5,10)(6,9)(7,8)], Subgroup of (Dihedral group of order 24 as a
→˓permutation group) generated by [(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)], Subgroup of
→˓(Dihedral group of order 24 as a permutation group) generated by [(2,12)(3,11)(4,
→˓10)(5,9)(6,8)], Subgroup of (Dihedral group of order 24 as a permutation group)
→˓generated by [(1,5,9)(2,6,10)(3,7,11)(4,8,12)], Subgroup of (Dihedral group of
→˓order 24 as a permutation group) generated by [(2,12)(3,11)(4,10)(5,9)(6,8), (1,
→˓7)(2,8)(3,9)(4,10)(5,11)(6,12)], Subgroup of (Dihedral group of order 24 as a
→˓permutation group) generated by [(1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (1,7)(2,8)(3,
→˓9)(4,10)(5,11)(6,12)], Subgroup of (Dihedral group of order 24 as a permutation
→˓group) generated by [(1,7)(2,8)(3,9)(4,10)(5,11)(6,12), (1,10,7,4)(2,11,8,5)(3,12,9,
→˓6)], Subgroup of (Dihedral group of order 24 as a permutation group) generated by
→˓[(1,3,5,7,9,11)(2,4,6,8,10,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12)], Subgroup of
→˓(Dihedral group of order 24 as a permutation group) generated by [(1,2)(3,12)(4,
→˓11)(5,10)(6,9)(7,8), (1,5,9)(2,6,10)(3,7,11)(4,8,12)], Subgroup of (Dihedral group
→˓of order 24 as a permutation group) generated by [(2,12)(3,11)(4,10)(5,9)(6,8), (1,
→˓5,9)(2,6,10)(3,7,11)(4,8,12)], Subgroup of (Dihedral group of order 24 as a
→˓permutation group) generated by [(2,12)(3,11)(4,10)(5,9)(6,8), (1,7)(2,8)(3,9)(4,
→˓10)(5,11)(6,12), (1,10,7,4)(2,11,8,5)(3,12,9,6)], Subgroup of (Dihedral group of
→˓order 24 as a permutation group) generated by [(2,12)(3,11)(4,10)(5,9)(6,8), (1,3,5,
→˓7,9,11)(2,4,6,8,10,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12)], Subgroup of (Dihedral
→˓group of order 24 as a permutation group) generated by [(1,2)(3,12)(4,11)(5,10)(6,
→˓9)(7,8), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12)], Subgroup
→˓of (Dihedral group of order 24 as a permutation group) generated by [(1,2,3,4,5,6,7,
→˓8,9,10,11,12), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12)],
→˓Subgroup of (Dihedral group of order 24 as a permutation group) generated by [(2,
→˓12)(3,11)(4,10)(5,9)(6,8), (1,2,3,4,5,6,7,8,9,10,11,12), (1,3,5,7,9,11)(2,4,6,8,10,
→˓12), (1,5,9)(2,6,10)(3,7,11)(4,8,12)]]

120 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: print("An order two subgroup:\n{}".format(sg[1].list()))
An order two subgroup:
[(), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8)]

It is important to note that this is a nice long list of subgroups, but will rarely create every such subgroup. For example,
the code below:

1. creates rho as an element of the group K;

2. creates L as a cyclic subgroup of K;

3. prints the two elements of L; and finally

4. tests to see if this subgroup is part of the output of the list sg created just above (it is not).

sage: K = DihedralGroup(12)
sage: sg = K.conjugacy_classes_subgroups()
sage: rho = K("(1,4) (2,3) (5,12) (6,11) (7,10) (8,9)")
sage: L = PermutationGroup([rho])
sage: L.list()
[(), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)]
sage: L in sg
False

Symmetry groups

You can give Sage a short list of elements of a permutation group and Sage will find the smallest subgroup that contains
those elements. We say the list “generates” the subgroup. We list a few interesting subgroups you can create this way.

Symmetries of an equilateral triangle

Label the vertices of an equilateral triangle as 1, 2 and 3. Then any permutation of the vertices will be a symmetry of
the triangle. So either SymmetricGroup(3) or DihedralGroup(3) will create the full symmetry group.

Symmetries of an 𝑛-gon

A regular, 𝑛-sided figure in the plane (an 𝑛-gon) has 2𝑛 symmetries, comprised of 𝑛 rotations (including the trivial
one) and 𝑛 “flips” about various axes. The dihedral group DihedralGroup(n) is frequently defined as exactly the
symmetry group of an 𝑛-gon.

Symmetries of a tetrahedron

Label the 4 vertices of a regular tetrahedron as 1, 2, 3 and 4. Fix the vertex labeled 4 and rotate the opposite face
through 120 degrees. This will create the permutation/symmetry (1 2 3). Similarly, fixing vertex 1, and rotating the
opposite face will create the permutation (2 3 4). These two permutations are enough to generate the full group of the
twelve symmetries of the tetrahedron. Another symmetry can be visualized by running an axis through the midpoint
of an edge of the tetrahedron through to the midpoint of the opposite edge, and then rotating by 180 degrees about this
axis. For example, the 1–2 edge is opposite the 3–4 edge, and the symmetry is described by the permutation (1 2)(3 4).
This permutation, along with either of the above permutations will also generate the group. So here are two ways to
create this group:

12.1. Thematic tutorial document tree 121

Thematic Tutorials, Release 8.0

sage: tetra_one = PermutationGroup(["(1,2,3)", "(2,3,4)"])
sage: tetra_one
Permutation Group with generators [(2,3,4), (1,2,3)]
sage: tetra_two = PermutationGroup(["(1,2,3)", "(1,2)(3,4)"])
sage: tetra_two
Permutation Group with generators [(1,2)(3,4), (1,2,3)]

This group has a variety of interesting properties, so it is worth experimenting with. You may also know it as the
“alternating group on 4 symbols,” which Sage will create with the command AlternatingGroup(4).

Symmetries of a cube

Label vertices of one face of a cube with 1, 2, 3 and 4, and on the opposite face label the vertices 5, 6, 7 and 8 (5
opposite 1, 6 opposite 2, etc.). Consider three axes that run from the center of a face to the center of the opposite face,
and consider a quarter-turn rotation about each axis. These three rotations will construct the entire symmetry group.
Use

sage: cube = PermutationGroup(["(3,2,6,7)(4,1,5,8)",
....: "(1,2,6,5)(4,3,7,8)", "(1,2,3,4)(5,6,7,8)"])
sage: cube.list()
[(),
(1,2,3,4)(5,6,7,8),
(1,2,6,5)(3,7,8,4),
(1,5,8,4)(2,6,7,3),
(1,6,8)(2,7,4),
(1,3,8)(2,7,5),
(1,6,3)(4,5,7),
(1,6)(2,5)(3,8)(4,7),
(2,5,4)(3,6,8),
(1,3)(2,4)(5,7)(6,8),
(1,8)(2,7)(3,6)(4,5),
(1,7)(2,3)(4,6)(5,8),
(1,5,6,2)(3,4,8,7),
(1,7)(2,6)(3,5)(4,8),
(1,7)(2,8)(3,4)(5,6),
(1,4,3,2)(5,8,7,6),
(1,4)(2,8)(3,5)(6,7),
(1,5)(2,8)(3,7)(4,6),
(1,4,8,5)(2,3,7,6),
(1,2)(3,5)(4,6)(7,8),
(1,8,6)(2,4,7),
(1,3,6)(4,7,5),
(2,4,5)(3,8,6),
(1,8,3)(2,5,7)]

A cube has four distinct diagonals (joining opposite vertices through the center of the cube). Each symmetry of the
cube will cause the diagonals to arrange differently. In this way, we can view an element of the symmetry group as a
permutation of four “symbols”—the diagonals. It happens that each of the 24 permutations of the diagonals is created
by exactly one symmetry of the 8 vertices of the cube. So this subgroup of 𝑆8 is “the same as” 𝑆4. In Sage:

sage: cube = PermutationGroup(["(3,2,6,7)(4,1,5,8)",
....: "(1,2,6,5)(4,3,7,8)", "(1,2,3,4)(5,6,7,8)"])
sage: cube.is_isomorphic(SymmetricGroup(4))
True

will test to see if the group of symmetries of the cube are “the same as” 𝑆4 and so will return True.

122 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Here is an another way to create the symmetries of a cube. Number the six faces of the cube as follows: 1 on top, 2
on the bottom, 3 in front, 4 on the right, 5 in back, 6 on the left. Now the same rotations as before (quarter-turns about
axes through the centers of two opposite faces) can be used as generators of the symmetry group:

sage: cubeface = PermutationGroup(["(1,3,2,5)", "(1,4,2,6)", "(3,4,5,6)"])
sage: cubeface.list()
[(),
(3,4,5,6),
(1,4,2,6),
(1,3,2,5),
(1,3,4)(2,5,6),
(1,3,6)(2,5,4),
(1,2)(3,5),
(1,4,5)(2,6,3),
(1,5,6)(2,3,4),
(3,5)(4,6),
(1,2)(4,6),
(1,5,2,3),
(1,6)(2,4)(3,5),
(1,4)(2,6)(3,5),
(1,2)(3,4)(5,6),
(1,3)(2,5)(4,6),
(3,6,5,4),
(1,5)(2,3)(4,6),
(1,6,2,4),
(1,2)(3,6)(4,5),
(1,6,3)(2,4,5),
(1,6,5)(2,4,3),
(1,5,4)(2,3,6),
(1,4,3)(2,6,5)]

Again, this subgroup of 𝑆6 is “same as” the full symmetric group, 𝑆4:

sage: cubeface = PermutationGroup(["(1,3,2,5)", "(1,4,2,6)", "(3,4,5,6)"])
sage: cubeface.is_isomorphic(SymmetricGroup(4))
True

It turns out that in each of the above constructions, it is sufficient to use just two of the three generators (any two). But
one generator is not enough. Give it a try and use Sage to convince yourself that a generator can be sacrificed in each
case.

Normal subgroups

Checking normality

The code below:

1. begins with the alternating group 𝐴4;

2. specifies three elements of the group (the three symmetries of the tetrahedron that are 180 degree rotations about
axes through midpoints of opposite edges);

3. uses these three elements to generate a subgroup; and finally

4. illustrates the command for testing if the subgroup H is a normal subgroup of the group A4.

sage: A4 = AlternatingGroup(4)
sage: r1 = A4("(1,2) (3,4)")

12.1. Thematic tutorial document tree 123

Thematic Tutorials, Release 8.0

sage: r2 = A4("(1,3) (2,4)")
sage: r3 = A4("(1,4) (2,3)")
sage: H = A4.subgroup([r1, r2, r3])
sage: H.is_normal(A4)
True

Quotient group

Extending the previous example, we can create the quotient (factor) group of 𝐴4 by 𝐻 . The commands

sage: A4 = AlternatingGroup(4)
sage: r1 = A4("(1,2) (3,4)")
sage: r2 = A4("(1,3) (2,4)")
sage: r3 = A4("(1,4) (2,3)")
sage: H = A4.subgroup([r1, r2, r3])
sage: A4.quotient(H)
Permutation Group with generators [(1,2,3)]

returns a permutation group generated by (1,2,3). As expected this is a group of order 3. Notice that we do not get
back a group of the actual cosets, but instead we get a group isomorphic to the factor group.

Simple groups

It is easy to check to see if a group is void of any normal subgroups. The commands

sage: AlternatingGroup(5).is_simple()
True
sage: AlternatingGroup(4).is_simple()
False

prints True and then False.

Composition series

For any group, it is easy to obtain a composition series. There is an element of randomness in the algorithm, so you
may not always get the same results. (But the list of factor groups is unique, according to the Jordan-Hölder theorem.)
Also, the subgroups generated sometimes have more generators than necessary, so you might want to “study” each
subgroup carefully by checking properties like its order.

An interesting example is:

DihedralGroup(105).composition_series()

The output will be a list of 5 subgroups of 𝐷105, each a normal subgroup of its predecessor.

Several other series are possible, such as the derived series. Use tab-completion to see the possibilities.

Conjugacy

Given a group 𝐺, we can define a relation ∼ on 𝐺 by: for 𝑎, 𝑏 ∈ 𝐺, 𝑎 ∼ 𝑏 if and only if there exists an element 𝑔 ∈ 𝐺
such that 𝑔𝑎𝑔−1 = 𝑏.

124 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Since this is an equivalence relation, there is an associated partition of the elements of 𝐺 into equivalence
classes. For this very important relation, the classes are known as “conjugacy classes.” A representative
of each of these equivalence classes can be found as follows. Suppose G is a permutation group, then G.
conjugacy_classes_representatives() will return a list of elements of G, one per conjugacy class.

Given an element 𝑔 ∈ 𝐺, the “centralizer” of 𝑔 is the set 𝐶(𝑔) = {ℎ ∈ 𝐺 | ℎ𝑔ℎ−1 = 𝑔}, which is a subgroup of 𝐺. A
theorem tells us that the size of each conjugacy class is the order of the group divided by the order of the centralizer
of an element of the class. With the following code we can determine the size of the conjugacy classes of the full
symmetric group on 5 symbols:

sage: G = SymmetricGroup(5)
sage: group_order = G.order()
sage: reps = G.conjugacy_classes_representatives()
sage: class_sizes = []
sage: for g in reps:
....: class_sizes.append(group_order / G.centralizer(g).order())
...
sage: class_sizes
[1, 10, 15, 20, 20, 30, 24]

This should produce the list [1, 10, 15, 20, 20, 30, 24] which you can check sums to 120, the order of
the group. You might be able to produce this list by counting elements of the group 𝑆5 with identical cycle structure
(which will require a few simple combinatorial arguments).

Sylow subgroups

Sylow’s Theorems assert the existence of certain subgroups. For example, if 𝑝 is a prime, and 𝑝𝑟 divides the order
of a group 𝐺, then 𝐺 must have a subgroup of order 𝑝𝑟. Such a subgroup could be found among the output of the
conjugacy_classes_subgroups() command by checking the orders of the subgroups produced. The map()
command is a quick way to do this. The symmetric group on 7 symbols, 𝑆7, has order 7! = 5040 and is divisible by
24 = 16. Let’s find one example of a subgroup of permutations on 4 symbols with order 16:

sage: G = SymmetricGroup(7)
sage: subgroups = G.conjugacy_classes_subgroups()
sage: list(map(order, subgroups))
[1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8,
→˓8, 8, 9, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 16, 18,
→˓ 18, 18, 20, 20, 20, 21, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 36,
→˓ 36, 36, 36, 40, 42, 48, 48, 48, 60, 60, 72, 72, 72, 72, 120, 120, 120, 120, 144,
→˓168, 240, 360, 720, 2520, 5040]

The map(order, subgroups) command will apply the order() function to each of the subgroups in the list
subgroups. The output is thus a large list of the orders of many subgroups (96 to be precise). If you count carefully,
you will see that the 49-th subgroup has order 16. You can retrieve this group for further study by referencing it as
subgroups[48] (remember that counting starts at zero).

If 𝑝𝑟 is the highest power of 𝑝 to divide the order of 𝐺, then a subgroup of order 𝑝𝑟 is known as a “Sy-
low 𝑝-subgroup.” Sylow’s Theorems also say any two Sylow 𝑝-subgroups are conjugate, so the output of
conjugacy_classes_subgroups() should only contain each Sylow 𝑝-subgroup once. But there is an eas-
ier way, sylow_subgroup(p) will return one. Notice that the argument of the command is just the prime p, not
the full power 𝑝𝑟. Failure to use a prime will generate an informative error message.

Groups of small order as permutation groups

We list here constructions, as permutation groups, for all of the groups of order less than 16.

12.1. Thematic tutorial document tree 125

Thematic Tutorials, Release 8.0

--
→˓-------
Size Construction Notes
--
→˓-------
1 SymmetricGroup(1) Trivial
2 SymmetricGroup(2) Also CyclicPermutationGroup(2)
3 CyclicPermutationGroup(3) Prime order
4 CyclicPermutationGroup(4) Cyclic
4 KleinFourGroup() Abelian, non-cyclic
5 CyclicPermutationGroup(5) Prime order
6 CyclicPermutationGroup(6) Cyclic
6 SymmetricGroup(3) Non-abelian, also DihedralGroup(3)
7 CyclicPermutationGroup(7) Prime order
8 CyclicPermutationGroup(8) Cyclic
8 D1 = CyclicPermutationGroup(4)

D2 = CyclicPermutationGroup(2)
G = direct_product_permgroups([D1,D2]) Abelian, non-cyclic

8 D1 = CyclicPermutationGroup(2)
D2 = CyclicPermutationGroup(2)
D3 = CyclicPermutationGroup(2)
G = direct_product_permgroups([D1,D2,D3]) Abelian, non-cyclic

8 DihedralGroup(4) Non-abelian
8 QuaternionGroup() Quaternions, also DiCyclicGroup(2)
9 CyclicPermutationGroup(9) Cyclic
9 D1 = CyclicPermutationGroup(3)

D2 = CyclicPermutationGroup(3)
G = direct_product_permgroups([D1,D2]) Abelian, non-cyclic

10 CyclicPermutationGroup(10) Cyclic
10 DihedralGroup(5) Non-abelian
11 CyclicPermutationGroup(11) Prime order
12 CyclicPermutationGroup(12) Cyclic
12 D1 = CyclicPermutationGroup(6)

D2 = CyclicPermutationGroup(2)
G = direct_product_permgroups([D1,D2]) Abelian, non-cyclic

12 DihedralGroup(6) Non-abelian
12 AlternatingGroup(4) Non-abelian, symmetries of
→˓tetrahedron
12 DiCyclicGroup(3) Non-abelian

Also semi-direct product $Z_3
→˓\rtimes Z_4$
13 CyclicPermutationGroup(13) Prime order
14 CyclicPermutationGroup(14) Cyclic
14 DihedralGroup(7) Non-abelian
15 CyclicPermutationGroup(15) Cyclic
--
→˓--------

Acknowledgements

The construction of Sage is the work of many people, and the group theory portion is made possible by the extensive
work of the creators of GAP. However, we will single out three people from the Sage team to thank for major con-
tributions toward bringing you the group theory portion of Sage: David Joyner, William Stein, and Robert Bradshaw.
Thanks!

126 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

12.1.5 Lie Methods and Related Combinatorics in Sage

Author: Daniel Bump (Stanford University), Ben Salisbury (Central Michigan University), and Anne Schilling (UC
Davis)

These notes explain how to use the mathematical software Sage for Lie group computations. Sage also contains many
combinatorial algorithms. We will cover only some of these.

The Scope of this Document

Lie groups and algebras

Sage can be used to do standard computations for Lie groups and Lie algebras. The following categories of represen-
tations are equivalent:

• Complex representations of a compact, semisimple simply connected Lie group 𝐺.

• Complex representations of its Lie algebra g. This is a real Lie algebra, so representations are not required to be
complex linear maps.

• Complex representations of its complexified Lie algebra gC = C ⊗ g. This is a complex Lie algebra and
representations are required to be complex linear transformations.

• The complex analytic representations of the semisimple simply-connected complex analytic group 𝐺C having
gC as its Lie algebra.

• Modules of the universal enveloping algebra 𝑈(gC).

• Modules of the quantized enveloping algebra 𝑈𝑞(gC).

For example, we could take 𝐺 = 𝑆𝑈(𝑛), g = sl(𝑛,R), gC = sl(𝑛,C) and 𝐺C = 𝑆𝐿(𝑛,C). Because these
categories are the same, their representations may be studied simultaneously. The above equivalences may be expanded
to include reductive groups like 𝑈(𝑛) and 𝐺𝐿(𝑛) with a bit of care.

Here are some typical problems that can be solved using Sage:

• Decompose a module in any one of these categories into irreducibles.

• Compute the Frobenius-Schur indicator of an irreducible module.

• Compute the tensor product of two modules.

• If 𝐻 is a subgroup of 𝐺, study the restriction of modules for 𝐺 to 𝐻 . The solution to this problem is called a
branching rule.

• Find the multiplicities of the weights of the representation.

In addition to its representations, which we may study as above, a Lie group has various related structures. These
include:

• The Weyl Group 𝑊 .

• The Weight Lattice.

• The Root System

• The Cartan Type.

• The Dynkin diagram.

• The extended Dynkin diagram.

12.1. Thematic tutorial document tree 127

Thematic Tutorials, Release 8.0

Sage contains methods for working with these structures.

If there is something you need that is not implemented, getting it added to Sage will likely be possible. You may
write your own algorithm for an unimplemented task, and if it is something others will be interested in, it is probably
possible to get it added to Sage.

Combinatorics

Sage supports a great many related mathematical objects. Some of these properly belong to combinatorics. It is
beyond the scope of these notes to cover all the combinatorics in Sage, but we will try to touch on those combinatorial
methods which have some connection with Lie groups and representation theory. These include:

• The affine Weyl group, an infinite group containing 𝑊 .

• Kashiwara crystals, which are combinatorial analogs of modules in the above categories.

• Coxeter group methods applicable to Weyl groups and the affine Weyl group, such as Bruhat order.

• The Iwahori Hecke algebras, which are deformations of the group algebras of 𝑊 and the affine Weyl group.

• Kazhdan-Lusztig polynomials.

Lie Group Basics

Goals of this section

Since we must be brief here, this is not really a place to learn about Lie groups or Lie algebras. Rather, the point of
this section is to outline what you need to know to use Sage effectively for Lie computations, and to fix ideas and
notations.

Semisimple and reductive groups

If 𝑔 ∈ 𝐺𝐿(𝑛,C), then 𝑔 may be uniquely factored as 𝑔1𝑔2 where 𝑔1 and 𝑔2 commute, with 𝑔1 semisimple (diagonal-
izable) and 𝑔2 unipotent (all its eigenvalues equal to 1). This follows from the Jordan canonical form. If 𝑔 = 𝑔1 then
𝑔 is called semisimple and if 𝑔 = 𝑔2 then 𝑔 is called unipotent.

We consider a Lie group𝐺 and a class of representations such that if an element 𝑔 ∈ 𝐺 is unipotent (resp. semisimple)
in one faithful representation from the class, then it is unipotent (resp. semisimple) in every faithful representation of
the class. Thus the notion of being semisimple or unipotent is intrinsic. Examples:

• Compact Lie groups with continuous representations

• Complex analytic groups with analytic representations

• Algebraic groups over R with algebraic representations.

A subgroup of 𝐺 is called unipotent if it is connected and all its elements are unipotent. It is called a torus if it is
connected, abelian, and all its elements are semisimple. The group 𝐺 is called reductive if it has no nontrivial normal
unipotent subgroup. For example, 𝐺𝐿(2,C) is reductive, but its subgroup:{︂(︂

𝑎 𝑏
𝑑

)︂}︂
is not since it has a normal unipotent subgroup {︂(︂

1 𝑏
1

)︂}︂
.

128 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

A group has a unique largest normal unipotent subgroup, called the unipotent radical, so it is reductive if and only if
the unipotent radical is trivial.

A Lie group is called semisimple it is reductive and furthermore has no nontrivial normal tori. For example 𝐺𝐿(2,C)
is reductive but not semisimple because it has a normal torus:{︂(︂

𝑎
𝑎

)︂}︂
.

The group 𝑆𝐿(2,C) is semisimple.

Fundamental group and center

If 𝐺 is a semisimple Lie group then its center and fundamental group are finite abelian groups. The universal covering
group 𝐺̃ is therefore a finite extension with the same Lie algebra. Any representation of 𝐺 may be reinterpreted as
a representation of the simply connected 𝐺̃. Therefore we may as well consider representations of 𝐺̃, and restrict
ourselves to the simply connected group.

Parabolic subgroups and Levi subgroups

Let𝐺 be a reductive complex analytic group. A maximal solvable subgroup of𝐺 is called a Borel subgroup. All Borel
subgroups are conjugate. Any subgroup 𝑃 containing a Borel subgroup is called a parabolic subgroup. We may write
𝑃 as a semidirect product of its maximal normal unipotent subgroup or unipotent radical 𝑃 and a reductive subgroup
𝑀 , which is determined up to conjugacy. The subgroup 𝑀 is called a Levi subgroup.

Example: Let 𝐺 = 𝐺𝐿𝑛(C) and let 𝑟1, . . . , 𝑟𝑘 be integers whose sum is 𝑛. Then we may consider matrices of the
form: ⎛⎜⎜⎜⎝

𝑔1 * · · · *
𝑔2 *

. . .
𝑔𝑟

⎞⎟⎟⎟⎠
where 𝑔𝑖 ∈ 𝐺𝐿(𝑟𝑖,C). The unipotent radical consists of the subgroup in which all 𝑔𝑖 = 𝐼𝑟𝑖 . The Levi subgroup
(determined up to conjugacy) is:

𝑀 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

𝑔1
𝑔2

. . .
𝑔𝑟

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

and is isomorphic to 𝑀 = 𝐺𝐿(𝑟1,C)× · · · ×𝐺𝐿(𝑟𝑘,C). Therefore 𝑀 is a Levi subgroup.

The notion of a Levi subgroup can be extended to compact Lie groups. Thus 𝑈(𝑟1)× · · · × 𝑈(𝑟𝑘) is a Levi subgroup
of 𝑈(𝑛). However parabolic subgroups do not exist for compact Lie groups.

Cartan types

Semisimple Lie groups are classified by their Cartan types. There are both reducible and irreducible Cartan types in
Sage. Let us start with the irreducible types. Such a type is implemented in Sage as a pair ['X', r] where ‘X’ is
one of A, B, C, D, E, F or G and 𝑟 is a positive integer. If ‘X’ is ‘D’ then we must have 𝑟 > 1 and if ‘X’ is one of the
exceptional types ‘E’, ‘F’ or ‘G’ then 𝑟 is limited to only a few possibilities. The exceptional types are:

12.1. Thematic tutorial document tree 129

Thematic Tutorials, Release 8.0

['G', 2], ['F', 4], ['E', 6], ['E', 7] or ['E', 8].

A simply-connected semisimple group is a direct product of simple Lie groups, which are given by the following table.
The integer 𝑟 is called the rank, and is the dimension of the maximal torus.

Here are the Lie groups corresponding to the classical types:

compact group complex analytic group Cartan type
𝑆𝑈(𝑟 + 1) 𝑆𝐿(𝑟 + 1,C) 𝐴𝑟

𝑠𝑝𝑖𝑛(2𝑟 + 1) 𝑠𝑝𝑖𝑛(2𝑟 + 1,C) 𝐵𝑟

𝑆𝑝(2𝑟) 𝑆𝑝(2𝑟,C) 𝐶𝑟

𝑠𝑝𝑖𝑛(2𝑟) 𝑠𝑝𝑖𝑛(2𝑟,C) 𝐷𝑟

You may create these Cartan types and their Dynkin diagrams as follows:

sage: ct = CartanType("D5"); ct
['D', 5]

Here "D5" is an abbreviation for ['D',5]. The group 𝑠𝑝𝑖𝑛(𝑛) is the simply-connected double cover of the orthog-
onal group 𝑆𝑂(𝑛).

Dual Cartan types

Every Cartan type has a dual, which you can get from within Sage:

sage: CartanType("B4").dual()
['C', 4]

Types other than𝐵𝑟 and𝐶𝑟 for 𝑟 > 2 are self-dual in the sense that the dual is isomorphic to the original type; however
the isomorphism of a Cartan type with its dual might relabel the vertices. We can see this as follows:

sage: CartanType("F4").dynkin_diagram()
O---O=>=O---O
1 2 3 4
F4
sage: CartanType("F4").dual()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: CartanType("F4").dual().dynkin_diagram()
O---O=>=O---O
4 3 2 1
F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

Reducible Cartan types

If 𝐺 is a Lie group of finite index in 𝐺1 × 𝐺2, where 𝐺1 and 𝐺2 are Lie groups of positive dimension, then 𝐺 is
called reducible. In this case, the root system of 𝐺 is the disjoint union of the root systems of 𝐺1 and 𝐺2, which lie in
orthogonal subspaces of the ambient space of the weight space of 𝐺. The Cartan type of 𝐺 is thus reducible.

Reducible Cartan types are supported in Sage as follows:

sage: RootSystem("A1xA1")
Root system of type A1xA1
sage: WeylCharacterRing("A1xA1")
The Weyl Character Ring of Type A1xA1 with Integer Ring coefficients

130 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Low dimensional Cartan types

There are some isomorphisms that occur in low degree.

Cartan Type Group Equivalent Type Isomorphic Group
𝐵2 𝑠𝑝𝑖𝑛(5) 𝐶2 𝑆𝑝(4)
𝐷3 𝑠𝑝𝑖𝑛(6) 𝐴3 𝑆𝐿(4)
𝐷2 𝑠𝑝𝑖𝑛(4) 𝐴1×𝐴1 𝑆𝐿(2)× 𝑆𝐿(2)
𝐵1 𝑠𝑝𝑖𝑛(3) 𝐴1 𝑆𝐿(2)
𝐶1 𝑆𝑝(2) 𝐴1 𝑆𝐿(2)

Sometimes the redundant Cartan types such as 𝐷3 and 𝐷2 are excluded from the list of Cartan types. However Sage
allows them since excluding them leads to exceptions having to be made in algorithms. A better approach, which
is followed by Sage, is to allow the redundant Cartan types, but to implement the isomorphisms explicitly as special
cases of branching rules. The utility of this approach may be seen by considering that the rank one group 𝑆𝐿(2) has
different natural weight lattices realizations depending on whether we consider it to be 𝑆𝐿(2), 𝑠𝑝𝑖𝑛(2) or 𝑆𝑝(2):

sage: RootSystem("A1").ambient_space().simple_roots()
Finite family {1: (1, -1)}
sage: RootSystem("B1").ambient_space().simple_roots()
Finite family {1: (1)}
sage: RootSystem("C1").ambient_space().simple_roots()
Finite family {1: (2)}

Relabeled Cartan types

By default Sage uses the labeling of the Dynkin diagram from [Bourbaki46]. There is another labeling of the vertices
due to Dynkin. Most of the literature follows [Bourbaki46], though [Kac] follows Dynkin.

If you need to use Dynkin’s labeling, you should be aware that Sage does support relabeled Cartan types. See the
documentation in sage.combinat.root_system.type_relabel for further information.

Standard realizations of the ambient spaces

These realizations follow the Appendix in [Bourbaki46]. See the Root system plot tutorial for how to visualize them.

Type A

For type 𝐴𝑟 we use an 𝑟 + 1 dimensional ambient space. This means that we are modeling the Lie group 𝑈(𝑟 + 1) or
𝐺𝐿(𝑟 + 1,C) rather than 𝑆𝑈(𝑟 + 1) or 𝑆𝐿(𝑟 + 1,C). The ambient space is identified with Q𝑟+1:

sage: RootSystem("A3").ambient_space().simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1)}
sage: RootSystem("A3").ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1, 1, 1, 0)}
sage: RootSystem("A3").ambient_space().rho()
(3, 2, 1, 0)

The dominant weights consist of integer 𝑟 + 1-tuples 𝜆 = (𝜆1, . . . , 𝜆𝑟+1) such that 𝜆1 ≥ · · · ≥ 𝜆𝑟+1.

See SL versus GL for further remarks about Type A.

12.1. Thematic tutorial document tree 131

Thematic Tutorials, Release 8.0

Type B

For the remaining classical Cartan types 𝐵𝑟, 𝐶𝑟 and 𝐷𝑟 we use an 𝑟-dimensional ambient space:

sage: RootSystem("B3").ambient_space().simple_roots()
Finite family {1: (1, -1, 0), 2: (0, 1, -1), 3: (0, 0, 1)}
sage: RootSystem("B3").ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}
sage: RootSystem("B3").ambient_space().rho()
(5/2, 3/2, 1/2)

This is the Cartan type of 𝑠𝑝𝑖𝑛(2𝑟 + 1). The last fundamental weight (1/2, 1/2, ..., 1/2) is the high-
est weight of the 2𝑟 dimensional spin representation. All the other fundamental representations factor through the
homomorphism 𝑠𝑝𝑖𝑛(2𝑟 + 1)→ 𝑆𝑂(2𝑟 + 1) and are representations of the orthogonal group.

The dominant weights consist of 𝑟-tuples of integers or half-integers (𝜆1, . . . , 𝜆𝑟) such that 𝜆1 ≥ 𝜆2 · · · ≥ 𝜆𝑟 ≥ 0,
and such that the differences 𝜆𝑖 − 𝜆𝑗 ∈ Z.

Type C

sage: RootSystem("C3").ambient_space().simple_roots()
Finite family {1: (1, -1, 0), 2: (0, 1, -1), 3: (0, 0, 2)}
sage: RootSystem("C3").ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1, 1, 1)}
sage: RootSystem("C3").ambient_space().rho()
(3, 2, 1)

This is the Cartan type of the symplectic group 𝑆𝑝(2𝑟).

The dominant weights consist of 𝑟-tuples of integers 𝜆 = (𝜆1, . . . , 𝜆𝑟+1) such that 𝜆1 ≥ · · · ≥ 𝜆𝑟 ≥ 0.

Type D

sage: RootSystem("D4").ambient_space().simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1), 4: (0, 0, 1, 1)}
sage: RootSystem("D4").ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1/2, 1/2, 1/2, -1/2), 4: (1/2, 1/
→˓2, 1/2, 1/2)}
sage: RootSystem("D4").ambient_space().rho()
(3, 2, 1, 0)

This is the Cartan type of 𝑠𝑝𝑖𝑛(2𝑟). The last two fundamental weights are the highest weights of the two 2𝑟−1-
dimensional spin representations.

The dominant weights consist of 𝑟-tuples of integers 𝜆 = (𝜆1, . . . , 𝜆𝑟+1) such that 𝜆1 ≥ · · · ≥ 𝜆𝑟−1 ≥ |𝜆𝑟|.

Exceptional Types

We leave the reader to examine the exceptional types. You can use Sage to list the fundamental dominant weights and
simple roots.

132 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Weights and the ambient space

Let𝐺 be a reductive complex analytic group. Let 𝑇 be a maximal torus, Λ = 𝑋*(𝑇) be its group of analytic characters.
Then 𝑇 ∼= (C×)𝑟 for some 𝑟 and Λ ∼= Z𝑟.

Example 1: Let 𝐺 = GL𝑟+1(C). Then 𝑇 is the diagonal subgroup and 𝑋*(𝑇) ∼= Z𝑟+1. If 𝜆 = (𝜆1, . . . , 𝜆𝑛) then 𝜆
is identified with the rational character

t =

⎛⎜⎝ 𝑡1
. . .

𝑡𝑛

⎞⎟⎠ ↦−→∏︁
𝑡𝜆𝑖
𝑖 .

Example 2: Let𝐺 = SL𝑟+1(C). Again 𝑇 is the diagonal subgroup but now if 𝜆 ∈ ZΔ = {(𝑑, · · · , 𝑑)|𝑑 ∈ Z} ⊆ Z𝑟+1

then
∏︀
𝑡𝜆𝑖
𝑖 = det(t)𝑑 = 1, so 𝑋*(𝑇) ∼= Z𝑟+1/ZΔ ∼= Z𝑟.

• Elements of Λ are called weights.

• If 𝜋 : 𝐺 → 𝐺𝐿(𝑉) is any representation we may restrict 𝜋 to 𝑇 . Then the characters of 𝑇 that occur in this
restriction are called the weights of 𝜋.

• 𝐺 acts on its Lie algebra by conjugation (the adjoint representation).

• The nonzero weights of the adjoint representation are called roots.

• The ambient space of Λ is Q⊗ Λ.

The root system

As we have mentioned, 𝐺 acts on its complexified Lie algebra gC by the adjoint representation. The zero weight space
gC(0) is just the Lie algebra of 𝑇 itself. The other nonzero weights each appear with multiplicity one and form an
interesting configuration of vectors called the root system Φ.

It is convenient to partition Φ into two sets Φ+ and Φ− such that Φ+ consists of all roots lying on one side of a
hyperplane. Often we arrange things so that 𝐺 is embedded in 𝐺𝐿(𝑛,C) in such a way that the positive weights
correspond to upper triangular matrices. Thus if 𝛼 is a positive root, its weight space gC(𝛼) is spanned by a vector
𝑋𝛼, and the exponential of this eigenspace in 𝐺 is a one-parameter subgroup of unipotent matrices. It is always
possible to arrange that this one-parameter subgroup consists of upper triangular matrices.

If 𝛼 is a positive root that cannot be decomposed as a sum of other positive roots, then 𝛼 is called a simple root. If 𝐺
is semisimple of rank 𝑟, then 𝑟 is the number of positive roots. Let 𝛼1, . . . , 𝛼𝑟 be these.

The Weyl group

Let 𝐺 be a complex analytic group. Let 𝑇 be a maximal torus, and let 𝑁(𝑇) be its normalizer. Let 𝑊 = 𝑁(𝑇)/𝑇
be the Weyl group. It acts on 𝑇 by conjugation; therefore it acts on the weight lattice Λ and its ambient space. The
ambient space admits an inner product that is invariant under this action. Let (𝑣|𝑤) denote this inner product. If 𝛼 is
a root let 𝑟𝛼 denote the reflection in the hyperplane of the ambient space that is perpendicular to 𝛼. If 𝛼 = 𝛼𝑖 is a
simple root, then we use the notation 𝑠𝑖 to denote 𝑟𝛼.

Then 𝑠1, . . . , 𝑠𝑟 generate 𝑊 , which is a Coxeter group. This means that it is generated by elements 𝑠𝑖 of order two
and that if 𝑚(𝑖, 𝑗) is the order of 𝑠𝑖𝑠𝑗 , then

𝑊 =
⟨
𝑠𝑖 | 𝑠2𝑖 = 1, (𝑠𝑖𝑠𝑗)

𝑚(𝑖,𝑗) = 1
⟩

is a presentation. An important function ℓ : 𝑊 → Z is the length function, where ℓ(𝑤) is the length of the shortest
decomposition of 𝑤 into a product of simple reflections.

12.1. Thematic tutorial document tree 133

Thematic Tutorials, Release 8.0

The dual root system

The coroots are certain linear functionals on the ambient space that also form a root system. Since the ambient space
admits a 𝑊 -invariant inner product (|), they may be identified with elements of the ambient space itself. Then they
are proportional to the roots, though if the roots have different lengths, long roots correspond to short coroots and
conversely. The coroot corresponding to the root 𝛼 is

𝛼∨ =
2𝛼

(𝛼|𝛼)
.

We can also describe the natural pairing between coroots and roots using this invariant inner product as

⟨𝛼∨, 𝛽⟩ = 2
(𝛼|𝛽)

(𝛼|𝛼)
.

The Dynkin diagram

The Dynkin diagram is a graph whose vertices are in bijection with the set simple roots. We connect the vertices
corresponding to roots that are not orthogonal. Usually two such roots (vertices) make an angle of 2𝜋/3, in which case
we connect them with a single bond. Occasionally they may make an angle of 3𝜋/4 in which case we connect them
with a double bond, or 5𝜋/6 in which case we connect them with a triple bond. If the bond is single, the roots have
the same length with respect to the inner product on the ambient space. In the case of a double or triple bond, the two
simple roots in questions have different length, and the bond is drawn as an arrow from the long root to the short root.
Only the exceptional group 𝐺2 has a triple bond.

There are various ways to get the Dynkin diagram in Sage:

sage: DynkinDiagram("D5")
O 5
|
|

O---O---O---O
1 2 3 4
D5
sage: ct = CartanType("E6"); ct
['E', 6]
sage: ct.dynkin_diagram()

O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6
sage: B4 = WeylCharacterRing("B4"); B4
The Weyl Character Ring of Type B4 with Integer Ring coefficients
sage: B4.dynkin_diagram()
O---O---O=>=O
1 2 3 4
B4
sage: RootSystem("G2").dynkin_diagram()

3
O=<=O
1 2
G2

134 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The Cartan matrix

Consider the natural pairing ⟨ , ⟩ between coroots and roots, then the defining matrix of this pairing is called the
Cartan matrix. That is to say, the Cartan matrix 𝐴 = (𝑎𝑖𝑗)𝑖𝑗 is given by

𝑎𝑖𝑗 = ⟨𝛼∨
𝑖 , 𝛼𝑗⟩.

This uniquely corresponds to a root system/Dynkin diagram/Lie group.

We note that we have made a convention choice, and the opposite convention corresponds to taking the transpose of
the Cartan matrix.

Fundamental weights and the Weyl vector

There are certain weights 𝜔1, . . . , 𝜔𝑟 that:

⟨𝜔𝑗 , 𝛼𝑖⟩ = 2
(𝛼𝑖|𝜔𝑗)

(𝛼𝑖|𝛼𝑖)
= 𝛿𝑖𝑗 .

If 𝐺 is semisimple then these are uniquely determined, whereas if 𝐺 is reductive but not semisimple we may choose
them conveniently.

Let 𝜌 be the sum of the fundamental dominant weights. If 𝐺 is semisimple, then 𝜌 is half the sum of the positive
roots. In case 𝐺 is not semisimple, we have noted, the fundamental weights are not completely determined by the
inner product condition given above. If we make a different choice, then 𝜌 is altered by a vector that is orthogonal to
all roots. This is a harmless change for many purposes such as the Weyl character formula.

In Sage, this issue arises only for Cartan type 𝐴𝑟. See SL versus GL.

Representations and characters

Let 𝑇 be a maximal torus and Λ = 𝑋*(𝑇) be the group of rational characters. Then Λ ∼= Z𝑟.

• Recall that elements of Λ ∼= Z𝑟 are called weights.

• The Weyl group 𝑊 = 𝑁(𝑇)/𝑇 acts on 𝑇 , hence on Λ and its ambient space by conjugation.

• The ambient space Q⊗𝑋*(𝑇) ∼= Q𝑟 has a fundamental domain 𝒞+ for the Weyl group 𝑊 called the positive
Weyl chamber. Weights in 𝒞+ are called dominant.

• Then 𝒞+ consists of all vectors such that (𝛼|𝑣) ≥ 0 for all positive roots 𝛼.

• It is useful to embed Λ in R𝑟 and consider weights as lattice points.

• If (𝜋, 𝑉) is a representation then restricting to 𝑇 , the module 𝑉 decomposes into a direct sum of weight
eigenspaces 𝑉 (𝜇) with multiplicity 𝑚(𝜇) for weight 𝜇.

• There is a unique highest weight 𝜆 with respect to the partial order. We have 𝜆 ∈ 𝒞 and 𝑚(𝜆) = 1.

• 𝑉 ←→ 𝜆 gives a bijection between irreducible representations and weights 𝜆 in 𝒞+.

Assuming that 𝐺 is simply-connected (or more generally, reductive with a simply-connected derived group) every
dominant weight 𝜆 is the highest weight of a unique irreducible representation 𝜋𝜆, and 𝜆 ↦→ 𝜋𝜆 gives a parametrization
of the isomorphism classes of irreducible representations of 𝐺 by the dominant weights.

The character of 𝜋𝜆 is the function 𝜒𝜆(𝑔) = 𝑡𝑟(𝜋𝜆(𝑔)). It is determined by its values on 𝑇 . If (𝑧) ∈ 𝑇 and 𝜇 ∈ Λ, let
us write z𝜇 for the value of 𝜇 on z. Then the character:

𝜒𝜆(z) =
∑︁
𝜇∈Λ

𝑚(𝜇) z𝜆.

12.1. Thematic tutorial document tree 135

Thematic Tutorials, Release 8.0

Sometimes this is written

𝜒𝜆 =
∑︁
𝜇∈Λ

𝑚(𝜇) 𝑒𝜆.

The meaning of 𝑒𝜆 is subject to interpretation, but we may regard it as the image of the additive group Λ in its group
algebra. The character is then regarded as an element of this ring, the group algebra of Λ.

Representations: an example

In this example, 𝐺 = SL(3,C). We have drawn the weights of an irreducible representation with highest weight 𝜆.
The shaded region is 𝒞+. 𝜆 is a dominant weight, and the labeled vertices are the weights with positive multiplicity in
𝑉 (𝜆). The weights weights on the outside have 𝑚(𝜇) = 1, while the six interior weights (with double circles) have
𝑚(𝜇) = 2.

Partitions and Schur polynomials

The considerations of this section are particular to type𝐴. We review the relationship between characters of𝐺𝐿(𝑛,C)
and symmetric function theory.

A partition 𝜆 is a sequence of descending nonnegative integers:

𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛), 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ 0.

We do not distinguish between two partitions if they differ only by some trailing zeros, so (3, 2) = (3, 2, 0). If 𝑙 is the
last integer such that 𝜆𝑙 > 0 then we say that 𝑙 is the length of 𝜆. If 𝑘 =

∑︀
𝜆𝑖 then we say that 𝜆 is a partition of 𝑘

and write 𝜆 ⊢ 𝑘.

A partition of length ≤ 𝑛 = 𝑟 + 1 is therefore a dominant weight of type ['A',r]. Not every dominant
weight is a partition, since the coefficients in a dominant weight could be negative. Let us say that an element

136 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

𝜇 = (𝜇1, 𝜇2, · · · , 𝜇𝑛) of the ['A',r] root lattice is effective if the 𝜇𝑖 ≥ 0. Thus an effective dominant weight
of ['A',r] is a partition of length ≤ 𝑛, where 𝑛 = 𝑟 + 1.

Let 𝜆 be a dominant weight, and let 𝜒𝜆 be the character of 𝐺𝐿(𝑛,C) with highest weight 𝜆. If 𝑘 is any integer we
may consider the weight 𝜇 = (𝜆1 +𝑘, . . . , 𝜆𝑛 +𝑘) obtained by adding 𝑘 to each entry. Then 𝜒𝜇 = det𝑘 ⊗𝜒𝜆. Clearly
by choosing 𝑘 large enough, we may make 𝜇 effective.

So the characters of irreducible representations of 𝐺𝐿(𝑛,C) do not all correspond to partitions, but the characters
indexed by partitions (effective dominant weights) are enough that we can write any character det−𝑘 𝜒𝜇 where 𝜇 is a
partition. If we take 𝑘 = −𝜆𝑛 we could also arrange that the last entry in 𝜆 is zero.

If 𝜆 is an effective dominant weight, then every weight that appears in 𝜒𝜆 is effective. (Indeed, it lies in the convex
hull of 𝑤(𝜆) where 𝑤 runs through the Weyl group 𝑊 = 𝑆𝑛.) This means that if

𝑔 =

⎛⎜⎝ 𝑧1
. . .

𝑧𝑛

⎞⎟⎠ ∈ 𝐺𝐿(𝑛,C)

then 𝜒𝜆(𝑔) is a polynomial in the eigenvalues of 𝑔. This is the Schur polynomial 𝑠𝜆(𝑧1, . . . , 𝑧𝑛).

Affine Cartan types

There are also affine Cartan types, which correspond to (infinite dimensional) affine Lie algebras. There are affine
Cartan types of the form [`X`, r, 1] if X=A,B,C,D,E,F,G and [`X`, r] is an ordinary Cartan type. There
are also twisted affine types of the form [X, r, k], where 𝑘 = 2 or 3 if the Dynkin diagram of the ordinary Cartan
type [X, r] has an automorphism of degree 𝑘. When 𝑘 = 1, the affine Cartan type is said to be untwisted.

Illustrating some of the methods available for the untwisted affine Cartan type ['A', 4, 1]:

sage: ct = CartanType(['A',4,1]); ct
['A', 4, 1]
sage: ct.dual()
['A', 4, 1]
sage: ct.classical()
['A', 4]
sage: ct.dynkin_diagram()
0
O-----------+
| |
| |
O---O---O---O
1 2 3 4
A4~

The twisted affine Cartan types are relabeling of the duals of certain untwisted Cartan types:

sage: CartanType(['A',3,2])
['B', 2, 1]^*
sage: CartanType(['D',4,3])
['G', 2, 1]^* relabelled by {0: 0, 1: 2, 2: 1}

The affine root and the extended Dynkin diagram

For the extended Dynkin diagram, we add one negative root 𝛼0. For the untwisted types, this is the root whose
negative is the highest weight in the adjoint representation. Sometimes this is called the affine root. We make the

12.1. Thematic tutorial document tree 137

Thematic Tutorials, Release 8.0

Dynkin diagram as before by measuring the angles between the roots. This extended Dynkin diagram is useful for
many purposes, such as finding maximal subgroups and for describing the affine Weyl group.

In particular, the hyperplane for the reflection 𝑟0, used in generating the affine Weyl group is translated off the origin
(so it becomes an affine hyperplane). Now the root system is not described as linear transformations on an Euclidean
space, but instead by affine transformations. Thus the dominant chamber has finite volume and tiles the Eucledian
space. Moreover, each such tile corresponds to a unique element in the affine Weyl group.

The extended Dynkin diagram may be obtained as the Dynkin diagram of the corresponding untwisted affine type:

sage: ct = CartanType("E6"); ct
['E', 6]
sage: ct.affine()
['E', 6, 1]
sage: ct.affine() == CartanType(['E',6,1])
True
sage: ct.affine().dynkin_diagram()

O 0
|
|
O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6~

The extended Dynkin diagram is also a method of the WeylCharacterRing:

sage: WeylCharacterRing("E7").extended_dynkin_diagram()
O 2
|
|

O---O---O---O---O---O---O
0 1 3 4 5 6 7
E7~

We note the following important distinctions from the classical cases:

• The affine Weyl groups are all infinte.

• Type 𝐴(1)
1 has two anti-parallel roots with distinct reflections. The Dynkin diagram in this case is represented

by a double bond with arrows going in both directions.

Twisted affine root systems

For the construction of 𝛼0 in the twisted types, we refer the reader to Chaper 8 of [Kac]. As mentioned above, most
twisted types can be constructed by the taking the dual root system of an untwisted type. However the type 𝐴(2)

2𝑛 root
system which can only be constructed by the twisting procedure defined in [Kac]. It has the following properties:

• The Dynkin diagram of type 𝐴(2)
2 has a quadruple bond with an arrow pointing from the short root to the long

root.

• Type 𝐴(2)
2𝑛 for 𝑛 > 1 has 3 different root lengths.

138 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Further Generalizations

If a root system (on an Euclidean space) has only the angles 𝜋/2, 2𝜋/3, 3𝜋/4, 5𝜋/6 between its roots, then we call the
root system crystallographic (on Wikipedia article Root_system, this condition is called integrality since for any two
roots we have ⟨𝛽, 𝛼⟩ ∈ Z). So if we look at the reflection group generated by the roots (this is not a Weyl group), we
get general Coxeter groups (with non-infinite labels) and non-crystallographic Coxeter groups are not connected with
Lie theory.

However we can generalize Dynkin diagrams (equivalently Cartan matrices) to have all its edges labelled by (𝑎, 𝑏)
where 𝑎, 𝑏 ∈ Z>0 and corresponds to having 𝑎 arrows point one way and 𝑏 arrows pointing the other. For example in
type 𝐴(1)

1 , we have one edge of (2, 2), or in type 𝐴(2)
2 , we have one edge of (1, 4) (equivalently (4, 1)). These edge

label between 𝑖 and 𝑗 corresponds to the entries 𝑎𝑖𝑗 and 𝑎𝑗𝑖 in the Cartan matrix. These are used to construct a class
of (generally infinite dimensional) Lie algebras called Kac-Moody (Lie) algebras, which in turn are used to construct
quantum groups. We refer the reader to [Kac] and [HongKang2002] for more information.

The Weyl Character Ring

Weyl character rings

The Weyl character ring is the representation ring of a compact Lie group. It has a basis consisting of the irreducible
representations of 𝐺, or equivalently, their characters. The addition and multiplication in the Weyl character ring
correspond to direct sum and tensor product of representations.

Methods of the ambient space

In Sage, many useful features of the Lie group are available as methods of the ambient space:

sage: S = RootSystem("B2").ambient_space(); S
Ambient space of the Root system of type ['B', 2]
sage: S.roots()
[(1, -1), (1, 1), (1, 0), (0, 1), (-1, 1), (-1, -1), (-1, 0), (0, -1)]
sage: S.fundamental_weights()
Finite family {1: (1, 0), 2: (1/2, 1/2)}
sage: S.positive_roots()
[(1, -1), (1, 1), (1, 0), (0, 1)]
sage: S.weyl_group()
Weyl Group of type ['B', 2] (as a matrix group acting on the ambient space)

Methods of the Weyl character ring

If you are going to work with representations, you may want to create a Weyl Character ring. Many methods of the
ambient space are available as methods of the Weyl character ring:

sage: B3 = WeylCharacterRing("B3")
sage: B3.fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}
sage: B3.simple_roots()
Finite family {1: (1, -1, 0), 2: (0, 1, -1), 3: (0, 0, 1)}
sage: B3.dynkin_diagram()
O---O=>=O
1 2 3
B3

12.1. Thematic tutorial document tree 139

https://en.wikipedia.org/wiki/Root_system
https://en.wikipedia.org/wiki/Coxeter_group

Thematic Tutorials, Release 8.0

Other useful methods of the Weyl character ring include:

• cartan_type

• highest_root

• positive_root

• extended_dynkin_diagram

• rank

Some methods of the ambient space are not implemented as methods of the Weyl character ring. However, the ambient
space itself is a method, and so you have access to its methods from the Weyl character ring:

sage: B3 = WeylCharacterRing("B3")
sage: B3.space().weyl_group()
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
sage: B3.space()
Ambient space of the Root system of type ['B', 3]
sage: B3.space().rho()
(5/2, 3/2, 1/2)
sage: B3.cartan_type()
['B', 3]

Coroot notation

It is useful to give the Weyl character ring a name that corresponds to its Cartan type. This has the effect that the ring
can parse its own output:

sage: G2 = WeylCharacterRing("G2")
sage: [G2(fw) for fw in G2.fundamental_weights()]
[G2(1,0,-1), G2(2,-1,-1)]
sage: G2(1,0,-1)
G2(1,0,-1)

Actually the prefix for the ring is configurable, so you don’t really have to call this ring G2. Type
WeylCharacterRing? at the sage: prompt for details.

There is one important option that you may want to know about. This is coroot notation. You select this by speci-
fying the option style="coroots" when you create the ring. With the coroot style, the fundamental weights are
represented (1,0,0, ...), (0,1,0,...) instead of as vectors in the ambient space:

sage: B3 = WeylCharacterRing("B3", style="coroots")
sage: [B3(fw) for fw in B3.fundamental_weights()]
[B3(1,0,0), B3(0,1,0), B3(0,0,1)]
sage: B3(0,0,1)
B3(0,0,1)
sage: B3(0,0,1).degree()
8

The last representation is the eight dimensional spin representation of𝐺 = 𝑠𝑝𝑖𝑛(7), the double cover of the orthogonal
group 𝑆𝑂(7). In the default notation it would be represented B3(1/2,1/2,1/2).

With the coroot notation every irreducible representation is represented B3(a,b,c)where a, b and c are nonnegative
integers. This is often convenient. For many purposes the coroot style is preferable.

One disadvantage: in the coroot style the Lie group or Lie algebra is treated as semisimple, so you lose the distinction
between 𝐺𝐿(𝑛) and 𝑆𝐿(𝑛); you also some information about representations of E6 and E7 for the same reason.

140 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Tensor products of representations

The multiplication in the Weyl character ring corresponds to tensor product. This gives us a convenient way of
decomposing a tensor product into irreducibles:

sage: B3 = WeylCharacterRing("B3")
sage: fw = B3.fundamental_weights()
sage: spinweight = fw[3]; spinweight
(1/2, 1/2, 1/2)
sage: spin = B3(spinweight); spin
B3(1/2,1/2,1/2)
sage: spin.degree()
8

The element 𝑠𝑝𝑖𝑛 of the WeylCharacterRing is the representation corresponding to the third highest weight represen-
tation, the eight-dimensional spin representation of 𝑠𝑝𝑖𝑛(7). We could just as easily construct it with the commmand:

sage: spin = B3(1/2,1/2,1/2)

We may compute its tensor product with itself, using the multiplicative structure of the Weyl character ring:

sage: chi = spin*spin; chi
B3(0,0,0) + B3(1,0,0) + B3(1,1,0) + B3(1,1,1)

We have taken the eight-dimensional spin representation and tensored with itself. We see that the tensor square splits
into four irreducibles, each with multiplicity one.

The highest weights that appear here are available (with their coefficients) through the usual free module accessors:

sage: from pprint import pprint
sage: list(chi) # random
[((1, 1, 1), 1), ((0, 0, 0), 1), ((1, 0, 0), 1), ((1, 1, 0), 1)]
sage: sorted(chi, key=str)
[((0, 0, 0), 1), ((1, 0, 0), 1), ((1, 1, 0), 1), ((1, 1, 1), 1)]
sage: pprint(dict(chi))
{(0, 0, 0): 1, (1, 0, 0): 1, (1, 1, 0): 1, (1, 1, 1): 1}
sage: M = sorted(chi.monomials(), key=lambda x: x.support()); M
[B3(0,0,0), B3(1,0,0), B3(1,1,0), B3(1,1,1)]
sage: sorted(chi.support())
[(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)]
sage: chi.coefficients()
[1, 1, 1, 1]
sage: [r.degree() for r in M]
[1, 7, 21, 35]
sage: sum(r.degree() for r in chi.monomials())
64

Here we have extracted the individual representations, computed their degrees and checked that they sum up to 64.

Weight multiplicities

The weights of the character are available (with their coefficients) through the method weight_multiplicities.
Continuing from the example in the last section:

sage: pprint(chi.weight_multiplicities())
{(0, 0, 0): 8, (-1, 0, 0): 4, (-1, -1, 0): 2, (-1, -1, -1): 1,

12.1. Thematic tutorial document tree 141

Thematic Tutorials, Release 8.0

(-1, -1, 1): 1, (-1, 1, 0): 2, (-1, 1, -1): 1, (-1, 1, 1): 1,
(-1, 0, -1): 2, (-1, 0, 1): 2, (1, 0, 0): 4, (1, -1, 0): 2,
(1, -1, -1): 1, (1, -1, 1): 1, (1, 1, 0): 2, (1, 1, -1): 1,
(1, 1, 1): 1, (1, 0, -1): 2, (1, 0, 1): 2, (0, -1, 0): 4,
(0, -1, -1): 2, (0, -1, 1): 2, (0, 1, 0): 4, (0, 1, -1): 2,
(0, 1, 1): 2, (0, 0, -1): 4, (0, 0, 1): 4}

Each key of this dictionary is a weight, and its value is the multiplicity of that weight in the character.

Example

Suppose that we wish to compute the integral ∫︁
𝑈(𝑛)

|𝑡𝑟(𝑔)|2𝑘 𝑑𝑔

for various 𝑛. Here 𝑈(𝑛) is the unitary group, which is the maximal compact subroup of 𝐺𝐿(𝑛,C). The irreducible
unitary representations of 𝑈(𝑛) may be regarded as the basis elements of the WeylCharacterRing of type 𝐴𝑟, where
𝑟 = 𝑛 − 1 so we might work in that ring. The trace 𝑡𝑟(𝑔) is then just the character of the standard representation.
We may realize it in the WeylCharacterRing by taking the first fundamental weight and coercing it into the ring. For
example, if 𝑘 = 5 and 𝑛 = 3 so 𝑟 = 2:

sage: A2 = WeylCharacterRing("A2")
sage: fw = A2.fundamental_weights(); fw
Finite family {1: (1, 0, 0), 2: (1, 1, 0)}
sage: tr = A2(fw[1]); tr
A2(1,0,0)

We may compute the norm square the character tr^5 by decomposing it into irreducibles, and taking the sum of the
squares of their multiplicities. By Schur orthogonality, this gives the inner product of the 𝑡𝑟(𝑔)5 with itself, that is, the
integral of |𝑡𝑟(𝑔)|10:

sage: sum(d^2 for d in (tr^5).coefficients())
103

So far we have been working with 𝑛 = 3. For general 𝑛:

sage: def f(n,k):
....: R = WeylCharacterRing(['A',n-1])
....: tr = R(R.fundamental_weights()[1])
....: return sum(d^2 for d in (tr^k).coefficients())
sage: [f(n,5) for n in [2..7]]
[42, 103, 119, 120, 120, 120]

We see that the 10-th moment of 𝑡𝑟(𝑔) is just 5! when 𝑛 is sufficiently large. What if we fix 𝑛 and vary 𝑘?

sage: [f(2,k) for k in [1..10]]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796]
sage: [catalan_number(k) for k in [1..10]]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796]

142 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Frobenius-Schur indicator

The Frobeinus-Schur indicator of an irreducible representation of a compact Lie group 𝐺 with character 𝜒 is:∫︁
𝐺

𝜒(𝑔2) 𝑑𝑔

The Haar measure is normalized so that 𝑣𝑜𝑙(𝐺) = 1. The Frobenius-Schur indicator equals 1 if the representation is
real (orthogonal),−1 if it is quaternionic (symplectic) and 0 if it is complex (not self-contragredient). This is a method
of weight ring elements corresponding to irreducible representations. Let us compute the Frobenius-Schur indicators
of the spin representations of some odd spin groups:

sage: def spinrepn(r):
....: R = WeylCharacterRing(['B',r])
....: return R(R.fundamental_weights()[r])
....:
sage: spinrepn(3)
B3(1/2,1/2,1/2)
sage: for r in [1..4]:
....: print("{} {}".format(r, spinrepn(r).frobenius_schur_indicator()))
1 -1
2 -1
3 1
4 1

Here we have defined a function that returns the spin representation of the group 𝑠𝑝𝑖𝑛(2𝑟 + 1) with Cartan type
[′𝐵′, 𝑟], then computed the Frobenius-Schur indicators for a few values. From this experiment we see that the spin
representations of 𝑠𝑝𝑖𝑛(3) and 𝑠𝑝𝑖𝑛(5) are symplectic, while those of 𝑠𝑝𝑖𝑛(7) and 𝑠𝑝𝑖𝑛(9) are orthogonal.

Symmetric and exterior powers

Sage can compute symmetric and exterior powers of a representation:

sage: B3 = WeylCharacterRing("B3",style="coroots")
sage: spin = B3(0,0,1); spin.degree()
8
sage: spin.exterior_power(2)
B3(1,0,0) + B3(0,1,0)
sage: spin.exterior_square()
B3(1,0,0) + B3(0,1,0)
sage: spin.exterior_power(5)
B3(0,0,1) + B3(1,0,1)
sage: spin.symmetric_power(5)
B3(0,0,1) + B3(0,0,3) + B3(0,0,5)

The 𝑘-th exterior square of a representation is zero if 𝑘 is greater than the degree of the representation. However the
𝑘-th symmetric power is nonzero for all 𝑘.

The tensor square of any representation decomposes as the direct sum of the symmetric and exterior squares:

sage: C4 = WeylCharacterRing("C4",style="coroots")
sage: chi = C4(1,0,0,0); chi.degree()
8
sage: chi.symmetric_square()
C4(2,0,0,0)
sage: chi.exterior_square()
C4(0,0,0,0) + C4(0,1,0,0)

12.1. Thematic tutorial document tree 143

Thematic Tutorials, Release 8.0

sage: chi^2 == chi.symmetric_square() + chi.exterior_square()
True

Since in this example the exterior square contains the trivial representation we expect the Frobenius-Schur indicator
to be −1, and indeed it is:

sage: chi = C4(1,0,0,0)
sage: chi.frobenius_schur_indicator()
-1

This is not surprising since this is the standard representation of a symplectic group, which is symplectic by definition!

Weyl dimension formula

If the representation is truly large you will not be able to construct it in the Weyl character ring, since internally it
is represented by a dictionary of its weights. If you want to know its degree, you can still compute that since Sage
implements the Weyl dimension formula. The degree of the representation is implemented as a method of its highest
weight vector:

sage: L = RootSystem("E8").ambient_space()
sage: [L.weyl_dimension(f) for f in L.fundamental_weights()]
[3875, 147250, 6696000, 6899079264, 146325270, 2450240, 30380, 248]

It is a fact that for any compact Lie group if 𝜌 is the Weyl vector (half the sum of the positive roots) then the degree of
the irreducible representation with highest weight 𝜌 equals 2𝑁 where 𝑁 is the number of positive roots. Let us check
this for 𝐸8. In this case 𝑁 = 120:

sage: L = RootSystem("E8").ambient_space()
sage: len(L.positive_roots())
120
sage: 2^120
1329227995784915872903807060280344576
sage: L.weyl_dimension(L.rho())
1329227995784915872903807060280344576

SL versus GL

Sage takes the weight space for type ['A',r] to be 𝑟 + 1 dimensional. As a by-product, if you create the Weyl
character ring with the command:

sage: A2 = WeylCharacterRing("A2")

Then you are effectively working with 𝐺𝐿(3) instead of 𝑆𝐿(3). For example, the determinant is the character A2(1,
1,1). However, as we will explain later, you can work with 𝑆𝐿(3) if you like, so long as you are willing to work
with fractional weights. On the other hand if you create the Weyl character ring with the command:

sage: A2 = WeylCharacterRing("A2", style="coroots")

Then you are working with 𝑆𝐿(3).

There are some advantages to this arrangement:

• The group 𝐺𝐿(𝑟 + 1) arises frequently in practice. For example, even if you care mainly about semisimple
groups, the group 𝐺𝐿(𝑟 + 1) may arise as a Levi subgroup.

144 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

• It avoids fractional weights. If you want to work with 𝑆𝐿(3) the fundamental weights are (2/3,-1/3,-1/
3) and (1/3,1/3,-2/3). If you work instead with 𝐺𝐿(3), they are (1,0,0) and (1,1,0). For many
mathematical purposes it doesn’t make any difference which you use. This is because the difference between
(2/3,-1/3,-1/3) and (1,0,0) is a vector that is orthogonal to all the simple roots. Thus these vectors
are interchangeable. But for convenience avoiding fractional weights is advantageous.

However if you want to be an 𝑆𝐿 purist, Sage will support you. The weight space for 𝑆𝐿(3) can be taken to be the
hyperplane in Q3 consisting of vectors (𝑎, 𝑏, 𝑐) with 𝑎 + 𝑏 + 𝑐 = 0. The fundamental weights for SL(3) are then
(2/3,-1/3,-1/3) and (1/3,1/3,-2/3), though Sage will tell you they are (1,0,0) and (1,1,0). The
work-around is to filter them through the method coerce_to_sl as follows:

sage: A2 = WeylCharacterRing("A2")
sage: [fw1,fw2] = [w.coerce_to_sl() for w in A2.fundamental_weights()]
sage: [standard, contragredient] = [A2(fw1), A2(fw2)]
sage: standard, contragredient
(A2(2/3,-1/3,-1/3), A2(1/3,1/3,-2/3))
sage: standard*contragredient
A2(0,0,0) + A2(1,0,-1)

Sage is not confused by the fractional weights. Note that if you use coroot notation, you are working with 𝑆𝐿
automatically:

sage: A2 = WeylCharacterRing("A2", style="coroots")
sage: A2(1,0).weight_multiplicities()
{(-1/3, -1/3, 2/3): 1, (-1/3, 2/3, -1/3): 1, (2/3, -1/3, -1/3): 1}

There is no convenient way to create the determinant in the Weyl character ring if you adopt the coroot style.

Just as we coerced the fundamental weights into the 𝑆𝐿 weight lattice, you may need to coerce the Weyl vector 𝜌 if
you are working with 𝑆𝐿. The default value for 𝜌 in type 𝐴𝑟 is (𝑟, 𝑟− 1, . . . , 0), but if you are an 𝑆𝐿 purist you want(︁𝑟

2
,
𝑟

2
− 1, . . . ,−𝑟

2

)︁
.

Therefore take the value of 𝜌 that you get from the method of the ambient space and coerce it into 𝑆𝐿:

sage: A2 = WeylCharacterRing("A2", style="coroots")
sage: rho = A2.space().rho().coerce_to_sl(); rho
(1, 0, -1)
sage: rho == (1/2)*sum(A2.space().positive_roots())
True

You do not need to do this for other Cartan types. If you are working with (say) 𝐹4 then a 𝜌 is a 𝜌:

sage: F4 = WeylCharacterRing("F4")
sage: L = F4.space()
sage: rho = L.rho()
sage: rho == (1/2)*sum(L.positive_roots())
True

Integration

Suppose that we wish to compute the integral ∫︁
𝑈(𝑛)

|𝑡𝑟(𝑔)|2𝑘 𝑑𝑔

12.1. Thematic tutorial document tree 145

Thematic Tutorials, Release 8.0

for various 𝑛. Here 𝑈(𝑛) is the unitary group, which is the maximal compact subroup of 𝐺𝐿(𝑛,C), and 𝑑𝑔 is the
Haar measure on 𝑈(𝑛), normalized so that the volume of the group is 1.

The irreducible unitary representations of 𝑈(𝑛) may be regarded as the basis elements of the WeylCharacterRing of
type 𝐴𝑟, where 𝑟 = 𝑛 − 1 so we might work in that ring. The trace 𝑡𝑟(𝑔) is then just the character of the standard
representation. We may realize it in the WeylCharacterRing by taking the first fundamental weight and coercing it into
the ring. For example, if 𝑘 = 5 and 𝑛 = 3 so 𝑟 = 2:

sage: A2 = WeylCharacterRing("A2")
sage: fw = A2.fundamental_weights(); fw
Finite family {1: (1, 0, 0), 2: (1, 1, 0)}
sage: tr = A2(fw[1]); tr
A2(1,0,0)

We may compute the norm square the character tr^5 by decomposing it into irreducibles, and taking the sum of the
squares of their multiplicities. By Schur orthogonality, this gives the inner product of the 𝑡𝑟(𝑔)5 with itself, that is, the
integral of |𝑡𝑟(𝑔)|10:

sage: tr^5
5*A2(2,2,1) + 6*A2(3,1,1) + 5*A2(3,2,0) + 4*A2(4,1,0) + A2(5,0,0)
sage: sorted((tr^5).monomials(), key=lambda x: x.support())
[A2(2,2,1), A2(3,1,1), A2(3,2,0), A2(4,1,0), A2(5,0,0)]
sage: sorted((tr^5).coefficients())
[1, 4, 5, 5, 6]
sage: sum(x^2 for x in (tr^5).coefficients())
103

So far we have been working with 𝑛 = 3. For general 𝑛:

sage: def f(n,k):
....: R = WeylCharacterRing(['A',n-1])
....: tr = R(R.fundamental_weights()[1])
....: return sum(x^2 for x in (tr^k).coefficients())
....:
sage: [f(n,5) for n in [2..7]] # long time (31s on sage.math, 2012)
[42, 103, 119, 120, 120, 120]

We see that the 10-th moment of 𝑡𝑟(𝑔) is just 5! when 𝑛 is sufficiently large. What if we fix 𝑛 and vary 𝑘?

sage: [f(2,k) for k in [1..10]]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796]
sage: [catalan_number(k) for k in [1..10]]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796]

Invariants and multiplicities

Sometimes we are only interested in the multiplicity of the trivial representation in some character. This may be found
by the method invariant_degree. Continuing from the preceding example,

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: ad = A2(1,1)
sage: [ad.symmetric_power(k).invariant_degree() for k in [0..6]]
[1, 0, 1, 1, 1, 1, 2]
sage: [ad.exterior_power(k).invariant_degree() for k in [0..6]]
[1, 0, 0, 1, 0, 1, 0]

146 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

If we want the multiplicity of some other representation, we may obtain that using the method multiplicity:

sage: (ad^3).multiplicity(ad)
8

Maximal Subgroups and Branching Rules

Branching rules

If 𝐺 is a Lie group and 𝐻 is a subgroup, one often needs to know how representations of 𝐺 restrict to 𝐻 . Irreducibles
usually do not restrict to irreducibles. In some cases the restriction is regular and predictable, in other cases it is
chaotic. In some cases it follows a rule that can be described combinatorially, but the combinatorial description is
subtle. The description of how irreducibles decompose into irreducibles is called a branching rule.

References for this topic:

• [FauserEtAl2006]

• [King1975]

• [HoweEtAl2005]

• [McKayPatera1981]

Sage can compute how a character of 𝐺 restricts to 𝐻 . It does so not by memorizing a combinatorial rule, but
by computing the character and restricting the character to a maximal torus of 𝐻 . What Sage has memorized (in
a series of built-in encoded rules) are the various embeddings of maximal tori of maximal subgroups of 𝐺. The
maximal subgroups of Lie groups were determined in [Dynkin1952]. This approach to computing branching rules has
a limitation: the character must fit into memory and be computable by Sage’s internal code in real time.

It is sufficient to consider the case where 𝐻 is a maximal subgroup of 𝐺, since if this is known then one may branch
down successively through a series of subgroups, each maximal in its predecessors. A problem is therefore to un-
derstand the maximal subgroups in a Lie group, and to give branching rules for each, and a goal of this tutorial is to
explain the embeddings of maximal subgroups.

Sage has a class BranchingRule for branching rules. The function branching_rule returns elements of this
class. For example, the natural embedding of 𝑆𝑝(4) into 𝑆𝐿(4) corresponds to the branching rule that we may create
as follows:

sage: b=branching_rule("A3","C2",rule="symmetric"); b
symmetric branching rule A3 => C2

The name “symmetric” of this branching rule will be explained further later, but it means that 𝑆𝑝(4) is the fixed
subgroup of an involution of 𝑆𝑙(4). Here A3 and C2 are the Cartan types of the groups 𝐺 = 𝑆𝐿(4) and 𝐻 = 𝑆𝑝(4).

Now we may see how representations of 𝑆𝐿(4) decompose into irreducibles when they are restricted to 𝑆𝑝(4):

sage: A3=WeylCharacterRing("A3",style="coroots")
sage: chi=A3(1,0,1); chi.degree()
15
sage: C2=WeylCharacterRing("C2",style="coroots")
sage: chi.branch(C2,rule=b)
C2(0,1) + C2(2,0)

Alternatively, we may pass chi to b as an argument of its branch method, which gives the same result:

sage: b.branch(chi)
C2(0,1) + C2(2,0)

12.1. Thematic tutorial document tree 147

Thematic Tutorials, Release 8.0

It is believed that the built-in branching rules of Sage are sufficient to handle all maximal subgroups and this is certainly
the case when the rank if less than or equal to 8.

However, if you want to branch to a subgroup that is not maximal you may not find a built-in branching rule. We
may compose branching rules to build up embeddings. For example, here are two different embeddings of 𝑆𝑝(4) with
Cartan type C2 in 𝑆𝑝(8), with Cartan type C4. One embedding factors through 𝑆𝑝(4)×𝑆𝑝(4), while the other factors
through 𝑆𝐿(4). To check that the embeddings are not conjugate, we branch a (randomly chosen) representation.
Observe that we do not have to build the intermediate Weyl character rings.

sage: C4=WeylCharacterRing("C4",style="coroots")
sage: b1=branching_rule("C4","A3","levi")*branching_rule("A3","C2","symmetric"); b1
composite branching rule C4 => (levi) A3 => (symmetric) C2
sage: b2=branching_rule("C4","C2xC2","orthogonal_sum")*branching_rule("C2xC2","C2",
→˓"proj1"); b2
composite branching rule C4 => (orthogonal_sum) C2xC2 => (proj1) C2
sage: C2=WeylCharacterRing("C2",style="coroots")
sage: C4=WeylCharacterRing("C4",style="coroots")
sage: [C4(2,0,0,1).branch(C2, rule=br) for br in [b1,b2]]
[4*C2(0,0) + 7*C2(0,1) + 15*C2(2,0) + 7*C2(0,2) + 11*C2(2,1) + C2(0,3) + 6*C2(4,0) +
→˓3*C2(2,2),
10*C2(0,0) + 40*C2(1,0) + 50*C2(0,1) + 16*C2(2,0) + 20*C2(1,1) + 4*C2(3,0) + 5*C2(2,
→˓1)]

What’s in a branching rule?

The essence of the branching rule is a function from the weight lattice of 𝐺 to the weight lattice of the subgroup 𝐻 ,
usually implemented as a function on the ambient vector spaces. Indeed, we may conjugate the embedding so that a
Cartan subalgebra 𝑈 of 𝐻 is contained in a Cartan subalgebra 𝑇 of 𝐺. Since the ambient vector space of the weight
lattice of 𝐺 is Lie(𝑇)*, we get map Lie(𝑇)* → Lie(𝑈)*, and this must be implemented as a function. For speed, the
function usually just returns a list, which can be coerced into Lie(𝑈)*.

sage: b = branching_rule("A3","C2","symmetric")
sage: for r in RootSystem("A3").ambient_space().simple_roots():
....: print("{} {}".format(r, b(r)))
(1, -1, 0, 0) [1, -1]
(0, 1, -1, 0) [0, 2]
(0, 0, 1, -1) [1, -1]

We could conjugate this map by an element of the Weyl group of 𝐺, and the resulting map would give the same
decomposition of representations of 𝐺 into irreducibles of 𝐻 . However it is a good idea to choose the map so that it
takes dominant weights to dominant weights, and, insofar as possible, simple roots of 𝐺 into simple roots of 𝐻 . This
includes sometimes the affine root 𝛼0 of 𝐺, which we recall is the negative of the highest root.

The branching rule has a describe() method that shows how the roots (including the affine root) restrict. This is a
useful way of understanding the embedding. You might want to try it with various branching rules of different kinds,
"extended", "symmetric", "levi" etc.

sage: b.describe()

0
O-------+
| |
| |
O---O---O
1 2 3
A3~

148 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

root restrictions A3 => C2:

O=<=O
1 2
C2

1 => 1
2 => 2
3 => 1

For more detailed information use verbose=True

The extended Dynkin diagram of 𝐺 and the ordinary Dynkin diagram of 𝐻 are shown for reference, and 3 => 1
means that the third simple root 𝛼3 of 𝐺 restricts to the first simple root of 𝐻 . In this example, the affine root does
not restrict to a simple roots, so it is omitted from the list of restrictions. If you add the parameter verbose=true
you will be shown the restriction of all simple roots and the affine root, and also the restrictions of the fundamental
weights (in coroot notation).

Maximal subgroups

Sage has a database of maximal subgroups for every simple Cartan type of rank ≤ 8. You may access this with the
maximal_subgroups method of the Weyl character ring:

sage: E7=WeylCharacterRing("E7",style="coroots")
sage: E7.maximal_subgroups()
A7:branching_rule("E7","A7","extended")
E6:branching_rule("E7","E6","levi")
A2:branching_rule("E7","A2","miscellaneous")
A1:branching_rule("E7","A1","iii")
A1:branching_rule("E7","A1","iv")
A1xF4:branching_rule("E7","A1xF4","miscellaneous")
G2xC3:branching_rule("E7","G2xC3","miscellaneous")
A1xG2:branching_rule("E7","A1xG2","miscellaneous")
A1xA1:branching_rule("E7","A1xA1","miscellaneous")
A1xD6:branching_rule("E7","A1xD6","extended")
A5xA2:branching_rule("E7","A5xA2","extended")

It should be understood that there are other ways of embedding 𝐴2 = SL(3) into the Lie group 𝐸7, but only one
way as a maximal subgroup. On the other hand, there are but only one way to embed it as a maximal subgroup.
The embedding will be explained below. You may obtain the branching rule as follows, and use it to determine the
decomposition of irreducible representations of 𝐸7 as follows:

sage: b = E7.maximal_subgroup("A2"); b
miscellaneous branching rule E7 => A2
sage: [E7,A2]=[WeylCharacterRing(x,style="coroots") for x in ["E7","A2"]]
sage: E7(1,0,0,0,0,0,0).branch(A2,rule=b)
A2(1,1) + A2(4,4)

This gives the same branching rule as just pasting line beginning to the right of the colon onto the command line:

sage:branching_rule("E7","A2","miscellaneous")
miscellaneous branching rule E7 => A2

There are two distict embeddings of 𝐴1 = SL(2) into 𝐸7 as maximal subgroups, so the maximal_subgroup
method will return a list of rules:

12.1. Thematic tutorial document tree 149

Thematic Tutorials, Release 8.0

sage: WeylCharacterRing("E7").maximal_subgroup("A1")
[iii branching rule E7 => A1, iv branching rule E7 => A1]

The list of maximal subgroups returned by the maximal_subgroups method for irreducible Cartan types of rank
up to 8 is believed to be complete up to outer automorphisms. You may want a list that is complete up to inner
automorphisms. For example, 𝐸6 has a nontrivial Dynkin diagram automorphism so it has an outer automorphism that
is not inner:

sage: [E6,A2xG2]=[WeylCharacterRing(x,style="coroots") for x in ["E6","A2xG2"]]
sage: b=E6.maximal_subgroup("A2xG2"); b
miscellaneous branching rule E6 => A2xG2
sage: E6(1,0,0,0,0,0).branch(A2xG2,rule=b)
A2xG2(0,1,1,0) + A2xG2(2,0,0,0)
sage: E6(0,0,0,0,0,1).branch(A2xG2,rule=b)
A2xG2(1,0,1,0) + A2xG2(0,2,0,0)

Since as we see the two 27 dimensional irreducibles (which are interchanged by the outer automorphism) have different
branching, the 𝐴2 × 𝐺2 subgroup is changed to a different one by the outer automorphism. To obtain the second
branching rule, we compose the given one with this automorphism:

sage: b1=branching_rule("E6","E6","automorphic")*b; b1
composite branching rule E6 => (automorphic) E6 => (miscellaneous) A2xG2

Levi subgroups

A Levi subgroup may or may not be maximal. They are easily classified. If one starts with a Dynkin diagram for 𝐺
and removes a single node, one obtains a smaller Dynkin diagram, which is the Dynkin diagram of a smaller subgroup
𝐻 .

For example, here is the A3 Dynkin diagram:

sage: A3 = WeylCharacterRing("A3")
sage: A3.dynkin_diagram()
O---O---O
1 2 3
A3

We see that we may remove the node 3 and obtain 𝐴2, or the node 2 and obtain 𝐴1 × 𝐴1. These correspond to the
Levi subgroups 𝐺𝐿(3) and 𝐺𝐿(2)×𝐺𝐿(2) of 𝐺𝐿(4).

Let us construct the irreducible representations of𝐺𝐿(4) and branch them down to these down to𝐺𝐿(3) and𝐺𝐿(2)×
𝐺𝐿(2):

sage: reps = [A3(v) for v in A3.fundamental_weights()]; reps
[A3(1,0,0,0), A3(1,1,0,0), A3(1,1,1,0)]
sage: A2 = WeylCharacterRing("A2")
sage: A1xA1 = WeylCharacterRing("A1xA1")
sage: [pi.branch(A2, rule="levi") for pi in reps]
[A2(0,0,0) + A2(1,0,0), A2(1,0,0) + A2(1,1,0), A2(1,1,0) + A2(1,1,1)]
sage: [pi.branch(A1xA1, rule="levi") for pi in reps]
[A1xA1(1,0,0,0) + A1xA1(0,0,1,0),
A1xA1(1,1,0,0) + A1xA1(1,0,1,0) + A1xA1(0,0,1,1),
A1xA1(1,1,1,0) + A1xA1(1,0,1,1)]

Let us redo this calculation in coroot notation. As we have explained, coroot notation does not distinguish between
representations of 𝐺𝐿(4) that have the same restriction to 𝑆𝐿(4), so in effect we are now working with the groups

150 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

𝑆𝐿(4) and its Levi subgroups 𝑆𝐿(3) and 𝑆𝐿(2)× 𝑆𝐿(2), which is the derived group of its Levi subgroup:

sage: A3 = WeylCharacterRing("A3", style="coroots")
sage: reps = [A3(v) for v in A3.fundamental_weights()]; reps
[A3(1,0,0), A3(0,1,0), A3(0,0,1)]
sage: A2 = WeylCharacterRing("A2", style="coroots")
sage: A1xA1 = WeylCharacterRing("A1xA1", style="coroots")
sage: [pi.branch(A2, rule="levi") for pi in reps]
[A2(0,0) + A2(1,0), A2(0,1) + A2(1,0), A2(0,0) + A2(0,1)]
sage: [pi.branch(A1xA1, rule="levi") for pi in reps]
[A1xA1(1,0) + A1xA1(0,1), 2*A1xA1(0,0) + A1xA1(1,1), A1xA1(1,0) + A1xA1(0,1)]

Now we may observe a distinction difference in branching from

𝐺𝐿(4)→ 𝐺𝐿(2)×𝐺𝐿(2)

versus

𝑆𝐿(4)→ 𝑆𝐿(2)× 𝑆𝐿(2).

Consider the representation A3(0,1,0), which is the six dimensional exterior square. In the coroot notation, the
restriction contained two copies of the trivial representation, 2*A1xA1(0,0). The other way, we had instead three
distinct representations in the restriction, namely A1xA1(1,1,0,0) and A1xA1(0,0,1,1), that is, det⊗1 and
1⊗ det.

The Levi subgroup A1xA1 is actually not maximal. Indeed, we may factor the embedding:

𝑆𝐿(2)× 𝑆𝐿(2)→ 𝑆𝑝(4)→ 𝑆𝐿(4).

Therfore there are branching rules A3 -> C2 and C2 -> A2, and we could accomplish the branching in two steps,
thus:

sage: A3 = WeylCharacterRing("A3", style="coroots")
sage: C2 = WeylCharacterRing("C2", style="coroots")
sage: B2 = WeylCharacterRing("B2", style="coroots")
sage: D2 = WeylCharacterRing("D2", style="coroots")
sage: A1xA1 = WeylCharacterRing("A1xA1", style="coroots")
sage: reps = [A3(fw) for fw in A3.fundamental_weights()]
sage: [pi.branch(C2, rule="symmetric").branch(B2, rule="isomorphic"). \

branch(D2, rule="extended").branch(A1xA1, rule="isomorphic") for pi in reps]
[A1xA1(1,0) + A1xA1(0,1), 2*A1xA1(0,0) + A1xA1(1,1), A1xA1(1,0) + A1xA1(0,1)]

As you can see, we’ve redone the branching rather circuitously this way, making use of the branching rules A3 ->
C2 and B2 -> D2, and two accidental isomorphisms C2 = B2 and D2 = A1xA1. It is much easier to go in one
step using rule="levi", but reassuring that we get the same answer!

Subgroups classified by the extended Dynkin diagram

It is also true that if we remove one node from the extended Dynkin diagram that we obtain the Dynkin diagram of a
subgroup. For example:

sage: G2 = WeylCharacterRing("G2", style="coroots")
sage: G2.extended_dynkin_diagram()

3
O=<=O---O
1 2 0
G2~

12.1. Thematic tutorial document tree 151

Thematic Tutorials, Release 8.0

Observe that by removing the 1 node that we obtain an 𝐴2 Dynkin diagram. Therefore the exceptional group 𝐺2

contains a copy of 𝑆𝐿(3). We branch the two representations of 𝐺2 corresponding to the fundamental weights to this
copy of 𝐴2:

sage: G2 = WeylCharacterRing("G2", style="coroots")
sage: A2 = WeylCharacterRing("A2", style="coroots")
sage: [G2(f).degree() for f in G2.fundamental_weights()]
[7, 14]
sage: [G2(f).branch(A2, rule="extended") for f in G2.fundamental_weights()]
[A2(0,0) + A2(0,1) + A2(1,0), A2(0,1) + A2(1,0) + A2(1,1)]

The two representations of 𝐺2, of degrees 7 and 14 respectively, are the action on the octonions of trace zero and the
adjoint representation.

For embeddings of this type, the rank of the subgroup 𝐻 is the same as the rank of 𝐺. This is in contrast with
embeddings of Levi type, where 𝐻 has rank one less than 𝐺.

Levi subgroups of 𝐺2

The exceptional group 𝐺2 has two Levi subgroups of type 𝐴1. Neither is maximal, as we can see from the extended
Dynkin diagram: the subgroups 𝐴1 ×𝐴1 and 𝐴2 are maximal and each contains a Levi subgroup. (Actually 𝐴1 ×𝐴1

contains a conjugate of both.) Only the Levi subgroup containing the short root is implemented as an instance of
rule="levi". To obtain the other, use the rule:

sage: branching_rule("G2","A2","extended")*branching_rule("A2","A1","levi")
composite branching rule G2 => (extended) A2 => (levi) A1

which branches to the 𝐴1 Levi subgroup containing a long root.

Orthogonal and symplectic subgroups of orthogonal and symplectic groups

If 𝐺 = SO(𝑛) then 𝐺 has a subgroup SO(𝑛 − 1). Depending on whether 𝑛 is even or odd, we thus have branching
rules ['D',r] to ['B',r-1] or ['B',r] to ['D',r]. These are handled as follows:

sage: branching_rule("B4","D4",rule="extended")
extended branching rule B4 => D4
sage: branching_rule("D4","B3",rule="symmetric")
symmetric branching rule D4 => B3

If 𝐺 = SO(𝑟+ 𝑠) then 𝐺 has a subgroup SO(𝑟)× SO(𝑠). This lifts to an embedding of the universal covering groups

spin(𝑟)× spin(𝑠)→ spin(𝑟 + 𝑠).

Sometimes this embedding is of extended type, and sometimes it is not. It is of extended type unless 𝑟 and
𝑠 are both odd. If it is of extended type then you may use rule="extended". In any case you may use
rule="orthogonal_sum". The name refer to the origin of the embedding 𝑆𝑂(𝑟) × 𝑆𝑂(𝑠) → 𝑆𝑂(𝑟 + 𝑠)
from the decomposition of the underlying quadratic space as a direct sum of two orthogonal subspaces.

There are four cases depending on the parity of 𝑟 and 𝑠. For example, if 𝑟 = 2𝑘 and 𝑠 = 2𝑙 we have an embedding:

['D',k] x ['D',l] --> ['D',k+l]

This is of extended type. Thus consider the embedding D4xD3 -> D7. Here is the extended Dynkin diagram:

152 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

0 O O 7
| |
| |

O---O---O---O---O---O
1 2 3 4 5 6

Removing the 4 vertex results in a disconnected Dynkin diagram:

0 O O 7
| |
| |

O---O---O O---O
1 2 3 5 6

This is D4xD3. Therefore use the “extended” branching rule:

sage: D7 = WeylCharacterRing("D7", style="coroots")
sage: D4xD3 = WeylCharacterRing("D4xD3", style="coroots")
sage: spin = D7(D7.fundamental_weights()[7]); spin
D7(0,0,0,0,0,0,1)
sage: spin.branch(D4xD3, rule="extended")
D4xD3(0,0,1,0,0,1,0) + D4xD3(0,0,0,1,0,0,1)

But we could equally well use the “orthogonal_sum” rule:

sage: spin.branch(D4xD3, rule="orthogonal_sum")
D4xD3(0,0,1,0,0,1,0) + D4xD3(0,0,0,1,0,0,1)

Similarly we have embeddings:

['D',k] x ['B',l] --> ['B',k+l]

These are also of extended type. For example consider the embedding of D3xB2 -> B5. Here is the B5 extended
Dynkin diagram:

O 0
|
|

O---O---O---O=>=O
1 2 3 4 5

Removing the 3 node gives:

O 0
|

O---O O=>=O
1 2 4 5

and this is the Dynkin diagram or D3xB2. For such branchings we again use either rule="extended" or
rule="orthogonal_sum".

Finally, there is an embedding

['B',k] x ['B',l] --> ['D',k+l+1]

This is not of extended type, so you may not use rule="extended". You must use rule="orthogonal_sum":

12.1. Thematic tutorial document tree 153

Thematic Tutorials, Release 8.0

sage: D5 = WeylCharacterRing("D5",style="coroots")
sage: B2xB2 = WeylCharacterRing("B2xB2",style="coroots")
sage: [D5(v).branch(B2xB2,rule="orthogonal_sum") for v in D5.fundamental_weights()]
[B2xB2(1,0,0,0) + B2xB2(0,0,1,0),
B2xB2(0,2,0,0) + B2xB2(1,0,1,0) + B2xB2(0,0,0,2),
B2xB2(0,2,0,0) + B2xB2(0,2,1,0) + B2xB2(1,0,0,2) + B2xB2(0,0,0,2),
B2xB2(0,1,0,1), B2xB2(0,1,0,1)]

Non-maximal Levi subgroups and Projection from Reducible Types

Not all Levi subgroups are maximal. Recall that the Dynkin-diagram of a Levi subgroup 𝐻 of 𝐺 is obtained by
removing a node from the Dynkin diagram of 𝐺. Removing the same node from the extended Dynkin diagram of 𝐺
results in the Dynkin diagram of a subgroup of 𝐺 that is strictly larger than 𝐻 . However this subgroup may or may
not be proper, so the Levi subgroup may or may not be maximal.

If the Levi subgroup is not maximal, the branching rule may or may not be implemented in Sage. However if it is not
implemented, it may be constructed as a composition of two branching rules.

For example, prior to Sage-6.1 branching_rule("E6","A5","levi") returned a not-implemented error and
the advice to branch to A5xA1. And we can see from the extended Dynkin diagram of 𝐸6 that indeed 𝐴5 is not a
maximal subgroup, since removing node 2 from the extended Dynkin diagram (see below) gives A5xA1. To construct
the branching rule to 𝐴5 we may proceed as follows:

sage: b = branching_rule("E6","A5xA1","extended")*branching_rule("A5xA1","A5","proj1
→˓"); b
composite branching rule E6 => (extended) A5xA1 => (proj1) A5
sage: E6=WeylCharacterRing("E6",style="coroots")
sage: A5=WeylCharacterRing("A5",style="coroots")
sage: E6(0,1,0,0,0,0).branch(A5,rule=b)
3*A5(0,0,0,0,0) + 2*A5(0,0,1,0,0) + A5(1,0,0,0,1)
sage: b.describe()

O 0
|
|
O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6~
root restrictions E6 => A5:

O---O---O---O---O
1 2 3 4 5
A5

0 => (zero)
1 => 1
3 => 2
4 => 3
5 => 4
6 => 5

For more detailed information use verbose=True

154 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note that it is not necessary to construct the Weyl character ring for the intermediate group A5xA1.

This last example illustrates another common problem: how to extract one component from a reducible root system.
We used the rule "proj1" to extract the first component. We could similarly use "proj2" to get the second, or
more generally any combination of components:

sage: branching_rule("A2xB2xG2","A2xG2","proj13")
proj13 branching rule A2xB2xG2 => A2xG2

Symmetric subgroups

If 𝐺 admits an outer automorphism (usually of order two) then we may try to find the branching rule to the fixed
subgroup 𝐻 . It can be arranged that this automorphism maps the maximal torus 𝑇 to itself and that a maximal torus
𝑈 of 𝐻 is contained in 𝑇 .

Suppose that the Dynkin diagram of 𝐺 admits an automorphism. Then 𝐺 itself admits an outer automorphism. The
Dynkin diagram of the group 𝐻 of invariants may be obtained by “folding” the Dynkin diagram of 𝐺 along the
automorphism. The exception is the branching rule 𝐺𝐿(2𝑟)→ 𝑆𝑂(2𝑟).

Here are the branching rules that can be obtained using rule="symmetric".

𝐺 𝐻 Cartan Types
𝐺𝐿(2𝑟) 𝑆𝑝(2𝑟) ['A',2r-1] => ['C',r]
𝐺𝐿(2𝑟 + 1) 𝑆𝑂(2𝑟 + 1) ['A',2r] => ['B',r]
𝐺𝐿(2𝑟) 𝑆𝑂(2𝑟) ['A',2r-1] => ['D',r]
𝑆𝑂(2𝑟) 𝑆𝑂(2𝑟 − 1) ['D',r] => ['B',r-1]
𝐸6 𝐹4 ['E',6] => ['F',4]

Tensor products

If 𝐺1 and 𝐺2 are Lie groups, and we have representations 𝜋1 : 𝐺1 → 𝐺𝐿(𝑛) and 𝜋2 : 𝐺2 → 𝐺𝐿(𝑚) then the tensor
product is a representation of 𝐺1 ×𝐺2. It has its image in 𝐺𝐿(𝑛𝑚) but sometimes this is conjugate to a subgroup of
𝑆𝑂(𝑛𝑚) or 𝑆𝑝(𝑛𝑚). In particular we have the following cases.

Group Subgroup Cartan Types
𝐺𝐿(𝑟𝑠) 𝐺𝐿(𝑟)×𝐺𝐿(𝑠) ['A', rs-1] => ['A',r-1] x ['A',s-1]
𝑆𝑂(4𝑟𝑠+ 2𝑟 + 2𝑠+ 1) 𝑆𝑂(2𝑟 + 1)× 𝑆𝑂(2𝑠+ 1) ['B',2rs+r+s] => ['B',r] x ['B',s]
𝑆𝑂(4𝑟𝑠+ 2𝑠) 𝑆𝑂(2𝑟 + 1)× 𝑆𝑂(2𝑠) ['D',2rs+s] => ['B',r] x ['D',s]
𝑆𝑂(4𝑟𝑠) 𝑆𝑂(2𝑟)× 𝑆𝑂(2𝑠) ['D',2rs] => ['D',r] x ['D',s]
𝑆𝑂(4𝑟𝑠) 𝑆𝑝(2𝑟)× 𝑆𝑝(2𝑠) ['D',2rs] => ['C',r] x ['C',s]
𝑆𝑝(4𝑟𝑠+ 2𝑠) 𝑆𝑂(2𝑟 + 1)× 𝑆𝑝(2𝑠) ['C',2rs+s] => ['B',r] x ['C',s]
𝑆𝑝(4𝑟𝑠) 𝑆𝑝(2𝑟)× 𝑆𝑂(2𝑠) ['C',2rs] => ['C',r] x ['D',s]

These branching rules are obtained using rule="tensor".

Symmetric powers

The 𝑘-th symmetric and exterior power homomorphisms map 𝐺𝐿(𝑛) → 𝐺𝐿
(︁(︀

𝑛+𝑘−1
𝑘

)︀)︁
and 𝐺𝐿

(︀(︀
𝑛
𝑘

)︀)︀
. The cor-

responding branching rules are not implemented but a special case is. The 𝑘-th symmetric power homomorphism
𝑆𝐿(2)→ 𝐺𝐿(𝑘 + 1) has its image inside of 𝑆𝑂(2𝑟 + 1) if 𝑘 = 2𝑟 and inside of 𝑆𝑝(2𝑟) if 𝑘 = 2𝑟 − 1. Hence there
are branching rules:

12.1. Thematic tutorial document tree 155

Thematic Tutorials, Release 8.0

['B',r] => A1
['C',r] => A1

and these may be obtained using rule="symmetric_power".

Plethysms

The above branching rules are sufficient for most cases, but a few fall between the cracks. Mostly these involve
maximal subgroups of fairly small rank.

The rule rule="plethysm" is a powerful rule that includes any branching rule from types 𝐴, 𝐵, 𝐶 or 𝐷 as a
special case. Thus it could be used in place of the above rules and would give the same results. However, it is most
useful when branching from 𝐺 to a maximal subgroup 𝐻 such that 𝑟𝑎𝑛𝑘(𝐻) < 𝑟𝑎𝑛𝑘(𝐺)− 1.

We consider a homomorphism 𝐻 → 𝐺 where 𝐺 is one of 𝑆𝐿(𝑟 + 1), 𝑆𝑂(2𝑟 + 1), 𝑆𝑝(2𝑟) or 𝑆𝑂(2𝑟). The function
branching_rule_from_plethysm produces the corresponding branching rule. The main ingredient is the
character 𝜒 of the representation of 𝐻 that is the homomorphism to 𝐺𝐿(𝑟 + 1), 𝐺𝐿(2𝑟 + 1) or 𝐺𝐿(2𝑟).

Let us consider the symmetric fifth power representation of 𝑆𝐿(2). This is implemented above by
rule="symmetric_power", but suppose we want to use rule="plethysm". First we construct the homo-
morphism by invoking its character, to be called chi:

sage: A1 = WeylCharacterRing("A1", style="coroots")
sage: chi = A1([5])
sage: chi.degree()
6
sage: chi.frobenius_schur_indicator()
-1

This confirms that the character has degree 6 and is symplectic, so it corresponds to a homomorphism 𝑆𝐿(2)→ 𝑆𝑝(6),
and there is a corresponding branching rule C3 -> A1:

sage: A1 = WeylCharacterRing("A1", style="coroots")
sage: C3 = WeylCharacterRing("C3", style="coroots")
sage: chi = A1([5])
sage: sym5rule = branching_rule_from_plethysm(chi, "C3")
sage: [C3(hwv).branch(A1, rule=sym5rule) for hwv in C3.fundamental_weights()]
[A1(5), A1(4) + A1(8), A1(3) + A1(9)]

This is identical to the results we would obtain using rule="symmetric_power":

sage: A1 = WeylCharacterRing("A1", style="coroots")
sage: C3 = WeylCharacterRing("C3", style="coroots")
sage: [C3(v).branch(A1, rule="symmetric_power") for v in C3.fundamental_weights()]
[A1(5), A1(4) + A1(8), A1(3) + A1(9)]

But the next example of plethysm gives a branching rule not available by other methods:

sage: G2 = WeylCharacterRing("G2", style="coroots")
sage: D7 = WeylCharacterRing("D7", style="coroots")
sage: ad = G2.adjoint_representation(); ad.degree()
14
sage: ad.frobenius_schur_indicator()
1
sage: for r in D7.fundamental_weights(): # long time (1.29s)
....: print(D7(r).branch(G2, rule=branching_rule_from_plethysm(ad, "D7")))
G2(0,1)

156 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

G2(0,1) + G2(3,0)
G2(0,0) + G2(2,0) + G2(3,0) + G2(0,2) + G2(4,0)
G2(0,1) + G2(2,0) + G2(1,1) + G2(0,2) + G2(2,1) + G2(4,0) + G2(3,1)
G2(1,0) + G2(0,1) + G2(1,1) + 2*G2(3,0) + 2*G2(2,1) + G2(1,2) + G2(3,1) + G2(5,0) +
→˓G2(0,3)
G2(1,1)
G2(1,1)

In this example, 𝑎𝑑 is the 14-dimensional adjoint representation of the exceptional group 𝐺2. Since the Frobenius-
Schur indicator is 1, the representation is orthogonal, and factors through 𝑆𝑂(14), that is, 𝐷7.

We do not actually have to create the character (or for that matter its ambient WeylCharacterRing) in order to create
the branching rule:

sage: branching_rule("D4","A2.adjoint_representation()","plethysm")
plethysm (along A2(1,1)) branching rule D4 => A2

The adjoint representation of any semisimple Lie group is orthogonal, so we do not need to compute the Frobenius-
Schur indicator.

Miscellaneous other subgroups

Use rule="miscellaneous" for the following rules. Every maximal subgroup 𝐻 of an exceptional group 𝐺 are
either among these, or the five 𝐴1 subgroups described in the next section, or (if 𝐺 and 𝐻 have the same rank) is
available using rule="extended".

𝐵3 → 𝐺2,

𝐸6 → 𝐴2,

𝐸6 → 𝐺2,

𝐹4 → 𝐺2 ×𝐴1,

𝐸6 → 𝐺2 ×𝐴2,

𝐸7 → 𝐺2 × 𝐶3,

𝐸7 → 𝐹4 ×𝐴1,

𝐸7 → 𝐴1 ×𝐴1,

𝐸7 → 𝐺2 ×𝐴1,

𝐸7 → 𝐴2

𝐸8 → 𝐺2 × 𝐹4.

𝐸8 → 𝐴2 ×𝐴1.

𝐸8 → 𝐵2

The first rule corresponds to the embedding of𝐺2 in SO(7) in its action on the trace zero octonions. The two branching
rules from 𝐸6 to 𝐺2 or 𝐴2 are described in [Testerman1989]. We caution the reader that Theorem G.2 of that paper,
proved there in positive characteristic is false over the complex numbers. On the other hand, the assumption of
characteristic 𝑝 is not important for Theorems G.1 and A.1, which describe the torus embeddings, hence contain
enough information to compute the branching rule. There are other ways of embedding 𝐺2 or 𝐴2 into 𝐸6. These may
embeddings be characterized by the condition that the two 27-dimensional representations of 𝐸6 restrict irreducibly
to 𝐺2 or 𝐴2. Their images are maximal subgroups.

The remaining rules come about as follows. Let 𝐺 be 𝐹4, 𝐸6, 𝐸7 or 𝐸8, and let 𝐻 be 𝐺2, or else (if 𝐺 = 𝐸7) 𝐹4. We
embed 𝐻 into 𝐺 in the most obvious way; that is, in the chain of subgroups

12.1. Thematic tutorial document tree 157

Thematic Tutorials, Release 8.0

𝐺2 ⊂ 𝐹4 ⊂ 𝐸6 ⊂ 𝐸7 ⊂ 𝐸8

Then the centralizer of 𝐻 is 𝐴1, 𝐴2, 𝐶3, 𝐹4 (if 𝐻 = 𝐺2) or 𝐴1 (if 𝐺 = 𝐸7 and 𝐻 = 𝐹4). This gives us five of the
cases. Regarding the branching rule 𝐸6 → 𝐺2 × 𝐴2, Rubenthaler [Rubenthaler2008] describes the embedding and
applies it in an interesting way.

The embedding of 𝐴1 × 𝐴1 into 𝐸7 is as follows. Deleting the 5 node of the 𝐸7 Dynkin diagram gives the Dynkin
diagram of 𝐴4 × 𝐴2, so this is a Levi subgroup. We embed SL(2) into this Levi subgroup via the representation
[4] ⊗ [2]. This embeds the first copy of 𝐴1. The other 𝐴1 is the connected centralizer. See [Seitz1991], particularly
the proof of (3.12).

The embedding if 𝐺2 × 𝐴1 into 𝐸7 is as follows. Deleting the 2 node of the 𝐸7 Dynkin diagram gives the 𝐴6

Dynkin diagram, which is the Levi subgroup SL(7). We embed 𝐺2 into SL(7) via the irreducible seven-dimensional
representation of 𝐺2. The 𝐴1 is the centralizer.

The embedding if 𝐴2 ×𝐴1 into 𝐸8 is as follows. Deleting the 2 node of the 𝐸8 Dynkin diagram gives the 𝐴7 Dynkin
diagram, which is the Levi subgroup SL(8). We embed 𝐴2 into SL(8) via the irreducible eight-dimensional adjoint
representation of SL(2). The 𝐴1 is the centralizer.

The embedding 𝐴2 into 𝐸7 is proved in [Seitz1991] (5.8). In particular, he computes the embedding of the SL(3)
torus in the 𝐸7 torus, which is what is needed to implement the branching rule. The embedding of 𝐵2 into 𝐸8 is also
constructed in [Seitz1991] (6.7). The embedding of the 𝐵2 Cartan subalgebra, needed to implement the branching
rule, is easily deduced from (10) on page 111.

Maximal A1 subgroups of Exceptional Groups

There are seven embeddings of 𝑆𝐿(2) into an exceptional group as a maximal subgroup: one each for 𝐺2 and 𝐹4, two
nonconjugate embeddings for 𝐸7 and three for 𝐸8 These are constructed in [Testerman1992]. Create the correspond-
ing branching rules as follows. The names of the rules are roman numerals referring to the seven cases of Testerman’s
Theorem 1:

sage: branching_rule("G2","A1","i")
i branching rule G2 => A1
sage: branching_rule("F4","A1","ii")
ii branching rule F4 => A1
sage: branching_rule("E7","A1","iii")
iii branching rule E7 => A1
sage: branching_rule("E7","A1","iv")
iv branching rule E7 => A1
sage: branching_rule("E8","A1","v")
v branching rule E8 => A1
sage: branching_rule("E8","A1","vi")
vi branching rule E8 => A1
sage: branching_rule("E8","A1","vii")
vii branching rule E8 => A1

The embeddings are characterized by the root restrictions in their branching rules: usually a simple root of the ambient
group 𝐺 restricts to the unique simple root of 𝐴1, except for root 𝛼4 for rules iv, vi and vii, and the root 𝛼6 for root vii;
this is essentially the way Testerman characterizes the embeddings, and this information may be obtained from Sage
by employing the describe() method of the branching rule. Thus:

sage: branching_rule("E8","A1","vii").describe()

O 2

158 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

|
|

O---O---O---O---O---O---O---O
1 3 4 5 6 7 8 0
E8~
root restrictions E8 => A1:

O
1
A1

1 => 1
2 => 1
3 => 1
4 => (zero)
5 => 1
6 => (zero)
7 => 1
8 => 1

For more detailed information use verbose=True

Writing your own branching rules

Sage has many built-in branching rules. Indeed, at least up to rank eight (including all the exceptional groups)
branching rules to all maximal subgroups are implemented as built in rules, except for a few obtainable using
branching_rule_from_plethysm. This means that all the rules in [McKayPatera1981] are available in Sage.

Still in this section we are including instructions for coding a rule by hand. As we have already explained, the
branching rule is a function from the weight lattice of G to the weight lattice of H, and if you supply this you can write
your own branching rules.

As an example, let us consider how to implement the branching rule A3 -> C2. Here H = C2 = Sp(4) embedded
as a subgroup in A3 = GL(4). The Cartan subalgebra Lie(𝑈) consists of diagonal matrices with eigenvalues u1,
u2, -u2, -u1. Then C2.space() is the two dimensional vector spaces consisting of the linear functionals u1
and u2 on U. On the other hand 𝐿𝑖𝑒(𝑇) = R4. A convenient way to see the restriction is to think of it as the adjoint of
the map [u1,u2] -> [u1,u2,-u2,-u1], that is, [x0,x1,x2,x3] -> [x0-x3,x1-x2]. Hence we may
encode the rule:

def brule(x):
return [x[0]-x[3], x[1]-x[2]]

or simply:

brule = lambda x: [x[0]-x[3], x[1]-x[2]]

Let us check that this agrees with the built-in rule:

sage: A3 = WeylCharacterRing(['A', 3])
sage: C2 = WeylCharacterRing(['C', 2])
sage: brule = lambda x: [x[0]-x[3], x[1]-x[2]]
sage: A3(1,1,0,0).branch(C2, rule=brule)
C2(0,0) + C2(1,1)
sage: A3(1,1,0,0).branch(C2, rule="symmetric")
C2(0,0) + C2(1,1)

12.1. Thematic tutorial document tree 159

Thematic Tutorials, Release 8.0

Although this works, it is better to make the rule into an element of the BranchingRule class, as follows.

sage: brule = BranchingRule("A3","C2",lambda x : [x[0]-x[3], x[1]-x[2]],"custom")
sage: A3(1,1,0,0).branch(C2, rule=brule)
C2(0,0) + C2(1,1)

Automorphisms and triality

The case where 𝐺 = 𝐻 can be treated as a special case of a branching rule. In most cases if 𝐺 has a nontrivial outer
automorphism, it has order two, corresponding to the symmetry of the Dynkin diagram. Such an involution exists in
the cases 𝐴𝑟, 𝐷𝑟, 𝐸6.

So the automorphism acts on the representations of 𝐺, and its effect may be computed using the branching rule code:

sage: A4 = WeylCharacterRing("A4",style="coroots")
sage: A4(1,0,1,0).degree()
45
sage: A4(0,1,0,1).degree()
45
sage: A4(1,0,1,0).branch(A4,rule="automorphic")
A4(0,1,0,1)

In the special case where G=D4, the Dynkin diagram has extra symmetries, and these correspond to outer automor-
phisms of the group. These are implemented as the "triality" branching rule:

sage: branching_rule("D4","D4","triality").describe()

O 4
|
|

O---O---O
1 |2 3

|
O 0

D4~
root restrictions D4 => D4:

O 4
|
|

O---O---O
1 2 3
D4

1 => 3
2 => 2
3 => 4
4 => 1

For more detailed information use verbose=True

Triality his is not an automorphisms of 𝑆𝑂(8), but of its double cover 𝑠𝑝𝑖𝑛(8). Note that 𝑠𝑝𝑖𝑛(8) has three represen-
tations of degree 8, namely the standard representation of 𝑆𝑂(8) and the two eight-dimensional spin representations.
These are permuted by triality:

sage: D4=WeylCharacterRing("D4",style="coroots")
sage: D4(0,0,0,1).branch(D4,rule="triality")

160 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

D4(1,0,0,0)
sage: D4(0,0,0,1).branch(D4,rule="triality").branch(D4,rule="triality")
D4(0,0,1,0)
sage: D4(0,0,0,1).branch(D4,rule="triality").branch(D4,rule="triality").branch(D4,
→˓rule="triality")
D4(0,0,0,1)

By contrast, rule="automorphic" simply interchanges the two spin representations, as it always does in type 𝐷:

sage: D4(0,0,0,1).branch(D4,rule="automorphic")
D4(0,0,1,0)
sage: D4(0,0,1,0).branch(D4,rule="automorphic")
D4(0,0,0,1)

Weight Rings

You may wish to work directly with the weights of a representation.

Weyl character ring elements are represented internally by a dictionary of their weights with multiplicities. However
these are subject to a constraint: the coefficients must be invariant under the action of the Weyl group.

The WeightRing is also a ring whose elements are represented internally by a dictionary of their weights with
multiplicities, but it is not subject to this constraint of Weyl group invariance. The weights are allowed to be fractional,
that is, elements of the ambient space. In other words, the weight ring is the group algebra over the ambient space of
the weight lattice.

To create a WeightRing first construct the WeylCharacterRing, then create the WeightRing as follows:

sage: A2 = WeylCharacterRing(['A',2])
sage: a2 = WeightRing(A2)

You may coerce elements of the WeylCharacterRing into the weight ring. For example, if you want to see the
weights of the adjoint representation of 𝐺𝐿(3), you may use the method mlist, but another way is to coerce it into
the weight ring:

sage: from pprint import pprint
sage: A2 = WeylCharacterRing(['A',2])
sage: ad = A2(1,0,-1)
sage: pprint(ad.weight_multiplicities())
{(0, 0, 0): 2, (-1, 1, 0): 1, (-1, 0, 1): 1, (1, -1, 0): 1,
(1, 0, -1): 1, (0, -1, 1): 1, (0, 1, -1): 1}

This command produces a dictionary of the weights that appear in the representation, together with their multiplicities.
But another way of getting the same information, with an aim of working with it, is to coerce it into the weight ring:

sage: a2 = WeightRing(A2)
sage: a2(ad)
2*a2(0,0,0) + a2(-1,1,0) + a2(-1,0,1) + a2(1,-1,0) + a2(1,0,-1) + a2(0,-1,1) + a2(0,1,
→˓-1)

For example, the Weyl denominator formula is usually written this way:∏︁
𝛼∈Φ+

(︁
𝑒𝛼/2 − 𝑒−𝛼/2

)︁
=

∑︁
𝑤∈𝑊

(−1)𝑙(𝑤)𝑒𝑤(𝜌).

The notation is as follows. Here if 𝜆 is a weight, or more generally, an element of the ambient space, then 𝑒𝜆 means
the image of 𝜆 in the group algebra of the ambient space of the weight lattice 𝜆. Since this group algebra is just the
weight ring, we can interpret 𝑒𝜆 as its image in the weight ring.

12.1. Thematic tutorial document tree 161

Thematic Tutorials, Release 8.0

Let us confirm the Weyl denominator formula for A2:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: L = A2.space()
sage: W = L.weyl_group()
sage: rho = L.rho().coerce_to_sl()
sage: lhs = prod(a2(alpha/2)-a2(-alpha/2) for alpha in L.positive_roots()); lhs
a2(-1,1,0) - a2(-1,0,1) - a2(1,-1,0) + a2(1,0,-1) + a2(0,-1,1) - a2(0,1,-1)
sage: rhs = sum((-1)^(w.length())*a2(w.action(rho)) for w in W); rhs
a2(-1,1,0) - a2(-1,0,1) - a2(1,-1,0) + a2(1,0,-1) + a2(0,-1,1) - a2(0,1,-1)
sage: lhs == rhs
True

Note that we have to be careful to use the right value of 𝜌. The reason for this is explained in SL versus GL.

We have seen that elements of the WeylCharacterRing can be coerced into the WeightRing. Elements of the
WeightRing can be coerced into the WeylCharacterRing provided they are invariant under the Weyl group.

Weyl Groups, Coxeter Groups and the Bruhat Order

Classical and affine Weyl groups

You can create Weyl groups and affine Weyl groups for any root system. A variety of methods are available for these.
Some of these are methods are available for general Coxeter groups.

By default, elements of the Weyl group are represented as matrices:

sage: WeylGroup("A3").simple_reflection(1)
[0 1 0 0]
[1 0 0 0]
[0 0 1 0]
[0 0 0 1]

You may prefer a notation in which elements are written out as products of simple reflections. In order to implement
this you need to specify a prefix, typically "s":

sage: W = WeylGroup("A3",prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: (s1*s2*s1).length()
3
sage: W.long_element()
s1*s2*s3*s1*s2*s1
sage: s1*s2*s3*s1*s2*s1 == s3*s2*s1*s3*s2*s3
True

The Weyl group acts on the ambient space of the root lattice, which is accessed by the method domain. To illustrate
this, recall that if 𝑤0 is the long element then 𝛼 ↦→ −𝑤0(𝛼) is a permutation of the simple roots. We may compute
this as follows:

sage: W = WeylGroup("E6",prefix="s")
sage: w0 = W.long_element(); w0
s1*s3*s4*s5*s6*s2*s4*s5*s3*s4*s1*s3*s2*s4*s5*s6*s2*s4*s5*s3*s4*s1*s3*s2*s4*s5*s3*s4*s1*s3*s2*s4*s1*s3*s2*s1
sage: sr = W.domain().simple_roots().list(); sr
[(1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 1/2), (1, 1, 0, 0, 0, 0, 0, 0),
(-1, 1, 0, 0, 0, 0, 0, 0), (0, -1, 1, 0, 0, 0, 0, 0), (0, 0, -1, 1, 0, 0, 0, 0),
(0, 0, 0, -1, 1, 0, 0, 0)]

162 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: [-w0.action(a) for a in sr]
[(0, 0, 0, -1, 1, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0, 0), (0, 0, -1, 1, 0, 0, 0, 0),
(0, -1, 1, 0, 0, 0, 0, 0), (-1, 1, 0, 0, 0, 0, 0, 0),
(1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 1/2)]

We may ask when this permutation is trivial. If it is nontrivial it induces an automorphism of the Dynkin diagram, so
it must be nontrivial when the Dynkin diagram has no automorphism. But if there is a nontrivial automorphism, the
permutation might or might not be trivial:

sage: def roots_not_permuted(ct):
....: W = WeylGroup(ct)
....: w0 = W.long_element()
....: sr = W.domain().simple_roots()
....: return all(a == -w0.action(a) for a in sr)
sage: for ct in [CartanType(['D', r]) for r in [2..8]]:
....: print("{} {}".format(ct, roots_not_permuted(ct)))
['D', 2] True
['D', 3] False
['D', 4] True
['D', 5] False
['D', 6] True
['D', 7] False
['D', 8] True

If 𝛼 is a root let 𝑟𝛼 denote the reflection in the hyperplane that is orthogonal to 𝛼. We reserve the notation 𝑠𝛼 for
the simple reflections, that is, the case where 𝛼 is a simple root. The reflections are just the conjugates of the simple
reflections.

The reflections are the values in a finite family, which is a wrapper around a python dictionary. The keys are the positive
roots, so given a positive root, you can look up the corresponding reflection. If you want a list of all reflections, you
can use the usual methods to construct a list (e.g., using the list function) or use the method values for the family
of reflections:

sage: W = WeylGroup("B3",prefix="s")
sage: ref = W.reflections(); ref
Finite family {(1, 0, 0): s1*s2*s3*s2*s1, (0, 1, 1): s3*s2*s3,

(0, 1, -1): s2, (0, 0, 1): s3, (1, -1, 0): s1,
(1, 1, 0): s2*s3*s1*s2*s3*s1*s2, (1, 0, -1): s1*s2*s1,
(1, 0, 1): s3*s1*s2*s3*s1, (0, 1, 0): s2*s3*s2}

sage: [a1,a2,a3] = W.domain().simple_roots()
sage: a1+a2+a3
(1, 0, 0)
sage: ref[a1+a2+a3]
s1*s2*s3*s2*s1
sage: list(ref)
[s1, s2, s3, s3*s2*s3, s2*s3*s2, s1*s2*s1, s3*s1*s2*s3*s1,
s1*s2*s3*s2*s1, s2*s3*s1*s2*s3*s1*s2]

If instead you want a family whose keys are the reflections and whose values are the roots, you may use the inverse
family:

sage: from pprint import pprint
sage: W = WeylGroup("B3",prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: altref = W.reflections().inverse_family()
sage: pprint(altref)
Finite family {s1*s2*s1: (1, 0, -1), s2: (0, 1, -1), s3*s2*s3: (0, 1, 1),

s3*s1*s2*s3*s1: (1, 0, 1), s1: (1, -1, 0),

12.1. Thematic tutorial document tree 163

Thematic Tutorials, Release 8.0

s1*s2*s3*s2*s1: (1, 0, 0), s2*s3*s1*s2*s3*s1*s2: (1, 1, 0),
s2*s3*s2: (0, 1, 0), s3: (0, 0, 1)}

sage: altref[s3*s2*s3]
(0, 1, 1)

Note: The behaviour of this function was changed in trac ticket #20027.

The Weyl group is implemented as a GAP matrix group. You therefore can display its character table. The character
table is returned as a string, which you can print:

sage: print(WeylGroup("D4").character_table())
CT1

2 6 4 5 1 3 5 5 4 3 3 1 4 6
3 1 . . 1 1 . 1

1a 2a 2b 6a 4a 2c 2d 2e 4b 4c 3a 4d 2f

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 1 -1 -1 -1 1 1 1
X.3 2 . 2 -1 . 2 2 . . . -1 2 2
X.4 3 -1 -1 . 1 -1 3 -1 1 -1 . -1 3
X.5 3 -1 -1 . 1 3 -1 -1 -1 1 . -1 3
X.6 3 1 -1 . -1 -1 3 1 -1 1 . -1 3
X.7 3 1 -1 . -1 3 -1 1 1 -1 . -1 3
X.8 3 -1 3 . -1 -1 -1 -1 1 1 . -1 3
X.9 3 1 3 . 1 -1 -1 1 -1 -1 . -1 3
X.10 4 -2 . -1 . . . 2 . . 1 . -4
X.11 4 2 . -1 . . . -2 . . 1 . -4
X.12 6 . -2 . . -2 -2 2 6
X.13 8 . . 1 -1 . -8

Affine Weyl groups

Affine Weyl groups may be created the same way. You simply begin with an affine Cartan type:

sage: W = WeylGroup(['A',2,1],prefix="s")
sage: W.cardinality()
+Infinity
sage: [s0,s1,s2] = W.simple_reflections()
sage: s0*s1*s2*s1*s0
s0*s1*s2*s1*s0

The affine Weyl group differs from a classical Weyl group since it is infinite. The associated classical Weyl group is a
subgroup that may be extracted as follows:

sage: W = WeylGroup(['A',2,1],prefix="s")
sage: W1 = W.classical(); W1
Parabolic Subgroup of the Weyl Group of type ['A', 2, 1] (as a matrix group
acting on the root space)
sage: W1.simple_reflections()
Finite family {1: s1, 2: s2}

Although W1 in this example is isomorphic to WeylGroup("A2") it has a different matrix realization:

164 Chapter 12. Documentation

https://trac.sagemath.org/20027

Thematic Tutorials, Release 8.0

sage: for s in WeylGroup(['A',2,1]).classical().simple_reflections():
....: print(s)
....: print("")
[1 0 0]
[1 -1 1]
[0 0 1]

[1 0 0]
[0 1 0]
[1 1 -1]

sage: for s in WeylGroup(['A',2]).simple_reflections():
....: print(s)
....: print("")
[0 1 0]
[1 0 0]
[0 0 1]

[1 0 0]
[0 0 1]
[0 1 0]

Bruhat order

The Bruhat partial order on the Weyl group may be defined as follows.

If 𝑢, 𝑣 ∈ 𝑊 , find a reduced expression of 𝑣 into a product of simple reflections: 𝑣 = 𝑠1 · · · 𝑠𝑛. (It is not assumed that
the 𝑠𝑖 are distinct.) If omitting some of the 𝑠𝑖 gives a product that represents 𝑢, then 𝑢 ≤ 𝑣.

The Bruhat order is implemented in Sage as a method of Coxeter groups, and so it is available for Weyl groups,
classical or affine.

If 𝑢, 𝑣 ∈𝑊 then u.bruhat_le(v) returns True if 𝑢 ≤ 𝑣 in the Bruhat order.

If 𝑢 ≤ 𝑣 then the Bruhat interval [𝑢, 𝑣] is defined to be the set of all 𝑡 such that 𝑢 ≤ 𝑡 ≤ 𝑣. One might try to implement
this as follows:

sage: W = WeylGroup("A2",prefix="s")
sage: [s1,s2] = W.simple_reflections()
sage: def bi(u,v) : return [t for t in W if u.bruhat_le(t) and t.bruhat_le(v)]
...
sage: bi(s1,s1*s2*s1)
[s1*s2*s1, s1*s2, s1, s2*s1]

This would not be a good definition since it would fail if𝑊 is affine and be inefficient of𝑊 is large. Sage has a Bruhat
interval method:

sage: W = WeylGroup("A2",prefix="s")
sage: [s1,s2] = W.simple_reflections()
sage: W.bruhat_interval(s1,s1*s2*s1)
[s1*s2*s1, s2*s1, s1*s2, s1]

This works even for affine Weyl groups.

12.1. Thematic tutorial document tree 165

Thematic Tutorials, Release 8.0

The Bruhat graph

References:

• [Carrell1994]

• [Deodhar1977]

• [Dyer1993]

• [BumpNakasuji2010]

The Bruhat graph is a structure on the Bruhat interval. Suppose that 𝑢 ≤ 𝑣. The vertices of the graph are 𝑥 with
𝑢 ≤ 𝑥 ≤ 𝑣. There is a vertex connecting 𝑥, 𝑦 ∈ [𝑥, 𝑦] if 𝑥 = 𝑦 · 𝑟 where 𝑟 is a reflection. If this is true then either
𝑥 < 𝑦 or 𝑦 < 𝑥.

If 𝑊 is a classical Weyl group the Bruhat graph is implemented in Sage:

sage: W = WeylGroup("A3",prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: bg = W.bruhat_graph(s2,s2*s1*s3*s2); bg
Digraph on 10 vertices
sage: bg.show3d()

The Bruhat graph has interesting regularity properties that were investigated by Carrell and Peterson. It is a regular
graph if both the Kazhdan Lusztig polynomials 𝑃𝑢,𝑣 and 𝑃𝑤0𝑣,𝑤0𝑢 are 1, where 𝑤0 is the long Weyl group element. It
is closely related to the Deodhar conjecture, which was proved by Deodhar, Carrell and Peterson, Dyer and Polo.

Deodhar proved that if 𝑢 < 𝑣 then the Bruhat interval [𝑢, 𝑣] contains as many elements of odd length as it does of
even length. We observe that often this can be strengthened: If there exists a reflection 𝑟 such that left (or right)
multiplication by 𝑟 takes the Bruhat interval [𝑢, 𝑣] to itself, then this gives an explicit bijection between the elements
of odd and even length in [𝑢, 𝑣].

Let us search for such reflections. Put the following commands in a file and load the file:

W = WeylGroup("A3",prefix="s")
[s1,s2,s3] = W.simple_reflections()
ref = W.reflections().keys()

def find_reflection(u,v):
bi = W.bruhat_interval(u,v)
ret = []
for r in ref:

if all(r*x in bi for x in bi):
ret.append(r)

return ret

for v in W:
for u in W.bruhat_interval(1,v):

if u != v:
print((u,v,find_reflection(u,v)))

This shows that the Bruhat interval is stabilized by a reflection for all pairs (𝑢, 𝑣) with 𝑢 < 𝑣 except the following two:
𝑠3𝑠1, 𝑠1𝑠2𝑠3𝑠2𝑠1 and 𝑠2, 𝑠2𝑠3𝑠1𝑠2. Now these are precisely the pairs such that 𝑢 ≺ 𝑣 in the notation of Kazhdan and
Lusztig, and 𝑙(𝑣) − 𝑙(𝑢) > 1. One should not rashly suppose that this is a general characterization of the pairs (𝑢, 𝑣)
such that no reflection stabilizes the Bruhat interval, for this is not true. However it does suggest that the question is
worthy of further investigation.

166 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Classical Crystals

A classical crystal is one coming from the finite (classical) types𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 𝐷𝑟, 𝐸6,7,8, 𝐹4, and𝐺2. Here we describe
some background before going into the general theory of crystals and the type dependent combinatorics.

Tableaux and representations of 𝐺𝐿(𝑛)

Let 𝜆 be a partition. The Young diagram of 𝜆 is the array of boxes having 𝜆𝑖 boxes in the 𝑖-th row, left adjusted. Thus
if 𝜆 = (3, 2) the diagram is:

A semi-standard Young tableau of shape 𝜆 is a filling of the box by integers in which the rows are weakly increasing
and the columns are strictly increasing. Thus

is a semistandard Young tableau. Sage has a Tableau class, and you may create this tableau as follows:

sage: T = Tableau([[1,2,2], [2,3]]); T
[[1, 2, 2], [2, 3]]

A partition of length≤ 𝑟+1 is a dominant weight for𝐺𝐿(𝑟+1,C) according to the description of the ambient space in
Standard realizations of the ambient spaces. Therefore it corresponds to an irreducible representation 𝜋𝜆 = 𝜋

𝐺𝐿(𝑟+1)
𝜆

of 𝐺𝐿(𝑟 + 1,C).

It is true that not every dominant weight 𝜆 is a partition, since a dominant weight might have some values 𝜆𝑖 negative.
The dominant weight 𝜆 is a partition if and only if the character of 𝜆 is a polynomial as a function on the space
Mat𝑛(C). Thus for example det−1 = 𝜋𝜆 with 𝜆 = (−1, . . . ,−1), which is a dominant weight but not a partition, and
the character is not a polynomial function on Mat𝑛(C).

Theorem [Littlewood] If 𝜆 is a partition, then the number of semi-standard Young tableaux with shape 𝜆 and entries
in {1, 2, . . . , 𝑟 + 1} is the dimension of 𝜋𝜆.

For example, if 𝜆 = (3, 2) and 𝑟 = 2, then we find 15 tableaux with shape 𝜆 and entries in {1, 2, 3}:

12.1. Thematic tutorial document tree 167

Thematic Tutorials, Release 8.0

This is consistent with the theorem since the dimension of the irreducible representation of𝐺𝐿(3) with highest weight
(3, 2, 0) has dimension 15:

sage: A2 = WeylCharacterRing("A2")
sage: A2(3,2,0).degree()
15

In fact we may obtain the character of the representation from the set of tableaux. Indeed, one of the definitions of the
Schur polynomial (due to Littlewood) is the following combinatorial one. If 𝑇 is a tableaux, define the weight of 𝑇 to
be wt(𝑇) = (𝑘1, . . . , 𝑘𝑛) where 𝑘𝑖 is the number of 𝑖‘s in the tableaux. Then the multiplicity of 𝜇 in the character 𝜒𝜆

is the number of tableaux of weight 𝜆. Thus if z = (𝑧1, . . . , 𝑧𝑛), we have

𝜒𝜆(z) =
∑︁
𝑇

zwt(𝑇)

where the sum is over all semi-standard Young tableaux of shape 𝜆 that have entries in {1, 2, . . . , 𝑟 + 1}.

Frobenius-Schur Duality

Frobenius-Schur duality is a relationship between the representation theories of the symmetric group and general linear
group. We will relate this to tableaux in the next section.

Representations of the symmetric group 𝑆𝑘 are parametrized by partitions 𝜆 of 𝑘. The parametrization may be char-
acterized as follows. Let 𝑛 be any integer ≥ 𝑘. Then both 𝐺𝐿(𝑛,C) and 𝑆𝑘 act on ⊗𝑘𝑉 where 𝑉 = C𝑛. Indeed,
𝐺𝐿(𝑛) acts on each 𝑉 and 𝑆𝑘 permutes them. Then if 𝜋𝐺𝐿(𝑛)

𝜆 is the representation of 𝐺𝐿(𝑛,C) with highest weight
vector 𝜆 and 𝜋𝑆𝑘

𝜆 is the irreducible representation of 𝑆𝑘 parametrized by 𝜆 then

⊗𝑘𝑉 ∼=
⨁︁
𝜆⊢𝑘

𝜋
𝐺𝐿(𝑛)
𝜆 ⊗ 𝜋𝑆𝑘

𝜆

as bimodules for the two groups. This is Frobenius-Schur duality and it serves to characterize the parametrization of
the irreducible representations of 𝑆𝑘 by partitions of 𝑘.

Counting pairs of tableaux

In both the representation theory of 𝐺𝐿(𝑛) and the representation theory of 𝑆𝑘, the degrees of irreducible representa-
tions can be expressed in terms of the number of tableaux of the appropriate type. We have already stated the theorem
for 𝐺𝐿(𝑛). For 𝑆𝑘, it goes as follows.

168 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Let us say that a semistandard Young tableau 𝑇 of shape 𝜆 ⊢ 𝑘 is standard if 𝑇 contains each entry 1, 2, . . . , 𝑘 exactly
once. Thus both rows and columns are strictly increasing.

Theorem [Young, 1927] The degree of 𝜋𝜆 is the number of standard tableaux of shape 𝜆.

Now let us consider the implications of Frobenius-Schur duality. The dimension of ⊗𝑘𝑉 is 𝑛𝑘. Therefore 𝑛𝑘 is equal
to the number of pairs (𝑇1, 𝑇2) of tableaux of the same shape 𝜆 ⊢ 𝑘, where the first tableaux is standard (in the
alphabet 1, 2, . . . , 𝑘), and the second the second semistandard (in the alphabet 1, 2, . . . , 𝑛).

The Robinson-Schensted-Knuth correspondence

The last purely combinatorial statement has a combinatorial proof, based on the Robinson-Schensted-Knuth (RSK)
correspondence.

References:

• [Knuth1998], section “Tableaux and Involutions”.

• [Knuth1970]

• [Fulton1997]

• [Stanley1999]

The RSK correspondence gives bijections between pairs of tableaux of various types and combinatorial objects of
different types. We will not review the correspondence in detail here, but see the references. We note that Schensted
insertion is implemented as the method schensted_insertion of Tableau class in Sage.

Thus we have the following bijections:

• Pairs of tableaux 𝑇1 and 𝑇2 of shape 𝜆 where 𝜆 runs through the partitions of 𝑘 such that 𝑇1 is a standard tableau
and 𝑇2 is a semistandard tableau in 1, 2, . . . , 𝑛 are in bijection with the 𝑛𝑘 words of length 𝑘 in 1, 2, . . . , 𝑛.

• Pairs of standard tableaux of the same shape 𝜆 as 𝜆 runs through the partitions of 𝑘 are in bijection with the 𝑘!
elements of 𝑆𝑘.

• Pairs of tableaux 𝑇1 and 𝑇2 of the same shape 𝜆 but arbitrary size in 1, 2, 3, . . . , 𝑛 are in bijection with 𝑛 × 𝑛
positive integer matrices.

• Pairs of tableaux 𝑇1 and 𝑇2 of conjugate shapes 𝜆 and 𝜆′ are in bijection with 𝑛×𝑛 matrices with entries 0 or 1.

The second of these four bijection gives a combinatorial proof of the fact explained above, that the number of pairs
(𝑇1, 𝑇2) of tableaux of the same shape 𝜆 ⊢ 𝑘, where the first tableaux is standard (in the alphabet 1, 2, · · · , 𝑘), and
the second the second semistandard (in the alphabet 1, 2, · · · , 𝑛). So this second bijection is a combinatorial analog
of Frobenius-Schur duality.

Analogies between representation theory and combinatorics

The four combinatorial bijections (variants of RSK) cited above have the following analogs in representation theory.

• The first combinatorial fact corresponds to Frobenius-Schur duality, as we have already explained.

• The second combinatorial fact also has an analog in representation theory. The group algebra C[𝑆𝑘] is an
𝑆𝑘 × 𝑆𝑘 bimodule with of dimension 𝑘!. It decomposes as a direct sum of 𝜋𝑆𝑘

𝜆 ⊗ 𝜋
𝑆𝑘

𝜆 .

Both the combinatorial fact and the decomposition of C[𝑆𝑘] show that the number of pairs of standard tableaux of size
𝑘 and the same shape equals 𝑘!.

• The third combinatorial fact is analogous to the decomposition of the ring of polynomial functions on Mat(𝑛,C)
on which 𝐺𝐿(𝑛,C) × 𝐺𝐿(𝑛,C) acts by (𝑔1, 𝑔2)𝑓(𝑋) = 𝑓(𝑡𝑔1𝑋𝑔2). The polynomial ring decomposes into
the direct sum of 𝜋𝐺𝐿(𝑛)

𝜆 ⊗ 𝜋𝐺𝐿(𝑛)
𝜆 .

12.1. Thematic tutorial document tree 169

Thematic Tutorials, Release 8.0

Taking traces gives the Cauchy identity:∑︁
𝜆

𝑠𝜆(𝑥1, · · · , 𝑥𝑛)𝑠𝜆(𝑦1, · · · , 𝑦𝑛) =
∏︁
𝑖,𝑗

(1− 𝑥𝑖𝑦𝑗)−1

where 𝑥𝑖 are the eigenvalues of 𝑔1 and 𝑦𝑗 are the eigenvalues of 𝑔2. The sum is over all partitions 𝜆.

• The last combinatorial fact is analogous to the decomposition of the exterior algebra over Mat(𝑛,C).

Taking traces gives the dual Cauchy identity:∑︁
𝜆

𝑠𝜆(𝑥1, · · · , 𝑥𝑛)𝑠𝜆′(𝑦1, · · · , 𝑦𝑛) =
∏︁
𝑖,𝑗

(1 + 𝑥𝑖𝑦𝑗).

Again the sum is over partitions 𝜆 and here 𝜆′ is the conjugate partition.

Interpolating between representation theory and combinatorics

The theory of quantum groups interpolates between the representation theoretic picture and the combinatorial picture,
and thereby explains these analogies. The representation 𝜋𝐺𝐿(𝑛)

𝜆 is reinterpreted as a module for the quantized en-
veloping algebra 𝑈𝑞(gl𝑛(C)), and the representation 𝜋𝑆𝑘

𝜆 is reinterpreted as a module for the Iwahori Hecke algebra.
Then Frobenius-Schur duality persists. See [Jimbo1986]. When 𝑞 → 1, we recover the representation story. When
𝑞 → 0, we recover the combinatorial story.

Kashiwara crystals

References:

• [Kashiwara1995]

• [KashiwaraNakashima1994]

• [HongKang2002]

Kashiwara considered the highest weight modules of quantized enveloping algebras 𝑈𝑞(g) in the limit when 𝑞 → 0.
The enveloping algebra cannot be defined when 𝑞 = 0, but a limiting structure can still be detected. This is the crystal
basis of the module.

Kashiwara’s crystal bases have a combinatorial structure that sheds light even on purely combinatorial constructions
on tableaux that predated quantum groups. It gives a good generalization to other Cartan types (or more generally to
Kac-Moody algebras).

Let Λ be the weight lattice of a Cartan type with root system Φ. We now define a crystal of type Φ. Let ℬ be a set,
and let 0 /∈ ℬ be an auxiliary element. For each index 1 ≤ 𝑖 ≤ 𝑟 we assume there given maps 𝑒𝑖, 𝑓𝑖 : ℬ −→ ℬ ∪ {0},
maps 𝜀𝑖, 𝜙𝑖 : ℬ −→ Z and a map wt : ℬ −→ Λ satisfying certain assumptions, which we now describe. It is assumed
that if 𝑥, 𝑦 ∈ ℬ then 𝑒𝑖(𝑥) = 𝑦 if and only if 𝑓𝑖(𝑦) = 𝑥. In this case, it is assumed that

wt(𝑦) = wt(𝑥) + 𝛼𝑖, 𝜀𝑖(𝑥) = 𝜀𝑖(𝑦) + 1, 𝜙𝑖(𝑥) = 𝜙𝑖(𝑦)− 1.

Moreover, we assume that

𝜙𝑖(𝑥)− 𝜀𝑖(𝑥) = ⟨wt(𝑥), 𝛼∨
𝑖 ⟩

for all 𝑥 ∈ ℬ.

We call a crystal regular if it satisfies the additional assumption that 𝜀𝑖(𝑣) is the number of times that 𝑒𝑖 may be
applied to 𝑣, and that 𝜑𝑖(𝑣) is the number of times that 𝑓𝑖 may be applied. That is, 𝜙𝑖(𝑥) = max{𝑘|𝑓𝑘𝑖 𝑥 ̸= 0} and
𝜀𝑖(𝑥) = max{𝑘|𝑒𝑘𝑖 (𝑥) ̸= 0}. Kashiwara also allows 𝜀𝑖 and 𝜙𝑖 to take the value −∞.

170 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note: Most of the crystals that we are concerned with here are regular.

Given the crystal ℬ, the character 𝜒ℬ is: ∑︁
𝑣∈ℬ

z𝑤𝑡(𝑣).

Given any highest weight 𝜆, constructions of Kashiwara and Nakashima, Littelmann and others produce a crystal 𝜒ℬ𝜆

such that 𝜒ℬ𝜆
= 𝜒𝜆, where 𝜒𝜆 is the irreducible character with highest weight 𝜆, as in Representations and characters.

The crystal ℬ𝜆 is not uniquely characterized by the properties that we have stated so far. For Cartan types 𝐴,𝐷,𝐸
(more generally, any simply-laced type) it may be characterized by these properties together with certain other Stem-
bridge axioms. We will take it for granted that there is a unique “correct” crystal ℬ𝜆 and discuss how these are
constructed in Sage.

Installing dot2tex

Before giving examples of crystals, we digress to help you install dot2tex, which you will need in order to make
latex images of crystals.

dot2tex is an optional package of sage and the latest version can be installed via:

sage -i dot2tex

Crystals of tableaux in Sage

All crystals that are currently in Sage can be accessed by crystals.<tab>.

For type 𝐴𝑟, Kashiwara and Nakashima put a crystal structure on the set of tableaux with shape 𝜆 in 1, 2, . . . , 𝑟 + 1,
and this is a realization of ℬ𝜆. Moreover, this construction extends to other Cartan types, as we will explain. At the
moment, we will consider how to draw pictures of these crystals.

Once you have dot2tex installed, you may make images pictures of crystals with a command such as this:

sage: crystals.Tableaux("A2", shape=[2,1]).latex_file("/tmp/a2rho.tex") # optional -
→˓dot2tex graphviz

Here 𝜆 = (2, 1) = (2, 1, 0). The crystal C is ℬ𝜆. The character 𝜒𝜆 will therefore be the eight-dimensional irreducible
character with this highest weight. Then you may run pdflatex on the file a2rho.tex. This can also be achieved
without the detour of saving the latex file via:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: view(B, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

This produces the crystal graph:

12.1. Thematic tutorial document tree 171

Thematic Tutorials, Release 8.0

You may also wish to color the edges in different colors by specifying further latex options:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: G = B.digraph()
sage: G.set_latex_options(color_by_label = {1:"red", 2:"yellow"})
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

As you can see, the elements of this crystal are exactly the eight tableaux of shape 𝜆 with entries in {1, 2, 3}. The
convention is that if 𝑥, 𝑦 ∈ ℬ and 𝑓𝑖(𝑥) = 𝑦, or equivalently 𝑒𝑖(𝑦) = 𝑥, then we draw an arrow from 𝑥→ 𝑦. Thus the
highest weight tableau is the one with no incoming arrows. Indeed, this is:

We recall that the weight of the tableau is (𝑘1, 𝑘2, 𝑘3) where 𝑘𝑖 is the number of 𝑖‘s in the tableau, so this tableau has
weight (2, 1, 0), which indeed equals 𝜆.

Once the crystal is created, you have access to the ambient space and its methods through the method
weight_lattice_realization():

sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: L = C.weight_lattice_realization(); L
Ambient space of the Root system of type ['A', 2]
sage: L.fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0)}

The highest weight vector is available as follows:

sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: v = C.highest_weight_vector(); v
[[1, 1], [2]]

or more simply:

172 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: C[0]
[[1, 1], [2]]

Now we may apply the operators 𝑒𝑖 and 𝑓𝑖 to move around in the crystal:

sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: v = C.highest_weight_vector()
sage: v.f(1)
[[1, 2], [2]]
sage: v.f(1).f(1)
sage: v.f(1).f(1) is None
True
sage: v.f(1).f(2)
[[1, 3], [2]]
sage: v.f(1).f(2).f(2)
[[1, 3], [3]]
sage: v.f(1).f(2).f(2).f(1)
[[2, 3], [3]]
sage: v.f(1).f(2).f(2).f(1) == v.f(2).f(1).f(1).f(2)
True

You can construct the character if you first make a Weyl character ring:

sage: A2 = WeylCharacterRing("A2")
sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: C.character(A2)
A2(2,1,0)

Crystals of letters

For each of the classical Cartan types there is a standard crystal ℬstandard from which other crystals can be built
up by taking tensor products and extracting constituent irreducible crystals. This procedure is sufficient for Car-
tan types 𝐴𝑟 and 𝐶𝑟. For types 𝐵𝑟 and 𝐷𝑟 the standard crystal must be supplemented with spin crystals. See
[KashiwaraNakashima1994] or [HongKang2002] for further details.

Here is the standard crystal of type 𝐴𝑟.

You may create the crystal and work with it as follows:

sage: C = crystals.Letters("A6")
sage: v0 = C.highest_weight_vector(); v0
1
sage: v0.f(1)
2
sage: v0.f(1).f(2)
3
sage: [v0.f(1).f(2).f(x) for x in [1..6]]
[None, None, 4, None, None, None]
sage: [v0.f(1).f(2).e(x) for x in [1..6]]
[None, 2, None, None, None, None]

Here is the standard crystal of type 𝐵𝑟.

12.1. Thematic tutorial document tree 173

Thematic Tutorials, Release 8.0

There is, additionally, a spin crystal for𝐵𝑟, corresponding to the 2𝑟-dimensional spin representation. We will not draw
it, but we will describe it. Its elements are vectors 𝜖1 ⊗ · · · ⊗ 𝜖𝑟, where each spin 𝜖𝑖 = ±.

If 𝑖 < 𝑟, then the effect of the operator 𝑓𝑖 is to annihilate 𝑣 = 𝜖1 ⊗ · · · ⊗ 𝜖𝑟 unless 𝜖𝑖 ⊗ 𝜖𝑖+1 = + ⊗ −. If this is so,
then 𝑓𝑖(𝑣) is obtained from 𝑣 by replacing 𝜖𝑖⊗ 𝜖𝑖+1 by −⊗+. If 𝑖 = 𝑟, then 𝑓𝑟 annihilates 𝑣 unless 𝜖𝑟 = +, in which
case it replaces 𝜖𝑟 by −.

Create the spin crystal as follows. The crystal elements are represented in the signature representation listing the 𝜖𝑖:

sage: C = crystals.Spins("B3")
sage: C.list()
[+++, ++-, +-+, -++, +--, -+-, --+, ---]

Here is the standard crystal of type 𝐶𝑟.

Here is the standard crystal of type 𝐷𝑟.

There are two spin crystals for type 𝐷𝑟. Each consists of 𝜖1 ⊗ · · · ⊗ 𝜖𝑟 with 𝜖𝑖 = ±, and the number of spins either
always even or always odd. We will not describe the effect of the root operators 𝑓𝑖, but you are invited to create them
and play around with them to guess the rule:

sage: Cplus = crystals.SpinsPlus("D4")
sage: Cminus = crystals.SpinsMinus("D4")

It is also possible to construct the standard crystal for type𝐺2, 𝐸6, and𝐸7. Here is the one for type𝐺2 (corresponding
to the representation of degree 7):

The crystal of letters is a special case of the crystal of tableaux in the sense that ℬstandard is isomorphic to the crystal
of tableaux whose highest weight 𝜆 is the highest weight vector of the standard representation. Thus compare:

sage: crystals.Letters("A3")
The crystal of letters for type ['A', 3]
sage: crystals.Tableaux("A3", shape=[1])
The crystal of tableaux of type ['A', 3] and shape(s) [[1]]

These two crystals are different in implementation, but they are isomorphic. In fact the second crystal is constructed
from the first. We can test isomorphisms between crystals as follows:

sage: Cletter = crystals.Letters(['A',3])
sage: Ctableaux = crystals.Tableaux(['A',3], shape = [1])
sage: Cletter.digraph().is_isomorphic(Ctableaux.digraph())

174 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

True
sage: Cletter.digraph().is_isomorphic(Ctableaux.digraph(), certificate = True)
(True, {1: [[1]], 2: [[2]], 3: [[3]], 4: [[4]]})

where in the last step the explicit map between the vertices of the crystals is given.

Crystals of letters have a special role in the theory since they are particularly simple, yet as Kashiwara and Nakashima
showed, the crystals of tableaux can be created from them. We will review how this works.

Tensor products of crystals

Kashiwara defined the tensor product of crystals in a purely combinatorial way. The beauty of this construction is that
it exactly parallels the tensor product of crystals of representations. That is, if 𝜆 and 𝜇 are dominant weights, then
ℬ𝜆 ⊗ ℬ𝜇 is a (usually disconnected) crystal, which may contain multiple copies of ℬ𝜈 (for another dominant weight
𝜈), and the number of copies of ℬ𝜈 is exactly the multiplicity of 𝜒𝜈 in 𝜒𝜆𝜒𝜇.

We will describe two conventions for the tensor product of crystals.

Kashiwara’s definition

As a set, the tensor product ℬ ⊗ 𝒞 of crystals ℬ and 𝒞 is the Cartesian product, but we denote the ordered pair (𝑥, 𝑦)
with 𝑥 ∈ ℬ and 𝑦 ∈ 𝒞 by 𝑥⊗ 𝑦. We define wt(𝑥⊗ 𝑦) = wt(𝑥) + wt(𝑦). We define

𝑓𝑖(𝑥⊗ 𝑦) =

{︃
𝑓𝑖(𝑥)⊗ 𝑦 if 𝜙𝑖(𝑥) > 𝜀𝑖(𝑦),

𝑥⊗ 𝑓𝑖(𝑦) if 𝜙𝑖(𝑥) ≤ 𝜀𝑖(𝑦),

and

𝑒𝑖(𝑥⊗ 𝑦) =

{︃
𝑒𝑖(𝑥)⊗ 𝑦 if 𝜙𝑖(𝑥) ≥ 𝜀𝑖(𝑦),

𝑥⊗ 𝑒𝑖(𝑦) if 𝜙𝑖(𝑥) < 𝜀𝑖(𝑦).

It is understood that 𝑥⊗ 0 = 0⊗ 𝑥 = 0. We also define:

𝜙𝑖(𝑥⊗ 𝑦) = max(𝜙𝑖(𝑦), 𝜙𝑖(𝑥) + 𝜙𝑖(𝑦)− 𝜀𝑖(𝑦)),

𝜀𝑖(𝑥⊗ 𝑦) = max(𝜀𝑖(𝑥), 𝜀𝑖(𝑥) + 𝜀𝑖(𝑦)− 𝜙𝑖(𝑥)).

Alternative definition

As a set, the tensor product ℬ ⊗ 𝒞 of crystals ℬ and 𝒞 is the Cartesian product, but we denote the ordered pair (𝑦, 𝑥)
with 𝑦 ∈ ℬ and 𝑥 ∈ 𝒞 by 𝑥⊗ 𝑦. We define wt(𝑥⊗ 𝑦) = wt(𝑦) + wt(𝑥). We define

𝑓𝑖(𝑥⊗ 𝑦) =

{︃
𝑓𝑖(𝑥)⊗ 𝑦 if 𝜙𝑖(𝑦) ≤ 𝜀𝑖(𝑥),

𝑥⊗ 𝑓𝑖(𝑦) if 𝜙𝑖(𝑦) > 𝜀𝑖(𝑥),

and

𝑒𝑖(𝑥⊗ 𝑦) =

{︃
𝑒𝑖(𝑥)⊗ 𝑦 if 𝜙𝑖(𝑦) < 𝜀𝑖(𝑥),

𝑥⊗ 𝑒𝑖(𝑦) if 𝜙𝑖(𝑦) ≥ 𝜀𝑖(𝑥).

It is understood that 𝑦 ⊗ 0 = 0⊗ 𝑦 = 0. We also define

𝜙𝑖(𝑥⊗ 𝑦) = max(𝜙𝑖(𝑥), 𝜙𝑖(𝑦) + 𝜙𝑖(𝑥)− 𝜀𝑖(𝑥)),

12.1. Thematic tutorial document tree 175

Thematic Tutorials, Release 8.0

𝜀𝑖(𝑥⊗ 𝑦) = max(𝜀𝑖(𝑦), 𝜀𝑖(𝑦) + 𝜀𝑖(𝑥)− 𝜙𝑖(𝑦)).

The tensor product is associative: (𝑥⊗ 𝑦)⊗ 𝑧 ↦→ 𝑥⊗ (𝑦 ⊗ 𝑧) is an isomorphism (ℬ ⊗ 𝒞)⊗𝒟 → ℬ ⊗ (𝒞 ⊗ 𝒟), and
so we may consider tensor products of arbitrary numbers of crystals.

The relationship between the two definitions

The relationship between the two definitions is simply that the Kashiwara tensor product ℬ ⊗ 𝒞 is the alternate tensor
product 𝒞 ⊗ ℬ in reverse order. Sage uses the alternative tensor product. Even though the tensor product construction
is a priori asymmetrical, both constructions produce isomorphic crystals, and in particular Sage’s crystals of tableaux
are identical to Kashiwara’s.

Note: Using abstract crystals (i.e. they satisfy the axioms but do not arise from a representation of 𝑈𝑞(g)), we can
construct crystals ℬ, 𝒞 such that ℬ ⊗ 𝒞 ≠ 𝒞 ⊗ ℬ (of course, using the same convention).

Tensor products of crystals in Sage

You may construct the tensor product of several crystals in Sage using crystals.TensorProduct:

sage: C = crystals.Letters("A2")
sage: T = crystals.TensorProduct(C,C,C); T
Full tensor product of the crystals [The crystal of letters for type ['A', 2],
The crystal of letters for type ['A', 2], The crystal of letters for type ['A', 2]]
sage: T.cardinality()
27
sage: T.highest_weight_vectors()
([1, 1, 1], [2, 1, 1], [1, 2, 1], [3, 2, 1])

This crystal has four highest weight vectors. We may understand this as follows:

sage: A2 = WeylCharacterRing("A2")
sage: C = crystals.Letters("A2")
sage: T = crystals.TensorProduct(C,C,C)
sage: chi_C = C.character(A2)
sage: chi_T = T.character(A2)
sage: chi_C
A2(1,0,0)
sage: chi_T
A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0)
sage: chi_T == chi_C^3
True

As expected, the character of T is the cube of the character of C, and representations with highest weight (1, 1, 1),
(3, 0, 0) and (2, 1, 0). This decomposition is predicted by Frobenius-Schur duality: the multiplicity of 𝜋𝐺𝐿(𝑛)

𝜆 in
⊗3C3 is the degree of 𝜋𝑆3

𝜆 .

It is useful to be able to select one irreducible constitutent of T. If we only want one of the irreducible constituents of
T, we can specify a list of highest weight vectors by the option generators. If the list has only one element, then
we get an irreducible crystal. We can make four such crystals:

sage: A2 = WeylCharacterRing("A2")
sage: C = crystals.Letters("A2")
sage: T = crystals.TensorProduct(C,C,C)
sage: [T1,T2,T3,T4] = \

176 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

[crystals.TensorProduct(C,C,C,generators=[v]) for v in T.highest_weight_vectors()]
sage: [B.cardinality() for B in [T1,T2,T3,T4]]
[10, 8, 8, 1]
sage: [B.character(A2) for B in [T1,T2,T3,T4]]
[A2(3,0,0), A2(2,1,0), A2(2,1,0), A2(1,1,1)]

We see that two of these crystals are isomorphic, with character A2(2,1,0). Try:

sage: A2 = WeylCharacterRing("A2")
sage: C = crystals.Letters("A2")
sage: T = crystals.TensorProduct(C,C,C)
sage: [T1,T2,T3,T4] = \

[crystals.TensorProduct(C,C,C,generators=[v]) for v in T.highest_weight_vectors()]
sage: T1.plot()
Graphics object consisting of 35 graphics primitives
sage: T2.plot()
Graphics object consisting of 25 graphics primitives
sage: T3.plot()
Graphics object consisting of 25 graphics primitives
sage: T4.plot()
Graphics object consisting of 2 graphics primitives

Elements of crystals.TensorProduct(A,B,C, ...) are represented by sequences [a,b,c, ...] with
a in A, b in B, etc. This of course represents 𝑎⊗ 𝑏⊗ 𝑐⊗ · · ·.

Crystals of tableaux as tensor products of crystals

Sage implements the CrystalOfTableaux as a subcrystal of a tensor product of the
ClassicalCrystalOfLetters. You can see how its done as follows:

sage: T = crystals.Tableaux("A4",shape=[3,2])
sage: v = T.highest_weight_vector().f(1).f(2).f(3).f(2).f(1).f(4).f(2).f(3); v
[[1, 2, 5], [3, 4]]
sage: list(v)
[3, 1, 4, 2, 5]

We’ve looked at the internal representation of 𝑣, where it is represented as an element of the fourth tensor power of
the ClassicalCrystalOfLetters. We see that the tableau:

is interpreted as the tensor:

The elements of the tableau are read from bottom to top and from left to right. This is the inverse middle-Eastern
reading of the tableau. See Hong and Kang, loc. cit. for discussion of the readings of a tableau.

12.1. Thematic tutorial document tree 177

Thematic Tutorials, Release 8.0

Spin crystals

For the Cartan types 𝐴𝑟, 𝐶𝑟 or 𝐺2, CrystalOfTableaux are capable of making any finite crystal. (For type 𝐴𝑟 it
is necessary that the highest weight 𝜆 be a partition.)

For Cartan types 𝐵𝑟 and 𝐷𝑟, there also exist spin representations. The corresponding crystals are implemented as spin
crystals. For these types, CrystalOfTableaux also allows the input shape 𝜆 to be half-integral if it is of height 𝑟.
For example:

sage: C = crystals.Tableaux(['B',2], shape = [3/2, 1/2])
sage: C.list()
[[++, [[1]]], [++, [[2]]], [++, [[0]]], [++, [[-2]]], [++, [[-1]]], [+-, [[-2]]],
[+-, [[-1]]], [-+, [[-1]]], [+-, [[1]]], [+-, [[2]]], [-+, [[2]]], [+-, [[0]]],
[-+, [[0]]], [-+, [[-2]]], [--, [[-2]]], [--, [[-1]]]]

Here the first list of + and − gives a spin column that is discussed in more detail in the next section and the second
entry is a crystal of tableau element for 𝜆 = (⌊𝜆1⌋, ⌊𝜆2⌋, . . .). For type 𝐷𝑟, we have the additional feature that there
are two types of spin crystals. Hence in CrystalOfTableaux the 𝑟-th entry of 𝜆 in this case can also take negative
values:

sage: C = crystals.Tableaux(['D',3], shape = [1/2, 1/2,-1/2])
sage: C.list()
[[++-, []], [+-+, []], [-++, []], [---, []]]

For rank two Cartan types, we also have crystals.FastRankTwo which gives a different fast implementation of
these crystals:

sage: B = crystals.FastRankTwo(['B',2], shape=[3/2,1/2]); B
The fast crystal for B2 with shape [3/2,1/2]
sage: v = B.highest_weight_vector(); v.weight()
(3/2, 1/2)

Type B spin crystal

The spin crystal has highest weight (1/2, . . . , 1/2). This is the last fundamental weight. The irreducible representation
with this weight is the spin representation of degree 2𝑟. Its crystal is hand-coded in Sage:

sage: Cspin = crystals.Spins("B3"); Cspin
The crystal of spins for type ['B', 3]
sage: Cspin.cardinality()
8

The crystals with highest weight 𝜆, where 𝜆 is a half-integral weight, are constructed as a tensor product of a spin
column and the highest weight crystal of the integer part of 𝜆. For example, suppose that 𝜆 = (3/2, 3/2, 1/2). The
corresponding irreducible character will have degree 112:

sage: B3 = WeylCharacterRing("B3")
sage: B3(3/2,3/2,1/2).degree()
112

So ℬ𝜆 will have 112 elements. We can find it as a subcrystal of Cspin ⊗ℬ𝜇, where 𝜇 = 𝜆 − (1/2, 1/2, 1/2) =
(1, 1, 0):

sage: B3 = WeylCharacterRing("B3")
sage: B3(1,1,0)*B3(1/2,1/2,1/2)
B3(1/2,1/2,1/2) + B3(3/2,1/2,1/2) + B3(3/2,3/2,1/2)

178 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

We see that just taking the tensor product of these two crystals will produce a reducible crystal with three constitutents,
and we want to extract the one we want. We do that as follows:

sage: B3 = WeylCharacterRing("B3")
sage: C1 = crystals.Tableaux("B3", shape=[1,1])
sage: Cspin = crystals.Spins("B3")
sage: C = crystals.TensorProduct(C1, Cspin, generators=[[C1[0],Cspin[0]]])
sage: C.cardinality()
112

Alternatively, we can get this directly from CrystalOfTableaux:

sage: C = crystals.Tableaux(['B',3], shape = [3/2,3/2,1/2])
sage: C.cardinality()
112

This is the desired crystal.

Type D spin crystals

A similar situation pertains for type𝐷𝑟, but now there are two spin crystals, both of degree 2𝑟−1. These are hand-coded
in sage:

sage: SpinPlus = crystals.SpinsPlus("D4")
sage: SpinMinus = crystals.SpinsMinus("D4")
sage: SpinPlus[0].weight()
(1/2, 1/2, 1/2, 1/2)
sage: SpinMinus[0].weight()
(1/2, 1/2, 1/2, -1/2)
sage: [C.cardinality() for C in [SpinPlus,SpinMinus]]
[8, 8]

Similarly to type B crystal, we obtain crystal with spin weight by allowing for partitions with half-integer values, and
the last entry can be negative depending on the type of the spin.

Lusztig involution

The Lusztig involution on a finite-dimensional highest weight crystal 𝐵(𝜆) of highest weight 𝜆 maps the highest
weight vector to the lowest weight vector and the Kashiwara operator 𝑓𝑖 to 𝑒𝑖* , where 𝑖* is defined as 𝛼𝑖* = −𝑤0(𝛼𝑖).
Here 𝑤0 is the longest element of the Weyl group acting on the 𝑖-th simple root 𝛼𝑖. For example, for type 𝐴𝑛 we have
𝑖* = 𝑛+ 1− 𝑖, whereas for type 𝐶𝑛 we have 𝑖* = 𝑖. For type 𝐷𝑛 and 𝑛 even also have 𝑖* = 𝑖, but for 𝑛 odd this map
interchanges nodes 𝑛− 1 and 𝑛. Here is how to achieve this in Sage:

sage: B = crystals.Tableaux(['A',3],shape=[2,1])
sage: b = B(rows=[[1,2],[3]])
sage: b.lusztig_involution()
[[2, 4], [3]]

For type 𝐴𝑛, the Lusztig involution is the same as the Schuetzenberger involution (which in Sage is defined on
tableaux):

12.1. Thematic tutorial document tree 179

Thematic Tutorials, Release 8.0

sage: t = Tableau([[1,2],[3]])
sage: t.schuetzenberger_involution(n=4)
[[2, 4], [3]]

For all tableaux in a given crystal, this can be tested via:

sage: B = crystals.Tableaux(['A',3],shape=[2])
sage: all(b.lusztig_involution().to_tableau() == b.to_tableau().schuetzenberger_
→˓involution(n=4) for b in B)
True

The Lusztig involution is also defined for finite-dimensional highest weight crystals of exceptional type:

sage: C = CartanType(['E',6])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: t = T[4]; t
[(-2, 5)]
sage: t.lusztig_involution()
[(-3, 2)]

Levi branching rules for crystals

Let 𝐺 be a Lie group and 𝐻 a Levi subgroup. We have already seen that the Dynkin diagram of 𝐻 is obtained from
that of 𝐺 by erasing one or more nodes.

If 𝒞 is a crystal for 𝐺, then we may obtain the corresponding crystal for 𝐻 by a similar process. For example if the
Dynkin diagram for 𝐻 is obtained from the Dynkin diagram for 𝐺 by erasing the 𝑖-th node, then if we erase all the
edges in the crystal 𝒞 that are labeled with 𝑖, we obtain a crystal for 𝐻 .

In Sage this is achieved by specifying the index set used in the digraph method:

sage: T = crystals.Tableaux(['D',4],shape=[1])
sage: G = T.digraph(index_set=[1,2,3])

We see that the type 𝐷4 crystal indeed decomposes into two type 𝐴3 components.

For more on branching rules, see Maximal Subgroups and Branching Rules or Levi subgroups for specifics on the Levi
subgroups.

180 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Subcrystals

Sometimes it might be desirable to work with a subcrystal of a crystal. For example, one might want to look at all
{2, 3, . . . , 𝑛} highest elements of a crystal and look at a particular such component:

sage: T = crystals.Tableaux(['D',4],shape=[2,1])
sage: hw = [t for t in T if t.is_highest_weight(index_set = [2,3,4])]; hw
[[[1, 1], [2]],
[[1, 2], [2]],
[[2, -1], [-2]],
[[2, -1], [-1]],
[[1, -1], [2]],
[[2, -1], [3]],
[[1, 2], [3]],
[[2, 2], [3]],
[[1, 2], [-2]],
[[2, 2], [-2]],
[[2, 2], [-1]]]

sage: C = T.subcrystal(generators = [T(rows=[[2,-1],[3]])], index_set = [2,3,4])
sage: G = T.digraph(subset = C, index_set=[2,3,4])

Affine Finite Crystals

In this document we briefly explain the construction and implementation of the Kirillov–Reshetikhin crystals of
[FourierEtAl2009].

Kirillov–Reshetikhin (KR) crystals are finite-dimensional affine crystals corresponding to Kirillov–Reshektikhin mod-
ules. They were first conjectured to exist in [HatayamaEtAl2001]. The proof of their existence for nonexceptional
types was given in [OkadoSchilling2008] and their combinatorial models were constructed in [FourierEtAl2009].
Kirillov-Reshetikhin crystals 𝐵𝑟,𝑠 are indexed first by their type (like 𝐴(1)

𝑛 , 𝐵(1)
𝑛 , ...) with underlying index set

𝐼 = {0, 1, . . . , 𝑛} and two integers 𝑟 and 𝑠. The integers 𝑠 only needs to satisfy 𝑠 > 0, whereas 𝑟 is a node of the
finite Dynkin diagram 𝑟 ∈ 𝐼 ∖ {0}.

Their construction relies on several cases which we discuss separately. In all cases when removing the zero arrows,
the crystal decomposes as a (direct sum of) classical crystals which gives the crystal structure for the index set 𝐼0 =
{1, 2, . . . , 𝑛}. Then the zero arrows are added by either exploiting a symmetry of the Dynkin diagram or by using
embeddings of crystals.

Type 𝐴(1)
𝑛

The Dynkin diagram for affine type 𝐴 has a rotational symmetry mapping 𝜎 : 𝑖 ↦→ 𝑖 + 1 where we view the indices
modulo 𝑛+ 1:

sage: C = CartanType(['A',3,1])
sage: C.dynkin_diagram()
0
O-------+
| |
| |
O---O---O
1 2 3
A3~

12.1. Thematic tutorial document tree 181

Thematic Tutorials, Release 8.0

The classical decomposition of 𝐵𝑟,𝑠 is the 𝐴𝑛 highest weight crystal 𝐵(𝑠𝜔𝑟) or equivalently the crystal of tableaux
labelled by the rectangular partition (𝑠𝑟):

𝐵𝑟,𝑠 ∼= 𝐵(𝑠𝜔𝑟) as a {1, 2, . . . , 𝑛}-crystal

In Sage we can see this via:

sage: K = crystals.KirillovReshetikhin(['A',3,1],1,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['A', 3] and shape(s) [[1]]
sage: K.list()
[[[1]], [[2]], [[3]], [[4]]]

sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['A', 3] and shape(s) [[1, 1]]

One can change between the classical and affine crystal using the methods lift and retract:

sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: b = K(rows=[[1],[3]]); type(b)
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_A_with_category.element_
→˓class'>
sage: b.lift()
[[1], [3]]
sage: type(b.lift())
<class 'sage.combinat.crystals.tensor_product.CrystalOfTableaux_with_category.element_
→˓class'>

sage: b = crystals.Tableaux(['A',3], shape = [1,1])(rows=[[1],[3]])
sage: K.retract(b)
[[1], [3]]
sage: type(K.retract(b))
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_A_with_category.element_
→˓class'>

The 0-arrows are obtained using the analogue of 𝜎, called the promotion operator pr, on the level of crystals via:

𝑓0 = pr−1 ∘ 𝑓1 ∘ pr

𝑒0 = pr−1 ∘ 𝑒1 ∘ pr

In Sage this can be achieved as follows:

sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: b = K.module_generator(); b
[[1], [2]]
sage: b.f(0)
sage: b.e(0)
[[2], [4]]

sage: K.promotion()(b.lift())
[[2], [3]]
sage: K.promotion()(b.lift()).e(1)
[[1], [3]]
sage: K.promotion_inverse()(K.promotion()(b.lift()).e(1))
[[2], [4]]

KR crystals are level 0 crystals, meaning that the weight of all elements in these crystals is zero:

182 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: b = K.module_generator(); b.weight()
-Lambda[0] + Lambda[2]
sage: b.weight().level()
0

The KR crystal 𝐵1,1 of type 𝐴(1)
2 looks as follows:

In Sage this can be obtained via:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: G = K.digraph()
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

Types 𝐷(1)
𝑛 , 𝐵(1)

𝑛 , 𝐴(2)
2𝑛−1

The Dynkin diagrams for types 𝐷(1)
𝑛 , 𝐵(1)

𝑛 , 𝐴(2)
2𝑛−1 are invariant under interchanging nodes 0 and 1:

sage: n = 5
sage: C = CartanType(['D',n,1]); C.dynkin_diagram()

0 O O 5
| |
| |

O---O---O---O
1 2 3 4
D5~
sage: C = CartanType(['B',n,1]); C.dynkin_diagram()

O 0
|
|

O---O---O---O=>=O
1 2 3 4 5
B5~
sage: C = CartanType(['A',2*n-1,2]); C.dynkin_diagram()

O 0
|
|

O---O---O---O=<=O
1 2 3 4 5
B5~*

The underlying classical algebras obtained when removing node 0 are type g0 = 𝐷𝑛, 𝐵𝑛, 𝐶𝑛, respectively. The
classical decomposition into a g0 crystal is a direct sum:

𝐵𝑟,𝑠 ∼=
⨁︁
𝜆

𝐵(𝜆) as a {1, 2, . . . , 𝑛}-crystal

12.1. Thematic tutorial document tree 183

Thematic Tutorials, Release 8.0

where 𝜆 is obtained from 𝑠𝜔𝑟 (or equivalently a rectangular partition of shape (𝑠𝑟)) by removing vertical dominoes.
This in fact only holds in the ranges 1 ≤ 𝑟 ≤ 𝑛− 2 for type 𝐷(1)

𝑛 , and 1 ≤ 𝑟 ≤ 𝑛 for types 𝐵(1)
𝑛 and 𝐴(2)

2𝑛−1:

sage: K = crystals.KirillovReshetikhin(['D',6,1],4,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 6] and shape(s)
[[], [1, 1], [1, 1, 1, 1], [2, 2], [2, 2, 1, 1], [2, 2, 2, 2]]

For type 𝐵(1)
𝑛 and 𝑟 = 𝑛, one needs to be aware that 𝜔𝑛 is a spin weight and hence corresponds in the partition

language to a column of height 𝑛 and width 1/2:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[1/2, 1/2, 1/2]]

As for type 𝐴(1)
𝑛 , the Dynkin automorphism induces a promotion-type operator 𝜎 on the level of crystals. In this case

in can however happen that the automorphism changes between classical components:

sage: K = crystals.KirillovReshetikhin(['D',4,1],2,1)
sage: b = K.module_generator(); b
[[1], [2]]
sage: K.automorphism(b)
[[2], [-1]]
sage: b = K(rows=[[2],[-2]])
sage: K.automorphism(b)
[]

This operator 𝜎 is used to define the affine crystal operators:

𝑓0 = 𝜎 ∘ 𝑓1 ∘ 𝜎
𝑒0 = 𝜎 ∘ 𝑒1 ∘ 𝜎

The KR crystals 𝐵1,1 of types 𝐷(1)
3 , 𝐵(1)

2 , and 𝐴(2)
5 are, respectively:

184 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Type 𝐶(1)
𝑛

The Dynkin diagram of type 𝐶(1)
𝑛 has a symmetry 𝜎(𝑖) = 𝑛− 𝑖:

sage: C = CartanType(['C',4,1]); C.dynkin_diagram()
O=>=O---O---O=<=O
0 1 2 3 4
C4~

The classical subalgebra when removing the 0 node is of type 𝐶𝑛.

However, in this case the crystal 𝐵𝑟,𝑠 is not constructed using 𝜎, but rather using a virtual crystal construction. 𝐵𝑟,𝑠

12.1. Thematic tutorial document tree 185

Thematic Tutorials, Release 8.0

of type 𝐶(1)
𝑛 is realized inside 𝑉 𝑟,𝑠 of type 𝐴(2)

2𝑛+1 using:

𝑒0 = 𝑒0𝑒1 and 𝑒𝑖 = 𝑒𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛

𝑓0 = 𝑓0𝑓1 and 𝑓𝑖 = 𝑓𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛

where 𝑒𝑖 and 𝑓𝑖 are the crystal operator in the ambient crystal 𝑉 𝑟,𝑠:

sage: K = crystals.KirillovReshetikhin(['C',3,1],1,2); K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['B', 4, 1]^* with (r,s)=(1,2)

The classical decomposition for 1 ≤ 𝑟 < 𝑛 is given by:

𝐵𝑟,𝑠 ∼=
⨁︁
𝜆

𝐵(𝜆) as a {1, 2, . . . , 𝑛}-crystal

where 𝜆 is obtained from 𝑠𝜔𝑟 (or equivalently a rectangular partition of shape (𝑠𝑟)) by removing horizontal dominoes:

sage: K = crystals.KirillovReshetikhin(['C',3,1],2,4)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 3] and shape(s) [[], [2], [4], [2, 2], [4, 2],
→˓[4, 4]]

The KR crystal 𝐵1,1 of type 𝐶(1)
2 looks as follows:

Types 𝐷(2)
𝑛+1, 𝐴(2)

2𝑛

The Dynkin diagrams of types 𝐷(2)
𝑛+1 and 𝐴(2)

2𝑛 look as follows:

sage: C = CartanType(['D',5,2]); C.dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~*

sage: C = CartanType(['A',8,2]); C.dynkin_diagram()
O=<=O---O---O=<=O
0 1 2 3 4
BC4~

The classical subdiagram is of type 𝐵𝑛 for type 𝐷(2)
𝑛+1 and of type 𝐶𝑛 for type 𝐴(2)

2𝑛 . The classical decomposition for
these KR crystals for 1 ≤ 𝑟 < 𝑛 for type 𝐷(2)

𝑛+1 and 1 ≤ 𝑟 ≤ 𝑛 for type 𝐴(2)
2𝑛 is given by:

𝐵𝑟,𝑠 ∼=
⨁︁
𝜆

𝐵(𝜆) as a {1, 2, . . . , 𝑛}-crystal

186 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

where 𝜆 is obtained from 𝑠𝜔𝑟 (or equivalently a rectangular partition of shape (𝑠𝑟)) by removing single boxes:

sage: K = crystals.KirillovReshetikhin(['D',5,2],2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 4] and shape(s) [[], [1], [2], [1, 1], [2, 1],
→˓[2, 2]]

sage: K = crystals.KirillovReshetikhin(['A',8,2],2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 4] and shape(s) [[], [1], [2], [1, 1], [2, 1],
→˓[2, 2]]

The KR crystals are constructed using an injective map into a KR crystal of type 𝐶(1)
𝑛

𝑆 : 𝐵𝑟,𝑠 → 𝐵𝑟,2𝑠

𝐶
(1)
𝑛

such that 𝑆(𝑒𝑖𝑏) = 𝑒𝑚𝑖
𝑖 𝑆(𝑏) and 𝑆(𝑓𝑖𝑏) = 𝑓𝑚𝑖

𝑖 𝑆(𝑏)

where

(𝑚0, . . . ,𝑚𝑛) = (1, 2, . . . , 2, 1) for type 𝐷(2)
𝑛+1 and (1, 2, . . . , 2, 2) for type 𝐴(2)

2𝑛 .

sage: K = crystals.KirillovReshetikhin(['D',5,2],1,2); K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['C', 4, 1] with (r,s)=(1,4)
sage: K = crystals.KirillovReshetikhin(['A',8,2],1,2); K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['C', 4, 1] with (r,s)=(1,4)

The KR crystals 𝐵1,1 of type 𝐷(2)
3 and 𝐴(2)

4 look as follows:

12.1. Thematic tutorial document tree 187

Thematic Tutorials, Release 8.0

As you can see from the Dynkin diagram for type 𝐴(2)
2𝑛 , mapping the nodes 𝑖 ↦→ 𝑛 − 𝑖 yields the same diagram, but

with relabelled nodes. In this case the classical subdiagram is of type 𝐵𝑛 instead of 𝐶𝑛. One can also construct the
KR crystal 𝐵𝑟,𝑠 of type 𝐴(2)

2𝑛 based on this classical decomposition. In this case the classical decomposition is the sum
over all weights obtained from 𝑠𝜔𝑟 by removing horizontal dominoes:

sage: C = CartanType(['A',6,2]).dual()
sage: Kdual = crystals.KirillovReshetikhin(C,2,2)
sage: Kdual.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[], [2], [2, 2]]

Looking at the picture, one can see that this implementation is isomorphic to the other implementation based on the
𝐶𝑛 decomposition up to a relabeling of the arrows:

sage: C = CartanType(['A',4,2])
sage: K = crystals.KirillovReshetikhin(C,1,1)
sage: Kdual = crystals.KirillovReshetikhin(C.dual(),1,1)
sage: G = K.digraph()
sage: Gdual = Kdual.digraph()
sage: f = { 1:1, 0:2, 2:0 }
sage: for u,v,label in Gdual.edges():
....: Gdual.set_edge_label(u,v,f[label])
sage: G.is_isomorphic(Gdual, edge_labels = True)
True

Exceptional nodes

The KR crystals 𝐵𝑛,𝑠 for types 𝐶(1)
𝑛 and 𝐷(2)

𝑛+1 were excluded from the above discussion. They are associated to the
exceptional node 𝑟 = 𝑛 and in this case the classical decomposition is irreducible:

𝐵𝑛,𝑠 ∼= 𝐵(𝑠𝜔𝑛).

In Sage:

sage: K = crystals.KirillovReshetikhin(['C',2,1],2,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 2] and shape(s) [[1, 1]]

188 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: K = crystals.KirillovReshetikhin(['D',3,2],2,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 2] and shape(s) [[1/2, 1/2]]

The KR crystals 𝐵𝑛,𝑠 and 𝐵𝑛−1,𝑠 of type 𝐷(1)
𝑛 are also special. They decompose as:

𝐵𝑛,𝑠 ∼= 𝐵(𝑠𝜔𝑛) and 𝐵𝑛−1,𝑠 ∼= 𝐵(𝑠𝜔𝑛−1).

sage: K = crystals.KirillovReshetikhin(['D',4,1],4,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[1/2, 1/2, 1/2, 1/2]]
sage: K = crystals.KirillovReshetikhin(['D',4,1],3,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[1/2, 1/2, 1/2, -1/2]]

12.1. Thematic tutorial document tree 189

Thematic Tutorials, Release 8.0

Type 𝐸(1)
6

In [JonesEtAl2010] the KR crystals 𝐵𝑟,𝑠 for 𝑟 = 1, 2, 6 in type 𝐸(1)
6 were constructed exploiting again a Dynkin

diagram automorphism, namely the automorphism 𝜎 of order 3 which maps 0 ↦→ 1 ↦→ 6 ↦→ 0:

sage: C = CartanType(['E',6,1]); C.dynkin_diagram()
O 0
|
|
O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6~

The crystals 𝐵1,𝑠 and 𝐵6,𝑠 are irreducible as classical crystals:

sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.classical_decomposition()
Direct sum of the crystals Family (Finite dimensional highest weight crystal of type [
→˓'E', 6] and highest weight Lambda[1],)
sage: K = crystals.KirillovReshetikhin(['E',6,1],6,1)
sage: K.classical_decomposition()
Direct sum of the crystals Family (Finite dimensional highest weight crystal of type [
→˓'E', 6] and highest weight Lambda[6],)

whereas for the adjoint node 𝑟 = 2 we have the decomposition

𝐵2,𝑠 ∼=
𝑠⨁︁

𝑘=0

𝐵(𝑘𝜔2)

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: K.classical_decomposition()
Direct sum of the crystals Family (Finite dimensional highest weight crystal of type [
→˓'E', 6] and highest weight 0,
Finite dimensional highest weight crystal of type ['E', 6] and highest weight
→˓Lambda[2])

The promotion operator on the crystal corresponding to 𝜎 can be calculated explicitly:

sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: promotion = K.promotion()
sage: u = K.module_generator(); u
[(1,)]
sage: promotion(u.lift())
[(-1, 6)]

The crystal 𝐵1,1 is already of dimension 27. The elements 𝑏 of this crystal are labelled by tuples which specify their
nonzero 𝜑𝑖(𝑏) and 𝜖𝑖(𝑏). For example, [−6, 2] indicates that 𝜑2([−6, 2]) = 𝜖6([−6, 2]) = 1 and all others are equal to
zero:

sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.cardinality()
27

190 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Single column KR crystals

A single column KR crystal is 𝐵𝑟,1 for any 𝑟 ∈ 𝐼0.

In [LNSSS14I] and [LNSSS14II], it was shown that single column KR crystals can be constructed by projecting level
0 crystals of LS paths onto the classical weight lattice. We first verify that we do get an isomorphic crystal for 𝐵1,1 in
type 𝐸(1)

6 :

sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,1)
sage: K2 = crystals.kirillov_reshetikhin.LSPaths(['E',6,1], 1,1)
sage: K.digraph().is_isomorphic(K2.digraph(), edge_labels=True)
True

Here is an example in 𝐸(1)
8 and we calculate its classical decomposition:

12.1. Thematic tutorial document tree 191

Thematic Tutorials, Release 8.0

sage: K = crystals.kirillov_reshetikhin.LSPaths(['E',8,1], 8,1)
sage: K.cardinality()
249
sage: L = [x for x in K if x.is_highest_weight([1,2,3,4,5,6,7,8])]
sage: [x.weight() for x in L]
[-2*Lambda[0] + Lambda[8], 0]

Applications

An important notion for finite-dimensional affine crystals is perfectness. The crucial property is that a crystal 𝐵 is
perfect of level ℓ if there is a bijection between level ℓ dominant weights and elements in

𝐵min = {𝑏 ∈ 𝐵 | lev(𝜙(𝑏)) = ℓ} .

For a precise definition of perfect crystals see [HongKang2002] . In [FourierEtAl2010] it was proven that for the
nonexceptional types 𝐵𝑟,𝑠 is perfect as long as 𝑠/𝑐𝑟 is an integer. Here 𝑐𝑟 = 1 except 𝑐𝑟 = 2 for 1 ≤ 𝑟 < 𝑛 in type
𝐶

(1)
𝑛 and 𝑟 = 𝑛 in type 𝐵(1)

𝑛 .

Here we verify this using Sage for 𝐵1,1 of type 𝐶(1)
3 :

sage: K = crystals.KirillovReshetikhin(['C',3,1],1,1)
sage: Lambda = K.weight_lattice_realization().fundamental_weights(); Lambda
Finite family {0: Lambda[0], 1: Lambda[1], 2: Lambda[2], 3: Lambda[3]}
sage: [w.level() for w in Lambda]
[1, 1, 1, 1]
sage: Bmin = [b for b in K if b.Phi().level() == 1]; Bmin
[[[1]], [[2]], [[3]], [[-3]], [[-2]], [[-1]]]
sage: [b.Phi() for b in Bmin]
[Lambda[1], Lambda[2], Lambda[3], Lambda[2], Lambda[1], Lambda[0]]

As you can see, both 𝑏 = 1 and 𝑏 = −2 satisfy 𝜙(𝑏) = Λ1. Hence there is no bijection between the minimal elements
in 𝐵min and level 1 weights. Therefore, 𝐵1,1 of type 𝐶(1)

3 is not perfect. However, 𝐵1,2 of type 𝐶(1)
𝑛 is a perfect

crystal:

sage: K = crystals.KirillovReshetikhin(['C',3,1],1,2)
sage: Lambda = K.weight_lattice_realization().fundamental_weights()
sage: Bmin = [b for b in K if b.Phi().level() == 1]
sage: [b.Phi() for b in Bmin]
[Lambda[0], Lambda[3], Lambda[2], Lambda[1]]

Perfect crystals can be used to construct infinite-dimensional highest weight crystals and Demazure crystals using the
Kyoto path model [KKMMNN1992]. We construct Example 10.6.5 in [HongKang2002]:

sage: K = crystals.KirillovReshetikhin(['A',1,1], 1,1)
sage: La = RootSystem(['A',1,1]).weight_lattice().fundamental_weights()
sage: B = crystals.KyotoPathModel(K, La[0])
sage: B.highest_weight_vector()
[[[2]]]

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: B = crystals.KyotoPathModel(K, La[0])
sage: B.highest_weight_vector()
[[[3]]]

192 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: K = crystals.KirillovReshetikhin(['C',2,1], 2,1)
sage: La = RootSystem(['C',2,1]).weight_lattice().fundamental_weights()
sage: B = crystals.KyotoPathModel(K, La[1])
sage: B.highest_weight_vector()
[[[2], [-2]]]

Energy function and one-dimensional configuration sum

For tensor products of Kirillov-Reshehtikhin crystals, there also exists the important notion of the energy function. It
can be defined as the sum of certain local energy functions and the𝑅-matrix. In Theorem 7.5 in [SchillingTingley2011]
it was shown that for perfect crystals of the same level the energy 𝐷(𝑏) is the same as the affine grading (up to a
normalization). The affine grading is defined as the minimal number of applications of 𝑒0 to 𝑏 to reach a ground state
path. Computationally, this algorithm is a lot more efficient than the computation involving the 𝑅-matrix and has been
implemented in Sage:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K,K)
sage: hw = [b for b in T if all(b.epsilon(i)==0 for i in [1,2])]
sage: for b in hw:
....: print("{} {}".format(b, b.energy_function()))
[[[1]], [[1]], [[1]]] 0
[[[1]], [[2]], [[1]]] 2
[[[2]], [[1]], [[1]]] 1
[[[3]], [[2]], [[1]]] 3

The affine grading can be computed even for nonperfect crystals:

sage: K = crystals.KirillovReshetikhin(['C',4,1],1,2)
sage: K1 = crystals.KirillovReshetikhin(['C',4,1],1,1)
sage: T = crystals.TensorProduct(K,K1)
sage: hw = [b for b in T if all(b.epsilon(i)==0 for i in [1,2,3,4])]
sage: for b in hw:
....: print("{} {}".format(b, b.affine_grading()))
[[], [[1]]] 1
[[[1, 1]], [[1]]] 2
[[[1, 2]], [[1]]] 1
[[[1, -1]], [[1]]] 0

The one-dimensional configuration sum of a crystal𝐵 is the graded sum by energy of the weight of all elements 𝑏 ∈ 𝐵:

𝑋(𝐵) =
∑︁
𝑏∈𝐵

𝑥weight(𝑏)𝑞𝐷(𝑏)

Here is an example of how you can compute the one-dimensional configuration sum in Sage:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: T.one_dimensional_configuration_sum()
B[-2*Lambda[1] + 2*Lambda[2]] + (q+1)*B[-Lambda[1]]
+ (q+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]]
+ B[-2*Lambda[2]] + (q+1)*B[Lambda[2]]

12.1. Thematic tutorial document tree 193

Thematic Tutorials, Release 8.0

Affine Highest Weight Crystals

Affine highest weight crystals are infinite-dimensional. Their underlying weight lattice is the extended weight lattice
including the null root 𝛿. This is in contrast to finite-dimensional affine crystals such as for example the Kirillov-
Reshetikhin crystals whose underlying weight lattice is the classical weight lattice, i.e., does not include 𝛿.

Hence, to work with them in Sage, we need some further tools.

Littelmann path model

The Littelmann path model for highest weight crystals is implemented in Sage. It models finite highest crystals as well
as affine highest weight crystals which are infinite dimensional. The elements of the crystal are piecewise linear maps
in the extended weight space over Q. For more information on the Littelmann path model, see [L1995].

Since the affine highest weight crystals are infinite, it is not possible to list all elements or draw the entire crystal graph.
However, if the user is only interested in the crystal up to a certain distance or depth from the highest weight element,
then one can work with the corresponding subcrystal. To view the corresponding upper part of the crystal, one can
build the associated digraph:

sage: R = RootSystem(['C',3,1])
sage: La = R.weight_space(extended = True).basis()
sage: LS = crystals.LSPaths(2*La[1]); LS
The crystal of LS paths of type ['C', 3, 1] and weight 2*Lambda[1]
sage: LS.weight_lattice_realization()
Extended weight space over the Rational Field of the Root system of type ['C', 3, 1]
sage: C = LS.subcrystal(max_depth=3)
sage: sorted(C, key=str)
[(-Lambda[0] + 2*Lambda[1] - Lambda[2] + Lambda[3] - delta, Lambda[1]),
(-Lambda[0] + Lambda[1] + Lambda[2] - delta, Lambda[0] - Lambda[1] + Lambda[2]),
(-Lambda[0] + Lambda[1] + Lambda[2] - delta, Lambda[1]),
(-Lambda[1] + 2*Lambda[2] - delta, Lambda[1]),
(2*Lambda[0] - 2*Lambda[1] + 2*Lambda[2],),
(2*Lambda[1],),
(Lambda[0] + Lambda[2] - Lambda[3], Lambda[1]),
(Lambda[0] - Lambda[1] + Lambda[2], Lambda[1]),
(Lambda[0] - Lambda[2] + Lambda[3], Lambda[0] - Lambda[1] + Lambda[2]),
(Lambda[0] - Lambda[2] + Lambda[3], Lambda[1])]

sage: G = LS.digraph(subset = C)
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

The Littelmann path model also lends itself as a model for level zero crystals which are bi-infinite. To cut out a slice
of these crystals, one can use the direction option in subcrystal:

194 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space(extended = True).basis()
sage: LS = crystals.LSPaths(La[1]-La[0]); LS
The crystal of LS paths of type ['A', 2, 1] and weight -Lambda[0] + Lambda[1]
sage: C = LS.subcrystal(max_depth=2, direction = 'both')
sage: G = LS.digraph(subset = C)
sage: G.set_latex_options(edge_options = lambda (u,v,label): ({}))
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

Modified Nakajima monomials

Modified Nakajima monomials have also been implemented in Sage. They model highest weight crystals in all sym-
metrizable types. The elements are given in terms of commuting variables 𝑌𝑖(𝑛) where 𝑖 ∈ 𝐼 and 𝑛 ∈ Z≥0. For more
information on the modified Nakajima monomials, see [KKS2007].

We give an example in affine type and verify that up to depth 3, it agrees with the Littelmann path model. Unlike in the
LS path model, the Nakajima monomial crystals are indexed by elements in the weight lattice (rather than the weight
space):

sage: La = RootSystem(['C',3,1]).weight_space(extended = True).fundamental_weights()
sage: LS = crystals.LSPaths(2*La[1]+La[2])
sage: SL = LS.subcrystal(max_depth=3)
sage: GL = LS.digraph(subset=SL)

sage: La = RootSystem(['C',3,1]).weight_lattice(extended = True).fundamental_weights()
sage: M = crystals.NakajimaMonomials(['C',3,1], 2*La[1]+La[2])
sage: SM = M.subcrystal(max_depth=3)
sage: GM = M.digraph(subset=SM)
sage: GL.is_isomorphic(GM, edge_labels=True)
True

Now we do an example of a simply-laced (and hence symmetrizable) hyperbolic type 𝐻(4)
1 , which comes from the

complete graph on 4 vertices:

sage: CM = CartanMatrix([[2, -1, -1,-1],[-1,2,-1,-1],[-1,-1,2,-1],[-1,-1,-1,2]]); CM
[2 -1 -1 -1]
[-1 2 -1 -1]
[-1 -1 2 -1]
[-1 -1 -1 2]
sage: La = RootSystem(CM).weight_lattice().fundamental_weights()

12.1. Thematic tutorial document tree 195

Thematic Tutorials, Release 8.0

sage: M = crystals.NakajimaMonomials(CM, La[0])
sage: SM = M.subcrystal(max_depth=4)
sage: GM = M.digraph(subset=SM) # long time

Elementary crystals

Note: Each of these crystals will work with any Cartan matrix input (with weights from the weight lattice corre-
sponding to the Cartan matrix given).

T-crystal

Let 𝜆 be a weight. As defined in [Kashiwara1993] (see, also, [Kashiwara1995]) the crystal 𝑇𝜆 = {𝑡𝜆} is a single
element crystal with the crystal structure defined by

wt(𝑡𝜆) = 𝜆, 𝑒𝑖𝑡𝜆 = 𝑓𝑖𝑡𝜆 = 0, 𝜀𝑖(𝑡𝜆) = 𝜙𝑖(𝑡𝜆) = −∞.

The crystal 𝑇𝜆 shifts the weights of the vertices in a crystal 𝐵 by 𝜆 when tensored with 𝐵, but leaves the graph
structure of 𝐵 unchanged. That is, for all 𝑏 ∈ 𝐵, we have wt(𝑡𝜆 ⊗ 𝑏) = wt(𝑏) + 𝜆:

sage: B = crystals.Tableaux(['A',2],shape=[2,1])
sage: T = crystals.elementary.T(['A',2], B.Lambda()[1] + B.Lambda()[2])
sage: V = crystals.TensorProduct(T,B)
sage: for x in V:
....: print(x.weight())
....:
(4, 2, 0)
(3, 3, 0)
(3, 2, 1)
(3, 1, 2)
(2, 2, 2)
(4, 1, 1)
(3, 2, 1)
(2, 3, 1)
sage: for x in B:
....: print(x.weight() + T[0].weight())
....:
(4, 2, 0)
(3, 3, 0)
(3, 2, 1)
(3, 1, 2)
(2, 2, 2)
(4, 1, 1)
(3, 2, 1)
(2, 3, 1)

196 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Warning: Sage uses the opposite convention for the tensor product rule to Kashiwara’s definition, so care must
be taken when comparing the examples here with Kashiwara’s papers.

Here is an example using a hyperbolic Cartan matrix:

sage: A = CartanMatrix([[2,-4],[-4,2]])
sage: La = RootSystem(A).weight_lattice().fundamental_weights()
sage: La
Finite family {0: Lambda[0], 1: Lambda[1]}
sage: T = crystals.elementary.T(A,La[1])
sage: T
The T crystal of type [2 -4]
[-4 2] and weight Lambda[1]

C-crystal

Defined in [Kashiwara1993], the component crystal 𝐶 = {𝑐} is the single element crystal whose crystal structure is
defined by

wt(𝑐) = 0, 𝑒𝑖𝑐 = 𝑓𝑖𝑐 = 0, 𝜀𝑖(𝑐) = 𝜙𝑖(𝑐) = 0.

Note 𝐶 ∼= 𝐵(0), where 𝐵(0) is the highest weight crystal of highest weight 0.

The crystal 𝐶⊗𝑇𝜇 is useful when finding subcrystals inside irreducible highest weight crystals𝐵(𝜆) where 𝜆 is larger
than 𝜇 in the lexicographic order. For example:

sage: P = RootSystem("C2").weight_lattice()
sage: La = P.fundamental_weights()
sage: h = P.simple_coroots()
sage: T = crystals.elementary.T("C2", 2*La[1])
sage: C = crystals.elementary.Component(P)
sage: B = crystals.TensorProduct(C,T)
sage: b = B(C[0],T[0])
sage: for i in B.index_set(): print(b.epsilon(i))
-2
0
sage: for i in B.index_set(): print(b.phi(i))
0
0
sage: for i in B.index_set(): print(b.f(i))
None
None
sage: for i in B.index_set(): print(b.e(i))
None
None

This new crystal can be summarized into the R-crystal below.

R-crystal

For a fixed weight 𝜆, the crystal 𝑅𝜆 = {𝑟𝜆} is a single element crystal with the crystal structure defined by

wt(𝑟𝜆) = 𝜆, 𝑒𝑖𝑟𝜆 = 𝑓𝑖𝑟𝜆 = 0, 𝜀𝑖(𝑟𝜆) = −⟨ℎ𝑖, 𝜆⟩, 𝜙𝑖(𝑟𝜆) = 0,

12.1. Thematic tutorial document tree 197

Thematic Tutorials, Release 8.0

where {ℎ𝑖} are the simple coroots. See page 146 [Joseph1995], for example, for more details. (Note that in
[Joseph1995], this crystal is denoted by 𝑆𝜆.)

Tensoring 𝑅𝜆 with a crystal 𝐵 results in shifting the weights of the vertices in 𝐵 by 𝜆 and may also cut a subset out
of the original graph of 𝐵.

Warning: Sage uses the opposite convention for the tensor product rule to Kashiwara’s definition, so care must
be taken when comparing the examples here with some of the literature.

For example, suppose 𝜇 ≤ 𝜆 in lexicographic ordering on weights, and one wants to see𝐵(𝜇) as a subcrystal of𝐵(𝜆).
Then 𝐵(𝜇) may be realized as the connected component of 𝑅𝜇−𝜆 ⊗ 𝐵(𝜆) containing the highest weight 𝑟𝜇−𝜆 ⊗ 𝑢𝜆,
where 𝑢𝜆 is the highest weight vector in 𝐵(𝜆):

sage: La = RootSystem(['B',4]).weight_lattice().fundamental_weights()
sage: Bla = crystals.NakajimaMonomials(['B',4], La[1]+La[2])
sage: Bmu = crystals.NakajimaMonomials(['B',4], La[1])
sage: R = crystals.elementary.R(['B',4], -La[2])
sage: T = crystals.TensorProduct(R,Bla)
sage: mg = mg = T(R[0], Bla.module_generators[0])
sage: S = T.subcrystal(generators=[mg])
sage: G = T.digraph(subset=S)
sage: Bmu.digraph().is_isomorphic(G, edge_labels=True)
True
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

198 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

𝑖-th elementary crystal

For 𝑖 an element of the index set of type 𝑋 , the crystal 𝐵𝑖 of type 𝑋 is the set

𝐵𝑖 = {𝑏𝑖(𝑚) : 𝑚 ∈ Z},

where the crystal stucture is given by wt
(︀
𝑏𝑖(𝑚)

)︀
= 𝑚𝛼𝑖 and

𝜙𝑗

(︀
𝑏𝑖(𝑚)

)︀
=

{︃
𝑚 if 𝑗 = 𝑖,

−∞ if 𝑗 ̸= 𝑖,
𝜀𝑗
(︀
𝑏𝑖(𝑚)

)︀
=

{︃
−𝑚 if 𝑗 = 𝑖,

−∞ if 𝑗 ̸= 𝑖,

𝑓𝑗𝑏𝑖(𝑚) =

{︃
𝑏𝑖(𝑚− 1) if 𝑗 = 𝑖,

0 if 𝑗 ̸= 𝑖,
𝑒𝑗𝑏𝑖(𝑚) =

{︃
𝑏𝑖(𝑚+ 1) if 𝑗 = 𝑖,

0 if 𝑗 ̸= 𝑖.

See [Kashiwara1993] or [Kashiwara1995] for more information. Here is an example:

sage: B = crystals.elementary.Elementary("A2",1)
sage: S = B.subcrystal(max_depth=4, generators=[B(0)])
sage: [s for s in S]
[0, 1, -1, 2, -2, 3, -3, -4, 4]
sage: G = B.digraph(subset=S)
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

Warning: To reiterate, Sage uses the opposite convention for the tensor product rule to Kashiwara’s definition. In
particular, using Sage’s convention, one has 𝑇𝜆 ⊗𝐵𝑖

∼= 𝐵𝑖 ⊗ 𝑇𝑠𝑖𝜆, where 𝑠𝑖 is the 𝑖-th simple reflection.

12.1. Thematic tutorial document tree 199

Thematic Tutorials, Release 8.0

Infinity Crystals

Infinity crystals are the crystal analogue of Verma modules with highest weight 0 associated to a symmetrizable Kac-
Moody algebra. As such, they are infinite-dimensional and any irreducible highest weight crystal may be obtained
from an infinity crystal via some cutting procedure. On the other hand, the crystal 𝐵(∞) is the direct limit of all
irreducible highest weight crystals 𝐵(𝜆), so there are natural embeddings of each 𝐵(𝜆) in 𝐵(∞). Below, we outline
the various implementations of the crystal 𝐵(∞) in Sage and give examples of how 𝐵(𝜆) interacts with 𝐵(∞).

All infinity crystals that are currently implemented in Sage can be accessed by typing crystals.infinity.
<tab>.

Marginally large tableaux

Marginally large tableaux were introduced by J. Hong and H. Lee as a realization of the crystal 𝐵(∞) in types 𝐴𝑛,
𝐵𝑛, 𝐶𝑛, 𝐷𝑛+1, and 𝐺2. The marginally large condition guarantees that all tableau have exactly 𝑛 rows and that the
number of 𝑖-boxes in the 𝑖-th row from the top (in the English convention) is exactly one more than the total number
of boxes in the (𝑖 + 1)-st row. Other specific conditions on the tableaux vary by type. See [HongLee2008] for more
information.

Here is an example in type 𝐴2:

sage: B = crystals.infinity.Tableaux(['A',2])
sage: b = B.highest_weight_vector()
sage: b.pp()

1 1
2

sage: b.f_string([1,2,2,1,2,1,2,2,2,2,2]).pp()
1 1 1 1 1 1 1 1 1 2 2 3
2 3 3 3 3 3 3 3

Since the crystal is infinite, we must specify the subcrystal we would like to view:

sage: B = crystals.infinity.Tableaux(['A',2])
sage: S = B.subcrystal(max_depth=4)
sage: G = B.digraph(subset=S)
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

200 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Using elementary crystals, we can cut irreducible highest weight crystals from 𝐵(∞) as the connected component of
𝐶 ⊗ 𝑇𝜆 ⊗ 𝐵(∞) containing 𝑐 ⊗ 𝑡𝜆 ⊗ 𝑢∞, where 𝑢∞ is the highest weight vector in 𝐵(∞). In this example, we cut
out 𝐵(𝜌) from 𝐵(∞) in type 𝐴2:

sage: B = crystals.infinity.Tableaux(['A',2])
sage: b = B.highest_weight_vector()
sage: T = crystals.elementary.T(['A',2], B.Lambda()[1] + B.Lambda()[2])
sage: t = T[0]
sage: C = crystals.elementary.Component(['A',2])
sage: c = C[0]
sage: TP = crystals.TensorProduct(C,T,B)
sage: t0 = TP(c,t,b)
sage: STP = TP.subcrystal(generators=[t0])
sage: GTP = TP.digraph(subset=STP)
sage: view(GTP, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

Note that the above code can be simplified using the R-crystal:

sage: B = crystals.infinity.Tableaux(['A',2])
sage: b = B.highest_weight_vector()
sage: R = crystals.elementary.R(['A',2], B.Lambda()[1] + B.Lambda()[2])
sage: r = R[0]
sage: TP2 = crystals.TensorProduct(R,B)
sage: t2 = TP2(r,b)
sage: STP2 = TP2.subcrystal(generators=[t2])
sage: GTP2 = TP2.digraph(subset=STP2)
sage: view(GTP2, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

12.1. Thematic tutorial document tree 201

Thematic Tutorials, Release 8.0

On the other hand, we can embed the irreducible highest weight crystal 𝐵(𝜌) into 𝐵(∞):

sage: Brho = crystals.Tableaux(['A',2],shape=[2,1])
sage: brho = Brho.highest_weight_vector()
sage: B = crystals.infinity.Tableaux(['A',2])
sage: binf = B.highest_weight_vector()
sage: wt = brho.weight()
sage: T = crystals.elementary.T(['A',2],wt)
sage: TlambdaBinf = crystals.TensorProduct(T,B)
sage: hw = TlambdaBinf(T[0],binf)
sage: Psi = Brho.crystal_morphism({brho : hw})
sage: BG = B.digraph(subset=[Psi(x) for x in Brho])
sage: view(BG, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

Note that in the last example, we had to inject 𝐵(𝜌) into the tensor product 𝑇𝜆⊗𝐵(∞), since otherwise, the map Psi
would not be a crystal morphism (as b.weight() != brho.weight()).

202 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Generalized Young walls

Generalized Young walls were introduced by J.-A. Kim and D.-U. Shin as a model for 𝐵(∞) and each 𝐵(𝜆) solely in
affine type 𝐴(1)

𝑛 . See [KimShin2010] for more information on the construction of generalized Young walls.

Since this model is only valid for one Cartan type, the input to initialize the crystal is simply the rank of the underlying
type:

sage: Y = crystals.infinity.GeneralizedYoungWalls(2)
sage: y = Y.highest_weight_vector()
sage: y.f_string([0,1,2,2,2,1,0,0,1,2]).pp()

2|
|
|

1|2|
0|1|

2|0|1|2|0|

In the weight method for this model, we can choose whether to view weights in the extended weight lattice (by
default) or in the root lattice:

sage: Y = crystals.infinity.GeneralizedYoungWalls(2)
sage: y = Y.highest_weight_vector()
sage: y.f_string([0,1,2,2,2,1,0,0,1,2]).weight()
Lambda[0] + Lambda[1] - 2*Lambda[2] - 3*delta
sage: y.f_string([0,1,2,2,2,1,0,0,1,2]).weight(root_lattice=True)
-3*alpha[0] - 3*alpha[1] - 4*alpha[2]

As before, we need to indicate a specific subcrystal when attempting to view the crystal graph:

sage: Y = crystals.infinity.GeneralizedYoungWalls(2)
sage: SY = Y.subcrystal(max_depth=3)
sage: GY = Y.digraph(subset=SY)
sage: view(GY, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

One can also make irreducible highest weight crystals using generalized Young walls:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()
sage: YLa = crystals.GeneralizedYoungWalls(2,La[0])
sage: SYLa = YLa.subcrystal(max_depth=3)
sage: GYLa = YLa.digraph(subset=SYLa)
sage: view(GYLa, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

12.1. Thematic tutorial document tree 203

Thematic Tutorials, Release 8.0

In the highest weight crystals, however, weights are always elements of the extended affine weight lattice:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()
sage: YLa = crystals.GeneralizedYoungWalls(2,La[0])
sage: YLa.highest_weight_vector().f_string([0,1,2,0]).weight()
-Lambda[0] + Lambda[1] + Lambda[2] - 2*delta

Modified Nakajima monomials

Let 𝑌𝑖,𝑘, for 𝑖 ∈ 𝐼 and 𝑘 ∈ Z, be a commuting set of variables, and let 1 be a new variable which commutes with each
𝑌𝑖,𝑘. (Here, 𝐼 represents the index set of a Cartan datum.) One may endow the structure of a crystal on the set ̂︁ℳ of
monomials of the form

𝑀 =
∏︁

(𝑖,𝑘)∈𝐼×Z≥0

𝑌
𝑦𝑖(𝑘)
𝑖,𝑘 1.

Elements of ̂︁ℳ are called modified Nakajima monomials. We will omit the 1 from the end of a monomial if there
exists at least one 𝑦𝑖(𝑘) ̸= 0. The crystal structure on this set is defined by

wt(𝑀) =
∑︁
𝑖∈𝐼

(︁∑︁
𝑘≥0

𝑦𝑖(𝑘)
)︁

Λ𝑖,

𝜙𝑖(𝑀) = max
{︁ ∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗) : 𝑘 ≥ 0
}︁
,

𝜀𝑖(𝑀) = 𝜙𝑖(𝑀)− ⟨ℎ𝑖,wt(𝑀)⟩,

𝑘𝑓 = 𝑘𝑓 (𝑀) = min
{︁
𝑘 ≥ 0 : 𝜙𝑖(𝑀) =

∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗)
}︁
,

𝑘𝑒 = 𝑘𝑒(𝑀) = max
{︁
𝑘 ≥ 0 : 𝜙𝑖(𝑀) =

∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗)
}︁
,

where {ℎ𝑖 : 𝑖 ∈ 𝐼} and {Λ𝑖 : 𝑖 ∈ 𝐼} are the simple coroots and fundamental weights, respectively. With a chosen set
of integers 𝐶 = (𝑐𝑖𝑗)𝑖 ̸=𝑗 such that 𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 1, one defines

𝐴𝑖,𝑘 = 𝑌𝑖,𝑘𝑌𝑖,𝑘+1

∏︁
𝑗 ̸=𝑖

𝑌
𝑎𝑗𝑖

𝑗,𝑘+𝑐𝑗𝑖
,

where (𝑎𝑖𝑗) is a Cartan matrix. Then

𝑒𝑖𝑀 =

{︃
0 if 𝜀𝑖(𝑀) = 0,

𝐴𝑖,𝑘𝑒
𝑀 if 𝜀𝑖(𝑀) > 0,

𝑓𝑖𝑀 = 𝐴−1
𝑖,𝑘𝑓

𝑀.

204 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note: Monomial crystals depend on the choice of positive integers𝐶 = (𝑐𝑖𝑗)𝑖̸=𝑗 satisfying the condition 𝑐𝑖𝑗+𝑐𝑗𝑖 = 1.
This choice has been made in Sage such that 𝑐𝑖𝑗 = 1 if 𝑖 < 𝑗 and 𝑐𝑖𝑗 = 0 if 𝑖 > 𝑗, but other choices may be used if
deliberately stated at the initialization of the crystal:

sage: c = Matrix([[0,0,1],[1,0,0],[0,1,0]])
sage: La = RootSystem(['C',3]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(2*La[1], c=c)
sage: M.c()
[0 0 1]
[1 0 0]
[0 1 0]

It is shown in [KKS2007] that the connected component of ̂︁ℳ containing the element 1, which we denote byℳ(∞),
is crystal isomorphic to the crystal 𝐵(∞):

sage: Minf = crystals.infinity.NakajimaMonomials(['C',3,1])
sage: minf = Minf.highest_weight_vector()
sage: m = minf.f_string([0,1,2,3,2,1,0]); m
Y(0,0)^-1 Y(0,4)^-1 Y(1,0) Y(1,3)
sage: m.weight()
-2*Lambda[0] + 2*Lambda[1] - 2*delta
sage: m.weight_in_root_lattice()
-2*alpha[0] - 2*alpha[1] - 2*alpha[2] - alpha[3]

We can also model 𝐵(∞) using the variables 𝐴𝑖,𝑘 instead:

sage: Minf = crystals.infinity.NakajimaMonomials(['C',3,1])
sage: minf = Minf.highest_weight_vector()
sage: Minf.set_variables('A')
sage: m = minf.f_string([0,1,2,3,2,1,0]); m
A(0,0)^-1 A(0,3)^-1 A(1,0)^-1 A(1,2)^-1 A(2,0)^-1 A(2,1)^-1 A(3,0)^-1
sage: m.weight()
-2*Lambda[0] + 2*Lambda[1] - 2*delta
sage: m.weight_in_root_lattice()
-2*alpha[0] - 2*alpha[1] - 2*alpha[2] - alpha[3]
sage: Minf.set_variables('Y')

Building the crystal graph output for these monomial crystals is the same as the constructions above:

sage: Minf = crystals.infinity.NakajimaMonomials(['C',3,1])
sage: Sinf = Minf.subcrystal(max_depth=2)
sage: Ginf = Minf.digraph(subset=Sinf)
sage: view(Ginf, tightpage=True) # optional - dot2tex graphviz, not tested (opens
→˓external window)

Note that this model will also work for any symmetrizable Cartan matrix:

sage: A = CartanMatrix([[2,-4],[-5,2]])
sage: Linf = crystals.infinity.NakajimaMonomials(A); Linf
Infinity Crystal of modified Nakajima monomials of type [2 -4]

12.1. Thematic tutorial document tree 205

Thematic Tutorials, Release 8.0

[-5 2]
sage: Linf.highest_weight_vector().f_string([0,1,1,1,0,0,1,1,0])
Y(0,0)^-1 Y(0,1)^9 Y(0,2)^5 Y(0,3)^-1 Y(1,0)^2 Y(1,1)^5 Y(1,2)^3

Rigged configurations

Rigged configurations are sequences of partitions, one partition for each node in the underlying Dynkin diagram,
such that each part of each partition has a label (or rigging). A crystal structure was defined on these objects in
[Schilling2006], then later extended to work as a model for 𝐵(∞). See [SalisburyScrimshaw2015] for more informa-
tion:

sage: RiggedConfigurations.options(display="horizontal")
sage: RC = crystals.infinity.RiggedConfigurations(['C',3,1])
sage: nu = RC.highest_weight_vector().f_string([0,1,2,3,2,1,0]); nu
-2[]-1 2[]1 0[]0 0[]0
-2[]-1 2[]1 0[]0
sage: nu.weight()
-2*Lambda[0] + 2*Lambda[1] - 2*delta
sage: RiggedConfigurations.options._reset()

We can check this crystal is isomorphic to the crystal above using Nakajima monomials:

sage: Minf = crystals.infinity.NakajimaMonomials(['C',3,1])
sage: Sinf = Minf.subcrystal(max_depth=2)
sage: Ginf = Minf.digraph(subset=Sinf)
sage: RC = crystals.infinity.RiggedConfigurations(['C',3,1])
sage: RCS = RC.subcrystal(max_depth=2)
sage: RCG = RC.digraph(subset=RCS)
sage: RCG.is_isomorphic(Ginf, edge_labels=True)
True

This model works in Sage for all finite and affine types, as well as any simply laced Cartan matrix.

Iwahori Hecke Algebras

The Iwahori Hecke algebra is defined in [Iwahori1964]. In that original paper, the algebra occurs as the
convolution ring of functions on a 𝑝-adic group that are compactly supported and invariant both left and right by the
Iwahori subgroup. However Iwahori determined its structure in terms of generators and relations, and it turns out to
be a deformation of the group algebra of the affine Weyl group.

Once the presentation is found, the Iwahori Hecke algebra can be defined for any Coxeter group. It depends on a pa-
rameter 𝑞 which in Iwahori’s paper is the cardinality of the residue field. But it could just as easily be an indeterminate.

Then the Iwahori Hecke algebra has the following description. Let 𝑊 be a Coxeter group, with generators (simple
reflections) 𝑠1, . . . , 𝑠𝑛. They satisfy the relations 𝑠2𝑖 = 1 and the braid relations

𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗 · · · = 𝑠𝑗𝑠𝑖𝑠𝑗𝑠𝑖 · · ·

where the number of terms on each side is the order of 𝑠𝑖𝑠𝑗 .

The Iwahori Hecke algebra has a basis 𝑇1, . . . , 𝑇𝑛 subject to relations that resemble those of the 𝑠𝑖. They satisfy the
braid relations and the quadratic relation

(𝑇𝑖 − 𝑞)(𝑇𝑖 + 1) = 0.

206 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

This can be modified by letting 𝑞1 and 𝑞2 be two indeterminates and letting

(𝑇𝑖 − 𝑞1)(𝑇𝑖 − 𝑞2) = 0.

In this generality, Iwahori Hecke algebras have significance far beyond their origin in the representation theory of
𝑝-adic groups. For example, they appear in the geometry of Schubert varieties, where they are used in the definition
of the Kazhdan-Lusztig polynomials. They appear in connection with quantum groups, and in Jones’s original paper
on the Jones polynomial.

Here is how to create an Iwahori Hecke algebra (in the 𝑇 basis):

sage: R.<q> = PolynomialRing(ZZ)
sage: H = IwahoriHeckeAlgebra("B3",q)
sage: T = H.T(); T
Iwahori-Hecke algebra of type B3 in q,-1 over Univariate Polynomial Ring
in q over Integer Ring in the T-basis

sage: T1,T2,T3 = T.algebra_generators()
sage: T1*T1
(q-1)*T[1] + q

If the Cartan type is affine, the generators will be numbered starting with T0 instead of T1.

You may coerce a Weyl group element into the Iwahori Hecke algebra:

sage: W = WeylGroup("G2",prefix="s")
sage: [s1,s2] = W.simple_reflections()
sage: P.<q> = LaurentPolynomialRing(QQ)
sage: H = IwahoriHeckeAlgebra("B3",q)
sage: T = H.T()
sage: T(s1*s2)
T[1,2]

Kazhdan-Lusztig Polynomials

Sage can compute ordinary Kazhdan-Lusztig polynomials for Weyl groups or affine Weyl groups (and potentially
other Coxeter groups).

You must create a Weyl group W and a ring containing an indeterminate q. The ring may be a univariate polynomial
ring or a univariate Laurent polynomial ring. Then you may calculate Kazhdan-Lusztig polynomials as follows:

sage: W = WeylGroup("A3", prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: P.<q> = LaurentPolynomialRing(QQ)
sage: KL = KazhdanLusztigPolynomial(W,q)
sage: KL.R(s2, s2*s1*s3*s2)
-1 + 3*q - 3*q^2 + q^3
sage: KL.P(s2, s2*s1*s3*s2)
1 + q

Thus we have the Kazhdan-Lusztig 𝑅 and 𝑃 polynomials.

Known algorithms for computing Kazhdan-Lusztig polynomials are highly recursive, and caching of intermediate
results is necessary for the programs not to be prohibitively slow. Therefore intermediate results are cached. This has
the effect that as you run the program for any given KazhdanLusztigPolynomial class, the calculations will be
slow at first but progressively faster as more polynomials are computed.

You may see the results of the intermediate calculations by creating the class with the option trace="true".

12.1. Thematic tutorial document tree 207

Thematic Tutorials, Release 8.0

Since the parent of q must be a univariate ring, if you want to work with other indeterminates, first create a univariate
polynomial or Laurent polynomial ring, and the Kazhdan-Lusztig class. Then create a ring containing q and the other
variables:

sage: W = WeylGroup("B3", prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: P.<q> = PolynomialRing(QQ)
sage: KL = KazhdanLusztigPolynomial(W,q)
sage: P1.<x,y> = PolynomialRing(P)
sage: x*KL.P(s1*s3,s1*s3*s2*s1*s3)
(q + 1)*x

Bibliography

Preparation of this document was supported in part by NSF grants DMS-0652817, DMS-1001079, OCI-1147463,
DMS–0652641, DMS–0652652, DMS–1001256 and and OCI–1147247.

12.1.6 Linear Programming (Mixed Integer)

This document explains the use of linear programming (LP) – and of mixed integer linear programming (MILP) – in
Sage by illustrating it with several problems it can solve. Most of the examples given are motivated by graph-theoretic
concerns, and should be understandable without any specific knowledge of this field. As a tool in Combinatorics, using
linear programming amounts to understanding how to reformulate an optimization (or existence) problem through
linear constraints.

This is a translation of a chapter from the book Calcul mathematique avec Sage.

Definition

Here we present the usual definition of what a linear program is: it is defined by a matrix 𝐴 : R𝑚 ↦→ R𝑛, along with
two vectors 𝑏, 𝑐 ∈ R𝑛. Solving a linear program is searching for a vector 𝑥 maximizing an objective function and
satisfying a set of constraints, i.e.

𝑐𝑡𝑥 = max
𝑥′ such that 𝐴𝑥′≤𝑏

𝑐𝑡𝑥′

where the ordering 𝑢 ≤ 𝑢′ between two vectors means that the entries of 𝑢′ are pairwise greater than the entries of 𝑢.
We also write:

Max: 𝑐𝑡𝑥
Such that: 𝐴𝑥 ≤ 𝑏

Equivalently, we can also say that solving a linear program amounts to maximizing a linear function defined over
a polytope (preimage or 𝐴−1(≤ 𝑏)). These definitions, however, do not tell us how to use linear programming in
combinatorics. In the following, we will show how to solve optimization problems like the Knapsack problem, the
Maximum Matching problem, and a Flow problem.

Mixed integer linear programming

There are bad news coming along with this definition of linear programming: an LP can be solved in polynomial time.
This is indeed bad news, because this would mean that unless we define LP of exponential size, we cannot expect LP
to solve NP-complete problems, which would be a disappointment. On a brighter side, it becomes NP-complete to
solve a linear program if we are allowed to specify constraints of a different kind: requiring that some variables be
integers instead of real values. Such an LP is actually called a “mixed integer linear program” (some variables can be
integers, some other reals). Hence, we can expect to find in the MILP framework a wide range of expressivity.

208 Chapter 12. Documentation

http://sagebook.gforge.inria.fr

Thematic Tutorials, Release 8.0

Practical

The MILP class

The MILP class in Sage represents a MILP! It is also used to solve regular LP. It has a very small number of methods,
meant to define our set of constraints and variables, then to read the solution found by the solvers once computed. It is
also possible to export a MILP defined with Sage to a .lp or .mps file, understood by most solvers.

Let us ask Sage to solve the following LP:

Max: 𝑥+ 𝑦 + 3𝑧

Such that: 𝑥+ 2𝑦 ≤ 4

5𝑧 − 𝑦 ≤ 8

𝑥, 𝑦, 𝑧 ≥ 0

To achieve it, we need to define a corresponding MILP object, along with 3 variables x, y and z:

sage: p = MixedIntegerLinearProgram()
sage: v = p.new_variable(real=True, nonnegative=True)
sage: x, y, z = v['x'], v['y'], v['z']

Next, we set the objective function

sage: p.set_objective(x + y + 3*z)

And finally we set the constraints

sage: p.add_constraint(x + 2*y <= 4)
sage: p.add_constraint(5*z - y <= 8)

The solve method returns by default the optimal value reached by the objective function

sage: round(p.solve(), 2)
8.8

We can read the optimal assignation found by the solver for 𝑥, 𝑦 and 𝑧 through the get_values method

sage: round(p.get_values(x), 2)
4.0
sage: round(p.get_values(y), 2)
0.0
sage: round(p.get_values(z), 2)
1.6

Variables

In the previous example, we obtained variables through v['x'], v['y'] and v['z']. This being said, larger
LP/MILP will require us to associate an LP variable to many Sage objects, which can be integers, strings, or even the
vertices and edges of a graph. For example:

sage: x = p.new_variable(real=True, nonnegative=True)

With this new object x we can now write constraints using x[1],...,x[15].

12.1. Thematic tutorial document tree 209

Thematic Tutorials, Release 8.0

sage: p.add_constraint(x[1] + x[12] - x[14] >= 8)

Notice that we did not need to define the “length” of x. Actually, x would accept any immutable object as a key, as a
dictionary would. We can now write

sage: p.add_constraint(x["I am a valid key"] +
....: x[("a",pi)] <= 3)

And because any immutable object can be used as a key, doubly indexed variables 𝑥1,1, ..., 𝑥1,15, 𝑥2,1, ..., 𝑥15,15 can
be referenced by x[1,1],...,x[1,15],x[2,1],...,x[15,15]

sage: p.add_constraint(x[3,2] + x[5] == 6)

Typed variables and bounds

Types : If you want a variable to assume only integer or binary values, use the integer=True or binary=True
arguments of the new_variable method. Alternatively, call the set_integer and set_binary methods.

Bounds : If you want your variables to only take nonnegative values, you can say so when calling new_variable
with the argument nonnegative=True. If you want to set a different upper/lower bound on a variable, add a
constraint or use the set_min, set_max methods.

Basic linear programs

Knapsack

The Knapsack problem is the following: given a collection of items having both a weight and a usefulness, we would
like to fill a bag whose capacity is constrained while maximizing the usefulness of the items contained in the bag (we
will consider the sum of the items’ usefulness). For the purpose of this tutorial, we set the restriction that the bag can
only carry a certain total weight.

To achieve this, we have to associate to each object 𝑜 of our collection 𝐶 a binary variable taken[o], set to 1 when
the object is in the bag, and to 0 otherwise. We are trying to solve the following MILP

Max:
∑︁
𝑜∈𝐿

usefulness𝑜 × taken𝑜

Such that:
∑︁
𝑜∈𝐿

weight𝑜 × taken𝑜 ≤ 𝐶

Using Sage, we will give to our items a random weight:

sage: C = 1

sage: L = ["pan", "book", "knife", "gourd", "flashlight"]

sage: L.extend(["random_stuff_" + str(i) for i in range(20)])

sage: weight = {}
sage: usefulness = {}

210 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: set_random_seed(685474)
sage: for o in L:
....: weight[o] = random()
....: usefulness[o] = random()

We can now define the MILP itself

sage: p = MixedIntegerLinearProgram()
sage: taken = p.new_variable(binary=True)

sage: p.add_constraint(sum(weight[o] * taken[o] for o in L) <= C)

sage: p.set_objective(sum(usefulness[o] * taken[o] for o in L))

sage: p.solve() # abs tol 1e-6
3.1502766806530307
sage: taken = p.get_values(taken)

The solution found is (of course) admissible

sage: sum(weight[o] * taken[o] for o in L) # abs tol 1e-6
0.6964959796619171

Should we take a flashlight?

sage: taken["flashlight"]
1.0

Wise advice. Based on purely random considerations.

Matching

Given a graph 𝐺, a matching is a set of pairwise disjoint edges. The empty set is a trivial matching. So we focus our
attention on maximum matchings: we want to find in a graph a matching whose cardinality is maximal. Computing the
maximum matching in a graph is a polynomial problem, which is a famous result of Edmonds. Edmonds’ algorithm is
based on local improvements and the proof that a given matching is maximum if it cannot be improved. This algorithm
is not the hardest to implement among those graph theory can offer, though this problem can be modeled with a very
simple MILP.

To do it, we need – as previously – to associate a binary variable to each one of our objects: the edges of our graph
(a value of 1 meaning that the corresponding edge is included in the maximum matching). Our constraint on the
edges taken being that they are disjoint, it is enough to require that, 𝑥 and 𝑦 being two edges and 𝑚𝑥,𝑚𝑦 their
associated variables, the inequality 𝑚𝑥 +𝑚𝑦 ≤ 1 is satisfied, as we are sure that the two of them cannot both belong
to the matching. Hence, we are able to write the MILP we want. However, the number of inequalities can be easily
decreased by noticing that two edges cannot be taken simultaneously inside a matching if and only if they have a
common endpoint 𝑣. We can then require instead that at most one edge incident to 𝑣 be taken inside the matching,
which is a linear constraint. We will be solving:

Max:
∑︁

𝑒∈𝐸(𝐺)

𝑚𝑒

Such that: ∀𝑣,
∑︁

𝑒∈𝐸(𝐺)
𝑣∼𝑒

𝑚𝑒 ≤ 1

Let us write the Sage code of this MILP:

12.1. Thematic tutorial document tree 211

Thematic Tutorials, Release 8.0

sage: g = graphs.PetersenGraph()
sage: p = MixedIntegerLinearProgram()
sage: matching = p.new_variable(binary=True)

sage: p.set_objective(sum(matching[e] for e in g.edges(labels=False)))

sage: for v in g:
....: p.add_constraint(sum(matching[e]
....: for e in g.edges_incident(v, labels=False)) <= 1)

sage: p.solve()
5.0

sage: matching = p.get_values(matching)
sage: [e for e, b in matching.items() if b == 1] # not tested
[(0, 1), (6, 9), (2, 7), (3, 4), (5, 8)]

Flows

Yet another fundamental algorithm in graph theory: maximum flow! It consists, given a directed graph and two
vertices 𝑠, 𝑡, in sending a maximum flow from 𝑠 to 𝑡 using the edges of 𝐺, each of them having a maximal capacity.

The definition of this problem is almost its LP formulation. We are looking for real values associated to each edge,
which would represent the intensity of flow going through them, under two types of constraints:

212 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

• The amount of flow arriving on a vertex (different from 𝑠 or 𝑡) is equal to the amount of flow leaving it.

• The amount of flow going through an edge is bounded by the capacity of this edge.

This being said, we have to maximize the amount of flow leaving 𝑠: all of it will end up in 𝑡, as the other vertices are
sending just as much as they receive. We can model the flow problem with the following LP

Max:
∑︁
𝑠𝑣∈𝐺

𝑓𝑠𝑣

Such that: ∀𝑣 ∈ 𝐺, 𝑣 ̸=𝑠
𝑣 ̸=𝑡,

∑︁
𝑣𝑢∈𝐺

𝑓𝑣𝑢 −
∑︁
𝑢𝑣∈𝐺

𝑓𝑢𝑣 = 0

∀𝑢𝑣 ∈ 𝐺, 𝑓𝑢𝑣 ≤ 1

We will solve the flow problem on an orientation of Chvatal’s graph, in which all the edges have a capacity of 1:

sage: g = graphs.ChvatalGraph()
sage: g = g.minimum_outdegree_orientation()

sage: p = MixedIntegerLinearProgram()
sage: f = p.new_variable(real=True, nonnegative=True)
sage: s, t = 0, 2

sage: for v in g:
....: if v != s and v != t:
....: p.add_constraint(
....: sum(f[(v,u)] for u in g.neighbors_out(v))
....: - sum(f[(u,v)] for u in g.neighbors_in(v)) == 0)

sage: for e in g.edges(labels=False):
....: p.add_constraint(f[e] <= 1)

sage: p.set_objective(sum(f[(s,u)] for u in g.neighbors_out(s)))

sage: p.solve() # rel tol 2e-11
2.0

12.1. Thematic tutorial document tree 213

Thematic Tutorials, Release 8.0

Solvers

Sage solves linear programs by calling specific libraries. The following libraries are currently supported:

• CBC: A solver from COIN-OR

Provided under the open source license CPL, but incompatible with GPL. CBC can be installed using the shell
command sage -i cbc sagelib.

• CPLEX: A solver from ILOG

Proprietary, but free for researchers and students.

• CVXOPT: an LP solver from Python Software for Convex Optimization, uses an interior-point method, always
installed in Sage.

Licensed under the GPL.

• GLPK: A solver from GNU

Licensed under the GPLv3. This solver is always installed, as the default one, in Sage.

• GUROBI

Proprietary, but free for researchers and students.

214 Chapter 12. Documentation

http://www.coin-or.org/projects/Cbc.xml
http://www.coin-or.org/
http://www-01.ibm.com/software/integration/optimization/cplex/
http://www.ilog.com/
http://cvxopt.org/
http://www.gnu.org/software/glpk/
http://www.gnu.org/
http://www.gurobi.com/

Thematic Tutorials, Release 8.0

• PPL: A solver from bugSeng.

This solver provides exact (arbitrary precision) computation, always installed in Sage.

Licensed under the GPLv3.

Using CPLEX or GUROBI through Sage

ILOG’s CPLEX and GUROBI being proprietary softwares, you must be in possession of several files to use it through
Sage. In each case, the expected (it may change !) filename is joined.

• A valid license file

– CPLEX : a .ilm file

– GUROBI : a .lic file

• A compiled version of the library

– CPLEX : libcplex.a

– GUROBI : libgurobi55.so (or more recent)

• The library file

– CPLEX : cplex.h

– GUROBI : gurobi_c.h

The environment variable defining the licence’s path must also be set when running Sage. You can append to your
.bashrc file one of the following :

• For CPLEX

export ILOG_LICENSE_FILE=/path/to/the/license/ilog/ilm/access_1.ilm

• For GUROBI

export GRB_LICENSE_FILE=/path/to/the/license/gurobi.lic

As Sage also needs the files library and header files the easiest way is to create symbolic links to these files in the
appropriate directories:

• For CPLEX:

– libcplex.a – in SAGE_ROOT/local/lib/, type:

ln -s /path/to/lib/libcplex.a .

– cplex.h – in SAGE_ROOT/local/include/, type:

ln -s /path/to/include/cplex.h .

– cpxconst.h (if it exists) – in SAGE_ROOT/local/include/, type:

ln -s /path/to/include/cpxconst.h .

• For GUROBI

– libgurobi56.so – in SAGE_ROOT/local/lib/, type:

ln -s /path/to/lib/libgurobi56.so libgurobi.so

12.1. Thematic tutorial document tree 215

http://bugseng.com/products/ppl

Thematic Tutorials, Release 8.0

– gurobi_c.h – in SAGE_ROOT/local/include/, type:

ln -s /path/to/include/gurobi_c.h .

It is very important that the names of the symbolic links in Sage’s folders ** be precisely as indicated. If the
names differ, Sage will not notice that** the files are present

Once this is done, Sage is to be asked to notice the changes by running:

make

12.1.7 Number Theory and the RSA Public Key Cryptosystem

Author: Minh Van Nguyen <nguyenminh2@gmail.com>

This tutorial uses Sage to study elementary number theory and the RSA public key cryptosystem. A number of Sage
commands will be presented that help us to perform basic number theoretic operations such as greatest common
divisor and Euler’s phi function. We then present the RSA cryptosystem and use Sage’s built-in commands to encrypt
and decrypt data via the RSA algorithm. Note that this tutorial on RSA is for pedagogy purposes only. For further
details on cryptography or the security of various cryptosystems, consult specialized texts such as [MenezesEtAl1996],
[Stinson2006], and [TrappeWashington2006].

Elementary number theory

We first review basic concepts from elementary number theory, including the notion of primes, greatest common
divisors, congruences and Euler’s phi function. The number theoretic concepts and Sage commands introduced will
be referred to in later sections when we present the RSA algorithm.

Prime numbers

Public key cryptography uses many fundamental concepts from number theory, such as prime numbers and greatest
common divisors. A positive integer 𝑛 > 1 is said to be prime if its factors are exclusively 1 and itself. In Sage, we
can obtain the first 20 prime numbers using the command primes_first_n:

sage: primes_first_n(20)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]

Greatest common divisors

Let 𝑎 and 𝑏 be integers, not both zero. Then the greatest common divisor (GCD) of 𝑎 and 𝑏 is the largest positive
integer which is a factor of both 𝑎 and 𝑏. We use gcd(𝑎, 𝑏) to denote this largest positive factor. One can extend this
definition by setting gcd(0, 0) = 0. Sage uses gcd(a, b) to denote the GCD of 𝑎 and 𝑏. The GCD of any two
distinct primes is 1, and the GCD of 18 and 27 is 9.

sage: gcd(3, 59)
1
sage: gcd(18, 27)
9

If gcd(𝑎, 𝑏) = 1, we say that 𝑎 is coprime (or relatively prime) to 𝑏. In particular, gcd(3, 59) = 1 so 3 is coprime to
59 and vice versa.

216 Chapter 12. Documentation

mailto:nguyenminh2@gmail.com

Thematic Tutorials, Release 8.0

Congruences

When one integer is divided by a non-zero integer, we usually get a remainder. For example, upon dividing 23 by 5, we
get a remainder of 3; when 8 is divided by 5, the remainder is again 3. The notion of congruence helps us to describe
the situation in which two integers have the same remainder upon division by a non-zero integer. Let 𝑎, 𝑏, 𝑛 ∈ Z such
that 𝑛 ̸= 0. If 𝑎 and 𝑏 have the same remainder upon division by 𝑛, then we say that 𝑎 is congruent to 𝑏 modulo 𝑛 and
denote this relationship by

𝑎 ≡ 𝑏 (mod 𝑛)

This definition is equivalent to saying that 𝑛 divides the difference of 𝑎 and 𝑏, i.e. 𝑛 | (𝑎− 𝑏). Thus 23 ≡ 8 (mod 5)
because when both 23 and 8 are divided by 5, we end up with a remainder of 3. The command mod allows us to
compute such a remainder:

sage: mod(23, 5)
3
sage: mod(8, 5)
3

Euler’s phi function

Consider all the integers from 1 to 20, inclusive. List all those integers that are coprime to 20. In other words, we want
to find those integers 𝑛, where 1 ≤ 𝑛 ≤ 20, such that gcd(𝑛, 20) = 1. The latter task can be easily accomplished with
a little bit of Sage programming:

sage: L = []
sage: for n in range(1, 21):
....: if gcd(n, 20) == 1:
....: L.append(n)
sage: L
[1, 3, 7, 9, 11, 13, 17, 19]

The above programming statements can be saved to a text file called, say, /home/mvngu/totient.sage, orga-
nizing it as follows to enhance readability.

L = []
for n in xrange(1, 21):

if gcd(n, 20) == 1:
L.append(n)

L

We refer to totient.sage as a Sage script, just as one would refer to a file containing Python code as a Python
script. We use 4 space indentations, which is a coding convention in Sage as well as Python programming, instead of
tabs.

The command load can be used to read the file containing our programming statements into Sage and, upon loading
the content of the file, have Sage execute those statements:

load("/home/mvngu/totient.sage")
[1, 3, 7, 9, 11, 13, 17, 19]

From the latter list, there are 8 integers in the closed interval [1, 20] that are coprime to 20. Without explicitly gener-
ating the list

12.1. Thematic tutorial document tree 217

Thematic Tutorials, Release 8.0

1 3 7 9 11 13 17 19

how can we compute the number of integers in [1, 20] that are coprime to 20? This is where Euler’s phi function
comes in handy. Let 𝑛 ∈ Z be positive. Then Euler’s phi function counts the number of integers 𝑎, with 1 ≤ 𝑎 ≤ 𝑛,
such that gcd(𝑎, 𝑛) = 1. This number is denoted by 𝜙(𝑛). Euler’s phi function is sometimes referred to as Euler’s
totient function, hence the name totient.sage for the above Sage script. The command euler_phi implements
Euler’s phi function. To compute 𝜙(20) without explicitly generating the above list, we proceed as follows:

sage: euler_phi(20)
8

How to keep a secret?

Cryptography is the science (some might say art) of concealing data. Imagine that we are composing a confidential
email to someone. Having written the email, we can send it in one of two ways. The first, and usually convenient,
way is to simply press the send button and not care about how our email will be delivered. Sending an email in this
manner is similar to writing our confidential message on a postcard and post it without enclosing our postcard inside an
envelope. Anyone who can access our postcard can see our message. On the other hand, before sending our email, we
can scramble the confidential message and then press the send button. Scrambling our message is similar to enclosing
our postcard inside an envelope. While not 100% secure, at least we know that anyone wanting to read our postcard
has to open the envelope.

In cryptography parlance, our message is called plaintext. The process of scrambling our message is referred to as
encryption. After encrypting our message, the scrambled version is called ciphertext. From the ciphertext, we can
recover our original unscrambled message via decryption. The following figure illustrates the processes of encryption
and decryption. A cryptosystem is comprised of a pair of related encryption and decryption processes.

+ ---------+ encrypt +------------+ decrypt +-----------+
| plaintext| -----------> | ciphertext | -----------> | plaintext |
+----------+ +------------+ +-----------+

The following table provides a very simple method of scrambling a message written in English and using only upper
case letters, excluding punctuation characters.

+--+
| A B C D E F G H I J K L M |
| 65 66 67 68 69 70 71 72 73 74 75 76 77 |
+--+
| N O P Q R S T U V W X Y Z |
| 78 79 80 81 82 83 84 85 86 87 88 89 90 |
+--+

Formally, let

Σ = {A, B, C, . . . , Z}

be the set of capital letters of the English alphabet. Furthermore, let

Φ = {65, 66, 67, . . . , 90}

be the American Standard Code for Information Interchange (ASCII) encodings of the upper case English letters.
Then the above table explicitly describes the mapping 𝑓 : Σ −→ Φ. (For those familiar with ASCII, 𝑓 is actually a
common process for encoding elements of Σ, rather than a cryptographic “scrambling” process per se.) To scramble
a message written using the alphabet Σ, we simply replace each capital letter of the message with its corresponding
ASCII encoding. However, the scrambling process described in the above table provides, cryptographically speaking,
very little to no security at all and we strongly discourage its use in practice.

218 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Keeping a secret with two keys

The Rivest, Shamir, Adleman (RSA) cryptosystem is an example of a public key cryptosystem. RSA uses a pub-
lic key to encrypt messages and decryption is performed using a corresponding private key. We can distribute our
public keys, but for security reasons we should keep our private keys to ourselves. The encryption and decryption
processes draw upon techniques from elementary number theory. The algorithm below is adapted from page 165 of
[TrappeWashington2006]. It outlines the RSA procedure for encryption and decryption.

1. Choose two primes 𝑝 and 𝑞 and let 𝑛 = 𝑝𝑞.

2. Let 𝑒 ∈ Z be positive such that gcd
(︀
𝑒, 𝜙(𝑛)

)︀
= 1.

3. Compute a value for 𝑑 ∈ Z such that 𝑑𝑒 ≡ 1 (mod 𝜙(𝑛)).

4. Our public key is the pair (𝑛, 𝑒) and our private key is the triple (𝑝, 𝑞, 𝑑).

5. For any non-zero integer 𝑚 < 𝑛, encrypt 𝑚 using 𝑐 ≡ 𝑚𝑒 (mod 𝑛).

6. Decrypt 𝑐 using 𝑚 ≡ 𝑐𝑑 (mod 𝑛).

The next two sections will step through the RSA algorithm, using Sage to generate public and private keys, and
perform encryption and decryption based on those keys.

Generating public and private keys

Positive integers of the form 𝑀𝑚 = 2𝑚 − 1 are called Mersenne numbers. If 𝑝 is prime and 𝑀𝑝 = 2𝑝 − 1 is also
prime, then 𝑀𝑝 is called a Mersenne prime. For example, 31 is prime and 𝑀31 = 231 − 1 is a Mersenne prime, as
can be verified using the command is_prime(p). This command returns True if its argument p is precisely a
prime number; otherwise it returns False. By definition, a prime must be a positive integer, hence is_prime(-2)
returns False although we know that 2 is prime. Indeed, the number 𝑀61 = 261 − 1 is also a Mersenne prime. We
can use 𝑀31 and 𝑀61 to work through step 1 in the RSA algorithm:

sage: p = (2^31) - 1
sage: is_prime(p)
True
sage: q = (2^61) - 1
sage: is_prime(q)
True
sage: n = p * q ; n
4951760154835678088235319297

A word of warning is in order here. In the above code example, the choice of 𝑝 and 𝑞 as Mersenne primes, and with so
many digits far apart from each other, is a very bad choice in terms of cryptographic security. However, we shall use
the above chosen numeric values for 𝑝 and 𝑞 for the remainder of this tutorial, always bearing in mind that they have
been chosen for pedagogy purposes only. Refer to [MenezesEtAl1996], [Stinson2006], and [TrappeWashington2006]
for in-depth discussions on the security of RSA, or consult other specialized texts.

For step 2, we need to find a positive integer that is coprime to 𝜙(𝑛). The set of integers is implemented within the
Sage module sage.rings.integer_ring. Various operations on integers can be accessed via the ZZ.* family
of functions. For instance, the command ZZ.random_element(n) returns a pseudo-random integer uniformly
distributed within the closed interval [0, 𝑛− 1].

We can compute the value 𝜙(𝑛) by calling the sage function euler_phi(n), but for arbitrarily large prime numbers
𝑝 and 𝑞, this can take an enormous amount of time. Indeed, the private key can be quickly deduced from the public
key once you know 𝜙(𝑛), so it is an important part of the security of the RSA cryptosystem that 𝜙(𝑛) cannot be
computed in a short time, if only 𝑛 is known. On the other hand, if the private key is available, we can compute
𝜙(𝑛) = (𝑝− 1)(𝑞 − 1) in a very short time.

Using a simple programming loop, we can compute the required value of 𝑒 as follows:

12.1. Thematic tutorial document tree 219

Thematic Tutorials, Release 8.0

sage: p = (2^31) - 1
sage: q = (2^61) - 1
sage: n = p * q
sage: phi = (p - 1)*(q - 1); phi
4951760152529835076874141700
sage: e = ZZ.random_element(phi)
sage: while gcd(e, phi) != 1:
....: e = ZZ.random_element(phi)
...
sage: e # random
1850567623300615966303954877
sage: e < n
True

As e is a pseudo-random integer, its numeric value changes after each execution of e = ZZ.
random_element(phi).

To calculate a value for d in step 3 of the RSA algorithm, we use the extended Euclidean algorithm. By definition of
congruence, 𝑑𝑒 ≡ 1 (mod 𝜙(𝑛)) is equivalent to

𝑑𝑒− 𝑘 · 𝜙(𝑛) = 1

where 𝑘 ∈ Z. From steps 1 and 2, we already know the numeric values of 𝑒 and 𝜙(𝑛). The extended Euclidean
algorithm allows us to compute 𝑑 and −𝑘. In Sage, this can be accomplished via the command xgcd. Given two
integers 𝑥 and 𝑦, xgcd(x, y) returns a 3-tuple (g, s, t) that satisfies the Bézout identity 𝑔 = gcd(𝑥, 𝑦) =
𝑠𝑥 + 𝑡𝑦. Having computed a value for d, we then use the command mod(d*e, phi) to check that d*e is indeed
congruent to 1 modulo phi.

sage: n = 4951760154835678088235319297
sage: e = 1850567623300615966303954877
sage: phi = 4951760152529835076874141700
sage: bezout = xgcd(e, phi); bezout # random
(1, 4460824882019967172592779313, -1667095708515377925087033035)
sage: d = Integer(mod(bezout[1], phi)) ; d # random
4460824882019967172592779313
sage: mod(d * e, phi)
1

Thus, our RSA public key is

(𝑛, 𝑒) = (4951760154835678088235319297, 1850567623300615966303954877)

and our corresponding private key is

(𝑝, 𝑞, 𝑑) = (2147483647, 2305843009213693951, 4460824882019967172592779313)

Encryption and decryption

Suppose we want to scramble the message HELLOWORLD using RSA encryption. From the above ASCII table, our
message maps to integers of the ASCII encodings as given below.

+--+
| H E L L O W O R L D |
| 72 69 76 76 79 87 79 82 76 68 |
+--+

220 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Concatenating all the integers in the last table, our message can be represented by the integer

𝑚 = 72697676798779827668

There are other more cryptographically secure means for representing our message as an integer. The above process is
used for demonstration purposes only and we strongly discourage its use in practice. In Sage, we can obtain an integer
representation of our message as follows:

sage: m = "HELLOWORLD"
sage: m = [ord(x) for x in m]; m
[72, 69, 76, 76, 79, 87, 79, 82, 76, 68]
sage: m = ZZ(list(reversed(m)), 100) ; m
72697676798779827668

To encrypt our message, we raise 𝑚 to the power of 𝑒 and reduce the result modulo 𝑛. The command mod(a^b, n)
first computes a^b and then reduces the result modulo n. If the exponent b is a “large” integer, say with more than
20 digits, then performing modular exponentiation in this naive manner takes quite some time. Brute force (or naive)
modular exponentiation is inefficient and, when performed using a computer, can quickly consume a huge quantity
of the computer’s memory or result in overflow messages. For instance, if we perform naive modular exponentiation
using the command mod(m^e, n), where m, n and e are as given above, we would get an error message similar to
the following:

mod(m^e, n)
Traceback (most recent call last)
/home/mvngu/<ipython console> in <module>()
/home/mvngu/usr/bin/sage-3.1.4/local/lib/python2.5/site-packages/sage/rings/integer.so
in sage.rings.integer.Integer.__pow__ (sage/rings/integer.c:9650)()
RuntimeError: exponent must be at most 2147483647

There is a trick to efficiently perform modular exponentiation, called the method of repeated squaring, cf. page 879 of
[CormenEtAl2001]. Suppose we want to compute 𝑎𝑏 mod 𝑛. First, let 𝑑 := 1 and obtain the binary representation
of 𝑏, say (𝑏1, 𝑏2, . . . , 𝑏𝑘) where each 𝑏𝑖 ∈ Z/2Z. For 𝑖 := 1, . . . , 𝑘, let 𝑑 := 𝑑2 mod 𝑛 and if 𝑏𝑖 = 1 then let 𝑑 := 𝑑𝑎
mod 𝑛. This algorithm is implemented in the function power_mod. We now use the function power_mod to
encrypt our message:

sage: m = 72697676798779827668
sage: e = 1850567623300615966303954877
sage: n = 4951760154835678088235319297
sage: c = power_mod(m, e, n); c
630913632577520058415521090

Thus 𝑐 = 630913632577520058415521090 is the ciphertext. To recover our plaintext, we raise c to the power of
d and reduce the result modulo n. Again, we use modular exponentiation via repeated squaring in the decryption
process:

sage: m = 72697676798779827668
sage: c = 630913632577520058415521090
sage: d = 4460824882019967172592779313
sage: n = 4951760154835678088235319297
sage: power_mod(c, d, n)
72697676798779827668
sage: power_mod(c, d, n) == m
True

Notice in the last output that the value 72697676798779827668 is the same as the integer that represents our original
message. Hence we have recovered our plaintext.

12.1. Thematic tutorial document tree 221

Thematic Tutorials, Release 8.0

Acknowledgements

1. 2009-07-25: Ron Evans (Department of Mathematics, UCSD) reported a typo in the definition of greatest
common divisors. The revised definition incorporates his suggestions.

2. 2008-11-04: Martin Albrecht (Information Security Group, Royal Holloway, University of London), John Cre-
mona (Mathematics Institute, University of Warwick) and William Stein (Department of Mathematics, Univer-
sity of Washington) reviewed this tutorial. Many of their invaluable suggestions have been incorporated into this
document.

Bibliography

12.1.8 Coding Theory in Sage

Author: David Joyner and Robert Miller (2008), edited by Ralf Stephan for the initial version. David Lucas (2016)
for this version.

This tutorial, designed for beginners who want to discover how to use Sage for their work (research, experimentation,
teaching) on coding theory, will present several key features of Sage’s coding theory library and explain how to find
classes and methods you look for.

During this tutorial, we will cover the following parts:

• what can you do with generic linear codes and associated methods,

• what can you do with structured code families,

• what can you do to encode and recover messages, correct errors and

• what can you do to easily add errors to codewords.

The goal of this tutorial is to give a quick overview of what can be done with the library and how to use the main
functionalities. It is neither a comprehensive description of all methods nor of specific classes. If one needs some
specific information on the behaviour of a class/method related to coding theory, one should check the documentation
for this class/method.

Table of contents

• Coding Theory in Sage

– I. Generic Linear codes and associated methods

– II. Structured code families and an overview of the encoding and decoding system

* II.1 Create specific codes in Sage

* II.2 Encode and decode in Sage

– III. A deeper view of the Encoder and Decoder structure

* III.1 Message spaces

* III.2 Generator matrices

* III.3 Decoders and messages

– IV. A deeper look at channels

* A channel for errors and erasures

– V. Conclusion - Afterword

222 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

I. Generic Linear codes and associated methods

Let us start with the most generic code one can build: a generic linear code without any specific structure.

To build such a code, one just need to provide its generator matrix, as follows:

sage: G = matrix(GF(3), [[1, 0, 0, 0, 1, 2, 1],
....: [0, 1, 0, 0, 2, 1, 0],
....: [0, 0, 1, 2, 2, 2, 2]])
sage: C = LinearCode(G)

With these lines, you just created a linear code, congratulations! Note that if you pass a matrix which is not full rank,
Sage will turn it into a full-rank matrix before building the code, as illustrated in the following example:

sage: G = matrix(GF(3), [[1, 0, 0, 0, 1, 2, 1],
....: [0, 1, 0, 0, 2, 1, 0],
....: [0, 0, 1, 2, 2, 2, 2],
....: [1, 0, 1, 2, 0, 1, 0]]) #r3 = r0 + r2
sage: C = LinearCode(G)
sage: C.generator_matrix()
[1 0 0 0 1 2 1]
[0 1 0 0 2 1 0]
[0 0 1 2 2 2 2]

We now have a linear code... What can we do with it? As we can a lot of things, let us start with the basic functionali-
ties.

In the example just above, we already asked for the code’s generator matrix. It is also possible to ask the code for its
basic parameters: its length and dimension as illustrated therafter:

sage: C.length()
7
sage: C.dimension()
3

It is also possible to ask for our code’s minimum distance:

sage: C.minimum_distance()
3

Of course, as C is a generic linear code, an exhaustive search algorithm is run to find the minimum distance, which
will be slower and slower as the code grows.

By just typing the name of our code, we get a sentence which briefly describes it and gives its parameters:

sage: C
[7, 3] linear code over GF(3)

As the aim of this tutorial is not to give a comprehensive view of the methods, we won’t describe any other methods.

If one wants to get all methods that can be run on a linear code, one can:

• either check the manual page of the file Generic structures for linear codes

• or type:

C.<tab>

in Sage to get a list of all available methods for C. Afterwards, typing:

12.1. Thematic tutorial document tree 223

Thematic Tutorials, Release 8.0

C.method?

will show the manual page for method.

Note: Some generic methods require the installation of the optional package Guava for Gap. While some work is
done to always propose a default implementation which does not require an optional package, there exist some methods
which are not up to date - yet. If you’re receiving an error message related to Gap, please check the documentation of
the method to verify if Guava has to be installed.

II. Structured code families and an overview of the encoding and decoding system

II.1 Create specific codes in Sage

Now that we know how to create generic linear codes, we want to go deeper and create specific code families. In Sage,
all codes families can be accessed by typing:

codes.<tab>

Doing so, you will get the comprehensive list of all code families Sage can build.

For the rest of this section, we will illustrate specific functionalities of these code families by manipulating sage.
coding.grs.GeneralizedReedSolomonCode.

So, for starters, we want to create a Generalized Reed-Solomon (GRS) code.

By clicking on the link provided above, or typing:

codes.GeneralizedReedSolomonCode?

one can access the documentation page for GRS codes, find a definition of these and learn what is needed to build one
in Sage.

Here we choose to build a [12, 6] GRS code over F13. To do this, we need up to three elements:

• The list of evaluation points,

• the dimension of the code, and

• optionally, the list of column multipliers.

We build our code as follows:

sage: F = GF(13)
sage: length, dimension = 12, 6
sage: evaluation_pts = F.list()[:length]
sage: column_mults = F.list()[1:length+1]
sage: C = codes.GeneralizedReedSolomonCode(evaluation_pts, dimension, column_mults)

Our GRS code is now created. We can ask for its parameters, as we did in the previous section:

sage: C.length()
12
sage: C.dimension()
6
sage: C.base_ring()
Finite Field of size 13

224 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

It is also possible to ask for the evaluation points and the column multipliers by calling sage.
coding.grs.GeneralizedReedSolomonCode.evaluation_points() and sage.coding.grs.
GeneralizedReedSolomonCode.column_multipliers().

Now, if you know some theory for GRS codes, you know that it’s especially easy to compute their minimum distance,
which is: 𝑑 = 𝑛− 𝑘 + 1, where 𝑛 is the length of the code and 𝑘 is the dimension of the code.

Because Sage knows C is a GRS code, it will not run the exhaustive search algorithm presented in section I to find C‘s
minimum distance but use the operation introduced above. And you instantly get:

sage: C.minimum_distance()
7

All these parameters are summarized inside the string representation of our code:

sage: C
[12, 6, 7] Generalized Reed-Solomon Code over GF(13)

Note: Writing proper classes for code families is a work in progress. Some constructions under codes.<tab>
might thus be functions which build a generic linear code, and in that case are only able to use generic algorithms.
Please refer to the documentation of a construction to check if it is a function or a class.

II.2 Encode and decode in Sage

In the previous part, we learnt how to find specific code families in Sage and create instances of these families.

In this part, we will learn how to encode and decode.

First of all, we want to generate a codeword to play with. There is two different ways to do that:

• It is possible to just generate a random element of our code, as follows:

sage: c = C.random_element()
sage: c in C
True

• Alternatively, we can create a message and then encode it into a codeword:

sage: msg = random_vector(C.base_field(), C.dimension())
sage: c = C.encode(msg)
sage: c in C
True

Either way, we obtained a codeword. So, we might want to put some errors in it, and try to correct these errors after-
wards. We can obviously do it by changing the values at some random positions of our codeword, but we propose here
something more general: communication channels. sage.coding.channel_constructions.Channel ob-
jects are meant as abstractions for communication channels and for manipulation of data representation. In this case,
we want to emulate a communication channel which adds some, but not too many, errors to a transmitted word:

sage: err = 3
sage: Chan = channels.StaticErrorRateChannel(C.ambient_space(), err)
sage: Chan
Static error rate channel creating 3 errors, of input and output space Vector space
→˓of dimension 12 over Finite Field of size 13
sage: r = Chan.transmit(c)

12.1. Thematic tutorial document tree 225

Thematic Tutorials, Release 8.0

sage: len((c-r).nonzero_positions())
3

If you want to learn more on Channels, please refer to section IV of this tutorial.

Thanks to our channel, we got a “received word‘, r, as a codeword with errors on it. We can try to correct the errors
and recover the original codeword:

sage: c_dec = C.decode_to_code(r)
sage: c_dec == c
True

Perhaps we want the original message back rather than the codeword. All we have to do then is to unencode it back to
the message space:

sage: m_unenc = C.unencode(c_dec)
sage: m_unenc == msg
True

It is also possible to perform the two previous operations (correct the errors and recover the original message) in one
line, as illustrated below:

sage: m_unenc2 = C.decode_to_message(r)
sage: m_unenc2 == msg
True

III. A deeper view of the Encoder and Decoder structure

In the previous section, we saw that encoding, decoding and unencoding a vector can be easily done using methods
directly on the code object. These methods are actually shortcuts, added for usability, for when one does not care more
specifically about how encoding and decoding takes place. At some point, however, one might need more control.

This section will thus go into details on the mechanism of Encoders and Decoders.

At the core, the three mentioned operations are handled by sage.coding.encoder.Encoder and sage.
coding.decoder.Decoder. These objects possess their own methods to operate on words. When one calls
(as seen above):

C.encode(msg)

one actually calls the method sage.coding.encoder.Encoder.encode() on the default encoder of C. Every
code object possess a list of encoders and decoders it can use. Let us see how one can explore this:

sage: C = codes.GeneralizedReedSolomonCode(GF(59).list()[:40], 12, GF(59).
→˓list()[1:41])
sage: C.encoders_available()
['EvaluationPolynomial', 'EvaluationVector', 'Systematic']
sage: C.decoders_available()
['Syndrome',
'NearestNeighbor',
'ErrorErasure',
'Gao',
'GuruswamiSudan',
'KeyEquationSyndrome',
'BerlekampWelch']

226 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

We got a list of the available encoders and decoders for our GRS code. Rather than using the default ones as we did
before, we can now ask for specific encoder and decoder:

sage: Evect = C.encoder("EvaluationVector")
sage: Evect
Evaluation vector-style encoder for [40, 12, 29] Generalized Reed-Solomon Code over
→˓GF(59)
sage: type(Evect)
<class 'sage.coding.grs.GRSEvaluationVectorEncoder'>
sage: msg = random_vector(GF(59), C.dimension()) #random
sage: c = Evect.encode(msg)
sage: NN = C.decoder("NearestNeighbor")
sage: NN
Nearest neighbor decoder for [40, 12, 29] Generalized Reed-Solomon Code over GF(59)

Calling:

C.encoder(encoder_name)

is actually a short-hand for constructing the encoder manually, by calling the constructor for sage.coding.
grs.EncoderGRSEvaluationVector yourself. If you don’t supply encoder_name to sage.coding.
linear_code.AbstractLinearCode.encoder() you get the default encoder for the code. sage.
coding.linear_code.AbstractLinearCode.encoder() also has an important side-effect: it caches the
constructed encoder before returning it. This means that each time one will access the same EvaluationVector
encoder for C, which saves construction time.

All the above things are similar for Decoders. This reinforces that Encoders and Decoders are rarely constructed but
used many times, which allows them to perform expensive precomputation at construction or first use, for the benefit
of future use.

This gives a good idea of how the elements work internally. Let us now go a bit more into details on specific points.

III.1 Message spaces

The point of an Encoder is to encode messages into the code. These messages are often just vectors over the base
field of the code and whose length matches the code’s dimension. But it could be anything: vectors over other
fields, polynomials, or even something quite different. Therefore, each Encoder has a sage.coding.encoder.
Encoder.message_space(). For instance, we saw earlier that our GRS code has two possible encoders; let us
investigate the one we left behind in the part just before:

sage: Epoly = C.encoder("EvaluationPolynomial")
sage: Epoly
Evaluation polynomial-style encoder for [40, 12, 29] Generalized Reed-Solomon Code
→˓over GF(59)
sage: Epoly.message_space()
Univariate Polynomial Ring in x over Finite Field of size 59
sage: msg_p = Epoly.message_space().random_element(degree=C.dimension()-1); msg_p
→˓#random
31*x^11 + 49*x^10 + 56*x^9 + 31*x^8 + 36*x^6 + 58*x^5 + 9*x^4 + 17*x^3 + 29*x^2 +
→˓50*x + 46

Epoly reflects that GRS codes are often constructed as evaluations of polynomials, and that a natural way to consider
their messages is as polynomials of degree at most 𝑘 − 1, where 𝑘 is the dimension of the code. Notice that the
message space of Epoly is all univariate polynomials: message_space is the ambient space of the messages, and
sometimes an Encoder demands that the messages are actually picked from a subspace hereof.

12.1. Thematic tutorial document tree 227

Thematic Tutorials, Release 8.0

The default encoder of a code always has a vector space as message space, so when we call sage.coding.
linear_code.AbstractLinearCode.decode_to_message() or sage.coding.linear_code.
AbstractLinearCode.unencode() on the code itself, as illustrated on the first example, this will always
return vectors whose length is the dimension of the code.

III.2 Generator matrices

Whenever the message space of an Encoder is a vector space and it encodes using a linear map, the Encoder will
possess a generator matrix (note that this notion does not make sense for other types of encoders), which specifies that
linear map.

Generator matrices have been placed on Encoder objects since a code has many generator matrices, and each of these
will encode messages differently. One will also find sage.coding.linear_code.AbstractLinearCode.
generator_matrix() on code objects, but this is again simply a convenience method which forwards the query
to the default encoder.

Let us see this in Sage, using the first encoder we constructed:

sage: Evect.message_space()
Vector space of dimension 12 over Finite Field of size 59
sage: G = Evect.generator_matrix()
sage: G == C.generator_matrix()
True

III.3 Decoders and messages

As we saw before, any code has two generic methods for decoding, called decode_to_codeword and
decode_to_message. Every Decoder also has these two methods, and the methods on the code simply forward
the calls to the default decoder of this code.

There are two reasons for having these two methods: convenience and speed. Convenience is clear: having both
methods provides a useful shortcut depending on the user’s needs. Concerning speed, some decoders naturally de-
code directly to a codeword, while others directly to a message space. Supporting both methods therefore avoids
unnecessary work in encoding and unencoding.

However, decode_to_message implies that there is a message space and an encoding from that space to the code
behind the scenes. A Decoder has methods message_space and connected_encoder to inform the user about
this. Let us illustrate that by a long example:

sage: C = codes.GeneralizedReedSolomonCode(GF(59).list()[1:41], 3, GF(59).
→˓list()[1:41])
sage: c = C.random_element()
sage: c in C
True

#Create two decoders: Syndrome and Gao
sage: Syn = C.decoder("KeyEquationSyndrome")
sage: Gao = C.decoder("Gao")

#Check their message spaces
sage: Syn.message_space()
Vector space of dimension 3 over Finite Field of size 59
sage: Gao.message_space()
Univariate Polynomial Ring in x over Finite Field of size 59

228 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

#and now we unencode
sage: Syn.decode_to_message(c) #random
(55,9,43)

sage: Gao.decode_to_message(c) #random
43*x^2 + 9*x + 55

IV. A deeper look at channels

In Section II, we briefly introduced the Channel objects as a way to put errors in a word. In this section, we will look
deeper at their functionality and introduce a second Channel.

Note: Once again, we chose a specific class as a running example through all this section, as we do
not want to make an exhaustive catalog of all channels. If one wants to get this list, one can access it by
typing:

channels.<tab>

in Sage.

Consider again the sage.coding.channel_constructions.ChannelStaticErrorRate() from be-
fore. This is a channel that places errors in the transmitted vector but within controlled boundaries. We can describe
these boundaries in two ways:

• The first one was illustrated in Section II and consists in passing an integer, as shown below:

sage: C = codes.GeneralizedReedSolomonCode(GF(59).list()[:40], 12)
sage: t = 14
sage: Chan = channels.StaticErrorRateChannel(C.ambient_space(), t)
sage: Chan
Static error rate channel creating 14 errors, of input and output space Vector
→˓space of dimension 40 over Finite Field of size 59

• We can also pass a tuple of two integers, the first smaller than the second. Then each time a word is transmitted,
a random number of errors between these two integers will be added:

sage: t = (1, 14)
sage: Chan = channels.StaticErrorRateChannel(C.ambient_space(), t)
sage: Chan
Static error rate channel creating between 1 and 14 errors, of input and output
→˓space Vector space of dimension 40 over Finite Field of size 59

We already know that a channel has a sage.coding.channel_constructions.Channel.transmit()
method which will perform transmission over the channel; in this case it will return the transmitted word with
some errors in it. This method will always check if the provided word belongs to the input space of the chan-
nel. In a case one is absolutely certain that one’s word is in the input space, one might want to avoid this
check, which is time consuming - especially if one is simulating millions of transmissions. For this usage there
is sage.coding.channel_constructions.Channel.transmit_unsafe() which does the same as
sage.coding.channel_constructions.Channel.transmit() but without checking the input, as il-
lustrated thereafter:

sage: c = C.random_element()
sage: c in C
True

12.1. Thematic tutorial document tree 229

Thematic Tutorials, Release 8.0

sage: c_trans = Chan.transmit_unsafe(c)
sage: c_trans in C
False

Note there exists a useful shortcut for sage.coding.channel_constructions.Channel.transmit()

sage: r = Chan(c)
sage: r in C
False

A channel for errors and erasures

Let us introduce a new Channel object which adds errors and erasures. When it transmits a word, it both adds some
errors as well as it erases some positions:

sage: Chan = channels.ErrorErasureChannel(C.ambient_space(), 3, 4)
sage: Chan
Error-and-erasure channel creating 3 errors and 4 erasures of input space Vector
→˓space of dimension 40 over Finite Field of size 59 and output space The Cartesian
→˓product of (Vector space of dimension 40 over Finite Field of size 59, Vector space
→˓of dimension 40 over Finite Field of size 2)

The first parameter is the input space of the channel. The next two are (respectively) the number of er-
rors and the number or erasures. Each of these can be tuples too, just as it was with sage.coding.
channel_constructions.StaticErrorRateChannel. As opposed to this channel though, the output of
sage.coding.channel_constructions.ErrorErasureChannel is not the same as its input space, i.e.
the ambient space of C. Rather, it will return two vectors: the first is the transmitted word with the errors added and
erased positions set to 0. The second one is the erasure vector whose erased positions contain ones. This is reflected
in sage.coding.channel_constructions.output_space():

sage: C = codes.random_linear_code(GF(7), 10, 5)
sage: Chan.output_space()
The Cartesian product of (Vector space of dimension 40 over Finite Field of size 59,
→˓Vector space of dimension 40 over Finite Field of size 2)
sage: Chan(c) # random
((0, 3, 6, 4, 4, 0, 1, 0, 0, 1),
(1, 0, 0, 0, 0, 1, 0, 0, 1, 0))

Note it is guaranteed by construction that errors and erasures will never overlap, so when you ask for e errors and t
erasures, you will always receive a vector with e errors and t erased positions.

V. Conclusion - Afterword

This last section concludes our tutorial on coding theory.

After reading this, you should know enough to create and manipulate codes in Sage!

We did not illustrate all the content of the library in this tutorial. For instance, we did not mention how Sage manages
bounds on codes.

All objects, constructions and methods related to coding theory are hidden under the prefix codes in Sage.

For instance, it is possible to find all encoders you can build by typing:

230 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

codes.encoders.<tab>

So, if you are looking for a specific object related to code, you should always type:

codes.<tab>

and check if there’s a subcategory which matches your needs.

Despite all the hard work we put on it, there’s always much to do!

Maybe at some point you might want to create your own codes for Sage. If it’s the case and if you don’t know how to
do that, don’t panic! We also wrote a tutorial for this specific case, which you can find here: How to write your own
classes for coding theory.

12.1.9 How to write your own classes for coding theory

Author: David Lucas

This tutorial, designed for advanced users who want to build their own classes, will explain step by step what you need
to do to write code which integrates well in the framework of coding theory. During this tutorial, we will cover the
following parts:

• how to write a new code family

• how to write a new encoder

• how to write a new decoder

• how to write a new channel

Through all this tutorial, we will follow the same example, namely the implementation of repetition code. At the end
of each part, we will summarize every important step of the implementation. If one just wants a quick access to the
implementation of one of the objects cited above, one can jump directly to the end of related part, which presents a
summary of what to do.

Table of contents

• How to write your own classes for coding theory

– I. The repetition code

– II. Write a new code class

– III. Write a new encoder class

– IV. Write a new decoder class

– V. Write a new channel class

– VI. Sort our new elements

– VII. Complete code of this tutorial

I. The repetition code

We want to implement in Sage the well-known repetition code. Its definition follows:

the (𝑛, 1)-repetition code over F𝑞 is the code formed by all the vectors of F𝑛
𝑞 of the form (𝑖, 𝑖, 𝑖, . . . , 𝑖) for all 𝑖 ∈ F𝑞 .

12.1. Thematic tutorial document tree 231

Thematic Tutorials, Release 8.0

For example, the (3, 1)-repetition code over F2 is: 𝐶 = {(0, 0, 0), (1, 1, 1)}.

The encoding is very simple, it only consists in repeating 𝑛 times the input symbol and pick the vector thus formed.

The decoding uses majority voting to select the right symbol (over F2). If we receive the word (1, 0, 1) (example
cont’d), we deduce that the original word was (1). It can correct up to

⌈︀
𝑛−1
2

⌉︀
errors.

Through all this tutorial, we will illustrate the implementation of the (𝑛, 1)-repetition code over F2.

II. Write a new code class

The first thing to do to write a new code class is to identify the following elements:

• the length of the code,

• the base field of the code,

• the default encoder for the code,

• the default decoder for the code and

• any other useful argument we want to set at construction time.

For our code, we know its length, its dimension, its base field, one encoder and one decoder.

Now we isolated the parameters of the code, we can write the constructor of our class. Every linear code class must
inherit from sage.coding.linear_code.AbstractLinearCode. This class provide a lot of useful methods
and, as we illustrate thereafter, a default constructor which sets the length, the base field, the default encoder and the
default decoder as class parameters. We also need to create the dictionary of known encoders and decoders for the
class.

Let us now write the constructor for our code class, that we store in some file called repetition_code.py:

sage: from sage.coding.linear_code import AbstractLinearCode
sage: from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF
sage: class BinaryRepetitionCode(AbstractLinearCode):
....: _registered_encoders = {}
....: _registered_decoders = {}
....: def __init__(self, length):
....: super(BinaryRepetitionCode, self).__init__(GF(2), length,
....: "RepetitionGeneratorMatrixEncoder", "MajorityVoteDecoder")
....: self._dimension = 1

As you notice, the constructor is really simple. Most of the work is indeed managed by the topclass through the super
statement. Note that the dimension is not set by the abstract class, because for some code families the exact dimension
is hard to compute. If the exact dimension is known, set it using _dimension as a class parameter.

We can now write representation methods for our code class:

sage: def _repr_(self):
....: return "Binary repetition code of length %s" % self.length()
sage: def _latex_(self):
....: return "\textnormal{Binary repetition code of length } %s" % self.length()

We also write a method to check equality:

sage: def __eq__(self, other):
....: return (isinstance(other, BinaryRepetitionCode)
....: and self.length() == other.length()
....: and self.dimension() == other.dimension())

232 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

After these examples, you probably noticed that we use two methods, namely length() and dimension()
without defining them. That is because their implementation is provided in sage.coding.linear_code.
AbstractLinearCode. The abstract class provides default implantation of the following getter methods:

• sage.coding.linear_code.AbstractLinearCode.dimension()

• sage.coding.linear_code.AbstractLinearCode.length(),

• sage.coding.linear_code.AbstractLinearCode.base_field() and

• sage.coding.linear_code.AbstractLinearCode.ambient_space().

It also provides an implementation of __ne__ which returns the inverse of __eq__ and several other very useful
methods, like __contains__. Note that a lot of these other methods rely on the computation of a generator matrix.
It is thus highly recommended to set an encoder which knows how to compute such a matrix as default encoder. As
default encoder will be used by all these methods which expect a generator matrix, if one provides a default encoder
which does not have a generator_matrix method, a lot of generic methods will fail.

As our code family is really simple, we do not need anything else, and the code provided above is enough to describe
properly a repetition code.

Summary of the implementation for linear codes

1. Inherit from sage.coding.linear_code.AbstractLinearCode.

2. Add _registered_encoders = {} and _registered_decoders = {} as class variables.

3. Add this line in the class’ constructor:

super(ClassName, self).__init__(base_field, length, "DefaultEncoder",
→˓"DefaultDecoder")

4. Implement representation methods (not mandatory, but highly advised) _repr_ and _latex_.

5. Implement __eq__.

6. __ne__, length and dimension come with the abstract class.

Please note that dimension will not work is there is no field _dimension as class parameter.

We now know how to write a new code class. Let us see how to write a new encoder and a new decoder.

III. Write a new encoder class

Let us continue our example. We ask the same question as before: what do we need to describe the encoder? For
most of the cases (this one included), we only need the associated code. In that case, writing the constructor is really
straightforward (we store the code in the same .py file as the code class):

sage: from sage.coding.encoder import Encoder
sage: class BinaryRepetitionCodeGeneratorMatrixEncoder(Encoder):
....: def __init__(self, code):
....: super(BinaryRepetitionCodeGeneratorMatrixEncoder, self).__init__(code)

Same thing as before, as an encoder always needs to know its associated code, the work can be done by the base class.
Remember to inherit from sage.coding.encoder.Encoder!

We also want to override representation methods _repr_ and _latex_:

12.1. Thematic tutorial document tree 233

Thematic Tutorials, Release 8.0

sage: def _repr_(self):
....: return "Binary repetition encoder for the %s" % self.code()
sage: def _latex_(self):
....: return "\textnormal{Binary repetition encoder for the } %s" % self.code()

And we want to have an equality check too:

sage: def __eq__(self, other):
....: return (isinstance(other, BinaryRepetitionCodeGeneratorMatrixEncoder)
....: and self.code() == other.code())

As before, default getter method is provided by the topclass, namely sage.coding.encoder.Encoder.
code().

All we have to do is to implement the methods related to the encoding. This implementation changes quite a lot
whether we have a generator matrix or not.

We have a generator matrix

In that case, the message space is a vector space, and it is especially easy: the only method you need to implement is
generator_matrix.

Continuing our example, it will be:

sage: def generator_matrix(self):
....: n = self.code().length()
....: return Matrix(GF(2), 1, n, [GF(2).one()] * n)

As the topclass provides default implementation for encode and the inverse operation, that we call unencode (see:
sage.coding.encoder.Encoder.encode() and sage.coding.encoder.Encoder.unencode()),
alongside with a default implementation of sage.coding.encoder.Encoder.message_space(), our work
here is done.

Note: Default encode method multiplies the provide word by the generator matrix, while default unencode
computes an information set for the generator matrix, inverses it and performs a matrix-vector multiplication to recover
the original message. If one has a better implementation for one’s specific code family, one should obviously override
the default encode and unencode.

We do not have any generator matrix

In that case, we need to override several methods, namely encode, unencode_nocheck and probably
message_space (in the case where the message space is not a vector space). Note that the default implementation
of sage.coding.encoder.Encoder.unencode() relies on unencode_nocheck, so reimplementing the
former is not necessary.

In our example, it is easy to create an encoder which does not need a generator matrix to perform the encoding and the
unencoding. We propose the following implementation:

sage: def encode(self, message):
....: return vector(GF(2), [message] * self.code().length())

sage: def unencode_nocheck(self, word):
....: return word[0]

234 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: def message_space(self):
....: return GF(2)

Our work here is done.

We need to do one extra thing: set this encoder in the dictionary of known encoders for the associated code class. To
do that, just add the following line at the end of your file:

BinaryRepetitionCode._registered_encoders["RepetitionGeneratorMatrixEncoder"] =
→˓BinaryRepetitionCodeGeneratorMatrixEncoder

Note: In case you are implementing a generic encoder (an encoder which works with any family of lin-
ear codes), please add the following statement in AbstractLinearCode‘s constructor instead: self.
_registered_encoders["EncName"] = MyGenericEncoder. This will make it immediately available
to any code class which inherits from 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑜𝑑𝑒.

Summary of the implementation for encoders

1. Inherit from sage.coding.encoder.Encoder.

2. Add this line in the class’ constructor:

super(ClassName, self).__init__(associated_code)

3. Implement representation methods (not mandatory) _repr_ and _latex_.

4. Implement __eq__

5. __ne__, code come with the abstract class.

6. If a generator matrix is known, override generator_matrix.

7. Else override encode, unencode_nocheck and if needed message_space.

8. Add the encoder to CodeClass._registered_encoders.

IV. Write a new decoder class

Let us continue by writing a decoder. As before, we need to know what is required to describe a decoder. We need
of course the associated code of the decoder. We also want to know which Encoder we should use when we try to
recover the original message from a received word containing errors. We call this encoder connected_encoder.
As different decoding algorithms do not have the same behaviour (e.g. probabilistic decoding vs deterministic), we
would like to give a few clues about the type of a decoder. So we can store a list of keywords in the class parameter
_decoder_type. Eventually, we also need to know the input space of the decoder. As usual, initializing these
parameters can be delegated to the topclass, and our constructor looks like that:

sage: from sage.coding.decoder import Decoder
sage: class BinaryRepetitionCodeMajorityVoteDecoder(Decoder):
....: def __init__(self, code):
....: super((BinaryRepetitionCodeMajorityVoteDecoder, self).__init__(code,
....: code.ambient_space(), "RepetitionGeneratorMatrixEncoder"))

12.1. Thematic tutorial document tree 235

Thematic Tutorials, Release 8.0

Remember to inherit from sage.coding.decoder.Decoder!

As _decoder_type is actually a class parameter, one should set it in the file itself, outside of any method. For
readability, we suggest to add this statement at the bottom of the file. We’ll get back to this in a moment.

We also want to override representation methods _repr_ and _latex_:

sage: def _repr_(self):
....: return "Majority vote-based decoder for the %s" % self.code()
sage: def _latex_(self):
....: return "\textnormal{Majority vote based-decoder for the } %s" % self.code()

And we want to have an equality check too:

sage: def __eq__(self, other):
....: return isinstance((other, BinaryRepetitionCodeMajorityVoteDecoder)
....: and self.code() == other.code())

As before, default getter methods are provided by the topclass, namely sage.coding.decoder.Decoder.
code(), sage.coding.decoder.Decoder.input_space(), sage.coding.decoder.Decoder.
decoder_type() and sage.coding.decoder.Decoder.connected_encoder().

All we have to do know is to implement the methods related to the decoding.

There are two methods, namely sage.coding.decoder.Decoder.decode_to_code() and sage.
coding.decoder.Decoder.decode_to_message().

By the magic of default implementation, these two are linked, as decode_to_message calls first
decode_to_code and then unencode, while decode_to_code calls successively decode_to_message
and encode. So we only need to implement one of these two, and we choose to override decode_to_code:

sage: def decode_to_code(self, word):
....: list_word = word.list()
....: count_one = list_word.count(GF(2).one())
....: n = self.code().length()
....: length = len(list_word)
....: F = GF(2)
....: if count_one > length / 2:
....: return vector(F, [F.one()] * n)
....: elif count_one < length / 2:
....: return vector(F, [F.zero()] * n)
....: else:
....: raise DecodingError("impossible to find a majority")

Note: One notices that if default decode_to_code calls default decode_to_message and default
decode_to_message calls default decode_to_code, if none is overriden and one is called, it will end up
stuck in an infinite loop. We added a trigger guard against this, so if none is overriden and one is called, an exception
will be raised.

Only one method is missing: one to provide to the user the number of errors our decoder can decode. This is the
method sage.coding.decoder.Decoder.decoding_radius(), which we override:

sage: def decoding_radius(self):
....: return (self.code().length()-1) // 2

As for some cases, the decoding might not be precisely known, its implementation is not mandatory in sage.
coding.decoder.Decoder‘s subclasses.

236 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

We need to do one extra thing: set this encoder in the dictionary of known decoders for the associated code class. To
do that, just add the following line at the end of your file:

BinaryRepetitionCode._registered_decoders["MajorityVoteDecoder"] =
→˓BinaryRepetitionCodeMajorityVoteDecoder

Also put this line to set decoder_type:

BinaryRepetitionCode._decoder_type = {"hard-decision", "unique"}

Note: In case you are implementing a generic decoder (a decoder which works with any family of lin-
ear codes), please add the following statement in AbstractLinearCode‘s constructor instead: self.
_registered_decoders["DecName"] = MyGenericDecoder. This will make it immediately available
to any code class which inherits from 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑜𝑑𝑒.

Summary of the implementation for decoders

1. Inherit from sage.coding.decoder.Decoder.

2. Add this line in the class’ constructor:

super(ClassName, self).__init__(associated_code, input_space, connected_encoder_
→˓name, decoder_type)

3. Implement representation methods (not mandatory) _repr_ and _latex_.

4. Implement __eq__.

5. __ne__, code, connected_encoder, decoder_type come with the abstract class.

6. Override decode_to_code or decode_to_message and decoding_radius.

7. Add the encoder to CodeClass._registered_decoders.

V. Write a new channel class

Alongside all these new structures directly related to codes, we also propose a whole new and shiny structure to
experiment on codes, and more specifically on their decoding.

Indeed, we implemented a structure to emulate real-world communication channels.

I’ll propose here a step-by-step implementation of a dummy channel for example’s sake.

We will implement a very naive channel which works only for words over F2 and flips as many bits as requested by
the user.

As channels are not directly related to code families, but more to vectors and words, we have a specific file,
channel_constructions.py to store them.

So we will just add our new class in this file.

For starters, we ask ourselves the eternal question: What do we need to describe a channel? Well, we mandatorily
need its input_space and its output_space. Of course, in most of the cases, the user will be able to provide
some extra information on the channel’s behaviour. In our case, it will be the number of bits to flip (aka the number of
errors).

12.1. Thematic tutorial document tree 237

Thematic Tutorials, Release 8.0

As you might have guess, there is an abstract class to take care of the mandatory arguments! Plus, in our case, as this
channel only works for vectors over F2, the input and output spaces are the same. Let us write the constructor of our
new channel class:

sage: from sage.coding.channel_constructions import Channel
sage: class BinaryStaticErrorRateChannel(Channel):
....: def __init__(self, space, number_errors):
....: if space.base_ring() is not GF(2):
....: raise ValueError("Provided space must be a vector space over GF(2)")
....: if number_errors > space.dimension():
....: raise ValueErrors("number_errors cannot be bigger than input space
→˓'s dimension")
....: super(BinaryStaticErrorRateChannel, self).__init__(space, space)
....: self._number_errors = number_errors

Remember to inherit from sage.coding.channel_constructions.Channel!

We also want to override representation methods _repr_ and _latex_:

sage: def _repr_(self):
....: return ("Binary static error rate channel creating %s errors, of input and
→˓output space %s"
....: % (format_interval(no_err), self.input_space()))

sage: def _latex_(self):
....: return ("\\textnormal{Static error rate channel creating %s errors, of
→˓input and output space %s}"
....: % (format_interval(no_err), self.input_space()))

We don’t really see any use case for equality methods (__eq__ and __ne__) so do not provide any default imple-
mentation. If one needs these, one can of course override Python’s default methods.

We of course want getter methods. There is a provided default implementation for input_space and
output_space, so we only need one for number_errors:

sage: def number_errors(self):
....: return self._number_errors

So, now we want a method to actually add errors to words. As it is the same thing as transmitting messages
over a real-world channel, we propose two methods, transmit and transmit_unsafe. As you can guess,
transmit_unsafe tries to transmit the message without checking if it is in the input space or not, while
transmit checks this before the transmission... Which means that transmit has a default implementation which
calls transmit_unsafe. So we only need to override transmit_unsafe! Let us do it:

sage: def transmit_unsafe(self, message):
....: w = copy(message)
....: number_err = self.number_errors()
....: V = self.input_space()
....: F = GF(2)
....: for i in sample(xrange(V.dimension()), number_err):
....: w[i] += F.one()
....: return w

That is it, we now have our new channel class ready to use!

238 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Summary of the implementation for channels

1. Inherit from sage.coding.channel_constructions.Channel.

2. Add this line in the class’ constructor:

super(ClassName, self).__init__(input_space, output_space)

3. Implement representation methods (not mandatory) _repr_ and _latex_.

4. input_space and output_space getter methods come with the abstract class.

5. Override transmit_unsafe.

VI. Sort our new elements

As there is many code families and channels in the coding theory library, we do not wish to store all our classes directly
in Sage’s global namespace.

We propose several catalog files to store our constructions, namely:

• codes_catalog.py,

• encoders_catalog.py,

• decoders_catalog.py and

• channels_catalog.py.

Everytime one creates a new object, it should be added in the dedicated catalog file instead of coding theory folder’s
all.py.

Here it means the following:

• add the following in codes_catalog.py:

from sage.coding.repetition_code import BinaryRepetitionCode

• add the following in encoders_catalog.py:

from sage.coding.repetition_code import BinaryRepetitionCodeGeneratorMatrixEncoder

• add the following in decoders_catalog.py:

from sage.coding.repetition_code import BinaryRepetitionCodeMajorityVoteDecoder

• add the following in channels_catalog.py:

from sage.coding.channel_constructions import BinaryStaticErrorRateChannel

VII. Complete code of this tutorial

If you need some base code to start from, feel free to copy-paste and derive from the one that follows.

repetition_code.py (with two encoders):

12.1. Thematic tutorial document tree 239

Thematic Tutorials, Release 8.0

from sage.coding.linear_code import AbstractLinearCode
from sage.coding.encoder import Encoder
from sage.coding.decoder import Decoder
from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF

class BinaryRepetitionCode(AbstractLinearCode):

_registered_encoders = {}
_registered_decoders = {}

def __init__(self, length):
super(BinaryRepetitionCode, self).__init__(GF(2), length,

→˓"RepetitionGeneratorMatrixEncoder", "MajorityVoteDecoder")
self._dimension = 1

def _repr_(self):
return "Binary repetition code of length %s" % self.length()

def _latex_(self):
return "\textnormal{Binary repetition code of length } %s" % self.length()

def __eq__(self, other):
return (isinstance(other, BinaryRepetitionCode)

and self.length() == other.length()
and self.dimension() == other.dimension())

class BinaryRepetitionCodeGeneratorMatrixEncoder(Encoder):

def __init__(self, code):
super(BinaryRepetitionCodeGeneratorMatrixEncoder, self).__init__(code)

def _repr_(self):
return "Binary repetition encoder for the %s" % self.code()

def _latex_(self):
return "\textnormal{Binary repetition encoder for the } %s" % self.code()

def __eq__(self, other):
return (isinstance(other, BinaryRepetitionCodeGeneratorMatrixEncoder)

and self.code() == other.code())

def generator_matrix(self):
n = self.code().length()
return Matrix(GF(2), 1, n, [GF(2).one()] * n)

class BinaryRepetitionCodeStraightforwardEncoder(Encoder):

def __init__(self, code):
super(BinaryRepetitionCodeStraightforwardEncoder, self).__init__(code)

def _repr_(self):
return "Binary repetition encoder for the %s" % self.code()

def _latex_(self):

240 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

return "\textnormal{Binary repetition encoder for the } %s" % self.code()

def __eq__(self, other):
return (isinstance(other, BinaryRepetitionCodeStraightforwardEncoder)

and self.code() == other.code())

def encode(self, message):
return vector(GF(2), [message] * self.code().length())

def unencode_nocheck(self, word):
return word[0]

def message_space(self):
return GF(2)

class BinaryRepetitionCodeMajorityVoteDecoder(Decoder):

def __init__(self, code):
super(BinaryRepetitionCodeMajorityVoteDecoder, self).__init__(code, code.

→˓ambient_space(),
"RepetitionGeneratorMatrixEncoder")

def _repr_(self):
return "Majority vote-based decoder for the %s" % self.code()

def _latex_(self):
return "\textnormal{Majority vote based-decoder for the } %s" % self.code()

def __eq__(self, other):
return (isinstance(other, BinaryRepetitionCodeMajorityVoteDecoder)

and self.code() == other.code())

def decode_to_code(self, word):
list_word = word.list()
count_one = list_word.count(GF(2).one())
n = self.code().length()
length = len(list_word)
F = GF(2)
if count_one > length / 2:

return vector(F, [F.one()] * n)
elif count_one < length / 2:

return vector(F, [F.zero()] * n)
else:

raise DecodingError("impossible to find a majority")

def decoding_radius(self):
return (self.code().length()-1) // 2

BinaryRepetitionCode._registered_encoders["RepetitionGeneratorMatrixEncoder"] =
→˓BinaryRepetitionCodeGeneratorMatrixEncoder
BinaryRepetitionCode._registered_encoders["RepetitionStraightforwardEncoder"] =
→˓BinaryRepetitionCodeStraightforwardEncoder
BinaryRepetitionCode._registered_decoders["MajorityVoteDecoder"] =
→˓BinaryRepetitionCodeMajorityVoteDecoder

12.1. Thematic tutorial document tree 241

Thematic Tutorials, Release 8.0

BinaryRepetitionCodeMajorityVoteDecoder._decoder_type = {"hard-decision", "unique"}

channel_constructions.py (continued):

class BinaryStaticErrorRateChannel(Channel):

def __init__(self, space, number_errors):
if space.base_ring() is not GF(2):

raise ValueError("Provided space must be a vector space over GF(2)")
if number_errors > space.dimension():

raise ValueErrors("number_errors cannot be bigger than input space's
→˓dimension")

super(BinaryStaticErrorRateChannel, self).__init__(space, space)
self._number_errors = number_errors

def _repr_(self):
return ("Binary static error rate channel creating %s errors, of input and

→˓output space %s"
% (format_interval(no_err), self.input_space()))

def _latex_(self):
return ("\\textnormal{Static error rate channel creating %s errors, of input

→˓and output space %s}"
% (format_interval(no_err), self.input_space()))

def number_errors(self):
return self._number_errors

def transmit_unsafe(self, message):
w = copy(message)
number_err = self.number_errors()
V = self.input_space()
F = GF(2)
for i in sample(xrange(V.dimension()), number_err):

w[i] += F.one()
return w

codes_catalog.py (continued):

:class:`sage.coding.repetition_code.BinaryRepetitionCode <sage.coding.repetition_code.
→˓BinaryRepetitionCode>`
#the line above creates a link to the class in the html documentation of coding
→˓theory library
from sage.coding.repetition_code import BinaryRepetitionCode

encoders_catalog.py (continued):

from sage.coding.repetition_code import (BinaryRepetitionCodeGeneratorMatrixEncoder,
→˓BinaryRepetitionCodeStraightforwardEncoder)

decoders_catalog.py (continued):

from sage.coding.repetition_code import BinaryRepetitionCodeMajorityVoteDecoder

channels_catalog.py (continued):

from sage.coding.channel_constructions import (ErrorErasureChannel,
→˓StaticErrorRateChannel, BinaryStaticErrorRateChannel)

242 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

12.1.10 A Brief Introduction to Polytopes in Sage

Author: sarah-marie belcastro <smbelcas@toroidalsnark.net>

If you already know some convex geometry a la Grünbaum or Brøndsted, then you may have itched to get your hands
dirty with some polytope calculations. Here is a mini-guide to doing just that.

Basics

First, let’s define a polytope as the convex hull of a set of points, i.e. given 𝑆 we compute 𝑃 = conv(𝑆):

sage: P1 = Polyhedron(vertices = [[-5,2], [4,4], [3,0], [1,0], [2,-4], [-3,-1], [-5,-
→˓3]])
sage: P1
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices

Notice that Sage tells you the dimension of the polytope as well as the dimension of the ambient space.

Of course, you want to know what this object looks like:

sage: P1.plot()
Graphics object consisting of 6 graphics primitives

Even in only 2 dimensions, it’s a pain to figure out what the supporting hyperplanes are. Luckily Sage will take care
of that for us.

sage: for q in P1.Hrepresentation():
....: print(q)
An inequality (-4, 1) x + 12 >= 0
An inequality (1, 7) x + 26 >= 0
An inequality (1, 0) x + 5 >= 0
An inequality (2, -9) x + 28 >= 0

That notation is not immediately parseable, because seriously, those do not look like equations of lines (or of halfs-
paces, which is really what they are).

(-4, 1) x + 12 >= 0 really means (−4, 1) · 𝑥⃗+ 12 ≥ 0.

So... if you want to define a polytope via inequalities, you have to translate each inequality into a vector. For example,
(−4, 1) · 𝑥⃗+ 12 ≥ 0 becomes (12, -4, 1).

sage: altP1 = Polyhedron(ieqs=[(12, -4, 1), (26, 1, 7),(5,1,0), (28, 2, -9)])
sage: altP1.plot()
Graphics object consisting of 6 graphics primitives

Other information you might want to pull out of Sage about a polytope is the vertex list, which can be done in two
ways:

sage: for q in P1.Vrepresentation():
....: print(q)
A vertex at (-5, -3)
A vertex at (-5, 2)
A vertex at (4, 4)
A vertex at (2, -4)

sage: P1.vertices()
(A vertex at (-5, -3), A vertex at (-5, 2), A vertex at (4, 4), A vertex at (2, -4))

12.1. Thematic tutorial document tree 243

mailto:smbelcas@toroidalsnark.net

Thematic Tutorials, Release 8.0

Polar duals

Surely you want to compute the polar dual:

sage: P1dual = P1.polar()
sage: P1dual
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices

Check it out—we started with an integer-lattice polytope and dualized to a rational-lattice polytope. Let’s look at that.

sage: P1dual.plot()
Graphics object consisting of 6 graphics primitives

sage: P1.plot() + P1dual.plot()
Graphics object consisting of 12 graphics primitives

Oh, yeah, unless the polytope is unit-sphere-sized, the dual will be a very different size. Let’s rescale.

sage: ((1/4)*P1).plot() + (4*P1dual).plot()
Graphics object consisting of 12 graphics primitives

If you think that looks a little bit shady, you’re correct. Here is an example that makes the issue a bit clearer.

sage: P2 = Polyhedron(vertices = [[-5,0], [-1,1], [-2,0], [1,0], [-2,-1], [-3,-1], [-
→˓5,-1]])
sage: P2
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 5 vertices
sage: P2dual = P2.polar(); P2dual
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices
sage: P2.plot() + P2dual.plot()
Graphics object consisting of 14 graphics primitives

That is clearly not computing what we think of as the polar dual. But look at this...

sage: P2.plot() + (-1*P2dual).plot()
Graphics object consisting of 14 graphics primitives

Here is what’s going on.

If a polytope P is in Z, then...

1. ...the dual is inverted in some way, which is vertically for polygons.

2. ...the dual is taken of P itself.

3. ...if the origin is not in P, then an error is returned.

However, if a polytope is not in Z, for example if it’s in Q or RDF, then...

(1’) ...the dual is not inverted.

(2’) ...the dual is taken of P-translated-so-barycenter-is-at-origin.

Keep all of this in mind as you take polar duals.

Polytope Constructions

Minkowski sums! Now with two syntaxes!

244 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: P1+P2
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 8 vertices

sage: P1.Minkowski_sum(P2)
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 8 vertices

Okay, fine. We should have some 3-dimensional examples, at least. (Note that in order to display polytopes effectively
you’ll need visualization software such as Javaview and Jmol installed.)

sage: P3 = Polyhedron(vertices=[(0,0,0), (0,0,1/2), (0,1/2,0), (1/2,0,0), (3/4,1/5,3/
→˓2)]); P3
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 5 vertices
sage: P4 = Polyhedron(vertices=[(-1,1,0),(1,1,0),(-1,0,1), (1,0,1),(0,-1,1),(0,1,1)]);
→˓ P4
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: P3.plot() + P4.plot()
Graphics3d Object

sage: (P3+P4).plot()
Graphics3d Object

We can also find the intersection of two polytopes... and this too has two syntaxes!

sage: int12 = P1.intersection(P2*.5); int12.plot()
Graphics object consisting of 7 graphics primitives

sage: int34 = P3 & P4; int34.plot()
Graphics3d Object

Should one wish to translate, one can.

sage: transP2 = P2.translation([2,1])
sage: P2.plot() + transP2.plot()
Graphics object consisting of 14 graphics primitives

Then of course we can take prisms, pyramids, and bipyramids of polytopes...

sage: P2.prism().plot()
Graphics3d Object

sage: P1.pyramid().plot()
Graphics3d Object

sage: P2dual.bipyramid().plot()
Graphics3d Object

Okay, fine. Yes, Sage has some kinds of polytopes built in. If you type polytopes. and then press TAB after the
period, you’ll get a list of pre-built polytopes.

sage: P5 = polytopes.hypercube(5)
sage: P6 = polytopes.cross_polytope(3)
sage: P7 = polytopes.simplex(7)

Let’s look at a 4-dimensional polytope.

12.1. Thematic tutorial document tree 245

Thematic Tutorials, Release 8.0

sage: P8 = polytopes.hypercube(4)
sage: P8.plot()
Graphics3d Object

We can see it from a different perspective:

sage: P8.schlegel_projection([2,5,11,17]).plot()
Graphics3d Object

Queries to polytopes

Once you’ve constructed some polytope, you can ask Sage questions about it.

sage: P1.contains([1,0])
True

sage: P1.interior_contains([3,0])
False

sage: P3.contains([1,0,0])
False

Face information can be useful.

sage: int34.f_vector()
(1, 8, 12, 6, 1)

Well, geometric information might be more helpful... Here we are told which of the vertices form each 2-face:

sage: int34.faces(2)
(<1,3,4>, <0,1,3,5>, <0,1,2,4,6>, <2,3,4,5,7>, <2,6,7>, <0,5,6,7>)

Yeah, that isn’t so useful as it is. Let’s figure out the vertex and hyperplane representations of the first face in the list.

sage: first2faceofint34 = P3.faces(2)[0]
sage: first2faceofint34.ambient_Hrepresentation(); first2faceofint34.vertices()
(An inequality (1, 0, 0) x + 0 >= 0,)
(A vertex at (0, 0, 0), A vertex at (0, 0, 1/2), A vertex at (0, 1/2, 0))

If you want more... Base class for polyhedra is the first place you want to go.

12.1.11 Draw polytopes in LateX using TikZ

Author: Jean-Philippe Labbé <labbe@math.huji.ac.il>

It is sometimes very helpful to draw 3-dimensional polytopes in a paper. TikZ is a very versatile tool to draw in
scientific documents and Sage can deal easily with 3-dimensional polytopes. Finally sagetex makes everything work
together nicely between Sage, TikZ and LaTeX. Since version 6.3 of Sage, there is a function for (projection of)
polytopes to output a TikZ picture of the polytope. This short tutorial shows how it all works.

Instructions

To put an image of a 3d-polytope in LaTeX using TikZ and Sage, simply follow the instructions:

246 Chapter 12. Documentation

mailto:labbe@math.huji.ac.il

Thematic Tutorials, Release 8.0

• Install SageTex (optional but recommended!)

• Put \usepackage{tikz} in the preamble of your article

• Open Sage and change the directory to your article’s by the command cd /path/to/article

• Input your polytope, called P for example, to Sage

• Visualize the polytope P using the command P.show(aspect_ratio=1)

• This will open an interactive viewer named Jmol, in which you can rotate the polytope. Once the wished view
angle is found, right click on the image and select Console

• In the dialog box click the button State

• Scroll up to the line starting with moveto

• It reads something like moveto 0.0 {x y z angle} scale

• Go back to Sage and type Img = P.projection().tikz([x,y,z],angle)

• Img now contains a Sage object of type LatexExpr containing the raw TikZ picture of your polytope

Then, you can either copy-paste it to your article by typing Img in Sage or save it to a file, by doing

f = open('Img_poly.tex','w')
f.write(Img)
f.close()

Then in the pwd (present working directory of sage, the one of your article) you will have a file named Img_poly.
tex containing the tikzpicture of your polytope.

Customization

You can customize the polytope using the following options in the command P.tikz()

• scale : positive number to scale the polytope,

• edge_color : string (default: blue!95!black) representing colors which tikz recognize,

• facet_color : string (default: blue!95!black) representing colors which tikz recognize,

• vertex_color : string (default: green) representing colors which tikz recognize,

• opacity : real number (default: 0.8) between 0 and 1 giving the opacity of the front facets,

• axis : Boolean (default: False) draw the axes at the origin or not.

Examples

Let’s say you want to draw the polar dual of the following (nice!) polytope given by the following list of vertices:

[[1,0,1],[1,0,0],[1,1,0],[0,0,-1],[0,1,0],[-1,0,0],[0,1,1],[0,0,1],[0,-1,0]]

In Sage, you type:

P = Polyhedron(vertices=[[1,0,1],[1,0,0],[1,1,0],[0,0,-1],[0,1,0],[-1,0,0],[0,1,1],[0,
→˓0,1],[0,-1,0]]).polar()

Then, you visualize the polytope by typing P.show(aspect_ratio=1)

When you found a good angle, follow the above procedure to obtain the values [674,108,-731] and angle=112, for
example.

12.1. Thematic tutorial document tree 247

http://doc.sagemath.org/html/en/tutorial/sagetex.html

Thematic Tutorials, Release 8.0

Img = P.projection().tikz([674,108,-731],112)

Or you may want to customize using the command

Img = P.projection().tikz([674,108,-731],112,scale=2, edge_color='orange',facet_color=
→˓'red',vertex_color='blue',opacity=0.4)

Further, you may want to edit deeper the style of the polytope, directly inside the tikzpicture. For example, line 6-9 in
the tikzpicture reads:

back/.style={loosely dotted, thin},
edge/.style={color=orange, thick},
facet/.style={fill=red,fill opacity=0.400000},
vertex/.style={inner sep=1pt,circle,draw=blue!25!black,fill=blue!75!black,thick,
→˓anchor=base}]

It is also possible to replace it by the following 4 lines (and adding \usetikzlibrary{shapes} in the preamble)

back/.style={loosely dashed,line width=2pt},
edge/.style={color=yellow, line width=2pt},
facet/.style={fill=cyan,fill opacity=0.400000},
vertex/.style={inner sep=4pt,star,star points=7,draw=blue!75!white,fill=blue!85!white,
→˓thick,anchor=base}]

Finally, you may want to tweak your picture my adding labels, elements on vertices, edges, facets, etc.

Automatize using SageTex

For this you need to put

\usepackage{sagetex}

in the preamble of your article

There are different ways to use sagetex and you may create your own. Here are some possibilities.

1. You can directly type in a sagestr in the article:

\sagestr{(polytopes.permutahedron(4)).projection().tikz([4,5,6],45,scale=0.75, facet_
→˓color='red',vertex_color='yellow',opacity=0.3)}

2. You may create the following tex commands

\newcommand{\polytopeimg}[4]{\sagestr{(#1).projection().tikz(#2,#3,#4)}}
\newcommand{\polytopeimgopt}[9]{\sagestr{(#1).projection().tikz(#2,#3,#4,#5,#6,#7,#8,
→˓#9)}}

in your preamble and use them with a sagesilent in your article:

\begin{sagesilent}
Polytope = polytopes.great_rhombicuboctahedron()
\end{sagesilent}

\polytopeimg{Polytope}{[276,-607,-746]}{102}{1}
\polytopeimgopt{Polytope}{view=[-907,379,183]}{angle=129}{scale=2}{edge_color='red'}
→˓{facet_color='yellow'}{vertex_color='blue'}{opacity=0.6}{axis=False}

248 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Then, run pdflatex, execute Sage on the file article_name.sagetex.sage and run pdflatex again.

For more information on SageTeX, see the tutorial http://doc.sagemath.org/html/en/tutorial/sagetex.html.

12.1.12 Tutorial: Programming in Python and Sage

Author: Florent Hivert <florent.hivert@univ-rouen.fr>, Franco Saliola <saliola@gmail.com>, et al.

This tutorial is an introduction to basic programming in Python and Sage, for readers with elementary notions of
programming but not familiar with the Python language. It is far from exhaustive. For a more complete tutorial, have
a look at the Python Tutorial. Also Python’s documentation and in particular the standard library can be useful.

A more advanced tutorial presents the notions of objects and classes in Python.

Here are further resources to learn Python:

• Learn Python in 10 minutes ou en français Python en 10 minutes

• Dive into Python is a Python book for experienced programmers. Also available in other languages.

• Discover Python is a series of articles published in IBM’s developerWorks technical resource center.

Data structures

In Python, typing is dynamic; there is no such thing as declaring variables. The function type() returns the type
of an object obj. To convert an object to a type typ just write typ(obj) as in int("123"). The command
isinstance(ex, typ) returns whether the expression ex is of type typ. Specifically, any value is an instance
of a class and there is no difference between classes and types.

The symbol = denotes the affectation to a variable; it should not be confused with == which denotes mathematical
equality. Inequality is !=.

The standard types are bool, int, list, tuple, set, dict, str.

• The type bool (booleans) has two values: True and False. The boolean operators are denoted by their
names or, and, not.

• The Python types int and long are used to represent integers of limited size. To handle arbitrary large integers
with exact arithmetic, Sage uses its own type named Integer.

• A list is a data structure which groups values. It is constructed using brackets as in [1, 3, 4]. The range()
function creates integer lists. One can also create lists using list comprehension:

[<expr> for <name> in <iterable> (if <condition>)]

For example:

sage: [i^2 for i in range(10) if i % 2 == 0]
[0, 4, 16, 36, 64]

• A tuple is very similar to a list; it is constructed using parentheses. The empty tuple is obtained by () or by
the constructor tuple. If there is only one element, one has to write (a,). A tuple is immutable (one cannot
change it) but it is hashable (see below). One can also create tuples using comprehensions:

sage: tuple(i^2 for i in range(10) if i % 2 == 0)
(0, 4, 16, 36, 64)

• A set is a data structure which contains values without multiplicities or order. One creates it from a list (or any
iterable) with the constructor set. The elements of a set must be hashable:

12.1. Thematic tutorial document tree 249

http://doc.sagemath.org/html/en/tutorial/sagetex.html
mailto:florent.hivert@univ-rouen.fr
mailto:saliola@gmail.com
http://docs.python.org/release/2.6.4/tutorial/index.html
http://docs.python.org/release/2.6.4/
http://docs.python.org/release/2.6.4/library
http://www.korokithakis.net/tutorials/python
http://mat.oxyg3n.org/index.php?post/2009/07/26/Python-en-10-minutes
http://diveintopython.net/
http://diveintopython.net/#languages
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=Discover+Python+Part\T1\textbar {}
http://www.ibm.com/developerworks/
https://docs.python.org/library/functions.html#tuple
https://docs.python.org/library/functions.html#range
https://docs.python.org/library/functions.html#tuple

Thematic Tutorials, Release 8.0

sage: set([2,2,1,4,5])
{1, 2, 4, 5}

sage: set([[1], [2]])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

• A dictionary is an association table, which associates values to keys. Keys must be hashable. One creates
dictionaries using the constructor dict, or using the syntax:

{key1 : value1, key2 : value2 ...}

For example:

sage: age = {'toto' : 8, 'mom' : 27}; age
{'mom': 27, 'toto': 8}

• Quotes (simple ' ' or double " ") enclose character strings. One can concatenate them using +.

• For lists, tuples, strings, and dictionaries, the indexing operator is written l[i]. For lists, tuples, and strings
one can also uses slices as l[:], l[:b], l[a:], or l[a:b]. Negative indices start from the end.

• The len() function returns the number of elements of a list, a tuple, a set, a string, or a dictionary. One writes
x in C to tests whether x is in C.

• Finally there is a special value called None to denote the absence of a value.

Control structures

In Python, there is no keyword for the beginning and the end of an instructions block. Blocks are delimited solely by
means of indentation. Most of the time a new block is introduced by :. Python has the following control structures:

• Conditional instruction:

if <condition>:
<instruction sequence>

[elif <condition>:
<instruction sequence>]*

[else:
<instruction sequence>]

• Inside expression exclusively, one can write:

<value> if <condition> else <value>

• Iterative instructions:

for <name> in <iterable>:
<instruction sequence>

[else:
<instruction sequence>]

while <condition>:
<instruction sequence>

[else:
<instruction sequence>]

250 Chapter 12. Documentation

https://docs.python.org/library/functions.html#len

Thematic Tutorials, Release 8.0

The else block is executed at the end of the loop if the loop is ended normally, that is neither by a break nor
an exception.

• In a loop, continue jumps to the next iteration.

• An iterable is an object which can be iterated through. Iterable types include lists, tuples, dictionaries, and
strings.

• An error (also called exception) is raised by:

raise <ErrorType> [, error message]

Usual errors include ValueError and TypeError.

Functions

Note: Python functions vs. mathematical functions

In what follows, we deal with functions is the sense of programming languages. Mathematical functions, as manip-
ulated in calculus, are handled by Sage in a different way. In particular it doesn’t make sense to do mathematical
manipulation such as additions or derivations on Python functions.

One defines a function using the keyword def as:

def <name>(<argument list>):
<instruction sequence>

The result of the function is given by the instruction return. Very short functions can be created anonymously using
lambda (remark that there is no instruction return here):

lambda <arguments>: <expression>

Note: Functional programming

Functions are objects as any other objects. One can assign them to variables or return them. For details, see the tutorial
on Functional Programming for Mathematicians.

Exercises

Lists

Creating Lists I: [Square brackets]

Example:

sage: L = [3, Permutation([5,1,4,2,3]), 17, 17, 3, 51]
sage: L
[3, [5, 1, 4, 2, 3], 17, 17, 3, 51]

Exercise: Create the list [63, 12,−10, “a”, 12], assign it to the variable L, and print the list.

12.1. Thematic tutorial document tree 251

Thematic Tutorials, Release 8.0

sage: # edit here

Exercise: Create the empty list (you will often need to do this).

sage: # edit here

Creating Lists II: range

The range() function provides an easy way to construct a list of integers. Here is the documentation of the
range() function:

range([start,] stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement). For
example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

Exercise: Use range() to construct the list [1, 2, . . . , 50].

sage: # edit here

Exercise: Use range() to construct the list of even numbers between 1 and 100 (including 100).

sage: # edit here

Exercise: The step argument for the range() command can be negative. Use range to construct the list
[10, 7, 4, 1,−2].

sage: # edit here

See also:

• xrange(): returns an iterator rather than building a list.

• srange(): like range but with Sage integers; see below.

• xsrange(): like xrange but with Sage integers.

Creating Lists III: list comprehensions

List comprehensions provide a concise way to create lists from other lists (or other data types).

Example We already know how to create the list [1, 2, . . . , 16]:

sage: range(1,17)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Using a list comprehension, we can now create the list [12, 22, 32, . . . , 162] as follows:

sage: [i^2 for i in range(1,17)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256]

252 Chapter 12. Documentation

https://docs.python.org/library/functions.html#range
https://docs.python.org/library/functions.html#range
https://docs.python.org/library/functions.html#range
https://docs.python.org/library/functions.html#range
https://docs.python.org/library/functions.html#range
https://docs.python.org/library/functions.html#xrange

Thematic Tutorials, Release 8.0

sage: sum([i^2 for i in range(1,17)])
1496

Exercise: [Project Euler, Problem 6]

The sum of the squares of the first ten natural numbers is

(12 + 22 + ...+ 102) = 385

The square of the sum of the first ten natural numbers is

(1 + 2 + ...+ 10)2 = 552 = 3025

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is

3025− 385 = 2640

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

sage: # edit here

sage: # edit here

sage: # edit here

Filtering lists with a list comprehension

A list can be filtered using a list comprehension.

Example: To create a list of the squares of the prime numbers between 1 and 100, we use a list comprehension as
follows.

sage: [p^2 for p in [1,2,..,100] if is_prime(p)]
[4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481,
→˓3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409]

Exercise: Use a list comprehension to list all the natural numbers below 20 that are multiples of 3 or 5. Hint:

• To get the remainder of 7 divided by 3 use 7%3.

• To test for equality use two equal signs (==); for example, 3 == 7.

sage: # edit here

Project Euler, Problem 1: Find the sum of all the multiples of 3 or 5 below 1000.

sage: # edit here

Nested list comprehensions

List comprehensions can be nested!

Examples:

12.1. Thematic tutorial document tree 253

http://projecteuler.net/index.php?section=problems&id=6
http://projecteuler.net/index.php?section=problems&id=1

Thematic Tutorials, Release 8.0

sage: [(x,y) for x in range(5) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3,
→˓1), (3, 2), (4, 0), (4, 1), (4, 2)]

sage: [[i^j for j in range(1,4)] for i in range(6)]
[[0, 0, 0], [1, 1, 1], [2, 4, 8], [3, 9, 27], [4, 16, 64], [5, 25, 125]]

sage: matrix([[i^j for j in range(1,4)] for i in range(6)])
[0 0 0]
[1 1 1]
[2 4 8]
[3 9 27]
[4 16 64]
[5 25 125]

Exercise:

1. A Pythagorean triple is a triple (𝑥, 𝑦, 𝑧) of positive integers satisfying 𝑥2 + 𝑦2 = 𝑧2. The Pythagorean triples
whose components are at most 10 are:

[(3, 4, 5), (4, 3, 5), (6, 8, 10), (8, 6, 10)] .

Using a filtered list comprehension, construct the list of Pythagorean triples whose components are at most 50:

sage: # edit here

sage: # edit here

2. Project Euler, Problem 9: There exists exactly one Pythagorean triple for which 𝑎 + 𝑏 + 𝑐 = 1000. Find the
product 𝑎𝑏𝑐:

sage: # edit here

Accessing individual elements of lists

To access an element of the list L, use the syntax L[i], where 𝑖 is the index of the item.

Exercise:

1. Construct the list L = [1,2,3,4,3,5,6]. What is L[3]?

sage: # edit here

2. What is L[1]?

sage: # edit here

3. What is the index of the first element of L?

sage: # edit here

4. What is L[-1]? What is L[-2]?

sage: # edit here

254 Chapter 12. Documentation

http://projecteuler.net/index.php?section=problems&id=9

Thematic Tutorials, Release 8.0

5. What is L.index(2)? What is L.index(3)?

sage: # edit here

Modifying lists: changing an element in a list

To change the item in position i of a list L:

sage: L = ["a", 4, 1, 8]
sage: L
['a', 4, 1, 8]

sage: L[2] = 0
sage: L
['a', 4, 0, 8]

Modifying lists: append and extend

To append an object to a list:

sage: L = ["a", 4, 1, 8]
sage: L
['a', 4, 1, 8]

sage: L.append(17)
sage: L
['a', 4, 1, 8, 17]

To extend a list by another list:

sage: L1 = [1,2,3]
sage: L2 = [7,8,9,0]
sage: L1
[1, 2, 3]
sage: L2
[7, 8, 9, 0]

sage: L1.extend(L2)
sage: L1
[1, 2, 3, 7, 8, 9, 0]

Modifying lists: reverse, sort, ...

sage: L = [4,2,5,1,3]
sage: L
[4, 2, 5, 1, 3]

sage: L.reverse()
sage: L
[3, 1, 5, 2, 4]

12.1. Thematic tutorial document tree 255

Thematic Tutorials, Release 8.0

sage: L.sort()
sage: L
[1, 2, 3, 4, 5]

sage: L = [3,1,6,4]
sage: sorted(L)
[1, 3, 4, 6]

sage: L
[3, 1, 6, 4]

Concatenating Lists

To concatenate two lists, add them with the operator +. This is not a commutative operation!

sage: L1 = [1,2,3]
sage: L2 = [7,8,9,0]
sage: L1 + L2
[1, 2, 3, 7, 8, 9, 0]

Slicing Lists

You can slice a list using the syntax L[start : stop : step]. This will return a sublist of L.

Exercise: Below are some examples of slicing lists. Try to guess what the output will be before evaluating the cell:

sage: L = range(20)
sage: L
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

sage: L[3:15]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

sage: L[3:15:2]
[3, 5, 7, 9, 11, 13]

sage: L[15:3:-1]
[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4]

sage: L[:4]
[0, 1, 2, 3]

sage: L[:]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

sage: L[::-1]
[19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Exercise (Advanced): The following function combines a loop with some of the list operations above. What does the
function do?

256 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: def f(number_of_iterations):
....: L = [1]
....: for n in range(2, number_of_iterations):
....: L = [sum(L[:i]) for i in range(n-1, -1, -1)]
....: return numerical_approx(2*L[0]*len(L)/sum(L), digits=50)

sage: # edit here

Tuples

A tuple is an immutable list. That is, it cannot be changed once it is created. This can be useful for code safety and
foremost because it makes tuple hashable. To create a tuple, use parentheses instead of brackets:

sage: t = (3, 5, [3,1], (17,[2,3],17), 4)
sage: t
(3, 5, [3, 1], (17, [2, 3], 17), 4)

To create a singleton tuple, a comma is required to resolve the ambiguity:

sage: (1)
1
sage: (1,)
(1,)

We can create a tuple from a list, and vice-versa.

sage: tuple(range(5))
(0, 1, 2, 3, 4)

sage: list(t)
[3, 5, [3, 1], (17, [2, 3], 17), 4]

Tuples behave like lists in many respects:

Operation Syntax for lists Syntax for tuples
Accessing a letter list[3] tuple[3]
Concatenation list1 + list2 tuple1 + tuple2
Slicing list[3:17:2] tuple[3:17:2]
A reversed copy list[::-1] tuple[::-1]
Length len(list) len(tuple)

Trying to modify a tuple will fail:

sage: t = (5, 'a', 6/5)
sage: t
(5, 'a', 6/5)

sage: t[1] = 'b'
Traceback (most recent call last):
...
TypeError: 'tuple' object does not support item assignment

12.1. Thematic tutorial document tree 257

Thematic Tutorials, Release 8.0

Generators

“Tuple-comprehensions” do not exist. Instead, the syntax produces something called a generator. A generator allows
you to process a sequence of items one at a time. Each item is created when it is needed, and then forgotten. This can
be very efficient if we only need to use each item once.

sage: (i^2 for i in range(5))
<generator object <genexpr> at 0x...>

sage: g = (i^2 for i in range(5))
sage: g[0]
Traceback (most recent call last):
...
TypeError: 'generator' object has no attribute '__getitem__'

sage: [x for x in g]
[0, 1, 4, 9, 16]

g is now empty.

sage: [x for x in g]
[]

A nice ‘pythonic’ trick is to use generators as argument of functions. We do not need double parentheses for this:

sage: sum(i^2 for i in srange(100001))
333338333350000

Dictionaries

A dictionary is another built-in data type. Unlike lists, which are indexed by a range of numbers starting at 0, dictio-
naries are indexed by keys, which can be any immutable objects. Strings and numbers can always be keys (because
they are immutable). Dictionaries are sometimes called “associative arrays” in other programming languages.

There are several ways to define dictionaries. One method is to use braces, {}, with comma-separated entries given in
the form key:value:

sage: d = {3:17, 0.5:[4,1,5,2,3], 0:"goo", 3/2 : 17}
sage: d
{0: 'goo', 0.500000000000000: [4, 1, 5, 2, 3], 3/2: 17, 3: 17}

A second method is to use the constructor dict which admits a list (or actually any iterable) of 2-tuples (key, value):

sage: dd = dict((i,i^2) for i in xrange(10))
sage: dd
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

Dictionaries behave as lists and tuples for several important operations.

Operation Syntax for lists Syntax for dictionaries
Accessing elements list[3] D["key"]
Length len(list) len(D)
Modifying L[3] = 17 D["key"] = 17
Deleting items del L[3] del D["key"]

258 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: d[10]='a'
sage: d
{0: 'goo', 0.500000000000000: [4, 1, 5, 2, 3], 3/2: 17, 3: 17, 10: 'a'}

A dictionary can have the same value multiple times, but each key must only appear once and must be immutable:

sage: d = {3: 14, 4: 14}
sage: d
{3: 14, 4: 14}

sage: d = {3: 13, 3: 14}
sage: d
{3: 14}

sage: d = {[1,2,3] : 12}
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

Another way to add items to a dictionary is with the update() method which updates the dictionary from another
dictionary:

sage: d = {}
sage: d
{}

sage: d.update({10 : 'newvalue', 20: 'newervalue', 3: 14, 0.5:[1,2,3]})
sage: d
{0.500000000000000: [1, 2, 3], 3: 14, 10: 'newvalue', 20: 'newervalue'}

We can iterate through the keys, or values, or both, of a dictionary. Note that, internally, there is no sorting of keys
done. In general, the order of keys/values will depend on memory locations can and will differ between different
computers and / or repeated runs on the same computer. However, Sage sort the dictionary entries by key when
printing the dictionary specifically to make the docstrings more reproducible. However, the Python methods keys()
and values() do not sort for you. If you want your output to be reproducable, then you have to sort it first just like
in the examples below:

sage: d = {10 : 'newvalue', 20: 'newervalue', 3: 14, 0.5:(1,2,3)}

sage: sorted([key for key in d])
[0.500000000000000, 3, 10, 20]

sage: d.keys() # random order
[0.500000000000000, 10, 3, 20]
sage: sorted(d.keys())
[0.500000000000000, 3, 10, 20]

sage: d.values() # random order
[(1, 2, 3), 'newvalue', 14, 'newervalue']
sage: set(d.values()) == set([14, (1, 2, 3), 'newvalue', 'newervalue'])
True

sage: d.items() # random order
[(0.500000000000000, (1, 2, 3)), (10, 'newvalue'), (3, 14), (20, 'newervalue')]

12.1. Thematic tutorial document tree 259

Thematic Tutorials, Release 8.0

sage: sorted([(key, value) for key, value in d.items()])
[(0.500000000000000, (1, 2, 3)), (3, 14), (10, 'newvalue'), (20, 'newervalue')]

Exercise: Consider the following directed graph.

Create a dictionary whose keys are the vertices of the above directed graph, and whose values are the lists of the
vertices that it points to. For instance, the vertex 1 points to the vertices 2 and 3, so the dictionary will look like:

d = { ..., 1:[2,3], ... }

sage: # edit here

Then try:

sage: g = DiGraph(d)
sage: g.plot()

Using Sage types: The srange command

Example: Construct a 3× 3 matrix whose (𝑖, 𝑗) entry is the rational number 𝑖
𝑗 . The integers generated by range()

are Python int‘s. As a consequence, dividing them does euclidean division (in Python2):

sage: matrix([[i/j for j in range(1,4)] for i in range(1,4)]) # not tested
[1 0 0]
[2 1 0]
[3 1 1]

In Python3, the division of Python integers returns a float instead.

Whereas dividing a Sage Integer by a Sage Integer produces a rational number:

sage: matrix([[i/j for j in srange(1,4)] for i in srange(1,4)])
[1 1/2 1/3]
[2 1 2/3]
[3 3/2 1]

Modifying lists has consequences!

Try to predict the results of the following commands:

260 Chapter 12. Documentation

https://docs.python.org/library/functions.html#range

Thematic Tutorials, Release 8.0

sage: a = [1, 2, 3]
sage: L = [a, a, a]
sage: L
[[1, 2, 3], [1, 2, 3], [1, 2, 3]]

sage: a.append(4)
sage: L
[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]

Now try these:

sage: a = [1, 2, 3]
sage: L = [a, a, a]
sage: L
[[1, 2, 3], [1, 2, 3], [1, 2, 3]]

sage: a = [1, 2, 3, 4]
sage: L
[[1, 2, 3], [1, 2, 3], [1, 2, 3]]

sage: L[0].append(4)
sage: L
[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]

This is known as the reference effect. You can use the command deepcopy() to avoid this effect:

sage: a = [1,2,3]
sage: L = [deepcopy(a), deepcopy(a)]
sage: L
[[1, 2, 3], [1, 2, 3]]

sage: a.append(4)
sage: L
[[1, 2, 3], [1, 2, 3]]

The same effect occurs with dictionaries:

sage: d = {1:'a', 2:'b', 3:'c'}
sage: dd = d
sage: d.update({ 4:'d' })
sage: dd
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

Loops and Functions

For more verbose explanation of what’s going on here, a good place to look at is the following section of the Python
tutorial: http://docs.python.org/tutorial/controlflow.html

While Loops

While loops tend not to be used nearly as much as for loops in Python code:

12.1. Thematic tutorial document tree 261

https://docs.python.org/library/copy.html#copy.deepcopy
http://docs.python.org/tutorial/controlflow.html

Thematic Tutorials, Release 8.0

sage: i = 0
sage: while i < 10:
....: print(i)
....: i += 1
0
1
2
3
4
5
6
7
8
9

sage: i = 0
sage: while i < 10:
....: if i % 2 == 1:
....: i += 1
....: continue
....: print(i)
....: i += 1
0
2
4
6
8

Note that the truth value of the clause expression in the while loop is evaluated using bool:

sage: bool(True)
True

sage: bool('a')
True

sage: bool(1)
True

sage: bool(0)
False

sage: i = 4
sage: while i:
....: print(i)
....: i -= 1
4
3
2
1

For Loops

Here is a basic for loop iterating over all of the elements in the list l:

262 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: l = ['a', 'b', 'c']
sage: for letter in l:
....: print(letter)
a
b
c

The range() function is very useful when you want to generate arithmetic progressions to loop over. Note that the
end point is never included:

sage: range?

sage: range(4)
[0, 1, 2, 3]

sage: range(1, 5)
[1, 2, 3, 4]

sage: range(1, 11, 2)
[1, 3, 5, 7, 9]

sage: range(10, 0, -1)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

sage: for i in range(4):
....: print("{} {}".format(i, i*i))
0 0
1 1
2 4
3 9

You can use the continue keyword to immediately go to the next item in the loop:

sage: for i in range(10):
....: if i % 2 == 0:
....: continue
....: print(i)
1
3
5
7
9

If you want to break out of the loop, use the break keyword:

sage: for i in range(10):
....: if i % 2 == 0:
....: continue
....: if i == 7:
....: break
....: print(i)
1
3
5

12.1. Thematic tutorial document tree 263

https://docs.python.org/library/functions.html#range

Thematic Tutorials, Release 8.0

If you need to keep track of both the position in the list and its value, one (not so elegant) way would be to do the
following:

sage: l = ['a', 'b', 'c']
sage: for i in range(len(l)):
....: print("{} {}".format(i, l[i]))
0 a
1 b
2 c

It’s cleaner to use enumerate() which provides the index as well as the value:

sage: l = ['a', 'b', 'c']
sage: for i, letter in enumerate(l):
....: print("{} {}".format(i, letter))
0 a
1 b
2 c

You could get a similar result to the result of the enumerate() function by using zip() to zip two lists together:

sage: l = ['a', 'b', 'c']
sage: for i, letter in zip(range(len(l)), l):
....: print("{} {}".format(i, letter))
0 a
1 b
2 c

For loops work using Python’s iterator protocol. This allows all sorts of different objects to be looped over. For
example:

sage: for i in GF(5):
....: print("{} {}".format(i, i*i))
0 0
1 1
2 4
3 4
4 1

How does this work?

sage: it = iter(GF(5)); it
<generator object __iter__ at 0x...>

sage: next(it)
0

sage: next(it)
1

sage: next(it)
2

sage: next(it)
3

sage: next(it)
4

264 Chapter 12. Documentation

https://docs.python.org/library/functions.html#enumerate
https://docs.python.org/library/functions.html#enumerate
https://docs.python.org/library/functions.html#zip

Thematic Tutorials, Release 8.0

sage: next(it)
Traceback (most recent call last):
...
StopIteration

sage: R = GF(5)
sage: R.__iter__??

The command yield provides a very convenient way to produce iterators. We’ll see more about it in a bit.

Exercises

For each of the following sets, compute the list of its elements and their sum. Use two different ways, if possible: with
a loop, and using a list comprehension.

1. The first 𝑛 terms of the harmonic series:

𝑛∑︁
𝑖=1

1

𝑖

sage: # edit here

2. The odd integers between 1 and 𝑛:

sage: # edit here

3. The first 𝑛 odd integers:

sage: # edit here

4. The integers between 1 and 𝑛 that are neither divisible by 2 nor by 3 nor by 5:

sage: # edit here

5. The first 𝑛 integers between 1 and 𝑛 that are neither divisible by 2 nor by 3 nor by 5:

sage: # edit here

Functions

Functions are defined using the def statement, and values are returned using the return keyword:

sage: def f(x):
....: return x*x

sage: f(2)
4

Functions can be recursive:

12.1. Thematic tutorial document tree 265

Thematic Tutorials, Release 8.0

sage: def fib(n):
....: if n <= 1:
....: return 1
....: else:
....: return fib(n-1) + fib(n-2)

sage: [fib(i) for i in range(10)]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Functions are first class objects like any other. For example, they can be passed in as arguments to other functions:

sage: f
<function f at 0x...>

sage: def compose(f, x, n): # computes f(f(...f(x)))
....: for i in range(n):
....: x = f(x) # this change is local to this function call!
....: return x

sage: compose(f, 2, 3)
256

sage: def add_one(x):
....: return x + 1

sage: compose(add_one, 2, 3)
5

You can give default values for arguments in functions:

sage: def add_n(x, n=1):
....: return x + n

sage: add_n(4)
5

sage: add_n(4, n=100)
104

sage: add_n(4, 1000)
1004

You can return multiple values from a function:

sage: def g(x):
....: return x, x*x

sage: g(2)
(2, 4)

sage: type(g)
<... 'function'>

266 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: a,b = g(100)

sage: a
100

sage: b
10000

You can also take a variable number of arguments and keyword arguments in a function:

sage: def h(*args, **kwds):
....: print("{} {}".format(type(args), args))
....: print("{} {}".format(type(kwds), kwds))

sage: h(1,2,3,n=4)
<... 'tuple'> (1, 2, 3)
<... 'dict'> {'n': 4}

Let’s use the yield instruction to make a generator for the Fibonacci numbers up to 𝑛:

sage: def fib_gen(n):
....: if n < 1:
....: return
....: a = b = 1
....: yield b
....: while b < n:
....: yield b
....: a, b = b, b+a

sage: for i in fib_gen(50):
....: print(i)
1
1
2
3
5
8
13
21
34

Exercises

1. Write a function is_even which returns True if n is even and False otherwise.

2. Write a function every_other which takes a list l as input and returns a list containing every other element
of l.

3. Write a generator every_other which takes an iterable l as input, and returns every other element of l, one
after the other.

4. Write a function which computes the 𝑛-th Fibonacci number. Try to improve performance.

Todo

12.1. Thematic tutorial document tree 267

Thematic Tutorials, Release 8.0

• Definition of hashable

• Introduction to the debugger.

12.1.13 Tutorial: Comprehensions, Iterators, and Iterables

Author: Florent Hivert <florent.hivert@univ-rouen.fr> and Nicolas M. Thiéry <nthiery at users.sf.net>

List comprehensions

List comprehensions are a very handy way to construct lists in Python. You can use either of the following idioms:

[<expr> for <name> in <iterable>]
[<expr> for <name> in <iterable> if <condition>]

For example, here are some lists of squares:

sage: [i^2 for i in [1, 3, 7]]
[1, 9, 49]
sage: [i^2 for i in range(1,10)]
[1, 4, 9, 16, 25, 36, 49, 64, 81]
sage: [i^2 for i in range(1,10) if i % 2 == 1]
[1, 9, 25, 49, 81]

And a variant on the latter:

sage: [i^2 if i % 2 == 1 else 2 for i in range(10)]
[2, 1, 2, 9, 2, 25, 2, 49, 2, 81]

Exercises

1. Construct the list of the squares of the prime integers between 1 and 10:

sage: # edit here

2. Construct the list of the perfect squares less than 100 (hint: use srange() to get a list of Sage integers
together with the method i.sqrtrem()):

sage: # edit here

One can use more than one iterable in a list comprehension:

sage: [(i,j) for i in range(1,6) for j in range(1,i)]
[(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4)]

Warning: Mind the order of the nested loop in the previous expression.

If instead one wants to build a list of lists, one can use nested lists as in:

sage: [[binomial(n, i) for i in range(n+1)] for n in range(10)]
[[1],
[1, 1],

268 Chapter 12. Documentation

mailto:florent.hivert@univ-rouen.fr

Thematic Tutorials, Release 8.0

[1, 2, 1],
[1, 3, 3, 1],
[1, 4, 6, 4, 1],
[1, 5, 10, 10, 5, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 7, 21, 35, 35, 21, 7, 1],
[1, 8, 28, 56, 70, 56, 28, 8, 1],
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]]

Exercises

1. Compute the list of pairs (𝑖, 𝑗) of non negative integers such that i is at most 5, j is at most 8, and i and j
are co-prime:

sage: # edit here

2. Compute the same list for 𝑖 < 𝑗 < 10:

sage: # edit here

Iterators

Definition

To build a comprehension, Python actually uses an iterator. This is a device which runs through a bunch of objects,
returning one at each call to the next method. Iterators are built using parentheses:

sage: it = (binomial(8, i) for i in range(9))
sage: next(it)
1

sage: next(it)
8
sage: next(it)
28
sage: next(it)
56

You can get the list of the results that are not yet consumed:

sage: list(it)
[70, 56, 28, 8, 1]

Asking for more elements triggers a StopIteration exception:

sage: next(it)
Traceback (most recent call last):
...
StopIteration

An iterator can be used as argument for a function. The two following idioms give the same results; however, the
second idiom is much more memory efficient (for large examples) as it does not expand any list in memory:

12.1. Thematic tutorial document tree 269

Thematic Tutorials, Release 8.0

sage: sum([binomial(8, i) for i in range(9)])
256
sage: sum(binomial(8, i) for i in xrange(9))
256

Exercises

1. Compute the sum of
(︀
10
𝑖

)︀
for all even 𝑖:

sage: # edit here

2. Compute the sum of the gcd’s of all co-prime numbers 𝑖, 𝑗 for 𝑖 < 𝑗 < 10:

sage: # edit here

Typical usage of iterators

Iterators are very handy with the functions all(), any(), and exists():

sage: all([True, True, True, True])
True
sage: all([True, False, True, True])
False

sage: any([False, False, False, False])
False
sage: any([False, False, True, False])
True

Let’s check that all the prime numbers larger than 2 are odd:

sage: all(is_odd(p) for p in range(1,100) if is_prime(p) and p>2)
True

It is well know that if 2^p-1 is prime then p is prime:

sage: def mersenne(p): return 2^p -1
sage: [is_prime(p) for p in range(20) if is_prime(mersenne(p))]
[True, True, True, True, True, True, True]

The converse is not true:

sage: all(is_prime(mersenne(p)) for p in range(1000) if is_prime(p))
False

Using a list would be much slower here:

sage: %time all(is_prime(mersenne(p)) for p in range(1000) if is_prime(p)) # not
→˓tested
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
False
sage: %time all([is_prime(mersenne(p)) for p in range(1000) if is_prime(p)]) # not
→˓tested

270 Chapter 12. Documentation

https://docs.python.org/library/functions.html#all
https://docs.python.org/library/functions.html#any

Thematic Tutorials, Release 8.0

CPU times: user 0.72 s, sys: 0.00 s, total: 0.73 s
Wall time: 0.73 s
False

You can get the counterexample using exists(). It takes two arguments: an iterator and a function which tests the
property that should hold:

sage: exists((p for p in range(1000) if is_prime(p)), lambda p: not is_
→˓prime(mersenne(p)))
(True, 11)

An alternative way to achieve this is:

sage: counter_examples = (p for p in range(1000) if is_prime(p) and not is_
→˓prime(mersenne(p)))
sage: next(counter_examples)
11

Exercises

1. Build the list {𝑖3 | −10 < 𝑖 < 10}. Can you find two of those cubes 𝑢 and 𝑣 such that 𝑢+ 𝑣 = 218?

sage: # edit here

itertools

At its name suggests itertools is a module which defines several handy tools for manipulating iterators:

sage: l = [3, 234, 12, 53, 23]
sage: [(i, l[i]) for i in range(len(l))]
[(0, 3), (1, 234), (2, 12), (3, 53), (4, 23)]

The same results can be obtained using enumerate():

sage: list(enumerate(l))
[(0, 3), (1, 234), (2, 12), (3, 53), (4, 23)]

Here is the analogue of list slicing:

sage: list(Permutations(3))
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
sage: list(Permutations(3))[1:4]
[[1, 3, 2], [2, 1, 3], [2, 3, 1]]

sage: import itertools
sage: list(itertools.islice(Permutations(3), 1, 4))
[[1, 3, 2], [2, 1, 3], [2, 3, 1]]

The behaviour of the functions map() and filter() has changed between Python 2 and Python 3. In Python
3, they return an iterator. If you want to use this new behaviour in Python 2, and keep your code compatible with
Python3, you can use the compatibility library six as follows:

sage: from six.moves import map
sage: list(map(lambda z: z.cycle_type(), Permutations(3)))

12.1. Thematic tutorial document tree 271

https://docs.python.org/library/itertools.html#module-itertools
https://docs.python.org/library/functions.html#enumerate
https://docs.python.org/library/functions.html#map
https://docs.python.org/library/functions.html#filter

Thematic Tutorials, Release 8.0

[[1, 1, 1], [2, 1], [2, 1], [3], [3], [2, 1]]

sage: from six.moves import filter
sage: list(filter(lambda z: z.has_pattern([1,2]), Permutations(3)))
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]]

Exercises

1. Define an iterator for the 𝑖-th prime for 5 < 𝑖 < 10:

sage: # edit here

Defining new iterators

One can very easily write new iterators using the keyword yield. The following function does nothing interesting
beyond demonstrating the use of yield:

sage: def f(n):
....: for i in range(n):
....: yield i
sage: [u for u in f(5)]
[0, 1, 2, 3, 4]

Iterators can be recursive:

sage: def words(alphabet,l):
....: if l == 0:
....: yield []
....: else:
....: for word in words(alphabet, l-1):
....: for a in alphabet:
....: yield word + [a]

sage: [w for w in words(['a','b','c'], 3)]
[['a', 'a', 'a'], ['a', 'a', 'b'], ['a', 'a', 'c'], ['a', 'b', 'a'], ['a', 'b', 'b'],
→˓['a', 'b', 'c'], ['a', 'c', 'a'], ['a', 'c', 'b'], ['a', 'c', 'c'], ['b', 'a', 'a'],
→˓ ['b', 'a', 'b'], ['b', 'a', 'c'], ['b', 'b', 'a'], ['b', 'b', 'b'], ['b', 'b', 'c
→˓'], ['b', 'c', 'a'], ['b', 'c', 'b'], ['b', 'c', 'c'], ['c', 'a', 'a'], ['c', 'a',
→˓'b'], ['c', 'a', 'c'], ['c', 'b', 'a'], ['c', 'b', 'b'], ['c', 'b', 'c'], ['c', 'c',
→˓ 'a'], ['c', 'c', 'b'], ['c', 'c', 'c']]
sage: sum(1 for w in words(['a','b','c'], 3))
27

Here is another recursive iterator:

sage: def dyck_words(l):
....: if l==0:
....: yield ''
....: else:
....: for k in range(l):
....: for w1 in dyck_words(k):
....: for w2 in dyck_words(l-k-1):
....: yield '('+w1+')'+w2

272 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: list(dyck_words(4))
['()()()()',
'()()(())',
'()(())()',
'()(()())',
'()((()))',
'(())()()',
'(())(())',
'(()())()',
'((()))()',
'(()()())',
'(()(()))',
'((())())',
'((()()))',
'(((())))']

sage: sum(1 for w in dyck_words(5))
42

Exercises

1. Write an iterator with two parameters 𝑛, 𝑙 iterating through the set of nondecreasing lists of integers smaller
than 𝑛 of length 𝑙:

sage: # edit here

Standard Iterables

Finally, many standard Python and Sage objects are iterable; that is one may iterate through their elements:

sage: sum(x^len(s) for s in Subsets(8))
x^8 + 8*x^7 + 28*x^6 + 56*x^5 + 70*x^4 + 56*x^3 + 28*x^2 + 8*x + 1

sage: sum(x^p.length() for p in Permutations(3))
x^3 + 2*x^2 + 2*x + 1

sage: factor(sum(x^p.length() for p in Permutations(3)))
(x^2 + x + 1)*(x + 1)

sage: P = Permutations(5)
sage: all(p in P for p in P)
True

sage: for p in GL(2, 2): print(p); print("")
[1 0]
[0 1]

[0 1]
[1 0]

[0 1]
[1 1]

[1 1]

12.1. Thematic tutorial document tree 273

Thematic Tutorials, Release 8.0

[0 1]

[1 1]
[1 0]

[1 0]
[1 1]

sage: for p in Partitions(3): print(p)
[3]
[2, 1]
[1, 1, 1]

Beware of infinite loops:

sage: for p in Partitions(): print(p) # not tested

sage: for p in Primes(): print(p) # not tested

Infinite loops can nevertheless be very useful:

sage: exists(Primes(), lambda p: not is_prime(mersenne(p)))
(True, 11)

sage: counter_examples = (p for p in Primes() if not is_prime(mersenne(p)))
sage: next(counter_examples)
11

12.1.14 Tutorial: Objects and Classes in Python and Sage

Author: Florent Hivert <florent.hivert@univ-rouen.fr>

This tutorial is an introduction to object-oriented programming in Python and Sage. It requires basic knowledge about
imperative/procedural programming (the most common programming style) – that is, conditional instructions, loops,
functions (see the “Programming” section of the Sage tutorial) – but no further knowledge about objects and classes
is assumed. It is designed as an alternating sequence of formal introduction and exercises. Solutions to the exercises
are given at the end.

Foreword: variables, names and objects

As an object-oriented language, Python’s ‘’variables” behavior may be surprising for people used to imperative lan-
guages like C or Maple. The reason is that they are not variables but names.

The following explanation is borrowed from David Goodger.

Other languages have “variables”

In many other languages, assigning to a variable puts a value into a box.

274 Chapter 12. Documentation

mailto:florent.hivert@univ-rouen.fr
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#python-has-names

Thematic Tutorials, Release 8.0

int a = 1;

Box “a” now contains an integer 1.

Assigning another value to the same variable replaces the contents of the box:

a = 2;

Now box “a” contains an integer 2.

Assigning one variable to another makes a copy of the value and puts it in the new box:

int b = a;

“b” is a second box, with a copy of integer 2. Box “a” has a separate copy.

Python has “names”

In Python, a “name” or “identifier” is like a parcel tag (or nametag) attached to an object.

12.1. Thematic tutorial document tree 275

Thematic Tutorials, Release 8.0

a = 1

Here, an integer 1 object has a tag labelled “a”.

If we reassign to “a”, we just move the tag to another object:

a = 2

Now the name “a” is attached to an integer 2 object.

The original integer 1 object no longer has a tag “a”. It may live on, but we can’t get to it through the name “a”. (When
an object has no more references or tags, it is removed from memory.)

If we assign one name to another, we’re just attaching another nametag to an existing object:

b = a

The name “b” is just a second tag bound to the same object as “a”.

Although we commonly refer to “variables” even in Python (because it’s common terminology), we really mean
“names” or “identifiers”. In Python, “variables” are nametags for values, not labelled boxes.

Warning: As a consequence, when there are two tags “a” and “b” on the same object, modifying the object
tagged “b” also modifies the object tagged “a”:

sage: a = [1,2,3]
sage: b = a
sage: b[1] = 0
sage: a
[1, 0, 3]

276 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Note that reassigning the tag “b” (rather than modifying the object with that tag) doesn’t affect the object tagged
“a”:

sage: b = 7
sage: b
7
sage: a
[1, 0, 3]

Object-oriented programming paradigm

The object-oriented programming paradigm relies on the two following fundamental rules:

1. Anything of the real (or mathematical) world which needs to be manipulated by the computer is modeled by an
object.

2. Each object is an instance of some class.

At this point, those two rules are a little meaningless, so let’s give some more or less precise definitions of the terms:

object a portion of memory which contains the information needed to model the real world thing.

class defines the data structure used to store the objects which are instances of the class together with their behavior.

Let’s start with some examples: We consider the vector space over Q whose basis is indexed by permutations, and a
particular element in it:

sage: F = CombinatorialFreeModule(QQ, Permutations())
sage: el = 3*F([1,3,2])+ F([1,2,3])
sage: el
B[[1, 2, 3]] + 3*B[[1, 3, 2]]

(For each permutation, say [1, 3, 2], the corresponding element in F is denoted by B[[1, 3, 2]] – in a
CombinatorialFreeModule, if an element is indexed by x, then by default its print representation is B[x].)

In Python, everything is an object so there isn’t any difference between types and classes. One can get the class of the
object el by:

sage: type(el)
<class 'sage.combinat.free_module.CombinatorialFreeModule_with_category.element_class
→˓'>

As such, this is not very informative. We’ll come back to it later. The data associated to objects are stored in so-called
attributes. They are accessed through the syntax obj.attribute_name. For an element of a combinatorial free
module, the main attribute is called _monomial_coefficients. It is a dictionary associating coefficients to
indices:

sage: el._monomial_coefficients
{[1, 2, 3]: 1, [1, 3, 2]: 3}

Modifying the attribute modifies the objects:

sage: el._monomial_coefficients[Permutation([3,2,1])] = 1/2
sage: el
B[[1, 2, 3]] + 3*B[[1, 3, 2]] + 1/2*B[[3, 2, 1]]

12.1. Thematic tutorial document tree 277

Thematic Tutorials, Release 8.0

Warning: as a user, you are not supposed to do such a modification by yourself (see note on private attributes
below).

As an element of a vector space, el has a particular behavior:

sage: 2*el
2*B[[1, 2, 3]] + 6*B[[1, 3, 2]] + B[[3, 2, 1]]
sage: sorted(el.support())
[[1, 2, 3], [1, 3, 2], [3, 2, 1]]
sage: el.coefficient([1, 2, 3])
1

The behavior is defined through methods (support, coefficient). Note that this is true even for equality,
printing or mathematical operations. For example, the call a == b actually is translated to the method call a.
__eq__(b). The names of those special methods which are usually called through operators are fixed by the
Python language and are of the form __name__. Examples include __eq__ and __le__ for operators == and
<=, __repr__ (see Sage specifics about classes) for printing, __add__ and __mult__ for operators + and *. See
http://docs.python.org/library/ for a complete list.

sage: el.__eq__(F([1,3,2]))
False
sage: el.__repr__()
'B[[1, 2, 3]] + 3*B[[1, 3, 2]] + 1/2*B[[3, 2, 1]]'
sage: el.__mul__(2)
2*B[[1, 2, 3]] + 6*B[[1, 3, 2]] + B[[3, 2, 1]]

Some particular actions modify the data structure of el:

sage: el.rename("bla")
sage: el
bla

Note: The class is stored in a particular attribute called __class__, and the normal attributes are stored in a
dictionary called __dict__:

sage: F = CombinatorialFreeModule(QQ, Permutations())
sage: el = 3*F([1,3,2])+ F([1,2,3])
sage: el.rename("foo")
sage: el.blah = 42
sage: el.__class__
<class 'sage.combinat.free_module.CombinatorialFreeModule_with_category.element_class
→˓'>
sage: el.__dict__
{'__custom_name': 'foo',
'blah': 42}

Lots of Sage objects are not Python objects but compiled Cython objects. Python sees them as builtin ob-
jects and you don’t have access to some of their data structure. In particular, we do not see the attribute
_monomial_coefficients in the __dict__ above. Other examples of compiled Cython objects include inte-
gers and permutation group elements:

sage: e = Integer(9)
sage: type(e)
<type 'sage.rings.integer.Integer'>
sage: e.__dict__

278 Chapter 12. Documentation

http://docs.python.org/library/

Thematic Tutorials, Release 8.0

Traceback (most recent call last):
...
AttributeError: 'sage.rings.integer.Integer' object has no attribute '__dict__'

sage: id4 = SymmetricGroup(4).one()
sage: type(id4)
<type 'sage.groups.perm_gps.permgroup_element.SymmetricGroupElement'>
sage: id4.__dict__
Traceback (most recent call last):
...
AttributeError: 'sage.groups.perm_gps.permgroup_element.SymmetricGroupElement' object
→˓has no attribute '__dict__'

Note: Each object corresponds to a portion of memory called its identity in Python. You can get the identity using
id:

sage: el = Integer(9)
sage: id(el) # random
139813642977744
sage: el1 = el; id(el1) == id(el)
True
sage: el1 is el
True

In Python (and therefore in Sage), two objects with the same identity will be equal, but the converse is not true in
general. Thus the identity function is different from mathematical identity:

sage: el2 = Integer(9)
sage: el2 == el1
True
sage: el2 is el1
False
sage: id(el2) == id(el)
False

Summary

To define some object, you first have to write a class. The class will define the methods and the attributes of the object.

method particular kind of function associated with an object used to get information about the object or to manipulate
it.

attribute variable where information about the object is stored.

An example: glass of beverage in a restaurant

Let’s write a small class about glasses in a restaurant:

sage: class Glass(object):
....: def __init__(self, size):
....: assert size > 0
....: self._size = float(size) # an attribute

12.1. Thematic tutorial document tree 279

Thematic Tutorials, Release 8.0

....: self._content = float(0.0) # another attribute

....: def __repr__(self):

....: if self._content == 0.0:

....: return "An empty glass of size %s"%(self._size)

....: else:

....: return "A glass of size %s cl containing %s cl of water"%(

....: self._size, self._content)

....: def fill(self):

....: self._content = self._size

....: def empty(self):

....: self._content = float(0.0)

Let’s create a small glass:

sage: myGlass = Glass(10); myGlass
An empty glass of size 10.0
sage: myGlass.fill(); myGlass
A glass of size 10.0 cl containing 10.0 cl of water
sage: myGlass.empty(); myGlass
An empty glass of size 10.0

Some comments:

1. The definition of the class Glass defines two attributes, _size and _content. It defines four methods,
__init__, __repr__, fill, and empty. (Any instance of this class will also have other attributes and
methods, inherited from the class object. See Inheritance below.)

2. The method __init__ is used to initialize the object: it is used by the so-called constructor of the class that
is executed when calling Glass(10).

3. The method __repr__ returns a string which is used to print the object, for example in this case when evalu-
ating myGlass.

Note: Private Attributes

• Most of the time, in order to ensure consistency of the data structures, the user is not supposed to directly change
certain attributes of an object. Those attributes are called private. Since there is no mechanism to ensure privacy
in Python, the convention is the following: private attributes have names beginning with an underscore.

• As a consequence, attribute access is only made through methods. Methods for reading or writing a private
attribute are called accessors.

• Methods which are only for internal use are also prefixed with an underscore.

Exercises

1. Add a method is_empty which returns true if a glass is empty.

2. Define a method drink with a parameter amount which allows one to partially drink the water in the glass.
Raise an error if one asks to drink more water than there is in the glass or a negative amount of water.

3. Allows the glass to be filled with wine, beer or another beverage. The method fill should accept a parameter
beverage. The beverage is stored in an attribute _beverage. Update the method __repr__ accordingly.

4. Add an attribute _clean and methods is_clean and wash. At the creation a glass is clean, as soon as it’s
filled it becomes dirty, and it must be washed to become clean again.

280 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

5. Test everything.

6. Make sure that everything is tested.

7. Test everything again.

Inheritance

The problem: objects of different classes may share a common behavior.

For example, if one wants to deal with different dishes (forks, spoons, ...), then there is common behavior (becoming
dirty and being washed). So the different classes associated to the different kinds of dishes should have the same
clean, is_clean and wash methods. But copying and pasting code is very bad for maintenance: mistakes are
copied, and to change anything one has to remember the location of all the copies. So there is a need for a mechanism
which allows the programmer to factorize the common behavior. It is called inheritance or sub-classing: one writes
a base class which factorizes the common behavior and then reuses the methods from this class.

We first write a small class ‘’AbstractDish” which implements the “clean-dirty-wash” behavior:

sage: class AbstractDish(object):
....: def __init__(self):
....: self._clean = True
....: def is_clean(self):
....: return self._clean
....: def state(self):
....: return "clean" if self.is_clean() else "dirty"
....: def __repr__(self):
....: return "An unspecified %s dish"%self.state()
....: def _make_dirty(self):
....: self._clean = False
....: def wash(self):
....: self._clean = True

Now one can reuse this behavior within a class Spoon:

sage: class Spoon(AbstractDish): # Spoon inherits from AbstractDish
....: def __repr__(self):
....: return "A %s spoon"%self.state()
....: def eat_with(self):
....: self._make_dirty()

Let’s test it:

sage: s = Spoon(); s
A clean spoon
sage: s.is_clean()
True
sage: s.eat_with(); s
A dirty spoon
sage: s.is_clean()
False
sage: s.wash(); s
A clean spoon

12.1. Thematic tutorial document tree 281

Thematic Tutorials, Release 8.0

Summary

1. Any class can reuse the behavior of another class. One says that the subclass inherits from the superclass or
that it derives from it.

2. Any instance of the subclass is also an instance of its superclass:

sage: type(s)
<class '__main__.Spoon'>
sage: isinstance(s, Spoon)
True
sage: isinstance(s, AbstractDish)
True

3. If a subclass redefines a method, then it replaces the former one. One says that the subclass overloads the
method. One can nevertheless explicitly call the hidden superclass method.

sage: s.__repr__()
'A clean spoon'
sage: Spoon.__repr__(s)
'A clean spoon'
sage: AbstractDish.__repr__(s)
'An unspecified clean dish'

Note: Advanced superclass method call

Sometimes one wants to call an overloaded method without knowing in which class it is defined. To do this, use the
super operator:

sage: super(Spoon, s).__repr__()
'An unspecified clean dish'

A very common usage of this construct is to call the __init__ method of the superclass:

sage: class Spoon(AbstractDish):
....: def __init__(self):
....: print("Building a spoon")
....: super(Spoon, self).__init__()
....: def __repr__(self):
....: return "A %s spoon"%self.state()
....: def eat_with(self):
....: self._make_dirty()
sage: s = Spoon()
Building a spoon
sage: s
A clean spoon

Exercises

1. Modify the class Glasses so that it inherits from Dish.

2. Write a class Plate whose instance can contain any meal together with a class Fork. Avoid as much as
possible code duplication (hint: you can write a factorized class ContainerDish).

3. Test everything.

282 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Sage specifics about classes

Compared to Python, Sage has particular ways to handle objects:

• Any classes for mathematical objects in Sage should inherit from SageObject rather than from object.
Most of the time, they actually inherit from a subclass such as Parent or Element.

• Printing should be done through _repr_ instead of __repr__ to allow for renaming.

• More generally, Sage-specific special methods are usually named _meth_ rather than __meth__. For exam-
ple, lots of classes implement _hash_ which is used and cached by __hash__. In the same vein, elements
of a group usually implement _mul_, so that there is no need to take care about coercions as they are done in
__mul__.

For more details, see the Sage Developer’s Guide.

Solutions to the exercises

1. Here is a solution to the first exercise:

sage: class Glass(object):
....: def __init__(self, size):
....: assert size > 0
....: self._size = float(size)
....: self.wash()
....: def __repr__(self):
....: if self._content == 0.0:
....: return "An empty glass of size %s"%(self._size)
....: else:
....: return "A glass of size %s cl containing %s cl of %s"%(
....: self._size, self._content, self._beverage)
....: def content(self):
....: return self._content
....: def beverage(self):
....: return self._beverage
....: def fill(self, beverage = "water"):
....: if not self.is_clean():
....: raise ValueError("Don't want to fill a dirty glass")
....: self._clean = False
....: self._content = self._size
....: self._beverage = beverage
....: def empty(self):
....: self._content = float(0.0)
....: def is_empty(self):
....: return self._content == 0.0
....: def drink(self, amount):
....: if amount <= 0.0:
....: raise ValueError("amount must be positive")
....: elif amount > self._content:
....: raise ValueError("not enough beverage in the glass")
....: else:
....: self._content -= float(amount)
....: def is_clean(self):
....: return self._clean
....: def wash(self):
....: self._content = float(0.0)
....: self._beverage = None
....: self._clean = True

12.1. Thematic tutorial document tree 283

Thematic Tutorials, Release 8.0

2. Let’s check that everything is working as expected:

sage: G = Glass(10.0)
sage: G
An empty glass of size 10.0
sage: G.is_empty()
True
sage: G.drink(2)
Traceback (most recent call last):
...
ValueError: not enough beverage in the glass
sage: G.fill("beer")
sage: G
A glass of size 10.0 cl containing 10.0 cl of beer
sage: G.is_empty()
False
sage: G.is_clean()
False
sage: G.drink(5.0)
sage: G
A glass of size 10.0 cl containing 5.0 cl of beer
sage: G.is_empty()
False
sage: G.is_clean()
False
sage: G.drink(5)
sage: G
An empty glass of size 10.0
sage: G.is_clean()
False
sage: G.fill("orange juice")
Traceback (most recent call last):
...
ValueError: Don't want to fill a dirty glass
sage: G.wash()
sage: G
An empty glass of size 10.0
sage: G.fill("orange juice")
sage: G
A glass of size 10.0 cl containing 10.0 cl of orange juice

3. Here is the solution to the second exercice:

sage: class AbstractDish(object):
....: def __init__(self):
....: self._clean = True
....: def is_clean(self):
....: return self._clean
....: def state(self):
....: return "clean" if self.is_clean() else "dirty"
....: def __repr__(self):
....: return "An unspecified %s dish"%self.state()
....: def _make_dirty(self):
....: self._clean = False
....: def wash(self):
....: self._clean = True

sage: class ContainerDish(AbstractDish):

284 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

....: def __init__(self, size):

....: assert size > 0

....: self._size = float(size)

....: self._content = float(0)

....: super(ContainerDish, self).__init__()

....: def content(self):

....: return self._content

....: def empty(self):

....: self._content = float(0.0)

....: def is_empty(self):

....: return self._content == 0.0

....: def wash(self):

....: self._content = float(0.0)

....: super(ContainerDish, self).wash()

sage: class Glass(ContainerDish):
....: def __repr__(self):
....: if self._content == 0.0:
....: return "An empty glass of size %s"%(self._size)
....: else:
....: return "A glass of size %s cl containing %s cl of %s"%(
....: self._size, self._content, self._beverage)
....: def beverage(self):
....: return self._beverage
....: def fill(self, beverage = "water"):
....: if not self.is_clean():
....: raise ValueError("Don't want to fill a dirty glass")
....: self._make_dirty()
....: self._content = self._size
....: self._beverage = beverage
....: def drink(self, amount):
....: if amount <= 0.0:
....: raise ValueError("amount must be positive")
....: elif amount > self._content:
....: raise ValueError("not enough beverage in the glass")
....: else:
....: self._content -= float(amount)
....: def wash(self):
....: self._beverage = None
....: super(Glass, self).wash()

4. Let’s check that everything is working as expected:

sage: G = Glass(10.0)
sage: G
An empty glass of size 10.0
sage: G.is_empty()
True
sage: G.drink(2)
Traceback (most recent call last):
...
ValueError: not enough beverage in the glass
sage: G.fill("beer")
sage: G
A glass of size 10.0 cl containing 10.0 cl of beer
sage: G.is_empty()
False

12.1. Thematic tutorial document tree 285

Thematic Tutorials, Release 8.0

sage: G.is_clean()
False
sage: G.drink(5.0)
sage: G
A glass of size 10.0 cl containing 5.0 cl of beer
sage: G.is_empty()
False
sage: G.is_clean()
False
sage: G.drink(5)
sage: G
An empty glass of size 10.0
sage: G.is_clean()
False
sage: G.fill("orange juice")
Traceback (most recent call last):
...
ValueError: Don't want to fill a dirty glass
sage: G.wash()
sage: G
An empty glass of size 10.0
sage: G.fill("orange juice")
sage: G
A glass of size 10.0 cl containing 10.0 cl of orange juice

Todo

give the example of the class Plate.

That all folks !

12.1.15 Functional Programming for Mathematicians

Author: Minh Van Nguyen <nguyenminh2@gmail.com>

This tutorial discusses some techniques of functional programming that might be of interest to mathematicians or
people who use Python for scientific computation. We start off with a brief overview of procedural and object-oriented
programming, and then discuss functional programming techniques. Along the way, we briefly review Python’s built-
in support for functional programming, including filter, lambda, map and reduce. The tutorial concludes with some
resources on detailed information on functional programming using Python.

Styles of programming

Python supports several styles of programming. You could program in the procedural style by writing a program as a
list of instructions. Say you want to implement addition and multiplication over the integers. A procedural program to
do so would be as follows:

sage: def add_ZZ(a, b):
....: return a + b
...
sage: def mult_ZZ(a, b):
....: return a * b
...
sage: add_ZZ(2, 3)

286 Chapter 12. Documentation

mailto:nguyenminh2@gmail.com
http://docs.python.org/library/functions.html#filter
http://docs.python.org/reference/expressions.html#lambda
http://docs.python.org/library/functions.html#map
http://docs.python.org/library/functions.html#reduce

Thematic Tutorials, Release 8.0

5
sage: mult_ZZ(2, 3)
6

The Python module operator defines several common arithmetic and comparison operators as named functions. Addi-
tion is defined in the built-in function operator.add and multiplication is defined in operator.mul. The above
example can be worked through as follows:

sage: from operator import add
sage: from operator import mul
sage: add(2, 3)
5
sage: mul(2, 3)
6

Another common style of programming is called object-oriented programming. Think of an object as code that en-
capsulates both data and functionalities. You could encapsulate integer addition and multiplication as in the following
object-oriented implementation:

sage: class MyInteger:
....: def __init__(self):
....: self.cardinality = "infinite"
....: def add(self, a, b):
....: return a + b
....: def mult(self, a, b):
....: return a * b
...
sage: myZZ = MyInteger()
sage: myZZ.cardinality
'infinite'
sage: myZZ.add(2, 3)
5
sage: myZZ.mult(2, 3)
6

Functional programming using map

Functional programming is yet another style of programming in which a program is decomposed into various func-
tions. The Python built-in functions map, reduce and filter allow you to program in the functional style. The
function

map(func, seq1, seq2, ...)

takes a function func and one or more sequences, and apply func to elements of those sequences. In particular, you
end up with a list like so:

[func(seq1[0], seq2[0], ...), func(seq1[1], seq2[1], ...), ...]

In many cases, using map allows you to express the logic of your program in a concise manner without using list
comprehension. For example, say you have two lists of integers and you want to add them element-wise. A list
comprehension to accomplish this would be as follows:

sage: A = [1, 2, 3, 4]
sage: B = [2, 3, 5, 7]
sage: [A[i] + B[i] for i in range(len(A))]
[3, 5, 8, 11]

12.1. Thematic tutorial document tree 287

http://docs.python.org/library/operator.html

Thematic Tutorials, Release 8.0

Alternatively, you could use the Python built-in addition function operator.add together with map to achieve the
same result:

sage: from operator import add
sage: A = [1, 2, 3, 4]
sage: B = [2, 3, 5, 7]
sage: map(add, A, B)
[3, 5, 8, 11]

An advantage of map is that you do not need to explicitly define a for loop as was done in the above list comprehension.

Define small functions using lambda

There are times when you want to write a short, one-liner function. You could re-write the above addition function as
follows:

sage: def add_ZZ(a, b): return a + b
...

Or you could use a lambda statement to do the same thing in a much clearer style. The above addition and multipli-
cation functions could be written using lambda as follows:

sage: add_ZZ = lambda a, b: a + b
sage: mult_ZZ = lambda a, b: a * b
sage: add_ZZ(2, 3)
5
sage: mult_ZZ(2, 3)
6

Things get more interesting once you combine map with the lambda statement. As an exercise, you might try to
write a simple function that implements a constructive algorithm for the Chinese Remainder Theorem. You could use
list comprehension together with map and lambda as shown below. Here, the parameter A is a list of integers and M
is a list of moduli.

sage: def crt(A, M):
....: Mprod = prod(M)
....: Mdiv = map(lambda x: Integer(Mprod / x), M)
....: X = map(inverse_mod, Mdiv, M)
....: x = sum([A[i]*X[i]*Mdiv[i] for i in range(len(A))])
....: return mod(x, Mprod).lift()
...
sage: A = [2, 3, 1]
sage: M = [3, 4, 5]
sage: x = crt(A, M); x
11
sage: mod(x, 3)
2
sage: mod(x, 4)
3
sage: mod(x, 5)
1

To produce a random matrix over a ring, say Z, you could start by defining a matrix space and then obtain a random
element of that matrix space:

288 Chapter 12. Documentation

http://en.wikipedia.org/wiki/Chinese_remainder_theorem

Thematic Tutorials, Release 8.0

sage: MS = MatrixSpace(ZZ, nrows=5, ncols=3)
sage: MS.random_element() # random

[6 1 0]
[-1 5 0]
[-1 0 0]
[-5 0 1]
[1 -1 -3]

Or you could use the function random_matrix:

sage: random_matrix(ZZ, nrows=5, ncols=3) # random

[2 -50 0]
[-1 0 -6]
[-4 -1 -1]
[1 1 3]
[2 -1 -1]

The next example uses map to construct a list of random integer matrices:

sage: rows = [randint(1, 10) for i in range(10)]
sage: cols = [randint(1, 10) for i in range(10)]
sage: rings = [ZZ]*10
sage: M = list(map(random_matrix, rings, rows, cols))
sage: M[0] # random

[-1 -3 -1 -37 1 -1 -4 5]
[2 1 1 5 2 1 -2 1]
[-1 0 -4 0 -2 1 -2 1]

If you want more control over the entries of your matrices than the random_matrix function permits, you could
use lambda together with map as follows:

sage: rand_row = lambda n: [randint(1, 10) for i in range(n)]
sage: rand_mat = lambda nrows, ncols: [rand_row(ncols) for i in range(nrows)]
sage: matrix(rand_mat(5, 3)) # random

[2 9 10]
[8 8 9]
[6 7 6]
[9 2 10]
[2 6 2]
sage: rows = [randint(1, 10) for i in range(10)]
sage: cols = [randint(1, 10) for i in range(10)]
sage: M = list(map(rand_mat, rows, cols))
sage: M = list(map(matrix, M))
sage: M[0] # random

[9 1 5 2 10 10 1]
[3 4 3 7 4 3 7]
[4 8 7 6 4 2 10]
[1 6 3 3 6 2 1]
[5 5 2 6 4 3 4]
[6 6 2 9 4 5 1]
[10 2 5 5 7 10 4]
[2 7 3 5 10 8 1]
[1 5 1 7 8 8 6]

12.1. Thematic tutorial document tree 289

Thematic Tutorials, Release 8.0

Reducing a sequence to a value

The function reduce takes a function of two arguments and apply it to a given sequence to reduce that sequence to a
single value. The function sum is an example of a reduce function. The following sample code uses reduce and
the built-in function operator.add to add together all integers in a given list. This is followed by using sum to
accomplish the same task:

sage: from operator import add
sage: L = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: reduce(add, L)
55
sage: sum(L)
55

In the following sample code, we consider a vector as a list of real numbers. The dot product is then implemented using
the functions operator.add and operator.mul, in conjunction with the built-in Python functions reduce and
map. We then show how sum and map could be combined to produce the same result.

sage: from operator import add
sage: from operator import mul
sage: U = [1, 2, 3]
sage: V = [2, 3, 5]
sage: reduce(add, map(mul, U, V))
23
sage: sum(map(mul, U, V))
23

Or you could use Sage’s built-in support for the dot product:

sage: u = vector([1, 2, 3])
sage: v = vector([2, 3, 5])
sage: u.dot_product(v)
23

Here is an implementation of the Chinese Remainder Theorem without using sum as was done previously. The version
below uses operator.add and defines mul3 to multiply three numbers instead of two.

sage: def crt(A, M):
....: from operator import add
....: Mprod = prod(M)
....: Mdiv = map(lambda x: Integer(Mprod / x), M)
....: X = map(inverse_mod, Mdiv, M)
....: mul3 = lambda a, b, c: a * b * c
....: x = reduce(add, map(mul3, A, X, Mdiv))
....: return mod(x, Mprod).lift()
...
sage: A = [2, 3, 1]
sage: M = [3, 4, 5]
sage: x = crt(A, M); x
11

Filtering with filter

The Python built-in function filter takes a function of one argument and a sequence. It then returns a list of all
those items from the given sequence such that any item in the new list results in the given function returning True. In

290 Chapter 12. Documentation

http://docs.python.org/library/functions.html#sum
http://en.wikipedia.org/wiki/Dot_product

Thematic Tutorials, Release 8.0

a sense, you are filtering out all items that satisfy some condition(s) defined in the given function. For example, you
could use filter to filter out all primes between 1 and 50, inclusive.

sage: filter(is_prime, [1..50])
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

For a given positive integer 𝑛, the Euler phi function counts the number of integers 𝑎, with 1 ≤ 𝑎 ≤ 𝑛, such that
gcd(𝑎, 𝑛) = 1. You could use list comprehension to obtain all such 𝑎‘s when 𝑛 = 20:

sage: [k for k in range(1, 21) if gcd(k, 20) == 1]
[1, 3, 7, 9, 11, 13, 17, 19]

A functional approach is to use lambda to define a function that determines whether or not a given integer is relatively
prime to 20. Then you could use filter instead of list comprehension to obtain all the required 𝑎‘s.

sage: is_coprime = lambda k: gcd(k, 20) == 1
sage: filter(is_coprime, range(1, 21))
[1, 3, 7, 9, 11, 13, 17, 19]

The function primroots defined below returns all primitive roots modulo a given positive prime integer 𝑝. It uses
filter to obtain a list of integers between 1 and 𝑝− 1, inclusive, each integer in the list being relatively prime to the
order of the multiplicative group (Z/𝑝Z)*.

sage: def primroots(p):
....: g = primitive_root(p)
....: znorder = p - 1
....: is_coprime = lambda x: gcd(x, znorder) == 1
....: good_odd_integers = filter(is_coprime, [1..p-1, step=2])
....: all_primroots = [power_mod(g, k, p) for k in good_odd_integers]
....: all_primroots.sort()
....: return all_primroots
...
sage: primroots(3)
[2]
sage: primroots(5)
[2, 3]
sage: primroots(7)
[3, 5]
sage: primroots(11)
[2, 6, 7, 8]
sage: primroots(13)
[2, 6, 7, 11]
sage: primroots(17)
[3, 5, 6, 7, 10, 11, 12, 14]
sage: primroots(23)
[5, 7, 10, 11, 14, 15, 17, 19, 20, 21]
sage: primroots(29)
[2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27]
sage: primroots(31)
[3, 11, 12, 13, 17, 21, 22, 24]

Further resources

This has been a rather short tutorial to functional programming with Python. The Python standard documentation has
a list of built-in functions, many of which are useful in functional programming. For example, you might want to
read up on all, any, max, min, and zip. The Python module operator has numerous built-in arithmetic and comparison

12.1. Thematic tutorial document tree 291

http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://docs.python.org/library/functions.html#all
http://docs.python.org/library/functions.html#any
http://docs.python.org/library/functions.html#max
http://docs.python.org/library/functions.html#min
http://docs.python.org/library/functions.html#zip
http://docs.python.org/library/operator.html

Thematic Tutorials, Release 8.0

operators, each operator being implemented as a function whose name reflects its intended purpose. For arithmetic and
comparison operations, it is recommended that you consult the operator module to determine if there is a built-in
function that satisfies your requirement. The module itertools has numerous built-in functions to efficiently process
sequences of items.

Another useful resource for functional programming in Python is the Functional Programming HOWTO by A. M.
Kuchling. Steven F. Lott’s book Building Skills in Python has a chapter on Functional Programming using Collections.
See also the chapter Functional Programming from Mark Pilgrim’s book Dive Into Python.

You might also want to consider experimenting with Haskell for expressing mathematical concepts. For an example of
Haskell in expressing mathematical algorithms, see J. Gibbons’ article Unbounded Spigot Algorithms for the Digits
of Pi in the American Mathematical Monthly.

12.1.16 How to implement new algebraic structures in Sage

Contents

• How to implement new algebraic structures in Sage

– Sage’s category and coercion framework

* Outline

* Base classes

* Categories in Sage

* Coercion—the basics

* Coercion—the advanced parts

* The test suites of the category framework

* Appendix: The complete code

Sage’s category and coercion framework

Author: Simon King, Friedrich–Schiller–Universität Jena, <simon.king@uni-jena.de> © 2011/2013

The aim of this tutorial is to explain how one can benefit from Sage’s category framework and coercion model when
implementing new algebraic structures. It is based on a worksheet created in 2011.

We illustrate the concepts of Sage’s category framework and coercion model by means of a detailed example, namely
a toy implementation of fraction fields. The code is developed step by step, so that the reader can focus on one detail
in each part of this tutorial. The complete code can be found in the appendix.

Outline

• Use existing base classes

For using Sage’s coercion system, it is essential to work with sub–classes of sage.structure.parent.
Parent or sage.structure.element.Element, respectively. They provide default implementations
of many “magical” double-underscore Python methods, which must not be overridden. Instead, the actual
implementation should be in single underscore methods, such as _add_ or _mul_.

292 Chapter 12. Documentation

http://docs.python.org/library/itertools.html
http://docs.python.org/howto/functional.html
http://homepage.mac.com/s_lott/books/python.html#book-python
http://homepage.mac.com/s_lott/books/python/html/p02/p02c10_adv_seq.html
http://www.diveintopython.net/functional_programming/index.html
http://www.diveintopython.net/
http://www.haskell.org
http://www.maa.org/pubs/monthly_apr06_toc.html
http://www.maa.org/pubs/monthly_apr06_toc.html
mailto:simon.king@uni-jena.de

Thematic Tutorials, Release 8.0

• Turn your parent structure into an object of a category

Declare the category during initialisation—Your parent structure will inherit further useful methods and consis-
tency tests.

• Provide your parent structure with an element class

Assign to it an attribute called Element—The elements will inherit further useful methods from the category.
In addition, some basic conversions will immediately work.

• Implement further conversions

Never override a parent’s __call__ method! Provide the method _element_constructor_ instead.

• Declare coercions

If a conversion happens to be a morphism, you may consider to turn it into a coercion. It will then implicitly be
used in arithmetic operations.

• Advanced coercion: Define construction functors for your parent structure

Sage will automatically create new parents for you when needed, by the so–called sage.categories.
pushout.pushout() construction.

• Run the automatic test suites

Each method should be documented and provide a doc test (we are not giving examples here). In addition, any
method defined for the objects or elements of a category should be supported by a test method, that is executed
when running the test suite.

Base classes

In Sage, a “Parent” is an object of a category and contains elements. Parents should inherit from sage.structure.
parent.Parent and their elements from sage.structure.element.Element.

Sage provides appropriate sub–classes of Parent and Element for a variety of more concrete algebraic structures,
such as groups, rings, or fields, and of their elements. But some old stuff in Sage doesn’t use it. Volunteers for
refactoring are welcome!

The parent

Since we wish to implement a special kind of fields, namely fraction fields, it makes sense to build on top of the base
class sage.rings.ring.Field provided by Sage.

sage: from sage.rings.ring import Field

This base class provides a lot more methods than a general parent:

sage: [p for p in dir(Field) if p not in dir(Parent)]
['__fraction_field',
'__ideal_monoid',
'__iter__',
'__len__',
'__pow__',
'__rpow__',
'__rtruediv__',
'__rxor__',
'__truediv__',
'__xor__',

12.1. Thematic tutorial document tree 293

Thematic Tutorials, Release 8.0

'_an_element',
'_an_element_c',
'_an_element_impl',
'_coerce_',
'_coerce_c',
'_coerce_impl',
'_coerce_try',
'_default_category',
'_gcd_univariate_polynomial',
'_gens',
'_has_coerce_map_from',
'_ideal_class_',
'_latex_names',
'_list',
'_one_element',
'_pseudo_fraction_field',
'_random_nonzero_element',
'_unit_ideal',
'_xgcd_univariate_polynomial',
'_zero_element',
'_zero_ideal',
'algebraic_closure',
'base_extend',
'cardinality',
'class_group',
'coerce_map_from_c',
'content',
'divides',
'epsilon',
'extension',
'fraction_field',
'frobenius_endomorphism',
'gcd',
'gen',
'gens',
'get_action_c',
'get_action_impl',
'has_coerce_map_from_c',
'ideal',
'ideal_monoid',
'integral_closure',
'is_commutative',
'is_field',
'is_finite',
'is_integral_domain',
'is_integrally_closed',
'is_noetherian',
'is_prime_field',
'is_ring',
'is_subring',
'krull_dimension',
'ngens',
'one',
'order',
'prime_subfield',
'principal_ideal',
'quo',
'quotient',

294 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

'quotient_ring',
'random_element',
'unit_ideal',
'zero',
'zero_ideal',
'zeta',
'zeta_order']

The following is a very basic implementation of fraction fields, that needs to be complemented later.

sage: from sage.structure.unique_representation import UniqueRepresentation
sage: class MyFrac(UniqueRepresentation, Field):
....: def __init__(self, base):
....: if base not in IntegralDomains():
....: raise ValueError("%s is no integral domain" % base)
....: Field.__init__(self, base)
....: def _repr_(self):
....: return "NewFrac(%s)"%repr(self.base())
....: def base_ring(self):
....: return self.base().base_ring()
....: def characteristic(self):
....: return self.base().characteristic()

This basic implementation is formed by the following steps:

• Any ring in Sage has a base and a base ring. The “usual” fraction field of a ring 𝑅 has the base 𝑅 and the base
ring R.base_ring():

sage: Frac(QQ['x']).base(), Frac(QQ['x']).base_ring()
(Univariate Polynomial Ring in x over Rational Field, Rational Field)

Declaring the base is easy: We just pass it as an argument to the field constructor.

sage: Field(ZZ['x']).base()
Univariate Polynomial Ring in x over Integer Ring

We are implementing a separate method returning the base ring.

• Python uses double–underscore methods for arithmetic methods and string representations. Sage’s base classes
often have a default implementation, and it is requested to implement SINGLE underscore methods _repr_,
and similarly _add_, _mul_ etc.

• You are encouraged to make your parent “unique”. That’s to say, parents should only evaluate equal if they
are identical. Sage provides frameworks to create unique parents. We use here the most easy one: Inheriting
from the class sage.structure.unique_representation.UniqueRepresentation is enough.
Making parents unique can be quite important for an efficient implementation, because the repeated creation of
“the same” parent would take a lot of time.

• Fraction fields are only defined for integral domains. Hence, we raise an error if the given ring does not belong
to the category of integral domains. This is our first use case of categories.

• Last, we add a method that returns the characteristic of the field. We don’t go into details, but some automated
tests that we study below implicitly rely on this method.

We see that our basic implementation correctly refuses a ring that is not an integral domain:

sage: MyFrac(ZZ['x'])
NewFrac(Univariate Polynomial Ring in x over Integer Ring)
sage: MyFrac(Integers(15))

12.1. Thematic tutorial document tree 295

Thematic Tutorials, Release 8.0

Traceback (most recent call last):
...
ValueError: Ring of integers modulo 15 is no integral domain

Note: Inheritance from UniqueRepresentation automatically provides our class with pickling, preserving the
unique parent condition. If we had defined the class in some external module or in an interactive session, pickling
would work immediately.

However, for making the following example work in Sage’s doctesting framework, we need to assign our class as an
attribute of the __main__ module, so that the class can be looked up during unpickling.

sage: import __main__
sage: __main__.MyFrac = MyFrac
sage: loads(dumps(MyFrac(ZZ))) is MyFrac(ZZ)
True

Note: In the following sections, we will successively add or change details of MyFrac. Rather than giving a full
class definition in each step, we define new versions of MyFrac by inheriting from the previously defined version of
MyFrac. We believe this will help the reader to focus on the single detail that is relevant in each section.

The complete code can be found in the appendix.

The elements

We use the base class sage.structure.element.FieldElement. Note that in the creation of field elements
it is not tested that the given parent is a field:

sage: from sage.structure.element import FieldElement
sage: FieldElement(ZZ)
Generic element of a structure

Our toy implementation of fraction field elements is based on the following considerations:

• A fraction field element is defined by numerator and denominator, which both need to be elements of the base.
There should be methods returning numerator resp. denominator.

• The denominator must not be zero, and (provided that the base is an ordered ring) we can make it non-negative,
without loss of generality. By default, the denominator is one.

• The string representation is returned by the single–underscore method _repr_. In order to make our fraction
field elements distinguishable from those already present in Sage, we use a different string representation.

• Arithmetic is implemented in single–underscore method _add_, _mul_, etc. We do not override the default
double underscore __add__, __mul__, since otherwise, we could not use Sage’s coercion model.

• Comparisons can be implemented using _richcmp_ or _cmp_. This automatically makes the relational oper-
ators like == and < work. Beware: in these methods, calling the Python2-only cmp function should be avoided
for compatibility with Python3. You can use instead the richcmp function provided by sage.

Note that either _cmp_ or _richcmp_ should be provided, since otherwise comparison does not work:

sage: class Foo(sage.structure.element.Element):
....: def __init__(self, parent, x):
....: self.x = x

296 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

....: def _repr_(self):

....: return "<%s>" % self.x
sage: a = Foo(ZZ, 1)
sage: b = Foo(ZZ, 2)
sage: a <= b
Traceback (most recent call last):
...
NotImplementedError: comparison not implemented for <class '__main__.Foo'>

• In the single underscore methods, we can assume that both arguments belong to the same parent. This is one
benefit of the coercion model.

• When constructing new elements as the result of arithmetic operations, we do not directly name our class, but
we use self.__class__. Later, this will come in handy.

This gives rise to the following code:

sage: class MyElement(FieldElement):
....: def __init__(self, parent,n,d=None):
....: B = parent.base()
....: if d is None:
....: d = B.one()
....: if n not in B or d not in B:
....: raise ValueError("Numerator and denominator must be elements of %s"
→˓%B)
....: # Numerator and denominator should not just be "in" B,
....: # but should be defined as elements of B
....: d = B(d)
....: n = B(n)
....: if d==0:
....: raise ZeroDivisionError("The denominator must not be zero")
....: if d<0:
....: self.n = -n
....: self.d = -d
....: else:
....: self.n = n
....: self.d = d
....: FieldElement.__init__(self,parent)
....: def numerator(self):
....: return self.n
....: def denominator(self):
....: return self.d
....: def _repr_(self):
....: return "(%s):(%s)"%(self.n,self.d)
....: def _richcmp_(self, other, op):
....: from sage.structure.richcmp import richcmp
....: return richcmp(self.n*other.denominator(), other.numerator()*self.d, op)
....: def _add_(self, other):
....: C = self.__class__
....: D = self.d*other.denominator()
....: return C(self.parent(), self.n*other.denominator()+self.d*other.
→˓numerator(), D)
....: def _sub_(self, other):
....: C = self.__class__
....: D = self.d*other.denominator()
....: return C(self.parent(), self.n*other.denominator()-self.d*other.
→˓numerator(),D)
....: def _mul_(self, other):

12.1. Thematic tutorial document tree 297

Thematic Tutorials, Release 8.0

....: C = self.__class__

....: return C(self.parent(), self.n*other.numerator(), self.d*other.
→˓denominator())
....: def _div_(self, other):
....: C = self.__class__
....: return C(self.parent(), self.n*other.denominator(), self.d*other.
→˓numerator())

Features and limitations of the basic implementation

Thanks to the single underscore methods, some basic arithmetics works, if we stay inside a single parent structure:

sage: P = MyFrac(ZZ)
sage: a = MyElement(P, 3, 4)
sage: b = MyElement(P, 1, 2)
sage: a+b, a-b, a*b, a/b
((10):(8), (2):(8), (3):(8), (6):(4))
sage: a-b == MyElement(P, 1, 4)
True

We didn’t implement exponentiation—but it just works:

sage: a^3
(27):(64)

There is a default implementation of element tests. We can already do

sage: a in P
True

since 𝑎 is defined as an element of 𝑃 . However, we can not verify yet that the integers are contained in the fraction
field of the ring of integers. It does not even give a wrong answer, but results in an error:

sage: 1 in P
Traceback (most recent call last):
...
NotImplementedError

We will take care of this later.

Categories in Sage

Sometimes the base classes do not reflect the mathematics: The set of 𝑚 × 𝑛 matrices over a field forms, in general,
not more than a vector space. Hence, this set (called MatrixSpace) is not implemented on top of sage.rings.
ring.Ring. However, if 𝑚 = 𝑛, then the matrix space is an algebra, thus, is a ring.

From the point of view of Python base classes, both cases are the same:

sage: MS1 = MatrixSpace(QQ,2,3)
sage: isinstance(MS1, Ring)
False
sage: MS2 = MatrixSpace(QQ,2)
sage: isinstance(MS2, Ring)
False

298 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Sage’s category framework can differentiate the two cases:

sage: Rings()
Category of rings
sage: MS1 in Rings()
False
sage: MS2 in Rings()
True

And indeed, MS2 has more methods than MS1:

sage: import inspect
sage: len([s for s in dir(MS1) if inspect.ismethod(getattr(MS1,s,None))])
78
sage: len([s for s in dir(MS2) if inspect.ismethod(getattr(MS2,s,None))])
118

This is because the class of MS2 also inherits from the parent class for algebras:

sage: MS1.__class__.__bases__
(<class 'sage.matrix.matrix_space.MatrixSpace'>,
<class 'sage.categories.category.JoinCategory.parent_class'>)
sage: MS2.__class__.__bases__
(<class 'sage.matrix.matrix_space.MatrixSpace'>,
<class 'sage.categories.category.JoinCategory.parent_class'>)

Below, we will explain how this can be taken advantage of.

It is no surprise that our parent 𝑃 defined above knows that it belongs to the category of fields, as it is derived from
the base class of fields.

sage: P.category()
Category of fields

However, we could choose a smaller category, namely the category of quotient fields.

Why should one choose a category?

One can provide default methods for all objects of a category, and for all elements of such objects. Hence, the
category framework is a way to inherit useful stuff that is not present in the base classes. These default methods do
not rely on implementation details, but on mathematical concepts.

In addition, the categories define test suites for their objects and elements—see the last section. Hence, one also gets
basic sanity tests for free.

How does the category framework work?

Abstract base classes for the objects (“parent_class”) and the elements of objects (“element_class”) are provided by
attributes of the category. During initialisation of a parent, the class of the parent is dynamically changed into a sub–
class of the category’s parent class. Likewise, sub–classes of the category’s element class are available for the creation
of elements of the parent, as explained below.

A dynamic change of classes does not work in Cython. Nevertheless, method inheritance still works, by virtue of a
__getattr__ method.

12.1. Thematic tutorial document tree 299

Thematic Tutorials, Release 8.0

Note: It is strongly recommended to use the category framework both in Python and in Cython.

Let us see whether there is any gain in chosing the category of quotient fields instead of the category of fields:

sage: QuotientFields().parent_class, QuotientFields().element_class
(<class 'sage.categories.quotient_fields.QuotientFields.parent_class'>,
<class 'sage.categories.quotient_fields.QuotientFields.element_class'>)

sage: [p for p in dir(QuotientFields().parent_class) if p not in dir(Fields().parent_
→˓class)]
[]
sage: [p for p in dir(QuotientFields().element_class) if p not in dir(Fields().
→˓element_class)]
['_derivative',
'denominator',
'derivative',
'numerator',
'partial_fraction_decomposition']

So, there is no immediate gain for our fraction fields, but additional methods become available to our fraction field
elements. Note that some of these methods are place-holders: There is no default implementation, but it is required
(respectively is optional) to implement these methods:

sage: QuotientFields().element_class.denominator
<abstract method denominator at ...>
sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: abstract_methods_of_class(QuotientFields().element_class)['optional']
['_add_', '_mul_']
sage: abstract_methods_of_class(QuotientFields().element_class)['required']
['__nonzero__', 'denominator', 'numerator']

Hence, when implementing elements of a quotient field, it is required to implement methods returning the denominator
and the numerator, and a method that tells whether the element is nonzero, and in addition, it is optional (but certainly
recommended) to provide some arithmetic methods. If one forgets to implement the required methods, the test suites
of the category framework will complain—see below.

Implementing the category framework for the parent

We simply need to declare the correct category by an optional argument of the field constructor, where we provide the
possibility to override the default category:

sage: from sage.categories.quotient_fields import QuotientFields
sage: class MyFrac(MyFrac):
....: def __init__(self, base, category=None):
....: if base not in IntegralDomains():
....: raise ValueError("%s is no integral domain" % base)
....: Field.__init__(self, base, category=category or QuotientFields())

When constructing instances of MyFrac, their class is dynamically changed into a new class called
MyFrac_with_category. It is a common sub–class of MyFrac and of the category’s parent class:

sage: P = MyFrac(ZZ)
sage: type(P)
<class '__main__.MyFrac_with_category'>
sage: isinstance(P,MyFrac)
True

300 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: isinstance(P,QuotientFields().parent_class)
True

The fraction field 𝑃 inherits additional methods. For example, the base class Field does not have a method sum.
But 𝑃 inherits such method from the category of commutative additive monoids—see sum():

sage: P.sum.__module__
'sage.categories.additive_monoids'

We have seen above that we can add elements. Nevertheless, the sum method does not work, yet:

sage: a = MyElement(P, 3, 4)
sage: b = MyElement(P, 1, 2)
sage: c = MyElement(P, -1, 2)
sage: P.sum([a, b, c])
Traceback (most recent call last):
...
NotImplementedError

The reason is that the sum method starts with the return value of P.zero(), which defaults to P(0)—but the
conversion of integers into P is not implemented, yet.

Implementing the category framework for the elements

Similar to what we have seen for parents, a new class is dynamically created that combines the element class of the
parent’s category with the class that we have implemented above. However, the category framework is implemented
in a different way for elements than for parents:

• We provide the parent 𝑃 (or its class) with an attribute called “Element”, whose value is a class.

• The parent automatically obtains an attribute P.element_class, that subclasses both P.Element and
P.category().element_class.

Hence, for providing our fraction fields with their own element classes, we just need to add a single line to our class:

sage: class MyFrac(MyFrac):
....: Element = MyElement

This little change provides several benefits:

• We can now create elements by simply calling the parent:

sage: P = MyFrac(ZZ)
sage: P(1), P(2,3)
((1):(1), (2):(3))

• There is a method zero returning the expected result:

sage: P.zero()
(0):(1)

• The sum method mentioned above suddenly works:

sage: a = MyElement(P, 9, 4)
sage: b = MyElement(P, 1, 2)
sage: c = MyElement(P, -1, 2)

12.1. Thematic tutorial document tree 301

Thematic Tutorials, Release 8.0

sage: P.sum([a,b,c])
(36):(16)

What did happen behind the scenes to make this work?

We provided P.Element, and thus obtain P.element_class, which is a lazy attribute. It provides a dynamic
class, which is a sub–class of both MyElement defined above and of P.category().element_class:

sage: P.__class__.element_class
<sage.misc.lazy_attribute.lazy_attribute object at ...>
sage: P.element_class
<class '__main__.MyFrac_with_category.element_class'>
sage: type(P.element_class)
<class 'sage.structure.dynamic_class.DynamicInheritComparisonMetaclass'>
sage: issubclass(P.element_class, MyElement)
True
sage: issubclass(P.element_class,P.category().element_class)
True

The default __call__ method of 𝑃 passes the given arguments to P.element_class, adding the argument
parent=P. This is why we are now able to create elements by calling the parent.

In particular, these elements are instances of that new dynamic class:

sage: type(P(2,3))
<class '__main__.MyFrac_with_category.element_class'>

Note: All elements of 𝑃 should use the element class. In order to make sure that this also holds for the result of
arithmetic operations, we created them as instances of self.__class__ in the arithmetic methods of MyElement.

P.zero() defaults to returning P(0) and thus returns an instance of P.element_class. Since P.sum([.
..]) starts the summation with P.zero() and the class of the sum only depends on the first summand, by our
implementation, we have:

sage: type(a)
<class '__main__.MyElement'>
sage: isinstance(a,P.element_class)
False
sage: type(P.sum([a,b,c]))
<class '__main__.MyFrac_with_category.element_class'>

The method factor provided by P.category().element_class (see above) simply works:

sage: a; a.factor(); P(6,4).factor()
(9):(4)
2^-2 * 3^2
2^-1 * 3

But that’s surprising: The element 𝑎 is just an instance of MyElement, but not of P.element_class, and its
class does not know about the factor method. In fact, this is due to a __getattr__ method defined for sage.
structure.element.Element.

sage: hasattr(type(a), 'factor')
False

302 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: hasattr(P.element_class, 'factor')
True
sage: hasattr(a, 'factor')
True

A first note on performance

The category framework is sometimes blamed for speed regressions, as in trac ticket #9138 and trac ticket #11900.
But if the category framework is used properly, then it is fast. For illustration, we determine the time needed to access
an attribute inherited from the element class. First, we consider an element that uses the class that we implemented
above, but does not use the category framework properly:

sage: type(a)
<class '__main__.MyElement'>
sage: timeit('a.factor',number=1000) # random
1000 loops, best of 3: 2 us per loop

Now, we consider an element that is equal to 𝑎, but uses the category framework properly:

sage: a2 = P(9,4)
sage: a2 == a
True
sage: type(a2)
<class '__main__.MyFrac_with_category.element_class'>
sage: timeit('a2.factor',number=1000) # random
1000 loops, best of 3: 365 ns per loop

So, don’t be afraid of using categories!

Coercion—the basics

Theoretical background

Coercion is not just type conversion

“Coercion” in the C programming language means “automatic type conversion”. However, in Sage, coercion is in-
volved if one wants to be able to do arithmetic, comparisons, etc. between elements of distinct parents. Hence,
coercion is not about a change of types, but about a change of parents.

As an illustration, we show that elements of the same type may very well belong to rather different parents:

sage: P1 = QQ['v,w']; P2 = ZZ['w,v']
sage: type(P1.gen()) == type(P2.gen())
True
sage: P1 == P2
False

𝑃2 naturally is a sub–ring of 𝑃1. So, it makes sense to be able to add elements of the two rings—the result should then
live in 𝑃1, and indeed it does:

sage: (P1.gen()+P2.gen()).parent() is P1
True

12.1. Thematic tutorial document tree 303

https://trac.sagemath.org/9138
https://trac.sagemath.org/11900

Thematic Tutorials, Release 8.0

It would be rather inconvenient if one needed to manually convert an element of 𝑃2 into 𝑃1 before adding. The
coercion system does that conversion automatically.

Not every conversion is a coercion

A coercion happens implicitly, without being explicitly requested by the user. Hence, coercion must be based on
mathematical rigour. In our example, any element of 𝑃2 can be naturally interpreted as an element of 𝑃1. We thus
have:

sage: P1.has_coerce_map_from(P2)
True
sage: P1.coerce_map_from(P2)
Coercion map:

From: Multivariate Polynomial Ring in w, v over Integer Ring
To: Multivariate Polynomial Ring in v, w over Rational Field

While there is a conversion from 𝑃1 to 𝑃2 (namely restricted to polynomials with integral coefficients), this conversion
is not a coercion:

sage: P2.convert_map_from(P1)
Conversion map:

From: Multivariate Polynomial Ring in v, w over Rational Field
To: Multivariate Polynomial Ring in w, v over Integer Ring

sage: P2.has_coerce_map_from(P1)
False
sage: P2.coerce_map_from(P1) is None
True

The four axioms requested for coercions

1. A coercion is a morphism in an appropriate category.

This first axiom has two implications:

(a) A coercion is defined on all elements of a parent.

A polynomial of degree zero over the integers can be interpreted as an integer—but the attempt to convert
a polynomial of non-zero degree would result in an error:

sage: ZZ(P2.one())
1
sage: ZZ(P2.gen(1))
Traceback (most recent call last):
...
TypeError: not a constant polynomial

Hence, we only have a partial map. This is fine for a conversion, but a partial map does not qualify as a
coercion.

(b) Coercions are structure preserving.

Any real number can be converted to an integer, namely by rounding. However, such a conversion is not
useful in arithmetic operations, since the underlying algebraic structure is not preserved:

sage: int(1.6)+int(2.7) == int(1.6+2.7)
False

304 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The structure that is to be preserved depends on the category of the involved parents. For example, the
coercion from the integers into the rational field is a homomorphism of euclidean domains:

sage: QQ.coerce_map_from(ZZ).category_for()
Join of Category of euclidean domains and Category of metric spaces

2. There is at most one coercion from one parent to another

In addition, if there is a coercion from 𝑃2 to 𝑃1, then a conversion from 𝑃2 to 𝑃1 is defined for all elements
of 𝑃2 and coincides with the coercion. Nonetheless, user-exposed maps are copies of the internally used maps
whence the lack of identity between different instantiations:

sage: P1.coerce_map_from(P2) is P1.convert_map_from(P2)
False

For internally used maps, the maps are identical:

sage: P1._internal_coerce_map_from(P2) is P1._internal_convert_map_from(P2)
True

3. Coercions can be composed

If there is a coercion 𝜙 : 𝑃1 → 𝑃2 and another coercion 𝜓 : 𝑃2 → 𝑃3, then the composition of 𝜙 followed by
𝜓 must yield the unique coercion from 𝑃1 to 𝑃3.

4. The identity is a coercion

Together with the two preceding axioms, it follows: If there are coercions from 𝑃1 to 𝑃2 and from 𝑃2 to 𝑃1,
then they are mutually inverse.

Implementing a conversion

We have seen above that some conversions into our fraction fields became available after providing the attribute
Element. However, we can not convert elements of a fraction field into elements of another fraction field, yet:

sage: P(2/3)
Traceback (most recent call last):
...
ValueError: Numerator and denominator must be elements of Integer Ring

For implementing a conversion, the default __call__ method should (almost) never be overridden. Instead, we
implement the method _element_constructor_, that should return an instance of the parent’s element class. Some
old parent classes violate that rule—please help to refactor them!

sage: class MyFrac(MyFrac):
....: def _element_constructor_(self, *args, **kwds):
....: if len(args)!=1:
....: return self.element_class(self, *args, **kwds)
....: x = args[0]
....: try:
....: P = x.parent()
....: except AttributeError:
....: return self.element_class(self, x, **kwds)
....: if P in QuotientFields() and P != self.base():
....: return self.element_class(self, x.numerator(), x.denominator(),
→˓**kwds)
....: return self.element_class(self, x, **kwds)

12.1. Thematic tutorial document tree 305

Thematic Tutorials, Release 8.0

In addition to the conversion from the base ring and from pairs of base ring elements, we now also have a conversion
from the rationals to our fraction field of Z:

sage: P = MyFrac(ZZ)
sage: P(2); P(2,3); P(3/4)
(2):(1)
(2):(3)
(3):(4)

Recall that above, the test 1 ∈ 𝑃 failed with an error. We try again and find that the error has disappeared. This is
because we are now able to convert the integer 1 into 𝑃 . But the containment test still yields a wrong answer:

sage: 1 in P
False

The technical reason: We have a conversion 𝑃 (1) of 1 into 𝑃 , but this is not known as a coercion—yet!

sage: P.has_coerce_map_from(ZZ), P.has_coerce_map_from(QQ)
(False, False)

Establishing a coercion

There are two main ways to make Sage use a particular conversion as a coercion:

• One can use sage.structure.parent.Parent.register_coercion(), normally during initiali-
sation of the parent (see documentation of the method).

• A more flexible way is to provide a method _coerce_map_from_ for the parent.

Let 𝑃 and 𝑅 be parents. If P._coerce_map_from_(R) returns False or None, then there is no coercion from
𝑅 to 𝑃 . If it returns a map with domain 𝑅 and codomain 𝑃 , then this map is used for coercion. If it returns True,
then the conversion from 𝑅 to 𝑃 is used as coercion.

Note that in the following implementation, we need a special case for the rational field, since QQ.base() is not the
ring of integers.

sage: class MyFrac(MyFrac):
....: def _coerce_map_from_(self, S):
....: if self.base().has_coerce_map_from(S):
....: return True
....: if S in QuotientFields():
....: if self.base().has_coerce_map_from(S.base()):
....: return True
....: if hasattr(S,'ring_of_integers') and self.base().has_coerce_map_
→˓from(S.ring_of_integers()):
....: return True

By the method above, a parent coercing into the base ring will also coerce into the fraction field, and a fraction field
coerces into another fraction field if there is a coercion of the corresponding base rings. Now, we have:

sage: P = MyFrac(QQ['x'])
sage: P.has_coerce_map_from(ZZ['x']), P.has_coerce_map_from(Frac(ZZ['x'])), P.has_
→˓coerce_map_from(QQ)
(True, True, True)

We can now use coercion from Z[𝑥] and from Q into 𝑃 for arithmetic operations between the two rings:

306 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: 3/4+P(2)+ZZ['x'].gen(), (P(2)+ZZ['x'].gen()).parent() is P
((4*x + 11):(4), True)

Equality and element containment

Recall that above, the test 1 ∈ 𝑃 gave a wrong answer. Let us repeat the test now:

sage: 1 in P
True

Why is that?

The default element containment test 𝑥 ∈ 𝑃 is based on the interplay of three building blocks: conversion, coercion,
and equality test.

1. Clearly, if the conversion 𝑃 (𝑥) raises an error, then 𝑥 can not be seen as an element of 𝑃 . On the other hand,
a conversion 𝑃 (𝑥) can generally do very nasty things. So, the fact that 𝑃 (𝑥) works without error is necessary,
but not sufficient for 𝑥 ∈ 𝑃 .

2. If 𝑃 is the parent of 𝑥, then the conversion 𝑃 (𝑥) will not change 𝑥 (at least, that’s the default). Hence, we will
have 𝑥 = 𝑃 (𝑥).

3. Sage uses coercion not only for arithmetic operations, but also for comparison: If there is a coercion from the
parent of 𝑥 to 𝑃 , then the equality test x==P(x) reduces to P(x)==P(x). Otherwise, x==P(x) will evaluate
as false.

That leads to the following default implementation of element containment testing:

Note: 𝑥 ∈ 𝑃 holds if and only if the test x==P(x) does not raise an error and evaluates as true.

If the user is not happy with that behaviour, the “magical” Python method __contains__ can be overridden.

Coercion—the advanced parts

So far, we are able to add integers and rational numbers to elements of our new implementation of the fraction field of
Z.

sage: P = MyFrac(ZZ)

sage: 1/2+P(2,3)+1
(13):(6)

Surprisingly, we can even add a polynomial over the integers to an element of 𝑃 , even though the result lives in a new
parent, namely in a polynomial ring over 𝑃 :

sage: P(1/2) + ZZ['x'].gen(), (P(1/2) + ZZ['x'].gen()).parent() is P['x']
((1):(1)*x + (1):(2), True)

In the next, seemingly more easy example, there “obviously” is a coercion from the fraction field of Z to the fraction
field of Z[𝑥]. However, Sage does not know enough about our new implementation of fraction fields. Hence, it does
not recognise the coercion:

sage: Frac(ZZ['x']).has_coerce_map_from(P)
False

12.1. Thematic tutorial document tree 307

Thematic Tutorials, Release 8.0

Two obvious questions arise:

1. How / why has the new ring been constructed in the example above?

2. How can we establish a coercion from 𝑃 to Frac(Z[𝑥])?

The key to answering both question is the construction of parents from simpler pieces, that we are studying now. Note
that we will answer the second question not by providing a coercion from 𝑃 to Frac(Z[𝑥]), but by teaching Sage to
automatically construct MyFrac(Z[𝑥]) and coerce both 𝑃 and Frac(Z[𝑥]) into it.

If we are lucky, a parent can tell how it has been constructed:

sage: Poly,R = QQ['x'].construction()
sage: Poly,R
(Poly[x], Rational Field)
sage: Fract,R = QQ.construction()
sage: Fract,R
(FractionField, Integer Ring)

In both cases, the first value returned by construction() is a mathematical construction, called construction
functor—see ConstructionFunctor. The second return value is a simpler parent to which the construction
functor is applied.

Being functors, the same construction can be applied to different objects of a category:

sage: Poly(QQ) is QQ['x']
True
sage: Poly(ZZ) is ZZ['x']
True
sage: Poly(P) is P['x']
True
sage: Fract(QQ['x'])
Fraction Field of Univariate Polynomial Ring in x over Rational Field

Let us see on which categories these construction functors are defined:

sage: Poly.domain()
Category of rings
sage: Poly.codomain()
Category of rings
sage: Fract.domain()
Category of integral domains
sage: Fract.codomain()
Category of fields

In particular, the construction functors can be composed:

sage: Poly*Fract
Poly[x](FractionField(...))
sage: (Poly*Fract)(ZZ) is QQ['x']
True

In addition, it is often assumed that we have a coercion from input to output of the construction functor:

sage: ((Poly*Fract)(ZZ)).coerce_map_from(ZZ)
Composite map:

From: Integer Ring
To: Univariate Polynomial Ring in x over Rational Field
Defn: Natural morphism:

From: Integer Ring

308 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

To: Rational Field
then
Polynomial base injection morphism:
From: Rational Field
To: Univariate Polynomial Ring in x over Rational Field

Construction functors do not necessarily commute:

sage: (Fract*Poly)(ZZ)
Fraction Field of Univariate Polynomial Ring in x over Integer Ring

The pushout of construction functors

We can now formulate our problem. We have parents 𝑃1, 𝑃2 and 𝑅, and construction functors 𝐹1, 𝐹2, such that
𝑃1 = 𝐹1(𝑅) and 𝑃2 = 𝐹2(𝑅). We want to find a new construction functor 𝐹3, such that both 𝑃1 and 𝑃2 coerce into
𝑃3 = 𝐹3(𝑅).

In analogy to a notion of category theory, 𝑃3 is called the pushout() of 𝑃1 and 𝑃2; and similarly 𝐹3 is called the
pushout of 𝐹1 and 𝐹2.

sage: from sage.categories.pushout import pushout
sage: pushout(Fract(ZZ),Poly(ZZ))
Univariate Polynomial Ring in x over Rational Field

𝐹1 ∘ 𝐹2 and 𝐹2 ∘ 𝐹1 are natural candidates for the pushout of 𝐹1 and 𝐹2. However, the order of the functors must rely
on a canonical choice. “Indecomposable” construction functors have a rank, and this allows to order them canonically:

Note: If F1.rank is smaller than F2.rank, then the pushout is 𝐹2 ∘ 𝐹1 (hence, 𝐹1 is applied first).

We have

sage: Fract.rank, Poly.rank
(5, 9)

and thus the pushout is

sage: Fract.pushout(Poly), Poly.pushout(Fract)
(Poly[x](FractionField(...)), Poly[x](FractionField(...)))

This is why the example above has worked.

However, only “elementary” construction functors have a rank:

sage: (Fract*Poly).rank
Traceback (most recent call last):
...
AttributeError: 'CompositeConstructionFunctor' object has no attribute 'rank'

Shuffling composite construction functors

If composed construction fuctors ... ∘ 𝐹2 ∘ 𝐹1 and ... ∘ 𝐺2 ∘ 𝐺1 are given, then Sage determines their pushout by
shuffling the constituents:

12.1. Thematic tutorial document tree 309

Thematic Tutorials, Release 8.0

• If F1.rank < G1.rank then we apply 𝐹1 first, and continue with ... ∘ 𝐹3 ∘ 𝐹2 and ... ∘𝐺2 ∘𝐺1.

• If F1.rank > G1.rank then we apply 𝐺1 first, and continue with ... ∘ 𝐹2 ∘ 𝐹1 and ... ∘𝐺3 ∘𝐺2.

If F1.rank == G1.rank, then the tie needs to be broken by other techniques (see below).

As an illustration, we first get us some functors and then see how chains of functors are shuffled.

sage: AlgClos, R = CC.construction(); AlgClos
AlgebraicClosureFunctor

sage: Compl, R = RR.construction(); Compl
Completion[+Infinity]

sage: Matr, R = (MatrixSpace(ZZ,3)).construction(); Matr
MatrixFunctor

sage: AlgClos.rank, Compl.rank, Fract.rank, Poly.rank, Matr.rank
(3, 4, 5, 9, 10)

When we apply Fract, AlgClos, Poly and Fract to the ring of integers, we obtain:

sage: (Fract*Poly*AlgClos*Fract)(ZZ)
Fraction Field of Univariate Polynomial Ring in x over Algebraic Field

When we apply Compl, Matr and Poly to the ring of integers, we obtain:

sage: (Poly*Matr*Compl)(ZZ)
Univariate Polynomial Ring in x over Full MatrixSpace of 3 by 3 dense matrices over
→˓Real Field with 53 bits of precision

Applying the shuffling procedure yields

sage: (Poly*Matr*Fract*Poly*AlgClos*Fract*Compl)(ZZ)
Univariate Polynomial Ring in x over Full MatrixSpace of 3 by 3 dense matrices over
→˓Fraction Field of Univariate Polynomial Ring in x over Complex Field with 53 bits
→˓of precision

and this is indeed equal to the pushout found by Sage:

sage: pushout((Fract*Poly*AlgClos*Fract)(ZZ), (Poly*Matr*Compl)(ZZ))
Univariate Polynomial Ring in x over Full MatrixSpace of 3 by 3 dense matrices over
→˓Fraction Field of Univariate Polynomial Ring in x over Complex Field with 53 bits
→˓of precision

Breaking the tie

If F1.rank==G1.rank then Sage’s pushout constructions offers two ways to proceed:

1. Construction functors have a method merge() that either returns None or returns a construction functor—see
below. If either F1.merge(G1) or G1.merge(F1) returns a construction functor 𝐻1, then we apply 𝐻1

and continue with ... ∘ 𝐹3 ∘ 𝐹2 and ... ∘𝐺3 ∘𝐺2.

2. Construction functors have a method commutes(). If either F1.commutes(G1) or G1.commutes(F1)
returns True, then we apply both 𝐹1 and 𝐺1 in any order, and continue with ... ∘ 𝐹3 ∘ 𝐹2 and ... ∘𝐺3 ∘𝐺2.

By default, F1.merge(G1) returns F1 if F1==G1, and returns None otherwise. The commutes() method exists,
but it seems that so far nobody has implemented two functors of the same rank that commute.

310 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Establishing a default implementation

The typical application of merge() is to provide a coercion between different implementations of the same algebraic
structure.

Note: If F1(P) and F2(P) are different implementations of the same thing, then F1.merge(F2)(P) should
return the default implementation.

We want to boldly turn our toy implementation of fraction fields into the new default implementation. Hence:

• Next, we implement a new version of the “usual” fraction field functor, having the same rank, but returning our
new implementation.

• We make our new implementation the default, by virtue of a merge method.

Warning:

• Do not override the default __call__ method of ConstructionFunctor—implement
_apply_functor instead.

• Declare domain and codomain of the functor during initialisation.

sage: from sage.categories.pushout import ConstructionFunctor
sage: class MyFracFunctor(ConstructionFunctor):
....: rank = 5
....: def __init__(self):
....: ConstructionFunctor.__init__(self, IntegralDomains(), Fields())
....: def _apply_functor(self, R):
....: return MyFrac(R)
....: def merge(self, other):
....: if isinstance(other, (type(self), sage.categories.pushout.
→˓FractionField)):
....: return self

sage: MyFracFunctor()
MyFracFunctor

We verify that our functor can really be used to construct our implementation of fraction fields, and that it can be
merged with either itself or the usual fraction field constructor:

sage: MyFracFunctor()(ZZ)
NewFrac(Integer Ring)

sage: MyFracFunctor().merge(MyFracFunctor())
MyFracFunctor

sage: MyFracFunctor().merge(Fract)
MyFracFunctor

There remains to let our new fraction fields know about the new construction functor:

sage: class MyFrac(MyFrac):
....: def construction(self):
....: return MyFracFunctor(), self.base()

12.1. Thematic tutorial document tree 311

Thematic Tutorials, Release 8.0

sage: MyFrac(ZZ['x']).construction()
(MyFracFunctor, Univariate Polynomial Ring in x over Integer Ring)

Due to merging, we have:

sage: pushout(MyFrac(ZZ['x']), Frac(QQ['x']))
NewFrac(Univariate Polynomial Ring in x over Rational Field)

A second note on performance

Being able to do arithmetics involving elements of different parents, with the automatic creation of a pushout to contain
the result, is certainly convenient—but one should not rely on it, if speed matters. Simply the conversion of elements
into different parents takes time. Moreover, by trac ticket #14058, the pushout may be subject to Python’s cyclic
garbage collection. Hence, if one does not keep a strong reference to it, the same parent may be created repeatedly,
which is a waste of time. In the following example, we illustrate the slow–down resulting from blindly relying on
coercion:

sage: ZZxy = ZZ['x','y']
sage: a = ZZxy('x')
sage: b = 1/2
sage: timeit("c = a+b") # random
10000 loops, best of 3: 172 us per loop
sage: QQxy = QQ['x','y']
sage: timeit("c2 = QQxy(a)+QQxy(b)") # random
10000 loops, best of 3: 168 us per loop
sage: a2 = QQxy(a)
sage: b2 = QQxy(b)
sage: timeit("c2 = a2+b2") # random
100000 loops, best of 3: 10.5 us per loop

Hence, if one avoids the explicit or implicit conversion into the pushout, but works in the pushout right away, one can
get a more than 10–fold speed–up.

The test suites of the category framework

The category framework does not only provide functionality but also a test framework. This section logically belongs
to the section on categories, but without the bits that we have implemented in the section on coercion, our implemen-
tation of fraction fields would not have passed the tests yet.

“Abstract” methods

We have already seen above that a category can require/suggest certain parent or element methods, that the user
must/should implement. This is in order to smoothly blend with the methods that already exist in Sage.

The methods that ought to be provided are called abstract_method(). Let us see what methods are needed for
quotient fields and their elements:

sage: from sage.misc.abstract_method import abstract_methods_of_class

sage: abstract_methods_of_class(QuotientFields().parent_class)['optional']
[]

312 Chapter 12. Documentation

https://trac.sagemath.org/14058

Thematic Tutorials, Release 8.0

sage: abstract_methods_of_class(QuotientFields().parent_class)['required']
['__contains__']

Hence, the only required method (that is actually required for all parents that belong to the category of sets) is an
element containment test. That’s fine, because the base class Parent provides a default containment test.

The elements have to provide more:

sage: abstract_methods_of_class(QuotientFields().element_class)['optional']
['_add_', '_mul_']
sage: abstract_methods_of_class(QuotientFields().element_class)['required']
['__nonzero__', 'denominator', 'numerator']

Hence, the elements must provide denominator() and numerator() methods, and must be able to tell whether
they are zero or not. The base class Element provides a default __nonzero__()method. In addition, the elements
may provide Sage’s single underscore arithmetic methods (actually any ring element should provide them).

The _test_... methods

If a parent or element method’s name start with “_test_”, it gives rise to a test in the automatic test suite. For example,
it is tested

• whether a parent 𝑃 actually is an instance of the parent class of the category of 𝑃 ,

• whether the user has implemented the required abstract methods,

• whether some defining structural properties (e.g., commutativity) hold.

For example, if one forgets to implement required methods, one obtains the following error:

sage: class Foo(Parent):
....: Element = sage.structure.element.Element
....: def __init__(self):
....: Parent.__init__(self, category=QuotientFields())
sage: Bar = Foo()
sage: bar = Bar.element_class(Bar)
sage: bar._test_not_implemented_methods()
Traceback (most recent call last):
...
AssertionError: Not implemented method: denominator

Here are the tests that form the test suite of quotient fields:

sage: [t for t in dir(QuotientFields().parent_class) if t.startswith('_test_')]
['_test_additive_associativity',
'_test_an_element',
'_test_associativity',
'_test_cardinality',
'_test_characteristic',
'_test_characteristic_fields',
'_test_distributivity',
'_test_elements',
'_test_elements_eq_reflexive',
'_test_elements_eq_symmetric',
'_test_elements_eq_transitive',
'_test_elements_neq',
'_test_euclidean_degree',
'_test_gcd_vs_xgcd',

12.1. Thematic tutorial document tree 313

Thematic Tutorials, Release 8.0

'_test_one', '_test_prod',
'_test_quo_rem',
'_test_some_elements',
'_test_zero',
'_test_zero_divisors']

We have implemented all abstract methods (or inherit them from base classes), we use the category framework, and
we have implemented coercions. So, we are confident that the test suite runs without an error. In fact, it does!

Note: The following trick with the __main__ module is only needed in doctests, not in an interactive session or
when defining the classes externally.

sage: __main__.MyFrac = MyFrac
sage: __main__.MyElement = MyElement
sage: P = MyFrac(ZZ['x'])
sage: TestSuite(P).run()

Let us see what tests are actually performed:

sage: TestSuite(P).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_characteristic() . . . pass
running ._test_characteristic_fields() . . . pass
running ._test_distributivity() . . . pass
running ._test_elements() . . .

Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_euclidean_degree() . . . pass
running ._test_gcd_vs_xgcd() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_quo_rem() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
running ._test_zero_divisors() . . . pass

314 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Implementing a new category with additional tests

As one can see, tests are also performed on elements. There are methods that return one element or a list of some
elements, relying on “typical” elements that can be found in most algebraic structures.

sage: P.an_element(); P.some_elements()
(2):(1)
[(2):(1)]

Unfortunately, the list of elements that is returned by the default method is of length one, and that single element could
also be a bit more interesting. The method an_element relies on a method _an_element_(), so, we implement
that. We also override the some_elements method.

sage: class MyFrac(MyFrac):
....: def _an_element_(self):
....: a = self.base().an_element()
....: b = self.base_ring().an_element()
....: if (a+b)!=0:
....: return self(a)**2/(self(a+b)**3)
....: if b != 0:
....: return self(a)/self(b)**2
....: return self(a)**2*self(b)**3
....: def some_elements(self):
....: return [self.an_element(),self(self.base().an_element()),self(self.base_
→˓ring().an_element())]

sage: P = MyFrac(ZZ['x'])
sage: P.an_element(); P.some_elements()
(x^2):(x^3 + 3*x^2 + 3*x + 1)
[(x^2):(x^3 + 3*x^2 + 3*x + 1), (x):(1), (1):(1)]

Now, as we have more interesting elements, we may also add a test for the “factor” method. Recall that the method
was inherited from the category, but it appears that it is not tested.

Normally, a test for a method defined by a category should be provided by the same category. Hence, since factor
is defined in the category of quotient fields, a test should be added there. But we won’t change source code here and
will instead create a sub–category.

Apparently, If 𝑒 is an element of a quotient field, the product of the factors returned by e.factor() should be equal
to 𝑒. For forming the product, we use the prod method, that, no surprise, is inherited from another category:

sage: P.prod.__module__
'sage.categories.monoids'

When we want to create a sub–category, we need to provide a method super_categories(), that returns a list of
all immediate super categories (here: category of quotient fields).

Warning: A sub–category 𝑆 of a category 𝐶 is not implemented as a sub–class of C.__class__! 𝑆 becomes
a sub–category of 𝐶 only if S.super_categories() returns (a sub–category of) 𝐶!

The parent and element methods of a category are provided as methods of classes that are the attributes
ParentMethods and Element Methods of the category, as follows:

sage: from sage.categories.category import Category
sage: class QuotientFieldsWithTest(Category): # do *not* inherit from QuotientFields,
→˓but ...

12.1. Thematic tutorial document tree 315

Thematic Tutorials, Release 8.0

....: def super_categories(self):

....: return [QuotientFields()] # ... declare QuotientFields as a super
→˓category!
....: class ParentMethods:
....: pass
....: class ElementMethods:
....: def _test_factorisation(self, **options):
....: P = self.parent()
....: assert self == P.prod([P(b)**e for b,e in self.factor()])

We provide an instance of our quotient field implementation with that new category. Note that categories
have a default _repr_ method, that guesses a good string representation from the name of the class:
QuotientFieldsWithTest becomes “quotient fields with test”.

Note: The following trick with the __main__ module is only needed in doctests, not in an interactive session or
when defining the classes externally.

sage: __main__.MyFrac = MyFrac
sage: __main__.MyElement = MyElement
sage: __main__.QuotientFieldsWithTest = QuotientFieldsWithTest
sage: P = MyFrac(ZZ['x'], category=QuotientFieldsWithTest())
sage: P.category()
Category of quotient fields with test

The new test is inherited from the category. Since an_element() is returning a complicated element,
_test_factorisation is a serious test:

sage: P.an_element()._test_factorisation
<bound method MyFrac_with_category.element_class._test_factorisation of (x^2):(x^3 +
→˓3*x^2 + 3*x + 1)>

sage: P.an_element().factor()
(x + 1)^-3 * x^2

Last, we observe that the new test has automatically become part of the test suite. We remark that the existing
tests became more serious as well, since we made sage.structure.parent.Parent.an_element() return
something more interesting.

sage: TestSuite(P).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_characteristic() . . . pass
running ._test_characteristic_fields() . . . pass
running ._test_distributivity() . . . pass
running ._test_elements() . . .

Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_factorisation() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass

316 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_euclidean_degree() . . . pass
running ._test_gcd_vs_xgcd() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_quo_rem() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
running ._test_zero_divisors() . . . pass

Appendix: The complete code

1 # Importing base classes, ...
2 import sage
3 from sage.rings.ring import Field
4 from sage.structure.element import FieldElement
5 from sage.categories.category import Category
6 # ... the UniqueRepresentation tool,
7 from sage.structure.unique_representation import UniqueRepresentation
8 # ... some categories, and ...
9 from sage.categories.fields import Fields

10 from sage.categories.quotient_fields import QuotientFields
11 from sage.categories.integral_domains import IntegralDomains
12 # construction functors
13 from sage.categories.pushout import ConstructionFunctor
14

15 # Fraction field elements
16 class MyElement(FieldElement):
17 def __init__(self, parent, n, d=None):
18 if parent is None:
19 raise ValueError("The parent must be provided")
20 B = parent.base()
21 if d is None:
22 # The default denominator is one
23 d = B.one()
24 # verify that both numerator and denominator belong to the base
25 if n not in B or d not in B:
26 raise ValueError("Numerator and denominator must be elements of %s"%B)
27 # Numerator and denominator should not just be "in" B,
28 # but should be defined as elements of B
29 d = B(d)
30 n = B(n)
31 # the denominator must not be zero
32 if d==0:
33 raise ZeroDivisionError("The denominator must not be zero")
34 # normalize the denominator: WLOG, it shall be non-negative.
35 if d<0:

12.1. Thematic tutorial document tree 317

Thematic Tutorials, Release 8.0

36 self.n = -n
37 self.d = -d
38 else:
39 self.n = n
40 self.d = d
41 FieldElement.__init__(self,parent)
42

43 # Methods required by the category of fraction fields:
44 def numerator(self):
45 return self.n
46 def denominator(self):
47 return self.d
48

49 # String representation (single underscore!)
50 def _repr_(self):
51 return "(%s):(%s)"%(self.n,self.d)
52

53 # Comparison: We can assume that both arguments are coerced
54 # into the same parent, which is a fraction field. Hence, we
55 # are allowed to use the denominator() and numerator() methods
56 # on the second argument.
57 def _richcmp_(self, other, op):
58 from sage.structure.richcmp import richcmp
59 return richcmp(self.n*other.denominator(), other.numerator()*self.d, op)
60

61 # Arithmetic methods, single underscore. We can assume that both
62 # arguments are coerced into the same parent.
63 # We return instances of self.__class__, because self.__class__ will
64 # eventually be a sub-class of MyElement.
65 def _add_(self, other):
66 C = self.__class__
67 D = self.d*other.denominator()
68 return C(self.parent(), self.n*other.denominator()+self.d*other.numerator(),D)
69 def _sub_(self, other):
70 C = self.__class__
71 D = self.d*other.denominator()
72 return C(self.parent(), self.n*other.denominator()-self.d*other.numerator(),D)
73 def _mul_(self, other):
74 C = self.__class__
75 return C(self.parent(), self.n*other.numerator(), self.d*other.denominator())
76 def _div_(self, other):
77 C = self.__class__
78 return C(self.parent(), self.n*other.denominator(), self.d*other.numerator())
79

80 # Inheritance from UniqueRepresentation implements the unique parent
81 # behaviour. Moreover, it implements pickling (provided that Python
82 # succeeds to look up the class definition).
83 class MyFrac(UniqueRepresentation, Field):
84 # Implement the category framework for elements, which also
85 # makes some basic conversions work.
86 Element = MyElement
87

88 # Allow to pass to a different category, by an optional argument
89 def __init__(self, base, category=None):
90 # Fraction fields only exist for integral domains
91 if base not in IntegralDomains():
92 raise ValueError("%s is no integral domain" % base)
93 # Implement the category framework for the parent

318 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

94 Field.__init__(self, base, category=category or QuotientFields())
95

96 # Single-underscore method for string representation
97 def _repr_(self):
98 return "NewFrac(%s)"%repr(self.base())
99

100 # Two methods that are implicitly used in some tests
101 def base_ring(self):
102 return self.base().base_ring()
103 def characteristic(self):
104 return self.base().characteristic()
105

106 # Implement conversions. Do not override __call__!
107 def _element_constructor_(self, *args, **kwds):
108 if len(args)!=1:
109 return self.element_class(self, *args, **kwds)
110 x = args[0]
111 try:
112 P = x.parent()
113 except AttributeError:
114 return self.element_class(self, x, **kwds)
115 if P in QuotientFields() and P != self.base():
116 return self.element_class(self, x.numerator(), x.denominator(), **kwds)
117 return self.element_class(self, x, **kwds)
118

119 # Implement coercion from the base and from fraction fields
120 # over a ring that coerces into the base
121 def _coerce_map_from_(self, S):
122 if self.base().has_coerce_map_from(S):
123 return True
124 if S in QuotientFields():
125 if self.base().has_coerce_map_from(S.base()):
126 return True
127 if hasattr(S,'ring_of_integers') and self.base().has_coerce_map_from(S.

→˓ring_of_integers()):
128 return True
129 # Tell how this parent was constructed, in order to enable pushout constructions
130 def construction(self):
131 return MyFracFunctor(), self.base()
132

133 # return some elements of this parent
134 def _an_element_(self):
135 a = self.base().an_element()
136 b = self.base_ring().an_element()
137 if (a+b)!=0:
138 return self(a)**2/(self(a+b)**3)
139 if b != 0:
140 return self(a)/self(b)**2
141 return self(a)**2*self(b)**3
142 def some_elements(self):
143 return [self.an_element(),self(self.base().an_element()),self(self.base_

→˓ring().an_element())]
144

145

146 # A construction functor for our implementation of fraction fields
147 class MyFracFunctor(ConstructionFunctor):
148 # The rank is the same for Sage's original fraction field functor
149 rank = 5

12.1. Thematic tutorial document tree 319

Thematic Tutorials, Release 8.0

150 def __init__(self):
151 # The fraction field construction is a functor
152 # from the category of integral domains into the category of
153 # fields
154 # NOTE: We could actually narrow the codomain and use the
155 # category QuotientFields()
156 ConstructionFunctor.__init__(self, IntegralDomains(), Fields())
157 # Applying the functor to an object. Do not override __call__!
158 def _apply_functor(self, R):
159 return MyFrac(R)
160 # Note: To apply the functor to morphisms, implement
161 # _apply_functor_to_morphism
162

163 # Make sure that arithmetic involving elements of Frac(R) and
164 # MyFrac(R) works and yields elements of MyFrac(R)
165 def merge(self, other):
166 if isinstance(other, (type(self), sage.categories.pushout.FractionField)):
167 return self
168

169 # A quotient field category with additional tests.
170 # Notes:
171 # - Category inherits from UniqueRepresentation. Hence, there
172 # is only one category for given arguments.
173 # - Since QuotientFieldsWithTest is a singleton (there is only
174 # one instance of this class), we could inherit from
175 # sage.categories.category_singleton.Category_singleton
176 # rather than from sage.categories.category.Category
177 class QuotientFieldsWithTest(Category):
178 # Our category is a sub-category of the category of quotient fields,
179 # by means of the following method.
180 def super_categories(self):
181 return [QuotientFields()]
182

183 # Here, we could implement methods that are available for
184 # all objects in this category.
185 class ParentMethods:
186 pass
187

188 # Here, we add a new test that is available for all elements
189 # of any object in this category.
190 class ElementMethods:
191 def _test_factorisation(self, **options):
192 P = self.parent()
193 # The methods prod() and factor() are inherited from
194 # some other categories.
195 assert self == P.prod([P(b)**e for b,e in self.factor()])

12.1.17 Tutorial: Implementing Algebraic Structures

Author: Nicolas M. Thiéry <nthiery at users.sf.net>, Jason Bandlow <jbandlow@gmail.com> et al.

This tutorial will cover four concepts:

• endowing free modules and vector spaces with additional algebraic structure

• defining morphisms

• defining coercions and conversions

320 Chapter 12. Documentation

mailto:jbandlow@gmail.com

Thematic Tutorials, Release 8.0

• implementing algebraic structures with several realizations

At the end of this tutorial, the reader should be able to reimplement by himself the example of algebra with several
realizations:

sage: Sets().WithRealizations().example()
The subset algebra of {1, 2, 3} over Rational Field

Namely, we consider an algebra 𝐴(𝑆) whose basis is indexed by the subsets 𝑠 of a given set 𝑆. 𝐴(𝑆) is endowed with
three natural basis: F, In, Out; in the first basis, the product is given by the union of the indexing sets. The In basis
and Out basis are defined respectively by:

𝐼𝑛𝑠 =
∑︁
𝑡⊂𝑠

𝐹𝑡 𝐹𝑠 =
∑︁
𝑡⊃𝑠

𝑂𝑢𝑡𝑡

Each such basis gives a realization of 𝐴, where the elements are represented by their expansion in this basis. In the
running exercises we will progressively implement this algebra and its three realizations, with coercions and mixed
arithmetic between them.

This tutorial heavily depends on Tutorial: Using Free Modules and Vector Spaces. You may also want to read the less
specialized thematic tutorial How to implement new algebraic structures.

Subclassing free modules and including category information

As a warm-up, we implement the group algebra of the additive group Z/5Z. Of course this is solely for pedagogical
purposes; group algebras are already implemented (see ZMod(5).algebra(ZZ)). Recall that a fully functional
Z-module over this group can be created with the simple command:

sage: A = CombinatorialFreeModule(ZZ, Zmod(5), prefix='a')

We reproduce the same, but by deriving a subclass of CombinatorialFreeModule:

sage: class MyCyclicGroupModule(CombinatorialFreeModule):
....: """An absolutely minimal implementation of a module whose basis is a cyclic
→˓group"""
....: def __init__(self, R, n, *args, **kwargs):
....: CombinatorialFreeModule.__init__(self, R, Zmod(n), *args, **kwargs)

sage: A = MyCyclicGroupModule(QQ, 6, prefix='a') # or 4 or 5 or 11 ...
sage: a = A.basis()
sage: A.an_element()
2*a[0] + 2*a[1] + 3*a[2]

We now want to endow𝐴with its natural product structure, to get the desired group algebra. To define a multiplication,
we should be in a category where multiplication makes sense, which is not yet the case:

sage: A.category()
Category of finite dimensional vector spaces with basis over Rational Field

We can look at the available Categories from the documentation in the reference manual or we can use introspection
to look through the list of categories to pick one we want:

sage: sage.categories.<tab> # not tested

Once we have chosen an appropriate category (here AlgebrasWithBasis), one can look at one example:

12.1. Thematic tutorial document tree 321

Thematic Tutorials, Release 8.0

sage: E = AlgebrasWithBasis(QQ).example(); E
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c
→˓') over Rational Field
sage: e = E.an_element(); e
B[word:] + 2*B[word: a] + 3*B[word: b] + B[word: bab]

and browse through its code:

sage: E?? # not tested

This code is meant as a template for implementing a new algebra. In particular, this template suggests that we need
to implement the methods product_on_basis, one_basis, _repr_ and algebra_generators. Another
way to get this list of methods is to ask the category (TODO: find a slicker idiom for this):

sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: abstract_methods_of_class(AlgebrasWithBasis(QQ).element_class)
{'optional': ['_add_', '_mul_'],
'required': ['__nonzero__', 'monomial_coefficients']}

sage: abstract_methods_of_class(AlgebrasWithBasis(QQ).parent_class)
{'optional': ['one_basis', 'product_on_basis'], 'required': ['__contains__']}

Warning: The result above is not yet necessarily complete; many required methods in the categories are not
yet marked as abstract_methods(). We also recommend browsing the documentation of this category:
AlgebrasWithBasis.

Adding these methods, here is the minimal implementation of the group algebra:

sage: class MyCyclicGroupAlgebra(CombinatorialFreeModule):
....:
....: def __init__(self, R, n, **keywords):
....: self._group = Zmod(n)
....: CombinatorialFreeModule.__init__(self, R, self._group,
....: category=AlgebrasWithBasis(R), **keywords)
....:
....: def product_on_basis(self, left, right):
....: return self.monomial(left + right)
....:
....: def one_basis(self):
....: return self._group.zero()
....:
....: def algebra_generators(self):
....: return Family([self.monomial(self._group(1))])
....:
....: def _repr_(self):
....: return "Jason's group algebra of %s over %s"%(self._group, self.base_
→˓ring())

Some notes about this implementation:

• Alternatively, we could have defined product instead of product_on_basis:

....: # def product(self, left, right):

....: # return ## something ##

• For the sake of readability in this tutorial, we have stripped out all the documentation strings. Of course all of
those should be present as in E.

322 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

• The purpose of **keywords is to pass down options like prefix to CombinatorialFreeModules.

Let us do some calculations:

sage: A = MyCyclicGroupAlgebra(QQ, 2, prefix='a') # or 4 or 5 or 11 ...
sage: a = A.basis();
sage: f = A.an_element();
sage: A, f
(Jason's group algebra of Ring of integers modulo 2 over Rational Field, 2*a[0] +
→˓2*a[1])
sage: f * f
8*a[0] + 8*a[1]
sage: f.<tab> # not tested
sage: f.is_idempotent()
False
sage: A.one()
a[0]
sage: x = A.algebra_generators().first() # Typically x,y, ... = A.algebra_
→˓generators()
sage: [x^i for i in range(4)]
[a[0], a[1], a[0], a[1]]
sage: g = 2*a[1]; (f + g)*f == f*f + g*f
True

This seems to work fine, but we would like to put more stress on our implementation to shake potential bugs out of it.
To this end, we will use TestSuite, a tool that performs many routine tests on our algebra for us.

Since we defined the class interactively, instead of in a Python module, those tests will complain about “pickling”. We
can silence this error by making sage think that the class is defined in a module. We could also just ignore those failing
tests for now or call TestSuite with the argument 𝑠𝑘𝑖𝑝 =′

𝑡 𝑒𝑠𝑡𝑝𝑖𝑐𝑘𝑙𝑖𝑛𝑔
′):

sage: import __main__
sage: __main__.MyCyclicGroupAlgebra = MyCyclicGroupAlgebra

Ok, let’s run the tests:

sage: TestSuite(A).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_characteristic() . . . pass
running ._test_distributivity() . . . pass
running ._test_elements() . . .

Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass

12.1. Thematic tutorial document tree 323

Thematic Tutorials, Release 8.0

running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass

For more information on categories, see Elements, parents, and categories in Sage: a (draft of) primer:

sage: sage.categories.primer? # not tested

Review

We wanted to implement an algebra, so we:

1. Created the underlying vector space using CombinatorialFreeModule

2. Looked at sage.categories.<tab> to find an appropriate category

3. Loaded an example of that category, and used sage.misc.abstract_method.
abstract_methods_of_class(), to see what methods we needed to write

4. Added the category information and other necessary methods to our class

5. Ran TestSuite to catch potential discrepancies

Exercises

1. Make a tiny modification to product_on_basis in “MyCyclicGroupAlgebra” to implement the dual of the
group algebra of the cyclic group instead of its group algebra (so the product is now given by 𝑏𝑓𝑏𝑔 = 𝛿𝑓,𝑔𝑏𝑓).

Run the TestSuite tests (you may ignore the “pickling” errors). What do you notice?

Fix the implementation of one and check that the TestSuite tests now pass.

Add the Hopf algebra structure. Hint: look at the example:

sage: C = HopfAlgebrasWithBasis(QQ).example()

2. Given a set 𝑆, say:

sage: S = Set([1,2,3,4,5])

and a base ring, say:

sage: R = QQ

implement an 𝑅-algebra:

sage: F = SubsetAlgebraOnFundamentalBasis(S, R) # todo: not implemented

with a basis (b_s)_{s\subset S} indexed by the subsets of S:

sage: Subsets(S)
Subsets of {1, 2, 3, 4, 5}

and where the product is defined by 𝑏𝑠𝑏𝑡 = 𝑏𝑠∪𝑡.

324 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Morphisms

To better understand relationships between algebraic spaces, one wants to consider morphisms between them:

sage: A.module_morphism? # not tested
sage: A = MyCyclicGroupAlgebra(QQ, 2, prefix='a')
sage: B = MyCyclicGroupAlgebra(QQ, 6, prefix='b')
sage: A, B
(Jason's group algebra of Ring of integers modulo 2 over Rational Field, Jason's
→˓group algebra of Ring of integers modulo 6 over Rational Field)

sage: def func_on_basis(g):
....: r"""
....: This function is the 'brain' of a (linear) morphism
....: from A --> B.
....: The input is the index of basis element of the domain (A).
....: The output is an element of the codomain (B).
....: """
....: if g==1: return B.monomial(Zmod(6)(3))# g==1 in the range A
....: else: return B.one()

We can now define a morphism that extends this function to 𝐴 by linearity:

sage: phi = A.module_morphism(func_on_basis, codomain=B)
sage: f = A.an_element()
sage: f
2*a[0] + 2*a[1]
sage: phi(f)
2*b[0] + 2*b[3]

Exercise

Define a new free module In with basis indexed by the subsets of 𝑆, and a morphism phi from In to F defined by

𝜑(𝐼𝑛𝑠) =
∑︁
𝑡⊂𝑠

𝐹𝑡

Diagonal and Triangular Morphisms

We now illustrate how to specify that a given morphism is diagonal or triangular with respect to some order on the
basis, which means that the morphism is invertible and 𝑆𝑎𝑔𝑒 is able to compute the inverse morphism automatically.
Currently this feature requires the domain and codomain to have the same index set (in progress ...).

sage: X = CombinatorialFreeModule(QQ, Partitions(), prefix='x'); x = X.basis();
sage: Y = CombinatorialFreeModule(QQ, Partitions(), prefix='y'); y = Y.basis();

A diagonal module morphism takes as argument a function whose input is the index of a basis element of the domain,
and whose output is the coefficient of the corresponding basis element of the codomain:

sage: def diag_func(p):
....: if len(p)==0: return 1
....: else: return p[0]
....:

12.1. Thematic tutorial document tree 325

Thematic Tutorials, Release 8.0

....:
sage: diag_func(Partition([3,2,1]))
3
sage: X_to_Y = X.module_morphism(diagonal=diag_func, codomain=Y)
sage: f = X.an_element();
sage: f
2*x[[]] + 2*x[[1]] + 3*x[[2]]
sage: X_to_Y(f)
2*y[[]] + 2*y[[1]] + 6*y[[2]]

Python fun fact: ~ is the inversion operator (but be careful with int’s!):

sage: ~2
1/2
sage: ~(int(2)) # in python this is the bitwise complement: ~x = -x-1
-3

Diagonal module morphisms are invertible:

sage: Y_to_X = ~X_to_Y
sage: f = y[Partition([3])] - 2*y[Partition([2,1])]
sage: f
-2*y[[2, 1]] + y[[3]]
sage: Y_to_X(f)
-x[[2, 1]] + 1/3*x[[3]]
sage: X_to_Y(Y_to_X(f))
-2*y[[2, 1]] + y[[3]]

For triangular morphisms, just like ordinary morphisms, we need a function that accepts as input the index of a basis
element of the domain and returns an element of the codomain. We think of this function as representing the columns
of the matrix of the linear transformation:

sage: def triang_on_basis(p):
....: return Y.sum_of_monomials(mu for mu in Partitions(sum(p)) if mu >= p)
....:
sage: triang_on_basis([3,2])
y[[3, 2]] + y[[4, 1]] + y[[5]]
sage: X_to_Y = X.module_morphism(triang_on_basis, triangular='lower',
→˓unitriangular=True, codomain=Y)
sage: f = x[Partition([1,1,1])] + 2*x[Partition([3,2])];
sage: f
x[[1, 1, 1]] + 2*x[[3, 2]]

sage: X_to_Y(f)
y[[1, 1, 1]] + y[[2, 1]] + y[[3]] + 2*y[[3, 2]] + 2*y[[4, 1]] + 2*y[[5]]

Triangular module_morphisms are also invertible, even if X and Y are both infinite-dimensional:

sage: Y_to_X = ~X_to_Y
sage: f
x[[1, 1, 1]] + 2*x[[3, 2]]
sage: Y_to_X(X_to_Y(f))
x[[1, 1, 1]] + 2*x[[3, 2]]

For details, see ModulesWithBasis.ParentMethods.module_morphism() (and also sage.
categories.modules_with_basis.TriangularModuleMorphism):

326 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: A.module_morphism? # not tested

Exercise

Redefine the morphism phi from the previous exercise as a morphism that is triangular with respect to inclusion of
subsets and define the inverse morphism. You may want to use the following comparison key as key argument to
modules_morphism:

sage: def subset_key(s):
....: """
....: A comparison key on sets that gives a linear extension
....: of the inclusion order.
....:
....: INPUT:
....:
....: - ``s`` -- set
....:
....: EXAMPLES::
....:
....: sage: sorted(Subsets([1,2,3]), key=subset_key)
....: [{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
....: """
....: return (len(s), list(s))

Coercions

Once we have defined a morphism from 𝑋 → 𝑌 , we can register it as a coercion. This will allow Sage to apply
the morphism automatically whenever we combine elements of 𝑋 and 𝑌 together. See http://sagemath.com/doc/
reference/coercion.html for more information. As a training step, let us first define a morphism 𝑋 to 𝑌 , and register it
as a coercion:

sage: def triang_on_basis(p):
....: return Y.sum_of_monomials(mu for mu in Partitions(sum(p)) if mu >= p)

sage: triang_on_basis([3,2])
y[[3, 2]] + y[[4, 1]] + y[[5]]
sage: X_to_Y = X.module_morphism(triang_on_basis, triangular='lower',
→˓unitriangular=True, codomain=Y)
sage: X_to_Y.<tab> # not tested
sage: X_to_Y.register_as_coercion()

Now we can not only convert elements from 𝑋 to 𝑌 , but we can also do mixed arithmetic with these elements:

sage: Y(x[Partition([3,2])])
y[[3, 2]] + y[[4, 1]] + y[[5]]
sage: Y([2,2,1]) + x[Partition([2,2,1])]
2*y[[2, 2, 1]] + y[[3, 1, 1]] + y[[3, 2]] + y[[4, 1]] + y[[5]]

Exercise

Use the inverse of phi to implement the inverse coercion from F to In. Reimplement In as an algebra, with a product
method making it use phi and its inverse.

12.1. Thematic tutorial document tree 327

http://sagemath.com/doc/reference/coercion.html
http://sagemath.com/doc/reference/coercion.html

Thematic Tutorials, Release 8.0

A digression: new bases and quotients of symmetric functions

As an application, we show how to combine what we have learned to implement a new basis and a quotient of the
algebra of symmetric functions:

sage: SF = SymmetricFunctions(QQ); # A graded Hopf algebra
sage: h = SF.homogeneous() # A particular basis, indexed by partitions (with
→˓some additional magic)

So, ℎ is a graded algebra whose basis is indexed by partitions. In more detail, h([i]) is the sum of all monomials of
degree 𝑖:

sage: h([2]).expand(4)
x0^2 + x0*x1 + x1^2 + x0*x2 + x1*x2 + x2^2 + x0*x3 + x1*x3 + x2*x3 + x3^2

and h(mu) = prod(h(p) for p in mu):

sage: h([3,2,2,1]) == h([3]) * h([2]) * h([2]) * h([1])
True

Here we define a new basis (𝑋𝜆)𝜆 by triangularity with respect to ℎ; namely, we set 𝑋𝜆 =
∑︀

𝜇≥𝜆,|𝜇|=|𝜈| ℎ𝜇:

sage: class MySFBasis(CombinatorialFreeModule):
....: r"""
....: Note: We would typically use SymmetricFunctionAlgebra_generic
....: for this. This is as an example only.
....: """
....:
....: def __init__(self, R, *args, **kwargs):
....: """ TODO: Informative doc-string and examples """
....: CombinatorialFreeModule.__init__(self, R, Partitions(),
→˓category=AlgebrasWithBasis(R), *args, **kwargs)
....: self._h = SymmetricFunctions(R).homogeneous()
....: self._to_h = self.module_morphism(self._to_h_on_basis, triangular=
→˓'lower', unitriangular=True, codomain=self._h)
....: self._from_h = ~(self._to_h)
....: self._to_h.register_as_coercion()
....: self._from_h.register_as_coercion()
....:
....: def _to_h_on_basis(self, la):
....: return self._h.sum_of_monomials(mu for mu in Partitions(sum(la)) if mu >
→˓= la)
....:
....: def product(self, left, right):
....: return self(self._h(left) * self._h(right))
....:
....: def _repr_(self):
....: return "Jason's basis for symmetric functions over %s"%self.base_ring()
....:
....: @cached_method
....: def one_basis(self):
....: r""" Returns the index of the basis element that is equal to '1'."""
....: return Partition([])
sage: X = MySFBasis(QQ, prefix='x'); x = X.basis(); h = SymmetricFunctions(QQ).
→˓homogeneous()
sage: f = X(h([2,1,1]) - 2*h([2,2])) # Note the capital X
sage: f
x[[2, 1, 1]] - 3*x[[2, 2]] + 2*x[[3, 1]]

328 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: h(f)
h[2, 1, 1] - 2*h[2, 2]
sage: f*f*f
x[[2, 2, 2, 1, 1, 1, 1, 1, 1]] - 7*x[[2, 2, 2, 2, 1, 1, 1, 1]] + 18*x[[2, 2, 2, 2, 2,
→˓1, 1]]
- 20*x[[2, 2, 2, 2, 2, 2]] + 8*x[[3, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
sage: h(f*f)
h[2, 2, 1, 1, 1, 1] - 4*h[2, 2, 2, 1, 1] + 4*h[2, 2, 2, 2]

We now implement a quotient of the algebra of symmetric functions obtained by killing any monomial symmetric
function𝑚𝜆 such that the first part of 𝜆 is greater than 𝑘. See Sets.SubcategoryMethods.Subquotients()
for more details about implementing quotients:

sage: class MySFQuotient(CombinatorialFreeModule):
....: r"""
....: The quotient of the ring of symmetric functions by the ideal generated
....: by those monomial symmetric functions whose part is larger than some fixed
....: number ``k``.
....: """
....: def __init__(self, R, k, prefix=None, *args, **kwargs):
....: CombinatorialFreeModule.__init__(self, R,
....: Partitions(NonNegativeIntegers(), max_part=k),
....: prefix = 'mm',
....: category = Algebras(R).Graded().WithBasis().Quotients(), *args,
→˓**kwargs)
....:
....: self._k = k
....: self._m = SymmetricFunctions(R).monomial()
....:
....: self.lift = self.module_morphism(self._m.monomial)
....: self.retract = self._m.module_morphism(self._retract_on_basis,
→˓codomain=self)
....:
....: self.lift.register_as_coercion()
....: self.retract.register_as_coercion()
....:
....: def ambient(self):
....: return self._m
....:
....: def _retract_on_basis(self, mu):
....: r"""
....: Takes the index of a basis element of a monomial
....: symmetric function, and returns the projection of that
....: element to the quotient.
....: """
....: if len(mu) > 0 and mu[0] > self._k:
....: return self.zero()
....: return self.monomial(mu)
....:
sage: MM = MySFQuotient(QQ, 3)
sage: mm = MM.basis()
sage: m = SymmetricFunctions(QQ).monomial()
sage: P = Partition
sage: g = m[P([3,2,1])] + 2*m[P([3,3])] + m[P([4,2])]; g
m[3, 2, 1] + 2*m[3, 3] + m[4, 2]
sage: f = MM(g); f
mm[[3, 2, 1]] + 2*mm[[3, 3]]
sage: m(f)

12.1. Thematic tutorial document tree 329

Thematic Tutorials, Release 8.0

m[3, 2, 1] + 2*m[3, 3]

sage: (m(f))^2
8*m[3, 3, 2, 2, 1, 1] + 12*m[3, 3, 2, 2, 2] + 24*m[3, 3, 3, 2, 1] + 48*m[3, 3, 3, 3]
+ 4*m[4, 3, 2, 2, 1] + 4*m[4, 3, 3, 1, 1] + 14*m[4, 3, 3, 2] + 4*m[4, 4, 2, 2]
+ 4*m[4, 4, 3, 1] + 6*m[4, 4, 4] + 4*m[5, 3, 2, 1, 1] + 4*m[5, 3, 2, 2]
+ 12*m[5, 3, 3, 1] + 2*m[5, 4, 2, 1] + 6*m[5, 4, 3] + 4*m[5, 5, 1, 1] + 2*m[5, 5, 2]
+ 4*m[6, 2, 2, 1, 1] + 6*m[6, 2, 2, 2] + 6*m[6, 3, 2, 1] + 10*m[6, 3, 3] + 2*m[6, 4,
→˓1, 1] + 5*m[6, 4, 2] + 4*m[6, 5, 1] + 4*m[6, 6]

sage: f^2
8*mm[[3, 3, 2, 2, 1, 1]] + 12*mm[[3, 3, 2, 2, 2]] + 24*mm[[3, 3, 3, 2, 1]] + 48*mm[[3,
→˓ 3, 3, 3]]

sage: (m(f))^2 - m(f^2)
4*m[4, 3, 2, 2, 1] + 4*m[4, 3, 3, 1, 1] + 14*m[4, 3, 3, 2] + 4*m[4, 4, 2, 2] + 4*m[4,
→˓4, 3, 1] + 6*m[4, 4, 4] + 4*m[5, 3, 2, 1, 1] + 4*m[5, 3, 2, 2] + 12*m[5, 3, 3, 1] +
→˓2*m[5, 4, 2, 1] + 6*m[5, 4, 3] + 4*m[5, 5, 1, 1] + 2*m[5, 5, 2] + 4*m[6, 2, 2, 1,
→˓1] + 6*m[6, 2, 2, 2] + 6*m[6, 3, 2, 1] + 10*m[6, 3, 3] + 2*m[6, 4, 1, 1] + 5*m[6, 4,
→˓ 2] + 4*m[6, 5, 1] + 4*m[6, 6]

sage: MM((m(f))^2 - m(f^2))
0

Implementing algebraic structures with several realizations

We now return to the subset algebra and use it as an example to show how to implement several different bases for
an algebra with automatic coercions between the different bases. We have already implemented three bases for this
algebra: the F, In, and Out bases, as well as coercions between them. In real calculations it is convenient to tie these
parents together by implementing an object A that models the abstract algebra itself. Then, the parents F, In and Out
will be realizations of A, while A will be a parent with realizations. See Sets().WithRealizations for more
information about the expected user interface and the rationale.

Here is a brief template highlighting the overall structure:

class MyAlgebra(Parent, UniqueRepresentation):
def __init__(self, R, ...):

category = Algebras(R).Commutative()
Parent.__init__(self, category=category.WithRealizations())
attribute initalization, construction of the morphisms
between the bases, ...

class Bases(Category_realization_of_parent):
def super_categories(self):

A = self.base()
category = Algebras(A.base_ring()).Commutative()
return [A.Realizations(), category.Realizations().WithBasis()]

class ParentMethods:
r"""Code that is common to all bases of the algebra"""

class ElementMethods:
r"""Code that is common to elements of all bases of the algebra"""

class FirstBasis(CombinatorialFreeModule, BindableClass):
def __init__(self, A):

330 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

CombinatorialFreeModule.__init__(self, ..., category=A.Bases())

implementation of the multiplication, the unit, ...

class SecondBasis(CombinatorialFreeModule, BindableClass):
def __init__(self, A):

CombinatorialFreeModule.__init__(self, ..., category=A.Bases())

implementation of the multiplication, the unit, ...

The class MyAlgebra implements a commutative algebra A with several realizations, which we specify in the con-
structor of MyAlgebra. The two bases classes MyAlgebra.FirstBasis and MyAlgebra.SecondBasis
implement different realizations of A that correspond to distinguished bases on which elements are expanded. They
are initialized in the category MyAlgebra.Bases of all bases of A, whose role is to factor out their common features.
In particular, this construction says that they are:

• realizations of A

• realizations of a commutative algebra, with a distinguished basis

Note: There is a bit of redundancy here: given that A knows it is a commutative algebra with realizations the
infrastructure could, in principle, determine that its realizations are commutative algebras. If this was done then it
would be possible to implement 𝐵𝑎𝑠𝑒𝑠.𝑠𝑢𝑝𝑒𝑟𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 by returning:

[A.Realizations().WithBasis()]

However, this has not been implemented yet.

Note: Inheriting from BindableCass just provides syntactic sugar: it makes MyAlgebras().FirstBasis()
a shorthand for MyAlgebras.FirstBasis(MyAlgebras().FirstBasis()) (binding behavior). The class
Bases inherits this binding behavior from Category_realization_of_parent , which is why we can write
MyAlgebras().Bases instead of MyAlgebras.Bases(MyAlgebras())

Note: More often than not, the constructors for all of the bases will be very similar, if not identical; so we would
want to factor it out. Annoyingly, the natural approach of putting the constructor in Bases.ParentMethods does
not work because this is an abstract class whereas the constructor handles the concrete implementation of the data
structure. Similarly, it would be better if it was only necessary to specify the classes the bases inherit from once, but
this can’t code go into Bases for the same reason.

The current recommended solution is to have an additional class Basis that factors out the common concrete features
of the different bases:

...

class Basis(CombinatorialFreeModule, BindableClass):
def __init__(self, A):

CombinatorialFreeModule.__init__(self, ..., category=A.Bases())

class FirstBasis(Basis):
...

class SecondBasis(Basis):
...

12.1. Thematic tutorial document tree 331

Thematic Tutorials, Release 8.0

This solution works but it is not optimal because to share features between the two bases code needs to go into two
locations, Basis and Bases, depending on whether they are concrete or abstract, respectively.

We now urge the reader to browse the full code of the following example, which is meant as a complete template for
constructing new parents with realizations:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field

sage: A?? # not implemented

Review

Congratulations on reading this far!

We have now been through a complete tour of the features needed to implement an algebra with several realizations.
The infrastructure for realizations is not tied specifically to algebras; what we have learned applies mutatis mutandis
in full generality, for example for implementing groups with several realizations.

12.1.18 How to call a C code (or a compiled library) from Sage ?

If you have some C/C++ code that you would like to call from Sage for your own use, this document is for you.

• Do you want to contibute to Sage by adding your interface to its code? The (more complex) instructions are
available here.

Calling “hello_world()” from hello.c

Let us suppose that you have a file named ~/my_dir/hello.c containing:

#include <stdio.h>

void hello_world(){
printf("Hello World\n");

}

In order to call this function from Sage, you must create a Cython file (i.e. a file whose extension is .pyx). Here,
~/my_dir/hello_sage.pyx contains a header describing the signature of the function that you want to call:

cdef extern from "hello.c":
void hello_world()

def my_bridge_function():
hello_world() # This is the C function from hello.c

You can now load this file in Sage, and call the C code though the Python function my_bridge_function:

sage: %runfile hello_sage.pyx
Compiling ./hello_sage.pyx...
sage: my_bridge_function()
Hello World

332 Chapter 12. Documentation

http://doc.sagemath.org/html/en/developer/index.html#packaging-third-party-code

Thematic Tutorials, Release 8.0

Arguments and return value

Calling function with more complex arguments and return values works the same way. To learn more about the Cython
language, click here

The following example defines a function taking and returning int * pointers, and involves some memory allocation.
The C code defines a function whose purpose is to return the sum of two vectors as a third vector.

The C file (double_vector.c)

#include <string.h>

int * sum_of_two_vectors(int n, int * vec1, int * vec2){
/*

INPUT : two arrays vec1,vec2 of n integers
OUTPUT: an array of size n equal to vec1+vec2

*/
int * sum = (int *) malloc(n*sizeof(int));
int i;

for(i=0;i<n;i++)
sum[i] = vec1[i] + vec2[i];

return sum;
}

The Cython file (double_vector_sage.pyx)

cdef extern from "double_vector.c":
int * sum_of_two_vectors(int n, int * vec1, int * vec2)

from libc.stdlib cimport malloc, free

def sage_sum_of_vectors(n, list1, list2):
cdef int * vec1 = <int *> malloc(n*sizeof(int))
cdef int * vec2 = <int *> malloc(n*sizeof(int))

Fill the vectors
for i in range(n):

vec1[i] = list1[i]
vec2[i] = list2[i]

Call the C function
cdef int * vec3 = sum_of_two_vectors(n,vec1,vec2)

Save the answer in a Python object
answer = [vec3[i] for i in range(n)]

free(vec1)
free(vec2)
free(vec3)

return answer

Call from Sage:

sage: %runfile double_vector_sage.pyx
Compiling ./double_vector_sage.pyx...
sage: sage_sum_of_vectors(3,[1,1,1],[2,3,4])
[3, 4, 5]

12.1. Thematic tutorial document tree 333

http://docs.cython.org/src/reference/language_basics.html

Thematic Tutorials, Release 8.0

Calling code from a compiled library

The procedure is very similar again. For our purposes, we build a library from the file ~/my_dir/hello.c:

#include <stdio.h>

void hello_world(){
printf("Hello World\n");

}

We also need a ~/my_dir/hello.h header file:

void hello_world();

We can now compile it as a library:

[user@localhost ~/my_dir/] gcc -c -Wall -Werror -fpic hello.c
[user@localhost ~/my_dir/] gcc -shared -o libhello.so hello.o

The only files that we need now are hello.h and libhello.so (you can remove the others if you like). We must
now indicate the location of the .so and .h files in the header of our ~/my_dir/hello_sage.pyx file:

#clib /home/username/my_dir/hello

cdef extern from "hello.h":
void hello_world()

def my_bridge_function():
hello_world() # This is the C function from hello.c

Note: The instruction #clib /home/username/my_dir/hello indicates that the library is actually named
/home/username/my_dir/hello. Change it according to your needs. For more information about these in-
structions, see cython().

We can now load this file in Sage and call the function:

sage: %runfile hello_sage.pyx
Compiling ./hello_sage.pyx...
sage: my_bridge_function()
Hello World

12.1.19 Numerical Computing with Sage

Warning: Beware that this document may be obsolete.

This document is designed to introduce the reader to the tools in Sage that are useful for doing numerical computation.
By numerical computation we essentially mean machine precision floating point computations. In particular, things
such as optimization, numerical linear algebra, solving ODE’s or PDE’s numerically, etc.

In the first part of this document the reader is only assumed to be familiar with Python/Sage. In the second section
on using compiled code, the computational prerequisites increase and I assume the reader is comfortable with writing

334 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

programs in C or Fortran. The third section is on mpi and parallel programming and only requires knowledge of
Python, though familiarity with mpi would be helpful.

In the current version of this document the reader is assumed to be familiar with the techniques of numerical analysis.
The goal of this document is not to teach you numerical analysis, but to explain how to express your ideas in Sage
and Python. Also this document is not meant to be comprehensive. Instead the goal is to be a road map and orient the
reader to the packages relevant to numerical computation and to where they can find more information.

Numerical Tools

Sage has many different components that may be useful for numerical analysis. In particular three packages deserve
mention, they are numpy, SciPy, and cvxopt. Numpy is an excellent package that provides fast array facilities to
python. It includes some basic linear algebra routines, vectorized math routines, random number generators, etc. It
supports a programming style similar to one would use in matlab and most matlab techniques have an analogue in
numpy. SciPy builds on numpy and provides many different packages for optimization, root finding, statistics, linear
algebra, interpolation, FFT and dsp tools, etc. Finally cvxopt is an optimization package which can solve linear and
quadratic programming problems and also has a nice linear algebra interface. Now we will spend a bit more time on
each of these packages.

Before we start let us point out http://www.scipy.org/NumPy_for_Matlab_Users, which has a comparison between
matlab and numpy and gives numpy equivalents of matlab commands. If you’re not familiar with matlab, thats fine,
even better, it means you won’t have any pre-conceived notions of how things should work. Also this http://www.
scipy.org/Wiki/Documentation?action=AttachFile&do=get&target=scipy_tutorial.pdf is a very nice tutorial on SciPy
and numpy which is more comprehensive than ours.

NumPy

NumPy is not imported into sage initially. To use NumPy, you first need to import it.

sage: import numpy

The basic object of computation in NumPy is an array. It is simple to create an array.

sage: l=numpy.array([1,2,3])
sage: l
array([1, 2, 3])

NumPy arrays can store any type of python object. However, for speed, numeric types are automatically converted to
native hardware types (i.e., int, float, etc.) when possible. If the value or precision of a number cannot be handled
by a native hardware type, then an array of Sage objects will be created. You can do calculations on these arrays, but
they may be slower than using native types. When the numpy array contains Sage or python objects, then the data type
is explicitly printed as object. If no data type is explicitly shown when NumPy prints the array, the type is either a
hardware float or int.

sage: l=numpy.array([2**40, 3**40, 4**40])
sage: l
array([1099511627776, 12157665459056928801, 1208925819614629174706176], dtype=object)
sage: a=2.0000000000000000001
sage: a.prec() # higher precision than hardware floating point numbers
67
sage: numpy.array([a,2*a,3*a])
array([2.000000000000000000, 4.000000000000000000, 6.000000000000000000],
→˓dtype=object)

12.1. Thematic tutorial document tree 335

http://www.scipy.org/NumPy_for_Matlab_Users
http://www.scipy.org/Wiki/Documentation?action=AttachFile&do=get&target=scipy_tutorial.pdf
http://www.scipy.org/Wiki/Documentation?action=AttachFile&do=get&target=scipy_tutorial.pdf

Thematic Tutorials, Release 8.0

The dtype attribute of an array tells you the type of the array. For fast numerical computations, you generally want
this to be some sort of float. If the data type is float, then the array is stored as an array of machine floats, which takes
up much less space and which can be operated on much faster.

sage: l=numpy.array([1.0, 2.0, 3.0])
sage: l.dtype
dtype('float64')

You can create an array of a specific type by specifying the dtype parameter. If you want to make sure that you are
dealing with machine floats, it is good to specify dtype=float when creating an array.

sage: l=numpy.array([1,2,3], dtype=float)
sage: l.dtype
dtype('float64')

You can access elements of a NumPy array just like any list, as well as take slices

sage: l=numpy.array(range(10),dtype=float)
sage: l[3]
3.0
sage: l[3:6]
array([3., 4., 5.])

You can do basic arithmetic operations

sage: l+l
array([0., 2., 4., 6., 8., 10., 12., 14., 16., 18.])
sage: 2.5*l
array([0. , 2.5, 5. , 7.5, 10. , 12.5, 15. , 17.5, 20. , 22.5])

Note that l*l will multiply the elements of l componentwise. To get a dot product, use numpy.dot().

sage: l*l
array([0., 1., 4., 9., 16., 25., 36., 49., 64., 81.])
sage: numpy.dot(l,l)
285.0

We can also create two dimensional arrays

sage: m = numpy.array([[1,2],[3,4]])
sage: m
array([[1, 2],

[3, 4]])
sage: m[1,1]
4

This is basically equivalent to the following

sage: m=numpy.matrix([[1,2],[3,4]])
sage: m
matrix([[1, 2],

[3, 4]])
sage: m[0,1]
2

The difference is that with numpy.array(), m is treated as just an array of data. In particular m*m will multiply
componentwise, however with numpy.matrix(), m*m will do matrix multiplication. We can also do matrix vector
multiplication, and matrix addition

336 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: n = numpy.matrix([[1,2],[3,4]],dtype=float)
sage: v = numpy.array([[1],[2]],dtype=float)
sage: n*v
matrix([[5.],

[11.]])
sage: n+n
matrix([[2., 4.],

[6., 8.]])

If nwas created with numpy.array(), then to do matrix vector multiplication, you would use numpy.dot(n,v).

All NumPy arrays have a shape attribute. This is a useful attribute to manipulate

sage: n = numpy.array(range(25),dtype=float)
sage: n
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,

11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,
22., 23., 24.])

sage: n.shape=(5,5)
sage: n
array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.]])

This changes the one-dimensional array into a 5× 5 array.

NumPy arrays can be sliced as well

sage: n=numpy.array(range(25),dtype=float)
sage: n.shape=(5,5)
sage: n[2:4,1:3]
array([[11., 12.],

[16., 17.]])

It is important to note that the sliced matrices are references to the original

sage: m=n[2:4,1:3]
sage: m[0,0]=100
sage: n
array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.],
[10., 100., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.]])

You will note that the original matrix changed. This may or may not be what you want. If you want to change the
sliced matrix without changing the original you should make a copy

m=n[2:4,1:3].copy()

Some particularly useful commands are

sage: x=numpy.arange(0,2,.1,dtype=float)
sage: x
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])

12.1. Thematic tutorial document tree 337

Thematic Tutorials, Release 8.0

You can see that numpy.arange() creates an array of floats increasing by 0.1 from 0 to 2. There is a useful
command numpy.r_() that is best explained by example

sage: from numpy import r_
sage: j=numpy.complex(0,1)
sage: RealNumber=float
sage: Integer=int
sage: n=r_[0.0:5.0]
sage: n
array([0., 1., 2., 3., 4.])
sage: n=r_[0.0:5.0, [0.0]*5]
sage: n
array([0., 1., 2., 3., 4., 0., 0., 0., 0., 0.])

numpy.r_() provides a shorthand for constructing NumPy arrays efficiently. Note in the above 0.0:5.0 was
shorthand for 0.0, 1.0, 2.0, 3.0, 4.0. Suppose we want to divide the interval from 0 to 5 into 10 intervals.
We can do this as follows

sage: r_[0.0:5.0:11*j]
array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5.])

The notation 0.0:5.0:11*j expands to a list of 11 equally space points between 0 and 5 including both endpoints.
Note that j is the NumPy imaginary number, but it has this special syntax for creating arrays. We can combine all of
these techniques

sage: n=r_[0.0:5.0:11*j,int(5)*[0.0],-5.0:0.0]
sage: n
array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ,

0. , 0. , 0. , 0. , 0. , -5. , -4. , -3. , -2. , -1.])

Another useful command is numpy.meshgrid(), it produces meshed grids. As an example suppose you want to
evaluate 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 on a an equally spaced grid with ∆𝑥 = ∆𝑦 = .25 for 0 ≤ 𝑥, 𝑦 ≤ 1. You can do that as
follows

sage: import numpy
sage: j=numpy.complex(0,1)
sage: def f(x,y):
....: return x**2+y**2
sage: from numpy import meshgrid
sage: x=numpy.r_[0.0:1.0:5*j]
sage: y=numpy.r_[0.0:1.0:5*j]
sage: xx,yy= meshgrid(x,y)
sage: xx
array([[0. , 0.25, 0.5 , 0.75, 1.],

[0. , 0.25, 0.5 , 0.75, 1.],
[0. , 0.25, 0.5 , 0.75, 1.],
[0. , 0.25, 0.5 , 0.75, 1.],
[0. , 0.25, 0.5 , 0.75, 1.]])

sage: yy
array([[0. , 0. , 0. , 0. , 0.],

[0.25, 0.25, 0.25, 0.25, 0.25],
[0.5 , 0.5 , 0.5 , 0.5 , 0.5],
[0.75, 0.75, 0.75, 0.75, 0.75],
[1. , 1. , 1. , 1. , 1.]])

sage: f(xx,yy)
array([[0. , 0.0625, 0.25 , 0.5625, 1.],

[0.0625, 0.125 , 0.3125, 0.625 , 1.0625],
[0.25 , 0.3125, 0.5 , 0.8125, 1.25],

338 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

[0.5625, 0.625 , 0.8125, 1.125 , 1.5625],
[1. , 1.0625, 1.25 , 1.5625, 2.]])

You can see that numpy.meshgrid() produces a pair of matrices, here denoted 𝑥𝑥 and 𝑦𝑦, such that
(𝑥𝑥[𝑖, 𝑗], 𝑦𝑦[𝑖, 𝑗]) has coordinates (𝑥[𝑖], 𝑦[𝑗]). This is useful because to evaluate 𝑓 over a grid, we only need to
evaluate it on each pair of entries in 𝑥𝑥, 𝑦𝑦. Since NumPy automatically performs arithmetic operations on arrays
componentwise, it is very easy to evaluate functions over a grid with very little code.

A useful module is the numpy.linalg module. If you want to solve an equation 𝐴𝑥 = 𝑏 do

sage: import numpy
sage: from numpy import linalg
sage: A=numpy.random.randn(5,5)
sage: b=numpy.array(range(1,6))
sage: x=linalg.solve(A,b)
sage: numpy.dot(A,x)
array([1., 2., 3., 4., 5.])

This creates a random 5x5 matrix A, and solves 𝐴𝑥 = 𝑏 where b=[0.0,1.0,2.0,3.0,4.0]. There are many
other routines in the numpy.linalg module that are mostly self-explanatory. For example there are qr and lu
routines for doing QR and LU decompositions. There is also a command eigs for computing eigenvalues of a
matrix. You can always do <function name>? to get the documentation which is quite good for these routines.

Hopefully this gives you a sense of what NumPy is like. You should explore the package as there is quite a bit more
functionality.

SciPy

Again I recommend this http://www.scipy.org/Wiki/Documentation?action=AttachFile&do=get&target=scipy_
tutorial.pdf. There are many useful SciPy modules, in particular scipy.optimize, scipy.stats, scipy.linalg, scipy.linsolve,
scipy.sparse, scipy.integrate, scipy.fftpack, scipy.signal, scipy.special. Most of these have relatively good documen-
tation and often you can figure out what things do from the names of functions. I recommend exploring them. For
example if you do

sage: import scipy
sage: from scipy import optimize

Then

sage: optimize.[tab]

will show a list of available functions. You should see a bunch of routines for finding minimum of functions. In
particular if you do

sage: optimize.fmin_cg?

you find it is a routine that uses the conjugate gradient algorithm to find the minima of a function.

sage: scipy.special.[tab]

will show all the special functions that SciPy has. Spending a little bit of time looking around is a good way to
familiarize yourself with SciPy. One thing that is sort of annoying, is that often if you do scipy.:math:⟨ tab ⟩. You
won’t see a module that is importable. For example scipy.:math:⟨ tab ⟩ will not show a signal module but

sage: from scipy import signal

12.1. Thematic tutorial document tree 339

http://www.scipy.org/Wiki/Documentation?action=AttachFile&do=get&target=scipy_tutorial.pdf
http://www.scipy.org/Wiki/Documentation?action=AttachFile&do=get&target=scipy_tutorial.pdf

Thematic Tutorials, Release 8.0

and then

signal.[tab]

will show you a large number of functions for signal processing and filter design. All the modules I listed above can
be imported even if you can’t see them initially.

scipy.integrate

This module has routines related to numerically solving ODE’s and numerical integration. Lets give an example of
using an ODE solver. Suppose you want to solve the ode

𝑥′′(𝑡) + 𝑢𝑥′(𝑡)(𝑥(𝑡)2 − 1) + 𝑥(𝑡) = 0

which as a system reads

𝑥′ = 𝑦

𝑦′ = −𝑥+ 𝜇𝑦(1− 𝑥2).

The module we want to use is odeint in scipy.integrate. We can solve this ode, computing the value of (𝑦, 𝑦′), at 1000
points between 0, and 100 using the following code.

sage: import scipy
sage: from scipy import integrate
sage: def f_1(y,t):
....: return[y[1],-y[0]-10*y[1]*(y[0]**2-1)]
sage: def j_1(y,t):
....: return [[0, 1.0],[-2.0*10*y[0]*y[1]-1.0,-10*(y[0]*y[0]-1.0)]]
sage: x= scipy.arange(0,100,.1)
sage: y=integrate.odeint(f_1,[1,0],x,Dfun=j_1)

We could plot the solution if we wanted by doing

sage: pts = [(x[i],y[i][0]) for i in range(len(x))]
sage: point2d(pts).show()

Optimization

The Optimization module has routines related to finding roots, least squares fitting, and minimization. ⟨ To be Written
⟩

Cvxopt

Cvxopt provides many routines for solving convex optimization problems such as linear and quadratic programming
packages. It also has a very nice sparse matrix library that provides an interface to umfpack (the same sparse ma-
trix solver that matlab uses), it also has a nice interface to lapack. For more details on cvxopt please refer to its
documentation at http://cvxopt.org/userguide/index.html

Sparse matrices are represented in triplet notation that is as a list of nonzero values, row indices and column indices.

340 Chapter 12. Documentation

http://cvxopt.org/userguide/index.html

Thematic Tutorials, Release 8.0

This is internally converted to compressed sparse column format. So for example we would enter the matrix⎛⎜⎜⎜⎜⎝
2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

⎞⎟⎟⎟⎟⎠
by

sage: import numpy
sage: from cvxopt.base import spmatrix
sage: from cvxopt.base import matrix as m
sage: from cvxopt import umfpack
sage: Integer=int
sage: V = [2,3, 3,-1,4, 4,-3,1,2, 2, 6,1]
sage: I = [0,1, 0, 2,4, 1, 2,3,4, 2, 1,4]
sage: J = [0,0, 1, 1,1, 2, 2,2,2, 3, 4,4]
sage: A = spmatrix(V,I,J)

To solve an equation 𝐴𝑋 = 𝐵, with 𝐵 = [1, 1, 1, 1, 1], we could do the following.

sage: B = numpy.array([1.0]*5)
sage: B.shape=(5,1)
sage: print(B)
[[1.]
[1.]
[1.]
[1.]
[1.]]

sage: print(A)
[2.00e+00 3.00e+00 0 0 0]
[3.00e+00 0 4.00e+00 0 6.00e+00]
[0 -1.00e+00 -3.00e+00 2.00e+00 0]
[0 0 1.00e+00 0 0]
[0 4.00e+00 2.00e+00 0 1.00e+00]
sage: C=m(B)
sage: umfpack.linsolve(A,C)
sage: print(C)
[5.79e-01]
[-5.26e-02]
[1.00e+00]
[1.97e+00]
[-7.89e-01]

Note the solution is stored in 𝐵 afterward. also note the m(B), this turns our numpy array into a format cvxopt
understands. You can directly create a cvxopt matrix using cvxopt’s own matrix command, but I personally find
numpy arrays nicer. Also note we explicitly set the shape of the numpy array to make it clear it was a column vector.

We could compute the approximate minimum degree ordering by doing

sage: RealNumber=float
sage: Integer=int
sage: from cvxopt.base import spmatrix
sage: from cvxopt import amd
sage: A=spmatrix([10,3,5,-2,5,2],[0,2,1,2,2,3],[0,0,1,1,2,3])
sage: P=amd.order(A)
sage: print(P)
[1]

12.1. Thematic tutorial document tree 341

Thematic Tutorials, Release 8.0

[0]
[2]
[3]

For a simple linear programming example, if we want to solve

minimze −4𝑥1 − 5𝑥2
subject to 2𝑥1 + 𝑥2 ≤ 3

𝑥1 + 2𝑥2 ≤ 3
𝑥1 ≥ 0
𝑥2 ≥ 0

sage: RealNumber=float
sage: Integer=int
sage: from cvxopt.base import matrix as m
sage: from cvxopt import solvers
sage: c = m([-4., -5.])
sage: G = m([[2., 1., -1., 0.], [1., 2., 0., -1.]])
sage: h = m([3., 3., 0., 0.])
sage: sol = solvers.lp(c,G,h) #random

pcost dcost gap pres dres k/t
0: -8.1000e+00 -1.8300e+01 4e+00 0e+00 8e-01 1e+00
1: -8.8055e+00 -9.4357e+00 2e-01 1e-16 4e-02 3e-02
2: -8.9981e+00 -9.0049e+00 2e-03 1e-16 5e-04 4e-04
3: -9.0000e+00 -9.0000e+00 2e-05 3e-16 5e-06 4e-06
4: -9.0000e+00 -9.0000e+00 2e-07 1e-16 5e-08 4e-08

sage: print(sol['x']) # ... below since can get -00 or +00 depending on
→˓architecture
[1.00e...00]
[1.00e+00]

Using Compiled Code Interactively

This section is about using compiled code in Sage. However, since Sage is built on top of Python most of this is valid
for Python in general. The exception is that these notes assume you are using Sage’s interface to f2py which makes
it more convenient to work with f2py interactively. You should look at the f2py website for information on using the
command line f2py tool. The ctypes and weave example will work in any recent Python install (weave is not part
of Python so you will have to install it separately). If you are using Sage then weave, ctypes, and f2py are all there
already.

Firstly why would we want to write compiled code? Obviously, because its fast, far faster than interpreted Python
code. Sage has very powerful facilities that allow one to interactively call compiled code written in C or Fortran. In
fact there 2-4 ways to do this depending on exactly what you want to accomplish. One way is to use Cython. Cython
is a language that is a hybrid of C and Python based on Pyrex. It has the ability to call external shared object libraries
and is very useful for writing Python extension modules. Cython/Pyrex is covered in detail elsewhere in the Sage
documentation.

Suppose that you really want to just write Python code, but there is some particularly time intensive piece of your code
that you would like to either write in C/Fortran or simply call an external shared library to accomplish. In this case
you have three options with varying strengths and weaknesses.

Note that before you try to use compiled code to speed up your bottleneck make sure there isn’t an easier way.
In particular, first try to vectorize, that is express your algorithm as arithmetic on vectors or numpy arrays. These

342 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

arithmetic operations are done directly in C so will be very fast. If your problem does not lend itself to being expressed
in a vectorized form them read on.

Before we start let us note that this is in no way a complete introduction to any of the programs we discuss. This is
more meant to orient you to what is possible and what the different options will feel like.

f2py

F2py is a very nice package that automatically wraps fortran code and makes it callable from Python. The Fibonacci
examples are taken from the f2py webpage http://cens.ioc.ee/projects/f2py2e/.

From the notebook the magic %fortran will automatically compile any fortran code in a cell and all the subroutines
will become callable functions (though the names will be converted to lowercase.) As an example paste the following
into a cell. It is important that the spacing is correct as by default the code is treated as fixed format fortran and the
compiler will complain if things are not in the correct column. To avoid this, you can write fortran 90 code instead by
making your first line !f90. There will be an example of this later.

%fortran
C FILE: FIB1.F

SUBROUTINE FIB(A,N)
C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

Now evaluate it. It will be automatically compiled and imported into Sage (though the name of imported function will
be lowercase). Now we want to try to call it, we need to somehow pass it an array 𝐴, and the length of the array 𝑁 .
The way it works is that numpy arrays will be automatically converted to fortran arrays, and Python scalars converted
to fortran scalars. So to call fib we do the following.

import numpy
m=numpy.array([0]*10,dtype=float)
print(m)
fib(m,10)
print(m)

Note that fortran is a function that can be called on any string. So if you have a fortran program in a file my prog.f.
Then you could do the following

f=open('my_prog.f','r')
s=f.read()
fortran(s)

Now all the functions in my prog.f are callable.

12.1. Thematic tutorial document tree 343

http://cens.ioc.ee/projects/f2py2e/

Thematic Tutorials, Release 8.0

It is possible to call external libraries in your fortran code. You simply need to tell f2py to link them in. For example
suppose we wish to write a program to solve a linear equation using lapack (a linear algebra library). The function we
want to use is called dgesv and it has the following signature.

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

* N (input) INTEGER

* The number of linear equations, i.e., the order of the

* matrix A. N >= 0.

*
* NRHS (input) INTEGER

* The number of right hand sides, i.e., the number of columns

* of the matrix B. NRHS >= 0.

*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the N-by-N coefficient matrix A.

* On exit, the factors L and U from the factorization

* A = P*L*U; the unit diagonal elements of L are not stored.

*
* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*
* IPIV (output) INTEGER array, dimension (N)

* The pivot indices that define the permutation matrix P;

* row i of the matrix was interchanged with row IPIV(i).

*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)

* On entry, the N-by-NRHS matrix of right hand side matrix B.

* On exit, if INFO = 0, the N-by-NRHS solution matrix X.

*
* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*
* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

* > 0: if INFO = i, U(i,i) is exactly zero. The factorization

* has been completed, but the factor U is exactly

* singular, so the solution could not be computed.

we could do the following. Note that the order that library are in the list actually matters as it is the order in which they
are passed to gcc. Also fortran.libraries is simply a list of names of libraries that are linked in. You can just directly
set this list. So that fortran.libraries=[’lapack’,’blas’]is equivalent to the following.

fortran.add_library('lapack')
fortran.add_library('blas')

Now

%fortran
!f90
Subroutine LinearEquations(A,b,n)
Integer n
Real*8 A(n,n), b(n)
Integer i, j, pivot(n), ok
call DGESV(n, 1, A, n, pivot, b, n, ok)
end

344 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

There are a couple things to note about this. As we remarked earlier, if the first line of the code is !f90, then it will be
treated as fortran 90 code and does not need to be in fixed format. To use the above try

a=numpy.random.randn(10,10)
b=numpy.array(range(10),dtype=float)
x=b.copy()
linearequations(a,x,10)
numpy.dot(a,x)

This will solve the linear system ax=b and store the result in b. If your library is not in Sage’s local/lib or in your path
you can add it to the search path using

fortran.add_library_path('path').

You can also directly set fortran.library paths by assignment. It should be a list of paths (strings) to be passed to gcc.
To give you an idea of some more things you can do with f2py, note that using intent statements you can control the
way the resulting Python function behaves a bit bitter. For example consider the following modification of our original
fibonacci code.

C FILE: FIB3.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)

Cf2py intent(in) n
Cf2py intent(out) a
Cf2py depend(n) a

DO I=1,N
IF (I.EQ.1) THEN

A(I) = 0.0D0
ELSEIF (I.EQ.2) THEN

A(I) = 1.0D0
ELSE

A(I) = A(I-1) + A(I-2)
ENDIF

ENDDO
END

C END FILE FIB3.F

Note the comments with the intent statements. This tells f2py that 𝑛 is an input parameter and 𝑎 is the output. This is
called as

a=fib(10)

In general you will pass everything declared intent(in) to the fortran function and everything declared intent(out) will
be returned in a tuple. Note that declaring something intent(in) means you only care about its value before the function
is called not afterwards. So in the above n tells us how many fiboncci numbers to compute we need to specify this
as an input, however we don’t need to get n back as it doesn’t contain anything new. Similarly A is intent(out) so we
don’t need A to have an specific value beforehand, we just care about the contents afterwards. F2py generates a Python
function so you only pass those declared intent(in) and supplies empty workspaces for the remaining arguments and it
only returns those that are intent(out). All arguments are intent(in) by default.

Consider now the following

%fortran
Subroutine Rescale(a,b,n)

12.1. Thematic tutorial document tree 345

Thematic Tutorials, Release 8.0

Implicit none
Integer n,i,j
Real*8 a(n,n), b
do i = 1,n

do j=1,n
a(i,j)=b*a(i,j)

end do
end do
end

You might be expecting Rescale(a,n) to rescale a numpy matrix a. Alas this doesn’t work. Anything you pass in is
unchanged afterwards. Note that in the fibonacci example above, the one dimensional array was changed by the fortran
code, similarly the one dimensional vector b was replaced by its solution in the example where we called lapack while
the matrix A was not changed even then dgesv says it modifies the input matrix. Why does this not happen with the
two dimensional array. Understanding this requires that you are aware of the difference between how fortran and C
store arrays. Fortran stores a matrices using column ordering while C stores them using row ordering. That is the
matrix (︂

0 1 2
3 4 5

)︂
is stored as

(0 1 2 3 4 5) in C

(0 3 1 4 2 5) in Fortran

One dimensional arrays are stored the same in C and Fortran. Because of this f2py allows the fortran code to operate
on one dimensional vectors in place, so your fortran code will change one dimensional numpy arrays passed to it.
However, since two dimensional arrays are different by default f2py copies the numpy array (which is stored in C
format) into a second array that is in the fortran format (i.e. takes the transpose) and that is what is passed to the
fortran function. We will see a way to get around this copying later. First let us point one way of writing the rescale
function.

%fortran

Subroutine Rescale(a,b,n)
Implicit none
Integer n,i,j
Real*8 a(n,n), b

Cf2py intent(in,out) a
do i = 1,n

do j=1,n
a(i,j)=b*a(i,j)

end do
end do
end

Note that to call this you would use

b=rescale(a,2.0).

Note here I am not passing in 𝑛 which is the dimension of 𝑎. Often f2py can figure this out. This is a good time
to mention that f2py automatically generates some documentation for the Python version of the function so you can
check what you need to pass to it and what it will return. To use this try

rescale?

346 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The intent(in,out) directives tells f2py to take the contents of 𝑎 at the end of the subroutine and return them in a numpy
array. This still may not be what you want. The original 𝑎 that you pass in is unmodified. If you want to modify the
original 𝑎 that you passed in use intent(inout). This essentially lets your fortran code work with the data inplace.

%fortran

Subroutine Rescale(a,b,n)
Implicit none
Integer n,i,j
Real*8 a(n,n), b

Cf2py intent(inout) a
do i = 1,n

do j=1,n
a(i,j)=b*a(i,j)

end do
end do
end

If you wish to have fortran code work with numpy arrays in place, you should make sure that your numpy arrays are
stored in fortran’s format. You can ensure this by using the order=’FORTRAN’ keyword when creating the arrays, as
follows.

a=numpy.array([[1,2],[3,4]],dtype=float,order='FORTRAN')
rescale(a,2.0)

After this executes, a will have the rescaled version of itself. There is one final version which combines the previous
two.

%fortran

Subroutine Rescale(a,b,n)
Implicit none
Integer n,i,j
Real*8 a(n,n), b

Cf2py intent(in,out,overwrite) a
do i = 1,n

do j=1,n
a(i,j)=b*a(i,j)

end do
end do
end

The (in,out,overwite) intent says that if 𝑎 is in FORTRAN ordering we work in place, however if its not we copy it
and return the contents afterwards. This is sort of the best of both worlds. Note that if you are repeatedly passing large
numpy arrays to fortran code, it is very important to avoiding copying the array by using (inout) or (in,out,overwrite).
Remember though that your numpy array must use Fortran ordering to avoid the copying.

For more examples and more advanced usage of F2py you should refer to the f2py webpage http://cens.ioc.ee/projects/
f2py2e/. The command line f2py tool which is referred to in the f2py documentation can be called from the Sage shell
using

!f2py

12.1. Thematic tutorial document tree 347

http://cens.ioc.ee/projects/f2py2e/
http://cens.ioc.ee/projects/f2py2e/

Thematic Tutorials, Release 8.0

More Interesting Examples with f2py

Let us now look at some more interesting examples using f2py. We will implement a simple iterative method
for solving laplace’s equation in a square. Actually, this implementation is taken from http://www.scipy.org/
PerformancePython?highlight=%28performance%29 page on the scipy website. It has lots of information on im-
plementing numerical algorithms in python.

The following fortran code implements a single iteration of a relaxation method for solving Laplace’s equation in a
square.

%fortran
subroutine timestep(u,n,m,dx,dy,error)
double precision u(n,m)
double precision dx,dy,dx2,dy2,dnr_inv,tmp,diff
integer n,m,i,j

cf2py intent(in) :: dx,dy
cf2py intent(in,out) :: u
cf2py intent(out) :: error
cf2py intent(hide) :: n,m

dx2 = dx*dx
dy2 = dy*dy
dnr_inv = 0.5d0 / (dx2+dy2)
error = 0d0
do 200,j=2,m-1

do 100,i=2,n-1
tmp = u(i,j)
u(i,j) = ((u(i-1,j) + u(i+1,j))*dy2+

& (u(i,j-1) + u(i,j+1))*dx2)*dnr_inv
diff = u(i,j) - tmp
error = error + diff*diff

100 continue
200 continue

error = sqrt(error)
end

If you do

timestep?

You find that you need pass timestep a numpy array u, and the grid spacing dx,dy and it will return the updated u,
together with an error estimate. To apply this to actually solve a problem use this driver code

import numpy
j=numpy.complex(0,1)
num_points=50
u=numpy.zeros((num_points,num_points),dtype=float)
pi_c=float(pi)
x=numpy.r_[0.0:pi_c:num_points*j]
u[0,:]=numpy.sin(x)
u[num_points-1,:]=numpy.sin(x)
def solve_laplace(u,dx,dy):

iter =0
err = 2
while(iter <10000 and err>1e-6):

(u,err)=timestep(u,dx,dy)
iter+=1

return (u,err,iter)

348 Chapter 12. Documentation

http://www.scipy.org/PerformancePython?highlight=%28performance%29
http://www.scipy.org/PerformancePython?highlight=%28performance%29

Thematic Tutorials, Release 8.0

Now call the routine using

(sol,err,iter)=solve_laplace(u,pi_c/(num_points-1),pi_c/(num_points-1))

This solves the equation with boundary conditions that the right and left edge of the square are half an oscillation of
the sine function. With a 51x51 grid that we are using I find that it takes around .2 s to solve this requiring 2750
iterations. If you have the gnuplot package installed (use optional packages() to find its name and install package to
install it), then you can plot this using

import Gnuplot
g=Gnuplot.Gnuplot(persist=1)
g('set parametric')
g('set data style lines')
g('set hidden')
g('set contour base')
g('set zrange [-.2:1.2]')
data=Gnuplot.GridData(sol,x,x,binary=0)
g.splot(data)

To see what we have gained by using f2py let us compare the same algorithm in pure python and a vectorized version
using numpy arrays.

def slowTimeStep(u,dx,dy):
"""Takes a time step using straight forward Python loops."""
nx, ny = u.shape
dx2, dy2 = dx**2, dy**2
dnr_inv = 0.5/(dx2 + dy2)

err = 0.0
for i in range(1, nx-1):

for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +

(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return u,numpy.sqrt(err)

def numpyTimeStep(u,dx,dy):
dx2, dy2 = dx**2, dy**2
dnr_inv = 0.5/(dx2 + dy2)
u_old=u.copy()
The actual iteration
u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +

(u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv
v = (u - u_old).flat
return u,numpy.sqrt(numpy.dot(v,v))

You can try these out by changing the timestep function used in our driver routine. The python version is slow even
on a 50x50 grid. It takes 70 seconds to solve the system in 3000 iterations. It takes the numpy routine 2 seconds to
reach the error tolerance in around 5000 iterations. In contrast it takes the f2py routine around .2 seconds to reach the
error tolerance using 3000 iterations. I should point out that the numpy routine is not quite the same algorithm since it
is a jacobi iteration while the f2py one is gauss-seidel. This is why the numpy version requires more iterations. Even
accounting for this you can see the f2py version appears to be around 5 times faster than the numpy version. Actually
if you try this on a 500x500 grid I find that it takes the numpy routine 30 seconds to do 500 iterations while it only
takes about 2 seconds for the f2py to do this. So the f2py version is really about 15 times faster. On smaller grids

12.1. Thematic tutorial document tree 349

Thematic Tutorials, Release 8.0

each actual iteration is relatively cheap and so the overhead of calling f2py is more evident, on larger examples where
the iteration is expensive, the advantage of f2py is clear. Even on the small example it is still very fast. Note that a
500x500 grid in python would take around half an hour to do 500 iterations.

To my knowledge the fastest that you could implement this algorithm in matlab would be to vectorize it exactly like
the numpy routine we have. Vector addition in matlab and numpy are comparable. So unless there is some trick I don’t
know about, using f2py you can interactively write code 15 times faster than anything you could write in matlab (Please
correct me if I’m wrong). You can actually make the f2py version a little bit faster by using intent(in,out,overwrite) and
creating the initial numpy array using order=’FORTRAN’. This eliminates the unnecessary copying that is occurring
in memory.

Weave

Weave is a tool that does for C/C++ what f2py does for fortran (though we should note it is also possible to wrap C
code using f2py). Suppose we have some data stored in numpy arrays and we want to write some C/C++ code to do
something with that data that needs to be fast. For a trivial example, let us write a function that sums the contents of a
numpy array

sage: from scipy import weave
doctest:...: DeprecationWarning: `scipy.weave` is deprecated, use `weave` instead!
sage: from scipy.weave import converters

def my_sum(a):
n=int(len(a))
code="""
int i;
long int counter;
counter =0;
for(i=0;i<n;i++)
{

counter=counter+a(i);
}
return_val=counter;
"""

err=weave.inline(code,['a','n'],type_converters=converters.blitz,compiler='gcc')
return err

To call this function do

import numpy
a = numpy.array(range(60000))
time my_sum(a)
time sum(range(60000))

The first time the weave code executes the code is compiled, from then on, the execution is immediate. You should find
that python’s built-in sum function is comparable in speed to what we just wrote. Let us explain some things about this
example. As you can see, to use weave you create a string containing pure C/C++ code. Then you call weave.inline
on it. You pass to weave the string with the code, as well as a list of python object that it is to automatically convert
to C variables. So in our case we can refer to the python objects 𝑎 and 𝑛 inside of weave. Numpy arrays are accessed
by 𝑎(𝑖) if they are one-dimensional or 𝑎(𝑖, 𝑗) if they are two dimensional. Of course we cannot use just any python
object, currently weave knows about all python numerical data types such as ints and floats, as well as numpy arrays.
Note that numpy arrays do not become pointers in the C code (which is why they are accessed by () and not []. If you
need a pointer you should copy the data into a pointer. Next is a more complicated example that calls lapack to solve
a linear system ax=b.

350 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

def weave_solve(a,b):
n = len(a[0])
x = numpy.array([0]*n,dtype=float)

support_code="""
#include <stdio.h>
extern "C" {
void dgesv_(int *size, int *flag,double* data,int*size,

int*perm,double*vec,int*size,int*ok);
}
"""

code="""
int i,j;
double* a_c;
double* b_c;
int size;
int flag;
int* p;
int ok;
size=n;
flag=1;
a_c= (double *)malloc(sizeof(double)*n*n);
b_c= (double *)malloc(sizeof(double)*n);
p = (int*)malloc(sizeof(int)*n);
for(i=0;i<n;i++)

{
b_c[i]=b(i);
for(j=0;j<n;j++)
a_c[i*n+j]=a(i,j);

}
dgesv_(&size,&flag,a_c,&size,p,b_c,&size,&ok);
for(i=0;i<n;i++)

x(i)=b_c[i];
free(a_c);
free(b_c);
free(p);

"""

libs=['lapack','blas','g2c']
dirs=['/media/sdb1/sage-2.6.linux32bit-i686-Linux']
vars = ['a','b','x','n']
weave.inline(code,vars,support_code=support_code,libraries=libs,library_dirs=dirs,

→˓ \
type_converters=converters.blitz,compiler='gcc')
return x

Note that we have used the support_code argument which is additional C code you can use to include headers and
declare functions. Note that inline also can take all distutils compiler options which we used here to link in lapack.

def weaveTimeStep(u,dx,dy):
"""Takes a time step using inlined C code -- this version uses
blitz arrays."""
nx, ny = u.shape
dx2, dy2 = dx**2, dy**2
dnr_inv = 0.5/(dx2 + dy2)

code = """

12.1. Thematic tutorial document tree 351

Thematic Tutorials, Release 8.0

double tmp, err, diff,dnr_inv_;
dnr_inv_=dnr_inv;
err = 0.0;
for (int i=1; i<nx-1; ++i) {

for (int j=1; j<ny-1; ++j) {
tmp = u(i,j);
u(i,j) = ((u(i-1,j) + u(i+1,j))*dy2 +

(u(i,j-1) + u(i,j+1))*dx2)*dnr_inv_;
diff = u(i,j) - tmp;
err += diff*diff;

}
}
return_val = sqrt(err);
"""

compiler keyword only needed on windows with MSVC installed
err = weave.inline(code, ['u', 'dx2', 'dy2', 'dnr_inv', 'nx','ny'],

type_converters = converters.blitz,
compiler = 'gcc')

return u,err

Using our previous driver you should find that this version takes about the same amount of time as the f2py version
around .2 seconds to do 2750 iterations.

For more about weave see http://www.scipy.org/Weave

Ctypes

Ctypes is a very interesting python package which lets you import shared object libraries into python and call them
directly. I should say that even though this is called ctypes, it can be used just as well to call functions from libraries
written in fortran. The only complication is you need to know what a fortran function looks like to C. This is simple
everything is a pointer, so if your fortran function would be called as foo(A,N) where A is an array and N is its length,
then to call it from C it takes a pointer to an array of doubles and a pointer to an int. The other thing to be aware of is
that from C, fortran functions usually have an underscore appended. That is, a fortran function foo would appear as
foo from C (this is usually the case but is compiler dependent). Having said this, the following examples are in C.

As an example suppose you write the following simple C program

#include <stdio.h>

int sum(double *x,int n)
{

int i;
double counter;
counter = 0;
for(i=0;i<n;i++)
{

counter=counter+x[i];

}
return counter;

}

which you want to call from python. First make a shared object library by doing (at the command line)

gcc -c sum.c
gcc -shared -o sum.so sum.o

352 Chapter 12. Documentation

http://www.scipy.org/Weave

Thematic Tutorials, Release 8.0

Note that on OSX -shared should be replaced by -dynamiclib and sum.so should be called sum.dylib Then you can do

from ctypes import *
my_sum=CDLL('sum.so')
a=numpy.array(range(10),dtype=float)
my_sum.sum(a.ctypes.data_as(c_void_p),int(10))

Note here that a.ctypes.data as(c void p) returns a ctypes object that is void pointer to the underlying array of a. Note
that even though sum takes a double*, as long as we have a pointer to the correct data it doesn’t matter what its type is
since it will be automatically cast.

Note that actually there are other ways to pass in the required array of doubles. For example

a=(c_double*10)()
for i in range(10):

a[i]=i
my_sum.sum(a,int(10))

This example only uses ctypes. Ctypes has wrappers for C data types so for example

a=c_double(10.4)

would create a ctypes double object which could be passed to a C function. Note that there is a byref function that lets
you pass parameters by reference. This is used in the next example. c double*10, is a python object that represents an
array of 10 doubles and

a=(c_double*10)()

sets a equal to an array of 10 doubles. I find this method is usually less useful than using numpy arrays when the data
is mathematical as numpy arrays are more well integrated into python and sage.

Here is an example of using ctypes to directly call lapack. Note that this will only work if you have a lapack shared
object library on your system. Also on linux the file would be liblapack.so and you will probably use dgesv (OSX use
CLAPACK hence the lack of the underscore).

from ctypes import *
def ctypes_solve(m,b,n):

a=CDLL('/usr/lib/liblapack.dylib')
import numpy
p=(c_int*n)()
size=c_int(n)
ones=c_int(1)
ok=c_int(0)
a.dgesv(byref(size),byref(ones),m.ctypes.data_as(c_void_p),

byref(size),p,b.ctypes.data_as(c_void_p),byref(size),byref(ok))

For completeness, let us consider a way to solve the laplace equation using C types. Suppose you have written a simple
solver in C and you want to call it from python so you can easily test different boundary conditions. Your C program
might look like this.

#include <math.h>
#include <stdio.h>

double timestep(double *u,int nx,int ny,double dx,double dy)
{

double tmp, err, diff,dx2,dy2,dnr_inv;
dx2=dx*dx;
dy2=dy*dy;

12.1. Thematic tutorial document tree 353

Thematic Tutorials, Release 8.0

dnr_inv=0.5/(dx2+dy2);
err = 0.0;
int i,j;

for (i=1; i<nx-1; ++i) {
for (j=1; j<ny-1; ++j) {
tmp = u[i*nx+j];
u[i*nx+j] = ((u[(i-1)*nx+j] + u[(i+1)*nx+j])*dy2 +

(u[i*nx+j-1] + u[i*nx+j+1])*dx2)*dnr_inv;
diff = u[i*nx+j] - tmp;
err += diff*diff;

}
}

return sqrt(err);
}

double solve_in_C(double *u,int nx,int ny,double dx,double dy)
{

double err;
int iter;
iter = 0;
err = 1;
while(iter <10000 && err > 1e-6)

{
err=timestep(u,nx,ny,dx,dy);
iter++;

}

return err;
}

We can compile it by running at the command line

gcc -c laplace.c
gcc -shared -o laplace.so laplace.o

Now in sage (notebook or command line) execute

from ctypes import *
laplace=CDLL('/home/jkantor/laplace.so')
laplace.timestep.restype=c_double
laplace.solve_in_C.restype=c_double
import numpy
u=numpy.zeros((51,51),dtype=float)
pi_c=float(pi)
x=numpy.arange(0,pi_c+pi_c/50,pi_c/50,dtype=float)
u[0,:]=numpy.sin(x)
u[50,:]=numpy.sin(x)

def solve(u):
iter =0
err = 2
n=c_int(int(51))
pi_c=float(pi/50)
dx=c_double(pi_c)
while(iter <5000 and err>1e-6):

err=laplace.timestep(u.ctypes.data_as(c_void_p),n,n,dx,dx)

354 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

iter+=1
if(iter %50==0):

print((err,iter))
return (u,err,iter)

Note the line laplace.timestep.restype=c double. By default ctypes assumes the return values are ints. If they are not
you need to tell it by setting restype to the correct return type. If you execute the above code, then solve(u) will solve
the system. It is comparable to the weave or fortran solutions taking around .2 seconds. Alternatively you could do

n=c_int(int(51))
dx=c_double(float(pi/50))
laplace.solve_in_C(n.ctypes.data_as(c_void_p),n,n,dx,dx)

which computes the solution entirely in C. This is very fast. Admittedly we could have had our fortran or weave
routines do the entire solution at the C/Fortran level and we would have the same speed.

As I said earlier you can just as easily call a shared object library that is written in Fortran using ctypes. The key point
is it must be a shared object library and all fortran arguments are passed by reference, that is as pointers or using byref.
Also even though we used very simple data types, it is possible to deal with more complicated C structures. For this
and more about ctypes see http://python.net/crew/theller/ctypes/

More complicated ctypes example

Here we will look at a more complicated example. First consider the following C code.

#include <stdio.h>
#include <stdlib.h>

struct double_row_element_t {
double value;
int col_index;
struct double_row_element_t * next_element;

};

typedef struct double_row_element_t double_row_element;

typedef struct {
int nrows;
int ncols;
int nnz;
double_row_element** rows;

} double_sparse_matrix;

double_sparse_matrix * initialize_matrix(int nrows, int ncols)
{

int i;
double_sparse_matrix* new_matrix;
new_matrix = (double_sparse_matrix *) malloc(sizeof(double_sparse_matrix));
new_matrix->rows= (double_row_element **) malloc(sizeof(double_row_element

→˓*)*nrows);
for(i=0;i<nrows;i++)
{

(new_matrix->rows)[i]=(double_row_element *) malloc(sizeof(double_row_element));

12.1. Thematic tutorial document tree 355

http://python.net/crew/theller/ctypes/

Thematic Tutorials, Release 8.0

(new_matrix->rows)[i]->value=0;
(new_matrix->rows)[i]->col_index=0;
(new_matrix->rows)[i]->next_element = 0;

}
new_matrix->nrows=nrows;
new_matrix->ncols=ncols;
new_matrix->nnz=0;
return new_matrix;

}

int free_matrix(double_sparse_matrix * matrix)
{

int i;
double_row_element* next_element;
double_row_element* current_element;
for(i=0;i<matrix->nrows;i++)
{

current_element = (matrix->rows)[i];
while(current_element->next_element!=0)

{
next_element=current_element->next_element;
free(current_element);
current_element=next_element;

}
free(current_element);

}
free(matrix->rows);
free(matrix);
return 1;

}

int set_value(double_sparse_matrix * matrix,int row, int col, double value)
{

int i;
i=0;
double_row_element* current_element;
double_row_element* new_element;

if(row> matrix->nrows || col > matrix->ncols || row <0 || col <0)
return 1;

current_element = (matrix->rows)[row];
while(1)
{

if(current_element->col_index==col)
{
current_element->value=value;
return 0;
}

else
if(current_element->next_element!=0)
{

if(current_element->next_element->col_index <=col)
current_element = current_element->next_element;

else

356 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

if(current_element->next_element->col_index > col)
{

new_element = (double_row_element *) malloc(sizeof(double_row_element));
new_element->value=value;
new_element->col_index=col;
new_element->next_element=current_element->next_element;
current_element->next_element=new_element;
return 0;
}

}
else

{
new_element = (double_row_element *) malloc(sizeof(double_row_element));
new_element->value=value;
new_element->col_index=col;
new_element->next_element=0;
current_element->next_element=new_element;
break;

}

}

return 0;
}

double get_value(double_sparse_matrix* matrix,int row, int col)
{

int i;
double_row_element * current_element;
if(row> matrix->nrows || col > matrix->ncols || row <0 || col <0)
return 0.0;

current_element = (matrix->rows)[row];
while(1)
{

if(current_element->col_index==col)
{

return current_element->value;
}

else
{

if(current_element->col_index<col && current_element->next_element !=0)
current_element=current_element->next_element;

else
if(current_element->col_index >col || current_element ->next_element==0)

return 0;
}
}

}

Put it in a file called linked_list_sparse.c and compile it using

gcc -c linked_list_sparse.c
gcc -shared -o linked_list_sparse.so linked_list_sparse.o

Next consider the following python helper code.

12.1. Thematic tutorial document tree 357

Thematic Tutorials, Release 8.0

from ctypes import *

class double_row_element(Structure):
pass

double_row_element._fields_=[("value",c_double),("col_index",c_int),("next_element",
→˓POINTER(double_row_element))]

class double_sparse_matrix(Structure):
fields=[("nrows",c_int),("ncols",c_int),("nnz",c_int),("rows",

→˓POINTER(POINTER(double_row_element)))]

double_sparse_pointer=POINTER(double_sparse_matrix)
sparse_library=CDLL("/home/jkantor/linked_list_sparse.so")
initialize_matrix=sparse_library.initialize_matrix
initialize_matrix.restype=double_sparse_pointer
set_value=sparse_library.set_value
get_value=sparse_library.get_value
get_value.restype=c_double
free_matrix=sparse_library.free_matrix

Lets discuss the above code. The original C code stored a sparse matrix as a linked list. The python code uses the
ctypes Structure class to create structures mirroring the structs in the C code. To create python object representing a C
struct, simply create class that derives from Structure. The _fields_ attribute of the class must be set to a list of tuples
of field names and values. Note that in case you need to refer to a struct before it is completely defined (as in the
linked list) you can first declare it with “Pass”, and then specify the field contents as above. Also note the POINTER
operator which creates a pointer out of any ctypes type. We are able to directly call our library as follows.

m=double_sparse_pointer()
m=initialize_matrix(c_int(10),c_int(10))
set_value(m,c_int(4),c_int(4),c_double(5.0))
a=get_value(m,c_int(4),c_int(4))
print("%f"%a)
free_matrix(m)

Note that you can access the contents of a structure just by (struct_object).field name. However for pointers, there is a
contents attribute. So, in the above, m.contents.nrows would let you access the nrows field. In fact you can manually
walk along the linked list as follows.

m=double_sparse_pointer()
m=initialize_matrix(c_int(10),c_int(10))
set_value(m,c_int(4),c_int(4),c_double(5.0))
a=m.contents.rows[4]
b=a.contents.next_element
b.contents.value
free_matrix(m)

Comparison to Cython/Pyrex

It is certainly possible to write a solver in Cython or Pyrex. From the http://www.scipy.org/PerformancePython?
highlight=%28performance%29 website you can find an example. One potential downside to Cython over the previous
solutions is it requires the user to understand how NumPy arrays or Sage matrices are implemented so as to be able to
access their internal data. In contrast the weave, scipy, and ctypes examples only require the user to know C or Fortran

358 Chapter 12. Documentation

http://www.scipy.org/PerformancePython?highlight=%28performance%29
http://www.scipy.org/PerformancePython?highlight=%28performance%29

Thematic Tutorials, Release 8.0

and from their perspective the NumPy data magically gets passed to C or Fortran with no further thought from them.
In order for pyrex to be competitive as a way to interactively write compiled code, the task of accessing the internal
structure of NumPy arrays or Sage matrices needs to be hidden.

Parallel Computation

mpi4py

MPI which stands for message passing interface is a common library for parallel programming. There is a package
mpi4py that builds on the top of mpi, and lets arbitrary python objects be passed between different processes. These
packages are not part of the default sage install. To install them do

sage: optional_packages()

Find the package name openmpi-* and mpi4py-*and do

sage: install_package('openmpi-*')
sage: install_package('mpi4py-*')

Note that openmpi takes a while to compile (15-20 minutes or so). Openmpi can be run on a cluster, however this
requires some set up so that processes on different machines can communicate (though if you are on a cluster this is
probably already set up). The simplest case is if you are on a shared memory or multicore system where openmpi will
just work with no configuration from you. To be honest, I have never tried to run mpi4py on a cluster, though there is
much information about these topics online.

Now, the way that mpi works is you start a group of mpi processes, all of the processes run the same code. Each
process has a rank, that is a number that identifies it. The following pseudocode indicates the general format of MPI
programs.

....

if my rank is n:
do some somputation ...
send some stuff to the process of rank j
receive some data from the process of rank k

else if my rank is n+1:
....

Each processes looks for what it’s supposed to do (specified by its rank) and processes can send data and receive data.
Lets give an example. Create a script with the following code in a file mpi_1.py

from mpi4py import MPI
comm = MPI.COMM_WORLD
print("hello world")
print("my rank is: %d"%comm.rank)

To run it you can do (from the command line in your sage directory)

./local/bin/mpirun -np 5 ./sage -python mpi_1.py

The command mpirun -np 5 starts 5 copies of a program under mpi. In this case we have 5 copies of sage in pure
python mode run the script mpi_1.py. The result should be 5 “hello worlds” plus 5 distinct ranks. The two most
important mpi operations are sending and receiving. Consider the following example which you should put in a script
mpi_2.py

12.1. Thematic tutorial document tree 359

Thematic Tutorials, Release 8.0

from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank=comm.rank
size=comm.size
v=numpy.array([rank]*5,dtype=float)
comm.send(v,dest=(rank+1)%size)
data=comm.recv(source=(rank-1)%size)
print("my rank is %d"%rank)
print("I received this:")
print(data)

The same command as above with mpi_1.py replaced by mpi_2.py will produce 5 outputs and you will see each
process creates an array and then passes it to the next guy (where the last guy passes to the first.) Note that MPI.size
is the total number of mpi processes. MPI.COMM WORLD is the communication world.

There are some subtleties regarding MPI to be aware of. Small sends are buffered. This means if a process sends
a small object it will be stored by openmpi and that process will continue its execution and the object it sent will
be received whenever the destination executes a receive. However, if an object is large a process will hang until its
destination executes a corresponding receive. In fact the above code will hang if [rank]*5 is replaced by [rank]*500.
It would be better to do

from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank=comm.rank
size=comm.size
v=numpy.array([rank]*500,dtype=float)
if comm.rank==0:

comm.send(v,dest=(rank+1)%size)
if comm.rank > 0:

data=comm.recv(source=(rank-1)%size)
comm.send(v,dest=(rank+1)%size)

if comm.rank==0:
data=comm.recv(source=size-1)

print("my rank is %d"%rank)
print("I received this:")
print(data)

Now the first process initiates a send, and then process 1 will be ready to receive and then he will send and process 2
will be waiting to receive, etc. This will not lock regardless of how large of an array we pass.

A common idiom is to have one process, usually the one with rank 0 act as a leader. That processes sends data out
to the other processes and processes the results and decides how further computation should proceed. Consider the
following code

from mpi4py import MPI
import numpy
sendbuf=[]
root=0
comm = MPI.COMM_WORLD
if comm.rank==0:

m=numpy.random.randn(comm.size,comm.size)
print(m)
sendbuf=m

v=comm.scatter(sendbuf,root)

360 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

print("I got this array:")
print(v)

The scatter command takes a list and evenly divides it amongst all the processes. Here the root process creates a
matrix (which is viewed as a list of rows) and then scatters it to everybody (roots sendbuf is divided equally amongst
the processes). Each process prints the row it got. Note that the scatter command is executed by everyone, but when
root executes it, it acts as a send and a receive (root gets one row from itself), while for everyone else it is just a receive.

There is a complementary gather command that collects results from all the processes into a list. The next example
uses scatter and gather together. Now the root process scatters the rows of a matrix, each process then squares the
elements of the row it gets. Then the rows are all gathered up again by the root process who collects them into a new
matrix.

from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
sendbuf=[]
root=0
if comm.rank==0:

m=numpy.array(range(comm.size*comm.size),dtype=float)
m.shape=(comm.size,comm.size)
print(m)
sendbuf=m

v=comm.scatter(sendbuf,root)
print("I got this array:")
print(v)
v=v*v
recvbuf=comm.gather(v,root)
if comm.rank==0:

print(numpy.array(recvbuf))

There is also a broadcast command that sends a single object to every process. Consider the following small extension.
This is the same as before, but now at the end the root process sends everyone the string “done”, which is printed out.

v=MPI.COMM_WORLD.scatter(sendbuf,root)
print("I got this array:")
print(v)
v=v*v
recvbuf=MPI.COMM_WORLD.gather(v,root)
if MPI.COMM_WORLD.rank==0:

print(numpy.array(recvbuf))

if MPI.COMM_WORLD.rank==0:
sendbuf="done"

recvbuf=MPI.COMM_WORLD.bcast(sendbuf,root)
print(recvbuf)

MPI programming is difficult. It is “schizophrenic programming” in that you are writing a single programming with
multiple threads of execution “many voices in one head”.

Parallel Laplace Solver

The following code solves Laplace’s equation in parallel on a grid. It divides a square into 𝑛 parallel strips where 𝑛 is
the number of processes and uses jacobi-iteration. The way the code works is that the root process creates a matrix and

12.1. Thematic tutorial document tree 361

Thematic Tutorials, Release 8.0

distributes the pieces to the other processes. At each iteration each process passes its upper row to the process above
and its lower row to the process below since they need to know the values at neighboring points to do the iteration.
Then they iterate and repeat. Every 500 iterations the error estimates from the processes are collected using Gather.
you can compare the output of this with the solver we wrote in the section on f2py.

from mpi4py import MPI
import numpy
size=MPI.size
rank=MPI.rank
num_points=500
sendbuf=[]
root=0
dx=1.0/(num_points-1)
from numpy import r_
j=numpy.complex(0,1)
rows_per_process=num_points/size
max_iter=5000
num_iter=0
total_err=1

def numpyTimeStep(u,dx,dy):
dx2, dy2 = dx**2, dy**2
dnr_inv = 0.5/(dx2 + dy2)
u_old=u.copy()
The actual iteration
u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +

(u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv
v = (u - u_old).flat
return u,numpy.sqrt(numpy.dot(v,v))

if MPI.rank==0:
print("num_points: %d"%num_points)
print("dx: %f"%dx)
print("row_per_procss: %d"%rows_per_process)
m=numpy.zeros((num_points,num_points),dtype=float)
pi_c=numpy.pi
x=r_[0.0:pi_c:num_points*j]
m[0,:]=numpy.sin(x)
m[num_points-1,:]=numpy.sin(x)
l=[m[i*rows_per_process:(i+1)*rows_per_process,:] for i in range(size)]
sendbuf=l

my_grid=MPI.COMM_WORLD.Scatter(sendbuf,root)

while num_iter < max_iter and total_err > 10e-6:

if rank==0:
MPI.COMM_WORLD.Send(my_grid[-1,:],1)

if rank > 0 and rank< size-1:
row_above=MPI.COMM_WORLD.Recv(rank-1)
MPI.COMM_WORLD.Send(my_grid[-1,:],rank+1)

if rank==size-1:
row_above=MPI.COMM_WORLD.Recv(MPI.rank-1)

362 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

MPI.COMM_WORLD.Send(my_grid[0,:],rank-1)

if rank > 0 and rank< size-1:
row_below=MPI.COMM_WORLD.Recv(MPI.rank+1)
MPI.COMM_WORLD.Send(my_grid[0,:],MPI.rank-1)

if rank==0:
row_below=MPI.COMM_WORLD.Recv(1)

if rank >0 and rank < size-1:
row_below.shape=(1,num_points)
row_above.shape=(1,num_points)
u,err =numpyTimeStep(r_[row_above,my_grid,row_below],dx,dx)
my_grid=u[1:-1,:]

if rank==0:
row_below.shape=(1,num_points)
u,err=numpyTimeStep(r_[my_grid,row_below],dx,dx)
my_grid=u[0:-1,:]

if rank==size-1:
row_above.shape=(1,num_points)
u,err=numpyTimeStep(r_[row_above,my_grid],dx,dx)
my_grid=u[1:,:]

if num_iter%500==0:
err_list=MPI.COMM_WORLD.Gather(err,root)
if rank==0:

total_err = 0
for a in err_list:

total_err=total_err+numpy.math.sqrt(a**2)
total_err=numpy.math.sqrt(total_err)
print("error: %f"%total_err)

num_iter=num_iter+1

recvbuf=MPI.COMM_WORLD.Gather(my_grid,root)
if rank==0:

sol=numpy.array(recvbuf)
sol.shape=(num_points,num_points)

##Write your own code to do something with the solution
print(num_iter)
print(sol)

For small grid sizes this will be slower than a straightforward serial implementation, this is because there is overhead
from the communication, and for small grids the interprocess communication takes more time than just doing the
iteration. However, on a 1000x1000 grid I find that using 4 processors, the parallel version takes only 6 seconds while
the serial version we wrote earlier takes 20 seconds.

Excercise: Rewrite the above using f2py or weave, so that each process compiles a fortran or C timestep function and
uses that, how fast can you get this?

12.1. Thematic tutorial document tree 363

Thematic Tutorials, Release 8.0

12.1.20 Three Lectures about Explicit Methods in Number Theory Using Sage

This article is about using the mathematical software Sage to do computations with number fields and modu-
lar forms. It was written for the October 2008 Bordeaux meeting on explicit methods in number theory (http:
//www.math.u-bordeaux.fr/gtem2008/). It assumes no prior knowledge about Sage, but assumes a graduate level
background in algebraic number theory.

Introduction

What is Sage?

Sage (see http://sagemath.org) is a comprehensive mathematical software system for computations in many areas of
pure and applied mathematics. We program Sage using the mainstream programming language Python (see http:
//python.org), or its compiled variant Cython. It is also very easy to efficiently use code written in C/C++ from Sage.

The author of this article started the Sage project in 2005.

Sage is free and open source, meaning you can change any part of Sage and redistribute the result without having to
pay any license fees, and Sage can also leverage the power of commercial mathematical software such as Magma and
Mathematica, if you happen to have access to those closed source commercial systems.

This document assumes no prior knowledge of either Python or Sage. Our goal is to help number theorists do compu-
tations involving number fields and modular forms using Sage.

TODO: Overview of Article

As you read this article, please try every example in Sage, and make sure things works as I claim, and do all of the
exercises. Moreover, you should experiment by typing in similar examples and checking that the output you get agrees
with what you expect.

Using Sage

To use Sage, install it on your computer, and use either the command line or start the Sage notebook by typing
notebook() at the command line.

We show Sage sessions as follows:

sage: factor(123456)
2^6 * 3 * 643

This means that if you type factor(123456) as input to Sage, then you’ll get 2^6 * 3 * 643 as output. If
you’re using the Sage command line, you type factor(123456) and press enter; if you’re using the Sage notebook
via your web browser, you type factor(123456) into an input cell and press shift-enter; in the output cell you’ll
see 2^6 * 3 * 643.

After trying the factor command in the previous paragraph (do this now!), you should try factoring some other
numbers.

Note: What happens if you factor a negative number? a rational number?

You can also draw both 2d and 3d pictures using Sage. For example, the following input plots the number of prime
divisors of each positive integer up to 500.

sage: line([(n, len(factor(n))) for n in [1..500]])
Graphics object consisting of 1 graphics primitive

364 Chapter 12. Documentation

http://www.math.u-bordeaux.fr/gtem2008/
http://www.math.u-bordeaux.fr/gtem2008/
http://sagemath.org
http://python.org
http://python.org

Thematic Tutorials, Release 8.0

And, this example draws a similar 3d plot:

sage: import warnings
sage: warnings.simplefilter('ignore', UserWarning)
sage: v = [[len(factor(n*m)) for n in [1..15]] for m in [1..15]]
sage: list_plot3d(v, interpolation_type='nn')
Graphics3d Object

The Sage-Pari-Magma Ecosystem

• The main difference between Sage and Pari is that Sage is vastly larger than Pari with a much wider range of
functionality, and has many more data types and much more structured objects. Sage in fact includes Pari, and
a typical Sage install takes nearly a gigabyte of disk space, whereas a typical Pari install is much more nimble,
using only a few megabytes. There are many number-theoretic algorithms that are included in Sage, which
have never been implemented in Pari, and Sage has 2d and 3d graphics which can be helpful for visualizing
number theoretic ideas, and a graphical user interface. Both Pari and Sage are free and open source, which
means anybody can read or change anything in either program, and the software is free.

• The biggest difference between Sage and Magma is that Magma is closed source, not free, and difficult for users
to extend. This means that most of Magma cannot be changed except by the core Magma developers, since
Magma itself is well over two million lines of compiled C code, combined with about a half million lines of
interpreted Magma code (that anybody can read and modify). In designing Sage, we carried over some of the
excellent design ideas from Magma, such as the parent, element, category hierarchy.

• Any mathematician who is serious about doing extensive computational work in algebraic number theory and
arithmetic geometry is strongly urged to become familiar with all three systems, since they all have their pros and
cons. Pari is sleek and small, Magma has much unique functionality for computations in arithmetic geometry,
and Sage has a wide range of functionality in most areas of mathematics, a large developer community, and
much unique new code.

Number Fields

Introduction to Number Fields

In Sage, we can create the number field Q(3
√

2) as follows.

sage: K.<alpha> = NumberField(x^3 - 2)

The above creates two Sage objects, 𝐾 and 𝛼. Here 𝐾 “is” (isomorphic to) the number field Q(3
√

2), as we confirm
below:

sage: K
Number Field in alpha with defining polynomial x^3 - 2

and 𝛼 is a root of 𝑥3 − 2, so 𝛼 is an abstract choice of 3
√

2 (no specific embedding of the number field 𝐾 into C is
chosen by default in Sage-3.1.2):

sage: alpha^3
2
sage: (alpha+1)^3
3*alpha^2 + 3*alpha + 3

12.1. Thematic tutorial document tree 365

Thematic Tutorials, Release 8.0

The variable 𝑥

Note that we did not define 𝑥 above before using it. You could “break” the above example by redefining 𝑥 to be
something funny:

sage: x = 1
sage: K.<alpha> = NumberField(x^3 - 2)
Traceback (most recent call last):
...
TypeError: polynomial (=-1) must be a polynomial.

The Traceback above indicates that there was an error. Potentially lots of detailed information about the error (a “trace-
back”) may be given after the word Traceback and before the last line, which contains the actual error messages.

Note: Important: whenever you use Sage and get a big error, look at the last line for the actual error, and only look
at the rest if you are feeling adventurous. In the notebook, the part indicated by ... above is not displayed; to see it,
click just to the left of the word Traceback and the traceback will appear.

If you redefine 𝑥 as above, but need to define a number field using the indeterminate 𝑥, you have several options. You
can reset 𝑥 to its default value at the start of Sage, you can redefine 𝑥 to be a symbolic variable, or you can define 𝑥 to
be a polynomial indeterminate (a polygen):

sage: reset('x')
sage: x
x
sage: x = 1
sage: x = var('x')
sage: x
x
sage: x = 1
sage: x = polygen(QQ, 'x')
sage: x
x
sage: x = 1
sage: R.<x> = PolynomialRing(QQ)
sage: x
x

Using tab completion to get the methods of an object

One you have created a number field 𝐾, type K.[tab key] to see a list of functions. Type, e.g., K.
Minkowski_embedding?[tab key] to see help on the Minkowski_embedding command. To see source
code, type K.Minkowski_embedding??[tab key].

sage: K.<alpha> = NumberField(x^3 - 2)
sage: K.[tab key]

Symbolic Expressions

Another natural way for us to create certain number fields is to create a symbolic expression and adjoin it to the rational
numbers. Unlike Pari and Magma (and like Mathematica and Maple), Sage also supports manipulation of symbolic
expressions and solving equations, without defining abstract structures such as a number fields. For example, we

366 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

can define a variable 𝑎 =
√

2 as an abstract symbolic object by simply typing a = sqrt(2). When we type
parent(a) below, Sage tells us the mathematical object that it views 𝑎 as being an element of; in this case, it’s the
ring of all symbolic expressions.

sage: a = sqrt(2)
sage: parent(a)
Symbolic Ring

sqrt(2) in Pari and Magma

In particular, typing sqrt(2) does not numerically extract an approximation to
√

2, like it would in Pari or Magma.
We illustrate this below by calling Pari (via the gp interpreter) and Magma directly from within Sage. After we evaluate
the following two input lines, copies of GP/Pari and Magma are running, and there is a persistent connection between
Sage and those sessions.

sage: gp('sqrt(2)')
1.414213562373095048801688724...
sage: magma('Sqrt(2)') # optional - magma
1.414213562373095048801688724...

You probably noticed a pause when evaluated the second line as Magma started up. Also, note the # optional
comment, which indicates that the line won’t work if you don’t have Magma installed.

Numerically evaluating sqrt(2)

Incidentally, if you want to numerically evaluate
√

2 in Sage, just give the optional prec argument to the sqrt
function, which takes the required number of bits (binary digits) of precision.

sage: sqrt(2, prec=100)
1.4142135623730950488016887242

It’s important to note in computations like this that there is not an a priori guarantee that prec bits of the answer
are all correct. Instead, what happens is that Sage creates the number 2 as a floating point number with 100 bits of
accuracy, then asks Paul Zimmerman’s MPFR C library to compute the square root of that approximate number.

Arithmetic with sqrt(2)

We return now to our symbolic expression 𝑎 =
√

2. If you ask to square 𝑎 + 1 you simply get the formal square. To
expand out this formal square, we use the expand command.

sage: a = sqrt(2)
sage: (a+1)^2
(sqrt(2) + 1)^2
sage: expand((a+1)^2)
2*sqrt(2) + 3

Adjoining a symbolic expression

Given any symbolic expression for which Sage can compute its minimal polynomial, you can construct the number
field obtained by adjoining that expression to Q. The notation is quite simple - just type QQ[a] where a is the
symbolic expression.

12.1. Thematic tutorial document tree 367

Thematic Tutorials, Release 8.0

sage: a = sqrt(2)
sage: K. = QQ[a]
sage: K
Number Field in sqrt2 with defining polynomial x^2 - 2
sage: b
sqrt2
sage: (b+1)^2
2*sqrt2 + 3
sage: QQ[a/3 + 5]
Number Field in a with defining polynomial x^2 - 10*x + 223/9

Coercion: QQ[a] versus QQ(a)

You can’t create the number field Q(𝑎) in Sage by typing QQ(a), which has a very different meaning in Sage. It
means “try to create a rational number from 𝑎.” Thus QQ(a) in Sage is the analogue of QQ!a in Magma (Pari has no
notion of rings such as QQ).

sage: a = sqrt(2)
sage: QQ(a)
Traceback (most recent call last):
...
TypeError: unable to convert sqrt(2) to a rational

In general, if 𝑋 is a ring, or vector space or other “parent structure” in Sage, and 𝑎 is an element, type X(a) to make
an element of 𝑋 from 𝑎. For example, if 𝑋 is the finite field of order 7, and 𝑎 = 2/5 is a rational number, then X(a)
is the finite field element 6 (as a quick exercise, check that this is mathematically the correct interpretation).

sage: X = GF(7); a = 2/5
sage: X(a)
6

Solving a cubic equation

As a slightly less trivial illustration of symbolic manipulation, consider the cubic equation

𝑥3 +
√

2𝑥+ 5 = 0.

In Sage, we can create this equation, and find an exact symbolic solution.

sage: x = var('x')
sage: eqn = x^3 + sqrt(2)*x + 5 == 0
sage: a = solve(eqn, x)[0].rhs()

The first line above makes sure that the symbolic variable 𝑥 is defined, the second creates the equation eqn, and the
third line solves eqn for 𝑥, extracts the first solution (there are three), and takes the right hand side of that solution
and assigns it to the variable a.

Viewing complicated symbolic expressions

To see the solution nicely typeset, use the pretty_print command

368 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: pretty_print(a)
<html><script type="math/tex">\newcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{2} ...

−1

2
(𝑖
√

3 + 1)(
1

18

√︁
8
√

2 + 675
√

3− 5

2
)
(1

3)
+

1

6

(−𝑖
√

3 + 1)
√

2

(1
18

√︀
8
√

2 + 675
√

3− 5
2)

(1
3)

You can also see the latex needed to paste 𝑎 into a paper by typing latex(a). The latex command works on most
Sage objects.

sage: latex(a)
-\frac{1}{2} \, {\left(i \, \sqrt{3} + 1\right)} ...

Adjoining a root of the cubic

Next, we construct the number field obtained by adjoining the solution a to Q. Notice that the minimal polynomial of
the root is 𝑥6 + 10𝑥3 − 2𝑥2 + 25.

Warning: The following tests are currently broken until trac ticket #5338 is fixed.

sage: K. = QQ[a]
sage: K
Number Field in a with defining
polynomial x^6 + 10*x^3 - 2*x^2 + 25
sage: a.minpoly()
x^6 + 10*x^3 - 2*x^2 + 25
sage: b.minpoly()
x^6 + 10*x^3 - 2*x^2 + 25

We can now compute interesting invariants of the number field 𝐾

sage: K.class_number()
5
sage: K.galois_group().order()
72

Number Fields: Galois Groups and Class Groups

Galois Groups

We can compute the Galois group of a number field using the galois_group function, which by default calls Pari
(http://pari.math.u-bordeaux.fr/). You do not have to worry about installing Pari, since Pari is part of Sage. In fact,
despite appearances much of the difficult algebraic number theory in Sage is actually done by the Pari C library (be
sure to also cite Pari in papers that use Sage).

sage: K.<alpha> = NumberField(x^6 + 40*x^3 + 1372)
sage: G = K.galois_group()
sage: G
Galois group of Number Field in alpha with defining polynomial x^6 + 40*x^3 + 1372

Internally G is represented as a group of permutations, but we can also apply any element of G to any element of the
field:

12.1. Thematic tutorial document tree 369

https://trac.sagemath.org/5338
http://pari.math.u-bordeaux.fr/

Thematic Tutorials, Release 8.0

sage: G.order()
6
sage: G.gens()
[(1,2)(3,4)(5,6), (1,4,6)(2,5,3)]
sage: f = G.1; f(alpha)
1/36*alpha^4 + 1/18*alpha

Some more advanced number-theoretical tools are available via G:

sage: P = K.primes_above(2)[0]
sage: G.inertia_group(P)
Subgroup [(), (1,4,6)(2,5,3), (1,6,4)(2,3,5)] of Galois group of Number Field in
→˓alpha with defining polynomial x^6 + 40*x^3 + 1372
sage: sorted([G.artin_symbol(Q) for Q in K.primes_above(5)]) # random order, see
→˓Trac #18308
[(1,3)(2,6)(4,5), (1,2)(3,4)(5,6), (1,5)(2,4)(3,6)]

If the number field is not Galois over Q, then the galois_group command will construct its Galois closure and
return the Galois group of that; you need to give it a variable name for the generator of the Galois closure:

sage: K.<a> = NumberField(x^3 - 2)
sage: G = K.galois_group(names='b'); G
Galois group of Galois closure in b of Number Field in a with defining polynomial x^3
→˓- 2
sage: G.order()
6

Some more Galois groups

We compute two more Galois groups of degree 5 extensions, and see that one has Galois group 𝑆5, so is not solvable
by radicals. For these purposes we only want to know the structure of the Galois group as an abstract group, rather
than as an explicit group of automorphisms of the splitting field; this is much quicker to calculate. PARI has a type for
representing “abstract Galois groups”, and Sage can use this.:

sage: NumberField(x^5 - 2, 'a').galois_group(type="pari")
Galois group PARI group [20, -1, 3, "F(5) = 5:4"] of
degree 5 of the Number Field in a with defining
polynomial x^5 - 2
sage: NumberField(x^5 - x + 2, 'a').galois_group(type="pari")
Galois group PARI group [120, -1, 5, "S5"] of degree 5 of
the Number Field in a with defining polynomial x^5 - x + 2

Magma’s Galois group command

Recent versions of Magma have an algorithm for computing Galois groups that in theory applies when the input
polynomial has any degree. There are no open source implementation of this algorithm (as far as I know). If
you have Magma, you can use this algorithm from Sage by calling the galois_group function and giving the
algorithm='magma' option. The return value is one of the groups in the GAP transitive groups database.

sage: K.<a> = NumberField(x^3 - 2)
sage: K.galois_group(type="gap", algorithm='magma') # optional - magma database_gap
Galois group Transitive group number 2 of degree 3 of
the Number Field in a with defining polynomial x^3 - 2

370 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

We emphasize that the above example should not work if you don’t have Magma.

Computing complex embeddings

You can also enumerate all complex embeddings of a number field:

sage: K.complex_embeddings()
[
Ring morphism:

From: Number Field in a with defining polynomial x^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> -0.629960524947437 - 1.09112363597172*I,

Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> -0.629960524947437 + 1.09112363597172*I,

Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> 1.25992104989487

]

Class Numbers and Class Groups

The class group 𝐶𝐾 of a number field 𝐾 is the group of fractional ideals of the maximal order 𝑅 of 𝐾 modulo the
subgroup of principal fractional ideals. One of the main theorems of algebraic number theory asserts that 𝐶𝐾 is a
finite group. For example, the quadratic number field Q(

√
−23) has class number 3, as we see using the Sage class

number command.

sage: L.<a> = NumberField(x^2 + 23)
sage: L.class_number()
3

Quadratic imaginary fields with class number 1

There are only 9 quadratic imaginary field Q(
√
𝐷) that have class number 1:

𝐷 = −3,−4,−7,−8,−11,−19,−43,−67,−163

To find this list using Sage, we first experiment with making lists in Sage. For example, typing [1..10] makes the
list of integers between 1 and 10.

sage: [1..10]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can also make the list of odd integers between 1 and 11, by typing [1,3,..,11], i.e., by giving the second term
in the arithmetic progression.

sage: [1,3,..,11]
[1, 3, 5, 7, 9, 11]

Applying this idea, we make the list of negative numbers from −1 down to −10.

12.1. Thematic tutorial document tree 371

Thematic Tutorials, Release 8.0

sage: [-1,-2,..,-10]
[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]

Enumerating quadratic imaginary fields with class number 1

The first two lines below makes a list 𝑣 of every 𝐷 from −1 down to −200 such that 𝐷 is a fundamental discriminant
(the discriminant of a quadratic imaginary field).

Note: Note that you will not see the ... in the output below; this ... notation just means that part of the output is
omitted below.

sage: w = [-1,-2,..,-200]
sage: v = [D for D in w if is_fundamental_discriminant(D)]
sage: v
[-3, -4, -7, -8, -11, -15, -19, -20, ..., -195, -199]

Finally, we make the list of 𝐷 in our list 𝑣 such that the quadratic number field Q(
√
𝐷) has class number 1. Notice

that QuadraticField(D) is a shorthand for NumberField(x^2 - D).

sage: [D for D in v if QuadraticField(D,'a').class_number()==1]
[-3, -4, -7, -8, -11, -19, -43, -67, -163]

Of course, we have not proved that this is the list of all negative 𝐷 so that Q(
√
𝐷) has class number 1.

Class number 1 fields

A frustrating open problem is to prove that there are infinitely many number fields with class number 1. It is quite easy
to be convinced that this is probably true by computing a bunch of class numbers of real quadratic fields. For example,
over 58 percent of the real quadratic number fields with discriminant 𝐷 < 1000 have class number 1!

sage: w = [1..1000]
sage: v = [D for D in w if is_fundamental_discriminant(D)]
sage: len(v)
302
sage: len([D for D in v if QuadraticField(D,'a').class_number() == 1])
176
sage: 176.0/302
0.582781456953642

For more intuition about what is going on, read about the Cohen-Lenstra heuristics.

Class numbers of cyclotomic fields

Sage can also compute class numbers of extensions of higher degree, within reason. Here we use the shorthand
CyclotomicField(n) to create the number field Q(𝜁𝑛).

sage: CyclotomicField(7)
Cyclotomic Field of order 7 and degree 6
sage: for n in [2..15]:
....: print("{} {}".format(n, CyclotomicField(n).class_number()))
2 1

372 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

3 1
...
15 1

In the code above, the notation for n in [2..15]: ... means “do ... for 𝑛 equal to each of the integers
2, 3, 4, . . . , 15.”

Note: Exercise: Compute what is omitted (replaced by ...) in the output of the previous example.

Assuming conjectures to speed computations

Computations of class numbers and class groups in Sage is done by the Pari C library, and unlike in Pari, by default
Sage tells Pari not to assume any conjectures. This can make some commands vastly slower than they might be directly
in Pari, which does assume unproved conjectures by default. Fortunately, it is easy to tell Sage to be more permissive
and allow Pari to assume conjectures, either just for this one call or henceforth for all number field functions. For
example, with proof=False it takes only a few seconds to verify, modulo the conjectures assumed by Pari, that the
class number of Q(𝜁23) is 3.

sage: CyclotomicField(23).class_number(proof=False)
3

Note: Exercise: What is the smallest 𝑛 such that Q(𝜁𝑛) has class number bigger than 1?

Class group structure

In addition to computing class numbers, Sage can also compute the group structure and generators for class groups. For
example, the quadratic field Q(

√
−30) has class group 𝐶 = (Z/2Z)⊕2, with generators the ideal classes containing

(5,
√
−30) and (3,

√
−30).

sage: K.<a> = QuadraticField(-30)
sage: C = K.class_group()
sage: C
Class group of order 4 with structure C2 x C2 of Number Field
in a with defining polynomial x^2 + 30
sage: category(C)
Category of finite enumerated commutative groups
sage: C.gens()
(Fractional ideal class (2, a), Fractional ideal class (3, a))

Arithmetic in the class group

In Sage, the notation C.i means “the 𝑖𝑡ℎ generator of the object 𝐶,” where the generators are indexed by numbers
0, 1, 2, Below, when we write C.0 * C.1, this means “the product of the 0th and 1st generators of the class
group 𝐶.”

sage: K.<a> = QuadraticField(-30)
sage: C = K.class_group()
sage: C.0

12.1. Thematic tutorial document tree 373

Thematic Tutorials, Release 8.0

Fractional ideal class (2, a)
sage: C.0.ideal()
Fractional ideal (2, a)
sage: I = C.0 * C.1
sage: I
Fractional ideal class (5, a)

Next we find that the class of the fractional ideal (2,
√
−30 + 4/3) is equal to the ideal class 𝐶.0.

sage: A = K.ideal([2, a+4/3])
sage: J = C(A)
sage: J
Fractional ideal class (2/3, 1/3*a)
sage: J == C.0
True

Unfortunately, there is currently no Sage function that writes a fractional ideal class in terms of the generators for the
class group.

Orders and Relative Extensions

Orders in Number Fields

An order in a number field 𝐾 is a subring of 𝐾 whose rank over Z equals the degree of 𝐾. For example, if 𝐾 =
Q(
√
−1), then Z[7𝑖] is an order in 𝐾. A good first exercise is to prove that every element of an order is an algebraic

integer.

sage: K.<I> = NumberField(x^2 + 1)
sage: R = K.order(7*I)
sage: R
Order in Number Field in I with defining polynomial x^2 + 1
sage: R.basis()
[1, 7*I]

Using the discriminant command, we compute the discriminant of this order

sage: factor(R.discriminant())
-1 * 2^2 * 7^2

Constructing the order with given generators

You can give any list of elements of the number field, and it will generate the smallest ring 𝑅 that contains them.

sage: K.<a> = NumberField(x^4 + 2)
sage: K.order([12*a^2, 4*a + 12]).basis()
[1, 4*a, 4*a^2, 16*a^3]

If 𝑅 isn’t of rank equal to the degree of the number field (i.e., 𝑅 isn’t an order), then you’ll get an error message.

sage: K.order([a^2])
Traceback (most recent call last):
...
ValueError: the rank of the span of gens is wrong

374 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Computing Maximal Orders

We can also compute the maximal order, using the maxima order command, which behind the scenes finds an
integral basis using Pari’s nfbasis command. For example, Q(4

√
2) has maximal order Z[4

√
2], and if 𝛼 is a root of

𝑥3 + 𝑥2 − 2𝑥+ 8, then Q(𝛼) has maximal order with Z-basis

1,
1

2
𝑎2 +

1

2
𝑎, 𝑎2.

sage: K.<a> = NumberField(x^4 + 2)
sage: K.maximal_order().basis()
[1, a, a^2, a^3]
sage: L.<a> = NumberField(x^3 + x^2 - 2*x+8)
sage: L.maximal_order().basis()
[1, 1/2*a^2 + 1/2*a, a^2]
sage: L.maximal_order().basis()[1].minpoly()
x^3 - 2*x^2 + 3*x - 10

Functionality for non-maximal orders is minimal

There is still much important functionality for computing with non-maximal orders that is missing in Sage. For
example, there is no support at all in Sage for computing with modules over orders or with ideals in non-maximal
orders.

sage: K.<a> = NumberField(x^3 + 2)
sage: R = K.order(3*a)
sage: R.ideal(5)
Traceback (most recent call last):
...
NotImplementedError: ideals of non-maximal orders not
yet supported.

Relative Extensions

A relative number field 𝐿 is a number field of the form 𝐾(𝛼), where 𝐾 is a number field, and an absolute number
field is a number field presented in the form Q(𝛼). By the primitive element theorem, any relative number field 𝐾(𝛼)
can be written as Q(𝛽) for some 𝛽 ∈ 𝐿. However, in practice it is often convenient to view 𝐿 as 𝐾(𝛼). In Symbolic
Expressions, we constructed the number field Q(

√
2)(𝛼), where 𝛼 is a root of 𝑥3 +

√
2𝑥 + 5, but not as a relative

field–we obtained just the number field defined by a root of 𝑥6 + 10𝑥3 − 2𝑥2 + 25.

Constructing a relative number field step by step

To construct this number field as a relative number field, first we let 𝐾 be Q(
√

2).

sage: K.<sqrt2> = QuadraticField(2)

Next we create the univariate polynomial ring 𝑅 = 𝐾[𝑋]. In Sage, we do this by typing R.<X> = K[]. Here R.
<X> means “create the object 𝑅 with generator 𝑋” and K[] means a “polynomial ring over 𝐾”, where the generator
is named based on the aformentioned 𝑋 (to create a polynomial ring in two variables 𝑋,𝑌 simply replace R.<X> by
R.<X,Y>).

12.1. Thematic tutorial document tree 375

Thematic Tutorials, Release 8.0

sage: R.<X> = K[]
sage: R
Univariate Polynomial Ring in X over Number Field in sqrt2
with defining polynomial x^2 - 2

Now we can make a polynomial over the number field 𝐾 = Q(
√

2), and construct the extension of 𝐾 obtained by
adjoining a root of that polynomial to 𝐾.

sage: L.<a> = K.extension(X^3 + sqrt2*X + 5)
sage: L
Number Field in a with defining polynomial X^3 + sqrt2*X + 5...

Finally, 𝐿 is the number field Q(
√

2)(𝛼), where 𝛼 is a root of 𝑋3 +
√

2𝛼 + 5. We can do now do arithmetic in this
number field, and of course include

√
2 in expressions.

sage: a^3
-sqrt2*a - 5
sage: a^3 + sqrt2*a
-5

Functions on relative number fields

The relative number field 𝐿 also has numerous functions, many of which have both relative and absolute version. For
example the relative_degree function on 𝐿 returns the relative degree of 𝐿 over 𝐾; the degree of 𝐿 over Q is
given by the absolute_degree function. To avoid possible ambiguity degree is not implemented for relative
number fields.

sage: L.relative_degree()
3
sage: L.absolute_degree()
6

Extra structure on relative number fields

Given any relative number field you can also an absolute number field that is isomorphic to it. Below we create
𝑀 = Q(𝑏), which is isomorphic to 𝐿, but is an absolute field over Q.

sage: M. = L.absolute_field()
sage: M
Number Field in b with defining
polynomial x^6 + 10*x^3 - 2*x^2 + 25

The structure function returns isomorphisms in both directions between 𝑀 and 𝐿.

sage: M.structure()
(Isomorphism map:

From: Number Field in b with defining polynomial x^6 + 10*x^3 - 2*x^2 + 25
To: Number Field in a with defining polynomial X^3 + sqrt2*X + 5 over its base

→˓field, Isomorphism map:
From: Number Field in a with defining polynomial X^3 + sqrt2*X + 5 over its base

→˓field
To: Number Field in b with defining polynomial x^6 + 10*x^3 - 2*x^2 + 25)

376 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Arbitrary towers of relative number fields

In Sage one can create arbitrary towers of relative number fields (unlike in Pari, where a relative extension must be a
single extension of an absolute field).

sage: R.<X> = L[]
sage: Z. = L.extension(X^3 - a)
sage: Z
Number Field in b with defining polynomial X^3 - a over its base field
sage: Z.absolute_degree()
18

Note: Exercise: Construct the relative number field 𝐿 = 𝐾(
3
√︀√

2 +
√

3), where 𝐾 = Q(
√

2,
√

3).

Relative number field arithmetic can be slow

One shortcoming with relative extensions in Sage is that behind the scenes all arithmetic is done in terms of a single
absolute defining polynomial, and in some cases this can be very slow (much slower than Magma). Perhaps this
could be fixed by using Singular’s multivariate polynomials modulo an appropriate ideal, since Singular polynomial
arithmetic is extremely fast. Also, Sage has very little direct support for constructive class field theory, which is a
major motivation for explicit computation with relative orders; it would be good to expose more of Pari’s functionality
in this regard.

A Bird’s Eye View

We now take a whirlwind tour of some of the number theoretical functionality of Sage. There is much that we won’t
cover here, but this should help give you a flavor for some of the number theoretic capabilities of Sage, much of which
is unique to Sage.

Integer Factorization

Quadratic Sieve

Bill Hart’s quadratic sieve is included with Sage. The quadratic sieve is the best algorithm for factoring numbers of
the form 𝑝𝑞 up to around 100 digits. It involves searching for relations, solving a linear algebra problem modulo 2,
then factoring 𝑛 using a relation 𝑥2 ≡ 𝑦2 mod 𝑛.

sage: qsieve(next_prime(2^90)*next_prime(2^91), time=True) # not tested
([1237940039285380274899124357, 2475880078570760549798248507],
'14.94user 0.53system 0:15.72elapsed 98%CPU (0avgtext+0avgdata 0maxresident)k')

Using qsieve is twice as fast as Sage’s general factor command in this example. Note that Sage’s general factor
command does nothing but call Pari’s factor C library function.

sage: time factor(next_prime(2^90)*next_prime(2^91)) # not tested
CPU times: user 28.71 s, sys: 0.28 s, total: 28.98 s
Wall time: 29.38 s
1237940039285380274899124357 * 2475880078570760549798248507

Obviously, Sage’s factor command should not just call Pari, but nobody has gotten around to rewriting it yet.

12.1. Thematic tutorial document tree 377

Thematic Tutorials, Release 8.0

GMP-ECM

Paul Zimmerman’s GMP-ECM is included in Sage. The elliptic curve factorization (ECM) algorithm is the best
algorithm for factoring numbers of the form 𝑛 = 𝑝𝑚, where 𝑝 is not “too big”. ECM is an algorithm due to Hen-
drik Lenstra, which works by “pretending” that 𝑛 is prime, choosing a random elliptic curve over Z/𝑛Z, and doing
arithmetic on that curve–if something goes wrong when doing arithmetic, we factor 𝑛.

In the following example, GMP-ECM is over 10 times faster than Sage’s generic factor function. Again, this empha-
sizes that Sage’s generic factor command would benefit from a rewrite that uses GMP-ECM and qsieve.

sage: time ecm.factor(next_prime(2^40) * next_prime(2^300)) # not tested
CPU times: user 0.85 s, sys: 0.01 s, total: 0.86 s
Wall time: 1.73 s
[1099511627791,

→˓2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533]
sage: time factor(next_prime(2^40) * next_prime(2^300)) # not tested
CPU times: user 23.82 s, sys: 0.04 s, total: 23.86 s
Wall time: 24.35 s
1099511627791 *
→˓2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533

Elliptic Curves

Cremona’s Databases

Cremona’s databases of elliptic curves are part of Sage. The curves up to conductor 10,000 come standard with Sage,
and an there is an optional download to gain access to his complete tables. From a shell, you should run

sage -i database_cremona_ellcurve

to automatically download and install the extended table.

To use the database, just create a curve by giving

sage: EllipticCurve('5077a1')
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: C = CremonaDatabase()
sage: C[37]['allcurves']
{'a1': [[0, 0, 1, -1, 0], 1, 1],
'b1': [[0, 1, 1, -23, -50], 0, 3],
'b2': [[0, 1, 1, -1873, -31833], 0, 1],
'b3': [[0, 1, 1, -3, 1], 0, 3]}
sage: C.isogeny_class('37b')
[Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50
over Rational Field, ...]

There is also a Stein-Watkins database that contains hundreds of millions of elliptic curves. It’s over a 2GB download
though!

Bryan Birch’s Birthday Card

Bryan Birch recently had a birthday conference, and I used Sage to draw the cover of his birthday card by enumerating
all optimal elliptic curves of conductor up to 37, then plotting them with thick randomly colored lines. As you can see

378 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

below, plotting an elliptic curve is as simple as calling the plot method on it. Also, the graphics array command allows
us to easily combine numerous plots into a single graphics object.

sage: v = cremona_optimal_curves([11..37])
sage: w = [E.plot(thickness=10,rgbcolor=(random(),random(),random())) for E in v]
sage: graphics_array(w, 4, 5).show(axes=False)

Plotting Modulo 𝑝

We can use Sage’s interact feature to draw a plot of an elliptic curve modulo 𝑝, with a slider that one drags to change
the prime 𝑝. The interact feature of Sage is very helpful for interactively changing parameters and viewing the results.
Type interact? for more help and examples and visit the web page http://wiki.sagemath.org/interact.

In the code below we first define the elliptic curve 𝐸 using the Cremona label 37a. Then we define an interactive
function 𝑓 , which is made interactive using the @interact Python decorator. Because the default for 𝑝 is primes(2,500),
the Sage notebook constructs a slider that varies over the primes up to 500. When you drag the slider and let go, a plot
is drawn of the affine F𝑝 points on the curve 𝐸F𝑝

. Of course, one should never plot curves over finite fields, which
makes this even more fun.

E = EllipticCurve('37a')
@interact
def f(p=primes(2,500)):

show(plot(E.change_ring(GF(p)),pointsize=30),
axes=False, frame=True, gridlines="automatic",
aspect_ratio=1, gridlinesstyle={'rgbcolor':(0.7,0.7,0.7)})

12.1. Thematic tutorial document tree 379

http://wiki.sagemath.org/interact

Thematic Tutorials, Release 8.0

Schoof-Elkies-Atkin Point Counting

Sage includes sea.gp, which is a fast implementation of the SEA (Schoff-Elkies-Atkin) algorithm for counting the
number of points on an elliptic curve over F𝑝.

We create the finite field 𝑘 = F𝑝, where 𝑝 is the next prime after 1020. The next prime command uses Pari’s nextprime
function, but proves primality of the result (unlike Pari which gives only the next probable prime after a number). Sage
also has a next probable prime function.

sage: k = GF(next_prime(10^20))

compute its cardinality, which behind the scenes uses SEA.

sage: E = EllipticCurve_from_j(k.random_element())
sage: E.cardinality() # less than a second
99999999999371984255

380 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

To see how Sage chooses when to use SEA versus other methods, type E.cardinality?? and read the source code. As
of this writing, it simply uses SEA whenever 𝑝 > 1018.

𝑝-adic Regulators

Sage has the world’s best code for computing 𝑝-adic regulators of elliptic curves, thanks to work of David Harvey
and Robert Bradshaw. The 𝑝-adic regulator of an elliptic curve 𝐸 at a good ordinary prime 𝑝 is the determinant
of the global 𝑝-adic height pairing matrix on the Mordell-Weil group 𝐸(Q). (This has nothing to do with local or
Archimedean heights.) This is the analogue of the regulator in the Mazur-Tate-Teitelbaum 𝑝-adic analogue of the
Birch and Swinnerton-Dyer conjecture.

In particular, Sage implements Harvey’s improvement on an algorithm of Mazur-Stein-Tate, which builds on Kiran
Kedlaya’s Monsky-Washnitzer approach to computing 𝑝-adic cohomology groups.

We create the elliptic curve with Cremona label 389a, which is the curve of smallest conductor and rank 2. We then
compute both the 5-adic and 997-adic regulators of this curve.

sage: E = EllipticCurve('389a')
sage: E.padic_regulator(5, 10)
5^2 + 2*5^3 + 2*5^4 + 4*5^5 + 3*5^6 + 4*5^7 + 3*5^8 + 5^9 + O(5^11)
sage: E.padic_regulator(997, 10)
740*997^2 + 916*997^3 + 472*997^4 + 325*997^5 + 697*997^6

+ 642*997^7 + 68*997^8 + 860*997^9 + 884*997^10 + O(997^11)

Before the new algorithm mentioned above, even computing a 7-adic regulator to 3 digits of precision was a nontrivial
computational challenge. Now in Sage computing the 100003-adic regulator is routine:

sage: E.padic_regulator(100003,5) # a couple of seconds
42582*100003^2 + 35250*100003^3 + 12790*100003^4 + 64078*100003^5 + O(100003^6)

𝑝-adic 𝐿-functions

𝑝-adic 𝐿-functions play a central role in the arithmetic study of elliptic curves. They are 𝑝-adic analogues of complex
analytic 𝐿-function, and their leading coefficient (at 0) is the analogue of 𝐿(𝑟)(𝐸, 1)/Ω𝐸 in the 𝑝-adic analogue of the
Birch and Swinnerton-Dyer conjecture. They also appear in theorems of Kato, Schneider, and others that prove partial
results toward 𝑝-adic BSD using Iwasawa theory.

The implementation in Sage is mainly due to work of myself, Christian Wuthrich, and Robert Pollack. We use Sage
to compute the 5-adic 𝐿-series of the elliptic curve 389a of rank 2.

sage: E = EllipticCurve('389a')
sage: L = E.padic_lseries(5)
sage: L
5-adic L-series of Elliptic Curve defined
by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: L.series(3)
O(5^5) + O(5^2)*T + (4 + 4*5 + O(5^2))*T^2 +
(2 + 4*5 + O(5^2))*T^3 + (3 + O(5^2))*T^4 + O(T^5)

Bounding Shafarevich-Tate Groups

Sage implements code to compute numerous explicit bounds on Shafarevich-Tate Groups of elliptic curves. This
functionality is only available in Sage, and uses results Kolyvagin, Kato, Perrin-Riou, etc., and unpublished papers of
Wuthrich and me.

12.1. Thematic tutorial document tree 381

Thematic Tutorials, Release 8.0

sage: E = EllipticCurve('11a1')
sage: E.sha().bound() # so only 2 could divide sha
[2]
sage: E = EllipticCurve('37a1') # so only 2 could divide sha
sage: E.sha().bound()
([2], 1)
sage: E = EllipticCurve('389a1')
sage: E.sha().bound()
(0, 0)

The (0, 0) in the last output above indicates that the Euler systems results of Kolyvagin and Kato give no information
about finiteness of the Shafarevich-Tate group of the curve 𝐸. In fact, it is an open problem to prove this finiteness,
since 𝐸 has rank 2, and finiteness is only known for elliptic curves for which 𝐿(𝐸, 1) ̸= 0 or 𝐿′(𝐸, 1) ̸= 0.

Partial results of Kato, Schneider and others on the 𝑝-adic analogue of the BSD conjecture yield algorithms for bound-
ing the 𝑝-part of the Shafarevich-Tate group. These algorithms require as input explicit computation of 𝑝-adic 𝐿-
functions, 𝑝-adic regulators, etc., as explained in Stein-Wuthrich. For example, below we use Sage to prove that 5 and
7 do not divide the Shafarevich-Tate group of our rank 2 curve 389a.

sage: E = EllipticCurve('389a1')
sage: sha = E.sha()
sage: sha.p_primary_bound(5) # iwasawa theory ==> 5 doesn't divide sha
0
sage: sha.p_primary_bound(7) # iwasawa theory ==> 7 doesn't divide sha
0

This is consistent with the Birch and Swinnerton-Dyer conjecture, which predicts that the Shafarevich-Tate group is
trivial. Below we compute this predicted order, which is the floating point number 1.000000 to some precision. That
the result is a floating point number helps emphasize that it is an open problem to show that the conjectural order of
the Shafarevich-Tate group is even a rational number in general!

sage: E.sha().an()
1.00000000000000

Mordell-Weil Groups and Integral Points

Sage includes both Cremona’s mwrank library and Simon’s 2-descent GP scripts for computing Mordell-Weil groups
of elliptic curves.

sage: E = EllipticCurve([1,2,5,17,159])
sage: E.conductor() # not in the Tables
10272987
sage: E.gens() # a few seconds
[(-3 : 9 : 1), (-3347/3249 : 1873597/185193 : 1)]

Sage can also compute the torsion subgroup, isogeny class, determine images of Galois representations, determine
reduction types, and includes a full implementation of Tate’s algorithm over number fields.

Sage has the world’s fastest implementation of computation of all integral points on an elliptic curve over Q, due
to work of Cremona, Michael Mardaus, and Tobias Nagel. This is also the only free open source implementation
available.

sage: E = EllipticCurve([1,2,5,7,17])
sage: E.integral_points(both_signs=True)
[(1 : -9 : 1), (1 : 3 : 1)]

382 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

A very impressive example is the lowest conductor elliptic curve of rank 3, which has 36 integral points.

sage: E = elliptic_curves.rank(3)[0]
sage: E.integral_points(both_signs=True) # less than 3 seconds
[(-3 : -1 : 1), (-3 : 0 : 1), (-2 : -4 : 1), (-2 : 3 : 1), ...(816 : -23310 : 1),
→˓(816 : 23309 : 1)]

The algorithm to compute all integral points involves first computing the Mordell-Weil group, then bounding the
integral points, and listing all integral points satisfying those bounds. See Cohen’s new GTM 239 for complete details.

The complexity grows exponentially in the rank of the curve. We can do the above calculation, but with the first known
curve of rank 4, and it finishes in about a minute (and outputs 64 points).

sage: E = elliptic_curves.rank(4)[0]
sage: E.integral_points(both_signs=True) # about a minute
[(-10 : 3 : 1), (-10 : 7 : 1), ...
(19405 : -2712802 : 1), (19405 : 2693397 : 1)]

𝐿-functions

Evaluation

We next compute with the complex 𝐿-function

𝐿(𝐸, 𝑠) =
∏︁

𝑝|Δ=389

1

1− 𝑎𝑝𝑝−𝑠 + 𝑝𝑝−2𝑠
·

∏︁
𝑝|Δ=389

1

1− 𝑎𝑝𝑝−𝑠

of 𝐸. Though the above Euler product only defines an analytic function on the right half plane where Re(𝑠) > 3/2,
a deep theorem of Wiles et al. (the Modularity Theorem) implies that it has an analytic continuation to the whole
complex plane and functional equation. We can evaluate the function 𝐿 anywhere on the complex plane using Sage
(via code of Tim Dokchitser).

sage: E = EllipticCurve('389a1')
sage: L = E.lseries()
sage: L
Complex L-series of the Elliptic Curve defined by

y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: L(1) #random due to numerical noise
-1.04124792770327e-19
sage: L(1+I)
-0.638409938588039 + 0.715495239204667*I
sage: L(100)
1.00000000000000

Taylor Series

We can also compute the Taylor series of 𝐿 about any point, thanks to Tim Dokchitser’s code.

sage: E = EllipticCurve('389a1')
sage: L = E.lseries()
sage: Ld = L.dokchitser()
sage: Ld.taylor_series(1,4) #random due to numerical noise
-1.28158145691931e-23 + (7.26268290635587e-24)*z + 0.759316500288427*z^2 - 0.
→˓430302337583362*z^3 + O(z^4)

12.1. Thematic tutorial document tree 383

Thematic Tutorials, Release 8.0

GRH

The Generalized Riemann Hypothesis asserts that all nontrivial zeros of 𝐿(𝐸, 𝑠) are of the form 1 + 𝑖𝑦. Mike Rubin-
stein has written a C++ program that is part of Sage that can for any 𝑛 compute the first 𝑛 values of 𝑦 such that 1 + 𝑖𝑦
is a zero of 𝐿(𝐸, 𝑠). It also verifies the Riemann Hypothesis for these zeros (I think). Rubinstein’s program can also
do similar computations for a wide class of 𝐿-functions, though not all of this functionality is as easy to use from Sage
as for elliptic curves. Below we compute the first 10 zeros of 𝐿(𝐸, 𝑠), where 𝐸 is still the rank 2 curve 389a.

sage: L.zeros(10)
[0.000000000, 0.000000000, 2.87609907, 4.41689608, 5.79340263,
6.98596665, 7.47490750, 8.63320525, 9.63307880, 10.3514333]

The Matrix of Frobenius on Hyperelliptic Curves

Sage has a highly optimized implementation of the Harvey-Kedlaya algorithm for computing the matrix of Frobenius
associated to a curve over a finite field. This is an implementation by David Harvey, which is GPL’d and depends only
on NTL and zn_poly (a C library in Sage for fast arithmetic in (Z/𝑛Z)[𝑥]).

We import the hypellfrob function and call it on a polynomial over Z.

sage: from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^5 + 2*x^2 + x + 1; p = 101
sage: M = hypellfrob(p, 1, f); M
[0 + O(101) 0 + O(101) 93 + O(101) 62 + O(101)]
[0 + O(101) 0 + O(101) 55 + O(101) 19 + O(101)]
[0 + O(101) 0 + O(101) 65 + O(101) 42 + O(101)]
[0 + O(101) 0 + O(101) 89 + O(101) 29 + O(101)]

We do the same calculation but in Z/1014Z, which gives enough precision to recognize the exact characteristic
polynomial in Z[𝑥] of Frobenius as an element of the endomorphism ring. This computation is still very fast, taking
only a fraction of a second.

sage: M = hypellfrob(p, 4, f) # about 0.25 seconds
sage: M[0,0]
91844754 + O(101^4)

The characteristic polynomial of Frobenius is 𝑥4 + 7𝑥3 + 167𝑥2 + 707𝑥+ 10201, which determines the 𝜁 function of
the curve 𝑦2 = 𝑓(𝑥).

sage: M.charpoly()
(1 + O(101^4))*x^4 + (7 + O(101^4))*x^3 + (167 + O(101^4))*x^2
+ (707 + O(101^4))*x + (10201 + O(101^4))

Note: Exercise: Write down zeta function explicitly, count points over some finite fields and see that things match
up.

Modular Symbols

Modular symbols play a key role in algorithms for computing with modular forms, special values of 𝐿-functions,
elliptic curves, and modular abelian varieties. Sage has the most general implementation of modular symbols available,
thanks to work of myself, Jordi Quer (of Barcelona) and Craig Citro (a student of Hida). Moreover, computation

384 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

with modular symbols is by far my most favorite part of computational mathematics. There is still a lot of tuning
and optimization work to be done for modular symbols in Sage, in order for it to be across the board the fastest
implementation in the world, since my Magma implementation is still better in some important cases.

Note: I will talk much more about modular symbols in my lecture on Friday, which will be about modular forms and
related objects.

We create the space 𝑀 of weight 4 modular symbols for a certain congruence subgroup Γ𝐻(13) of level 13. Then
we compute a basis for this space, expressed in terms of Manin symbols. Finally, we compute the Hecke operator 𝑇2
acting on 𝑀 , find its characteristic polynomial and factor it. We also compute the dimension of the cuspidal subspace.

sage: M = ModularSymbols(GammaH(13,[3]), weight=4)
sage: M
Modular Symbols space of dimension 14 for Congruence Subgroup
Gamma_H(13) with H generated by [3] of weight 4 with sign 0
and over Rational Field
sage: M.basis()
([X^2,(0,1)], [X^2,(0,7)], [X^2,(2,5)], [X^2,(2,8)], [X^2,(2,9)],
[X^2,(2,10)], [X^2,(2,11)], [X^2,(2,12)], [X^2,(4,0)], [X^2,(4,3)],
[X^2,(4,6)], [X^2,(4,8)], [X^2,(4,12)], [X^2,(7,1)])

sage: factor(charpoly(M.T(2)))
(x - 7) * (x + 7) * (x - 9)^2 * (x + 5)^2

* (x^2 - x - 4)^2 * (x^2 + 9)^2
sage: dimension(M.cuspidal_subspace())
10

{Cremona’s Modular Symbols Library} Sage includes John Cremona’s specialized and insanely fast implementation
of modular symbols for weight 2 and trivial character. We illustrate below computing the space of modular symbols
of level 20014, which has dimension 5005, along with a Hecke operator on this space. The whole computation below
takes only a few seconds; a similar computation takes a few minutes using Sage’s generic modular symbols code.
Moreover, Cremona has done computations at levels over 200,000 using his library, so the code is known to scale well
to large problems. The new code in Sage for modular symbols is much more general, but doesn’t scale nearly so well
(yet).

sage: M = CremonaModularSymbols(20014) # few seconds
sage: M
Cremona Modular Symbols space of dimension 5005 for
Gamma_0(20014) of weight 2 with sign 0
sage: t = M.hecke_matrix(3) # few seconds

Enumerating Totally Real Number Fields

As part of his project to enumerate Shimura curves, John Voight has contributed code to Sage for enumerating totally
real number fields. The algorithm isn’t extremely complicated, but it involves some “inner loops” that have to be
coded to run very quickly. Using Cython, Voight was able to implement exactly the variant of Newton iteration that
he needed for his problem.

The function enumerate_totallyreal_fields_prim(n, B, ...) enumerates without using a database
(!) primitive (no proper subfield) totally real fields of degree 𝑛 > 1 with discriminant 𝑑 ≤ 𝐵.

We compute the totally real quadratic fields of discriminant ≤ 50. The calculation below, which is almost instant, is
done in real time and is not a table lookup.

sage: enumerate_totallyreal_fields_prim(2,50)
[[5, x^2 - x - 1], [8, x^2 - 2], [12, x^2 - 3], [13, x^2 - x - 3],

12.1. Thematic tutorial document tree 385

Thematic Tutorials, Release 8.0

[17, x^2 - x - 4], [21, x^2 - x - 5], [24, x^2 - 6], [28, x^2 - 7],
[29, x^2 - x - 7], [33, x^2 - x - 8], [37, x^2 - x - 9],
[40, x^2 - 10], [41, x^2 - x - 10], [44, x^2 - 11]]

We compute all totally real quintic fields of discriminant ≤ 105. Again, this is done in real time - it’s not a table
lookup!

sage: enumerate_totallyreal_fields_prim(5,10^5)
[[14641, x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1],
[24217, x^5 - 5*x^3 - x^2 + 3*x + 1],
[36497, x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1],
[38569, x^5 - 5*x^3 + 4*x - 1],
[65657, x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1],
[70601, x^5 - x^4 - 5*x^3 + 2*x^2 + 3*x - 1],
[81509, x^5 - x^4 - 5*x^3 + 3*x^2 + 5*x - 2],
[81589, x^5 - 6*x^3 + 8*x - 1],
[89417, x^5 - 6*x^3 - x^2 + 8*x + 3]]

Bernoulli Numbers

Mathematica and Pari

From the Mathematica website:

“Today We Broke the Bernoulli Record: From the Analytical Engine to Mathematica April 29, 2008
Oleksandr Pavlyk, Kernel Technology A week ago, I took our latest development version of Mathematica,
and I typed BernoulliB[10^7]. And then I waited. Yesterday–5 days, 23 hours, 51 minutes, and 37
seconds later–I got the result!”

Tom Boothby did that same computation in Sage, which uses Pari’s bernfrac command that uses evaluation of 𝜁 and
factorial to high precision, and it took 2 days, 12 hours.

David Harvey’s bernmm

Then David Harvey came up with an entirely new algorithm that parallelizes well. He gives these timings for comput-
ing 𝐵107 on his machine (it takes 59 minutes, 57 seconds on my 16-core 1.8ghz Opteron box):

PARI: 75 h, Mathematica: 142 h

bernmm (1 core) = 11.1 h, bernmm (10 cores) = 1.3 h

“Running on 10 cores for 5.5 days, I [David Harvey] computed [the Bernoulli number] 𝐵𝑘 for 𝑘 = 108,
which I believe is a new record. Essentially it’s the multimodular algorithm I suggested earlier on this
thread, but I figured out some tricks to optimise the crap out of the computation of 𝐵𝑘mod𝑝.”

So now Sage is the fastest in the world for large Bernoulli numbers. The timings below are on a 24-core 2.66Ghz
Xeon box.

sage: w1 = bernoulli(100000, num_threads=16) # 0.9 seconds wall time
sage: w2 = bernoulli(100000, algorithm='pari') # long time (6s on sage.math, 2011)
sage: w1 == w2 # long time
True

386 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Polynomial Arithmetic

FLINT: Univariate Polynomial Arithmetic

Sage uses Bill Hart and David Harvey’s GPL’d Flint C library for arithmetic in Z[𝑥]. Its main claim to fame is that
it is the world’s fastest for polynomial multiplication, e.g., in the benchmark below it is faster than NTL and Magma
on some systems (though such benchmarks of course change as software improves). Behind the scenes Flint contains
some carefully tuned discrete Fourier transform code.

sage: Rflint = PolynomialRing(ZZ, 'x')
sage: f = Rflint([ZZ.random_element(2^64) for _ in [1..32]])
sage: g = Rflint([ZZ.random_element(2^64) for _ in [1..32]])
sage: timeit('f*g') # random output
625 loops, best of 3: 105 microseconds per loop
sage: Rntl = PolynomialRing(ZZ, 'x', implementation='NTL')
sage: f = Rntl([ZZ.random_element(2^64) for _ in [1..32]])
sage: g = Rntl([ZZ.random_element(2^64) for _ in [1..32]])
sage: timeit('f*g') # random output
625 loops, best of 3: 310 microseconds per loop
sage: ff = magma(f); gg = magma(g) #optional - magma
sage: s = 'time v := [%s * %s : i in [1..10^5]];'%(ff.name(), gg.name()) #optional -
→˓magma
sage: magma.eval(s) #optional - magma
'Time: ...'

Singular: Multivariate Polynomial Arithmetic

Multivariate polynomial arithmetic in many cases uses Singular in library mode (due to Martin Albrecht), which is
quite fast. For example, below we do the Fateman benchmark over the finite field of order 32003, and compare the
timing with Magma.

sage: P.<x,y,z> = GF(32003)[]
sage: p = (x+y+z+1)^10
sage: q = p+1
sage: timeit('p*q') # random output
125 loops, best of 3: 1.53 ms per loop

sage: p = (x+y+z+1)^20
sage: q = p+1
sage: timeit('p*q') # not tested - timeout if SAGE_DEBUG=yes
5 loops, best of 3: 384 ms per loop

sage: pp = magma(p); qq = magma(q) #optional - magma
sage: s = 'time w := %s*%s;'%(pp.name(),qq.name()) #optional - magma
sage: magma.eval(s) #optional - magma
'Time: ...'

Modular Forms

This section is about computing with modular forms, modular symbols, and modular abelian varieties. Most of the
Sage functionality we describe below is new code written for Sage by myself, Craig Citro, Robert Bradshaw, and Jordi
Quer in consultation with John Cremona. It has much overlap in functionality with the modular forms code in Magma,
which I developed during 1998-2004.

12.1. Thematic tutorial document tree 387

Thematic Tutorials, Release 8.0

Modular Forms and Hecke Operators

Congruence subgroups

Definition

A congruence subgroup is a subgroup of the group SL2(Z) of determinant ±1 integer matrices that contains

Γ(𝑁) = Ker(SL2(Z)→ SL2(Z/𝑁Z))

for some positive integer 𝑁 . Since Γ(𝑁) has finite index in SL2(Z), all congruence subgroups have finite index. The
converse is not true, though in many other settings it is true (see [paper of Serre]).

The inverse image Γ0(𝑁) of the subgroup of upper triangular matrices in SL2(Z/𝑁Z) is a congruence subgroup, as
is the inverse image Γ1(𝑁) of the subgroup of matrices of the form (1 *

0 1). Also, for any subgroup 𝐻 ⊂ (Z/𝑁Z)*, the
inverse image Γ𝐻(𝑁) of the subgroup of SL2(Z/𝑁Z) of all elements of the form (𝑎 *

0 𝑑) with 𝑑 ∈ 𝐻 is a congruence
subgroup.

We can create each of the above congruence subgroups in Sage, using the Gamma0, Gamma1, and GammaH com-
mands.

sage: Gamma0(8)
Congruence Subgroup Gamma0(8)
sage: Gamma1(13)
Congruence Subgroup Gamma1(13)
sage: GammaH(11,[4])
Congruence Subgroup Gamma_H(11) with H generated by [4]

The second argument to the GammaH command is a list of generators of the subgroup 𝐻 of (Z/𝑁Z)*.

Generators

Sage can compute a list of generators for these subgroups. The algorithm Sage uses is a straightforward generic
procedure that uses coset representatives for the congruence subgroup (which are easy to enumerate) to obtain a list of
generators [[ref my modular forms book]].

The list of generators Sage computes is unfortunately large. Improving this would be an excellent Sage development
project, which would involve much beautiful mathematics.

UPDATE (March 2012): The project referred to above has been carried out (by several people, notably Hartmut
Monien, building on earlier work of Chris Kurth). Sage now uses a much more advanced algorithm based on Farey
symbols which calculates a minimal set of generators.

sage: Gamma0(2).gens()
(
[1 1] [1 -1]
[0 1], [2 -1]
)
sage: Gamma0(2).gens(algorithm="todd-coxeter") # the old implementation
(
[1 1] [-1 0] [1 -1] [1 -1] [-1 1]
[0 1], [0 -1], [0 1], [2 -1], [-2 1]
)
sage: len(Gamma1(13).gens())
15

388 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Modular Forms

Definition

A modular form on a congruence subgroup Γ of integer weight 𝑘 is a holomorphic function 𝑓(𝑧) on the upper half
plane

h* = {𝑧 ∈ C : ℑ(𝑧) > 0} ∪Q ∪ {𝑖∞}

such that for every matrix
(︀
𝑎 𝑏
𝑐 𝑑

)︀
∈ Γ, we have

𝑓

(︂
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)︂
= (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧).

A cusp form is a modular form that vanishes at all of the cusps Q ∪ {𝑖∞}.

If Γ contains Γ1(𝑁) for some 𝑁 , then (1 1
0 1) ∈ Γ, so the modular form condition implies that 𝑓(𝑧) = 𝑓(𝑧 + 1). This,

coupled with the holomorphicity condition, implies that 𝑓(𝑧) has a Fourier expansion

𝑓(𝑧) =

∞∑︁
𝑛=0

𝑎𝑛𝑒
2𝜋𝑖𝑛𝑧

with 𝑎𝑛 ∈ C. We let 𝑞 = 𝑒2𝜋𝑖𝑧 , and call 𝑓 =
∑︀∞

𝑛=0 𝑎𝑛𝑞
𝑛 the 𝑞-expansion of 𝑓 .

Creation in Sage

Henceforth we assume that Γ is either Γ1(𝑁), Γ0(𝑁), or Γ𝐻(𝑁) for some 𝐻 and 𝑁 . The complex vector space
𝑀𝑘(Γ) of all modular forms of weight 𝑘 on Γ is a finite dimensional vector space.

We create the space 𝑀𝑘(Γ) in Sage by typing ModularForms(G, k) where 𝐺 is the congruence subgroup and 𝑘
is the weight.

sage: ModularForms(Gamma0(25), 4)
Modular Forms space of dimension 11 for ...
sage: S = CuspForms(Gamma0(25),4, prec=15); S
Cuspidal subspace of dimension 5 of Modular Forms space ...
sage: S.basis()
[
q + q^9 - 8*q^11 - 8*q^14 + O(q^15),
q^2 - q^7 - q^8 - 7*q^12 + 7*q^13 + O(q^15),
q^3 + q^7 - 2*q^8 - 6*q^12 - 5*q^13 + O(q^15),
q^4 - q^6 - 3*q^9 + 5*q^11 - 2*q^14 + O(q^15),
q^5 - 4*q^10 + O(q^15)
]

Dimension Formulas

Sage computes the dimensions of all these spaces using simple arithmetic formulas instead of actually computing
bases for the spaces in question. In fact, Sage has the most general collection of modular forms dimension formulas of
any software; type help(sage.modular.dims) to see a list of arithmetic functions that are used to implement
these dimension formulas.

12.1. Thematic tutorial document tree 389

Thematic Tutorials, Release 8.0

sage: ModularForms(Gamma1(949284), 456).dimension()
11156973844800
sage: a = [dimension_cusp_forms(Gamma0(N),2) for N in [1..25]]; a
[0, 0, ..., 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0]
sage: oeis(a) # optional - internet
0: A001617: Genus of modular group Gamma_0(n). Or, genus of modular curve X_0(n).

Sage doesn’t have simple formulas for dimensions of spaces of modular forms of weight 1, since such formulas
perhaps do not exist.

Diamond Bracket Operators

The space 𝑀𝑘(Γ1(𝑁)) is equipped with an action of (Z/𝑁Z)* by diamond bracket operators ⟨𝑑⟩, and this induces a
decomposition

𝑀𝑘(Γ1(𝑁)) =
⨁︁

𝜀:(Z/𝑁Z)*→C*

𝑀𝑘(𝑁, 𝜀),

where the sum is over all complex characters of the finite abelian group (Z/𝑁Z)*. These characters are called Dirichlet
characters, which are central in number theory.

The factors𝑀𝑘(𝑁, 𝜀) then have bases whose 𝑞-expansions are elements of𝑅[[𝑞]], where𝑅 = Z[𝜀] is the ring generated
over Z by the image of 𝜀. We illustrate this with 𝑁 = 𝑘 = 5 below, where DirichletGroup will be described later.

sage: CuspForms(DirichletGroup(5).0, 5).basis()
[
q + (-zeta4 - 1)*q^2 + (6*zeta4 - 6)*q^3 - ... + O(q^6)
]

Dirichlet Characters

Use the command DirichletGroup(N,R) to create the group of all Dirichlet characters of modulus 𝑁 taking values in
the ring 𝑅. If 𝑅 is omitted, it defaults to a cyclotomic field.

sage: G = DirichletGroup(8); G
Group of Dirichlet characters modulo 8 with values in Cyclotomic Field of order 2 and
→˓degree 1
sage: v = G.list(); v
[Dirichlet character modulo 8 of conductor 1 mapping 7 |--> 1, 5 |--> 1,
Dirichlet character modulo 8 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 8 of conductor 8 mapping 7 |--> 1, 5 |--> -1,
Dirichlet character modulo 8 of conductor 8 mapping 7 |--> -1, 5 |--> -1]
sage: eps = G.0; eps
Dirichlet character modulo 8 of conductor 4 mapping 7 |--> -1, 5 |--> 1
sage: eps.values()
[0, 1, 0, -1, 0, 1, 0, -1]

Sage both represents Dirichlet characters by giving a “matrix”, i.e., the list of images of canonical generators of
(Z/𝑁Z)*, and as vectors modulo an integer 𝑛. For years, I was torn between these two representations, until J. Quer
and I realized that the best approach is to use both and make it easy to convert between them.

sage: parent(eps.element())
Vector space of dimension 2 over Ring of integers modulo 2

390 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

Given a Dirichlet character, Sage also lets you compute the associated Jacobi and Gauss sums, generalized Bernoulli
numbers, the conductor, Galois orbit, etc.

Decomposing 𝑀𝑘(Γ1(𝑁))

Recall that Dirichlet characters give a decomposition

𝑀𝑘(Γ1(𝑁)) =
⨁︁

𝜀:(Z/𝑁Z)*→C*

𝑀𝑘(𝑁, 𝜀).

Given a Dirichlet character 𝜀 we type ModularForms(eps, weight) to create the space of modular forms with that
character and a given integer weight. For example, we create the space of forms of weight 5 with the character modulo
8 above that is −1 on 3 and 1 on 5 as follows.

sage: ModularForms(eps,5)
Modular Forms space of dimension 6, character [-1, 1] and
weight 5 over Rational Field
sage: sum([ModularForms(eps,5).dimension() for eps in v])
11
sage: ModularForms(Gamma1(8),5)
Modular Forms space of dimension 11 ...

Note: Exercise: Compute the dimensions of all spaces 𝑀2(37, 𝜀) for all Dirichlet characters 𝜀.

Hecke Operators

The space 𝑀𝑘(Γ) is equipped with an action of a commuting ring T of Hecke operators 𝑇𝑛 for 𝑛 ≥ 1. A standard
computational problem in the theory of modular forms is to compute an explicit basis of 𝑞-expansion for 𝑀𝑘(Γ) along
with matrices for the action of any Hecke operator 𝑇𝑛, and to compute the subspace 𝑆𝑘(Γ) of cusp forms.

sage: M = ModularForms(Gamma0(11),4)
sage: M.basis()
[
q + 3*q^3 - 6*q^4 - 7*q^5 + O(q^6),
q^2 - 4*q^3 + 2*q^4 + 8*q^5 + O(q^6),
1 + O(q^6),
q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6)
]
sage: M.hecke_matrix(2)
[0 2 0 0]
[1 2 0 0]
[0 0 9 0]
[0 0 0 9]

We can also compute Hecke operators on the cuspidal subspace.

sage: S = M.cuspidal_subspace()
sage: S.hecke_matrix(2)
[0 2]
[1 2]
sage: S.hecke_matrix(3)
[3 -8]
[-4 -5]

12.1. Thematic tutorial document tree 391

Thematic Tutorials, Release 8.0

Hecke Operator on 𝑀𝑘(Γ1(𝑁))

At the time these lectures were first written, Sage didn’t yet implement computation of the Hecke operators on
𝑀𝑘(Γ1(𝑁)), but these have subsequently been added:

sage: M = ModularForms(Gamma1(5),2)
sage: M
Modular Forms space of dimension 3 for Congruence Subgroup
Gamma1(5) of weight 2 over Rational Field
sage: M.hecke_matrix(2)
[-21 0 -240]
[-2 0 -23]
[2 1 24]

These are calculated by first calculating Hecke operators on modular symbols for Γ1(𝑁), which is a T-module that is
isomorphic to 𝑀𝑘(Γ1(𝑁)) (see Modular Symbols).

sage: ModularSymbols(Gamma1(5),2,sign=1).hecke_matrix(2)
[2 1 1]
[1 2 -1]
[0 0 -1]

Modular Symbols

Modular symbols are a beautiful piece of mathematics that was developed since the 1960s by Birch, Manin, Shokorov,
Mazur, Merel, Cremona, and others. Not only are modular symbols a powerful computational tool as we will see, they
have also been used to prove rationality results for special values of 𝐿-series, to construct 𝑝-adic 𝐿-series, and they
play a key role in Merel’s proof of the uniform boundedness theorem for torsion points on elliptic curves over number
fields.

We view modular symbols as a remarkably flexible computational tool that provides a single uniform algorithm for
computing 𝑀𝑘(𝑁, 𝜀) for any 𝑁, 𝜀 and 𝑘 ≥ 2. There are ways to use computation of those spaces to obtain explicit
basis for spaces of weight 1 and half-integral weight, so in a sense modular symbols yield everything. There are also
generalizations of modular symbols to higher rank groups, though Sage currently has no code for modular symbols on
higher rank groups.

Definition

A modular symbol of weight 𝑘, and level𝑁 , with character 𝜀 is a sum of terms𝑋𝑖𝑌 𝑘−2−𝑖{𝛼, 𝛽}, where 0 ≤ 𝑖 ≤ 𝑘−2
and 𝛼, 𝛽 ∈ P1(Q) = Q ∪ {∞}. Modular symbols satisfy the relations

𝑋𝑖𝑌 𝑘−2−𝑖{𝛼, 𝛽}+𝑋𝑖𝑌 𝑘−2−𝑖{𝛽, 𝛾}+𝑋𝑖𝑌 𝑘−2−𝑖{𝛾, 𝛼} = 0

𝑋𝑖𝑌 𝑘−2−𝑖{𝛼, 𝛽} = −𝑋𝑖𝑌 𝑘−2−𝑖{𝛽, 𝛼},

and for every 𝛾 =
(︀
𝑎 𝑏
𝑐 𝑑

)︀
∈ Γ0(𝑁), we have

(𝑑𝑋 − 𝑏𝑌)𝑖(−𝑐𝑋 + 𝑎𝑌)𝑘−2−𝑖{𝛾(𝛼), 𝛾(𝛽)} = 𝜀(𝑑)𝑋𝑖𝑌 𝑘−2−𝑖{𝛼, 𝛽}.

The modular symbols space ℳ𝑘(𝑁, 𝜀) is the torsion free Q[𝜀]-module generated by all sums of modular symbols,
modulo the relations listed above. Here Q[𝜀] is the ring generated by the values of the character 𝜀, so it is of the form
Q[𝜁𝑚] for some integer 𝑚.

392 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

The amazing theorem that makes modular symbols useful is that there is an explicit description of an action of a Hecke
algebra T onℳ𝑘(𝑁, 𝜀), and there is an isomorphism

ℳ𝑘(𝑁, 𝜀;C)
≈−→𝑀𝑘(𝑁, 𝜀)⊕ 𝑆𝑘(𝑁, 𝜀).

This means that if modular symbols are computable (they are!), then they can be used to compute a lot about the
T-module 𝑀𝑘(𝑁, 𝜀).

Manin Symbols

Definition

Thoughℳ𝑘(𝑁, 𝜀) as described above is not explicitly generated by finitely many elements, it is finitely generated.
Manin, Shokoruv, and Merel give an explicit description of finitely many generators (Manin symbols) for this space,
along with all explicit relations that these generators satisfy (see my book). In particular, if we let

(𝑖, 𝑐, 𝑑) = [𝑋𝑖𝑌 2−𝑘−𝑖, (𝑐, 𝑑)] = (𝑑𝑋 − 𝑏𝑌)𝑖(−𝑐𝑋 + 𝑎𝑌)𝑘−2−𝑖{𝛾(0), 𝛾(∞)},

where 𝛾 =
(︀
𝑎 𝑏
𝑐 𝑑

)︀
, then the Manin symbols (𝑖, 𝑐, 𝑑) with 0 ≤ 𝑖 ≤ 𝑘 − 2 and (𝑐, 𝑑) ∈ P1(𝑁) generateℳ𝑘(𝑁, 𝜀).

Computing in Sage

We compute a basis for the space of weight 4 modular symbols for Γ0(11), then coerce in (2, 0, 1) and (1, 1, 3).

sage: M = ModularSymbols(11,4)
sage: M.basis()
([X^2,(0,1)], [X^2,(1,6)], [X^2,(1,7)], [X^2,(1,8)],
[X^2,(1,9)], [X^2,(1,10)])

sage: M((2,0,1))
[X^2,(0,1)]
sage: M((1,1,3))
2/7*[X^2,(1,6)] + 1/14*[X^2,(1,7)] - 4/7*[X^2,(1,8)]

+ 3/14*[X^2,(1,10)]

We compute a modular symbols representation for the Manin symbol (2, 1, 6), and verify this by converting back.

sage: a = M.1; a
[X^2,(1,6)]
sage: a.modular_symbol_rep()
36*X^2*{-1/6, 0} + 12*X*Y*{-1/6, 0} + Y^2*{-1/6, 0}
sage: 36*M([2,-1/6,0]) + 12*M([1,-1/6,0]) + M([0,-1/6,0])
[X^2,(1,6)]

Method of Graphs

The Mestre Method of Graphs is an intriguing algorithm for computing the action of Hecke operators on yet another
module𝑋 that is isomorphic to𝑀2(Γ0(𝑁)). The implementation in Sage unfortunately only works when𝑁 is prime;
in contrast, my implementation in Magma works when 𝑁 = 𝑝𝑀 and 𝑆2(Γ0(𝑀)) = 0.

The matrices of Hecke operators on 𝑋 are vastly sparser than on any basis of 𝑀2(Γ0(𝑁)) that you are likely to use.

12.1. Thematic tutorial document tree 393

Thematic Tutorials, Release 8.0

sage: X = SupersingularModule(389); X
Module of supersingular points on X_0(1)/F_389 over Integer Ring
sage: t2 = X.T(2).matrix(); t2[0]
(1, 1, 1, 0,
→˓0, 0, 0, 0, 0)
sage: factor(charpoly(t2))
(x - 3) * (x + 2) * (x^2 - 2) * (x^3 - 4*x - 2) * ...
sage: t2 = ModularSymbols(389,sign=1).hecke_matrix(2); t2[0]
(3, 0, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 1, -1, 0, 1, 1, 0, 1, -1, 1, -1, 1, 0, 0,
→˓0, 0, 0, 0, 1, -1, -1) # 32-bit
(3, 0, -1, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 1, 1, 0, 1, -1, 1, -1, 1, 0, 0, -1, 0,
→˓0, 0, 0, 0, 1, -1, -1) # 64-bit
sage: factor(charpoly(t2))
(x - 3) * (x + 2) * (x^2 - 2) * (x^3 - 4*x - 2) * ...

The method of graphs is also used in computer science to construct expander graphs with good properties. And it is
important in my algorithm for computing Tamagawa numbers of purely toric modular abelian varieties. This algorithm
is not implemented in Sage yet, since it is only interesting in the case of non-prime level, as it turns out.

Level One Modular Forms

Computing ∆

The modular form

∆ = 𝑞
∏︁

(1− 𝑞𝑛)24 =
∑︁

𝜏(𝑛)𝑞𝑛

is perhaps the world’s most famous modular form. We compute some terms from the definition.

sage: R.<q> = QQ[[]]
sage: q * prod(1-q^n+O(q^6) for n in (1..5))^24
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7)

There are much better ways to compute ∆, which amount to just a few polynomial multiplications over Z.

sage: D = delta_qexp(10^5) # less than 10 seconds
sage: D[:10]
q - 24*q^2 + 252*q^3 - 1472*q^4 + ...
sage: [p for p in primes(10^5) if D[p] % p == 0]
[2, 3, 5, 7, 2411]
sage: D[2411]
4542041100095889012
sage: f = eisenstein_series_qexp(12,6) - D[:6]; f
691/65520 + 2073*q^2 + 176896*q^3 + 4197825*q^4 + 48823296*q^5 + O(q^6)
sage: f % 691
O(q^6)

The Victor Miller Basis

The Victor Miller basis for 𝑀𝑘(SL2(Z)) is the reduced row echelon basis. It’s a lemma that it has all integer coeffi-
cients, and a rather nice diagonal shape.

394 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

sage: victor_miller_basis(24, 6)
[
1 + 52416000*q^3 + 39007332000*q^4 + 6609020221440*q^5 + O(q^6),
q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),
q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6)
]
sage: dimension_modular_forms(1,200)
17
sage: B = victor_miller_basis(200, 18) #5 seconds
sage: B
[
1 + 79288314420681734048660707200000*q^17 + O(q^18),
q + 2687602718106772837928968846869*q^17 + O(q^18),
...
q^16 + 96*q^17 + O(q^18)
]

Note: Craig Citro has made the above computation an order of magnitude faster in code he hasn’t quite got into Sage
yet.

“I’ll clean those up and submit them soon, since I need them for something I’m working on ... I’m
currently in the process of making spaces of modular forms of level one subclass the existing code, and
actually take advantage of all our fast 𝐸𝑘 and ∆ computation code, as well as cleaning things up a bit.”

Half Integral Weight Forms

Basmaji’s Algorithm

Basmaji (page 55 of his Essen thesis, “Ein Algorithmus zur Berechnung von Hecke-Operatoren und Anwendungen
auf modulare Kurven”, http://wstein.org/scans/papers/basmaji/).

Let 𝑆 = 𝑆𝑘+1(𝜀) be the space of cusp forms of even integer weight 𝑘 + 1 and character 𝜀 = 𝜒𝜓(𝑘+1)/2, where 𝜓 is
the nontrivial mod-4 Dirichlet character. Let 𝑈 be the subspace of 𝑆 × 𝑆 of elements (𝑎, 𝑏) such that Θ2𝑎 = Θ3𝑏.
Then 𝑈 is isomorphic to 𝑆𝑘/2(𝜒) via the map (𝑎, 𝑏) ↦→ 𝑎/Θ3.

This algorithm is implemented in Sage. I’m sure it could be implemented in a way that is much faster than the current
implementation...

sage: half_integral_weight_modform_basis(DirichletGroup(16,QQ).1, 3, 10)
[]
sage: half_integral_weight_modform_basis(DirichletGroup(16,QQ).1, 5, 10)
[q - 2*q^3 - 2*q^5 + 4*q^7 - q^9 + O(q^10)]
sage: half_integral_weight_modform_basis(DirichletGroup(16*7).0^2,3,30)
[q - 2*q^2 - q^9 + 2*q^14 + 6*q^18 - 2*q^21 - 4*q^22 - q^25 + O(q^30),
q^2 - q^14 - 3*q^18 + 2*q^22 + O(q^30),
q^4 - q^8 - q^16 + q^28 + O(q^30), q^7 - 2*q^15 + O(q^30)]

Generators for Rings of Modular Forms

Computing Generators

For any congruence subgroup Γ, the direct sum

𝑀(Γ) =
⨁︁
𝑘≥0

𝑀𝑘(Γ)

12.1. Thematic tutorial document tree 395

http://wstein.org/scans/papers/basmaji/

Thematic Tutorials, Release 8.0

is a ring, since the product of modular forms 𝑓 ∈ 𝑀𝑘(Γ) and 𝑔 ∈ 𝑀𝑘′(Γ) is an element 𝑓𝑔 ∈ 𝑀𝑘+𝑘′(Γ). Sage can
compute likely generators for rings of modular forms, but currently doesn’t prove any of these results.

We verify the statement proved in Serre’s “A Course in Arithmetic” that 𝐸4 and 𝐸6 generate the space of level one
modular forms.

sage: ModularFormsRing(SL2Z).generators(prec=4)
[(4, 1 + 240*q + 2160*q^2 + 6720*q^3 + O(q^4)),
(6, 1 - 504*q - 16632*q^2 - 122976*q^3 + O(q^4))]

Have you ever wondered which forms generate the ring 𝑀(Γ0(2))? It turns out that one form of weight 2 and one
form of weight 4 suffice.

sage: ModularFormsRing(Gamma0(2)).generators(prec=12)
[(2, 1 + 24*q + 24*q^2 + 96*q^3 + 24*q^4 + 144*q^5 + 96*q^6 + 192*q^7 + 24*q^8 +
→˓312*q^9 + 144*q^10 + 288*q^11 + O(q^12)),
(4, 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + 30240*q^10 + O(q^12))]

Here’s generators for 𝑀(Γ0(3)). Notice that elements of weight 6 are now required, in addition to weights 2 and 4.

sage: ModularFormsRing(Gamma0(3)).generators()
[(2, 1 + 12*q + 36*q^2 + 12*q^3 + 84*q^4 + 72*q^5 + 36*q^6 + 96*q^7 + 180*q^8 + 12*q^
→˓9 + O(q^10)),
(4, 1 + 240*q^3 + 2160*q^6 + 6720*q^9 + O(q^10)),
(6, 1 - 504*q^3 - 16632*q^6 - 122976*q^9 + O(q^10))]

(Note: As of 2012, updates to the code mean that the output of this test is not quite the same as it was in 2008, but of
course there are multiple equally valid answers.)

We can also handle rings of modular forms for odd congruence subgroups, but with the usual caveat that we can’t
calculate forms of weight 1. So these are elements generating the graded ring of forms of weight 0 or ≥ 2.

sage: ModularFormsRing(Gamma1(3)).generators()
[(2, 1 + 12*q + 36*q^2 + 12*q^3 + 84*q^4 + 72*q^5 + 36*q^6 + 96*q^7 + 180*q^8 + 12*q^
→˓9 + O(q^10)),
(3, 1 + 54*q^2 + 72*q^3 + 432*q^5 + 270*q^6 + 918*q^8 + 720*q^9 + O(q^10)),
(3, q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + 51*q^8 + 81*q^9 + O(q^
→˓10)),
(4, 1 + 240*q^3 + 2160*q^6 + 6720*q^9 + O(q^10))]

𝐿-series

𝐿-series of ∆

Thanks to wrapping work of Jennifer Balakrishnan of M.I.T., we can compute explicitly with the 𝐿-series of the
modular form ∆. Like for elliptic curves, behind these scenes this uses Dokchitsers 𝐿-functions calculation Pari
program.

sage: L = delta_lseries(); L
L-series associated to the modular form Delta
sage: L(1)
0.0374412812685155

396 Chapter 12. Documentation

Thematic Tutorials, Release 8.0

𝐿-series of a Cusp Form

In some cases we can also compute with 𝐿-series attached to a cusp form.

sage: f = CuspForms(2,8).newforms()[0]
sage: L = f.lseries()
sage: L(1)
0.0884317737041015
sage: L(0.5)
0.0296568512531983

𝐿-series of a General Newform is Not Implemented

Unfortunately, computing with the 𝐿-series of a general newform is not yet implemented.

sage: S = CuspForms(23,2); S
Cuspidal subspace of dimension 2 of Modular Forms space of
dimension 3 for Congruence Subgroup Gamma0(23) of weight
2 over Rational Field
sage: f = S.newforms('a')[0]; f
q + a0*q^2 + (-2*a0 - 1)*q^3 + (-a0 - 1)*q^4 + 2*a0*q^5 + O(q^6)

Computing with 𝐿(𝑓, 𝑠) totally not implemented yet, though should be easy via Dokchitser.

Modular Abelian Varieties

The quotient of the extended upper half plane h* by the congruence subgroup Γ1(𝑁) is the modular curve 𝑋1(𝑁).
Its Jacobian 𝐽1(𝑁) is an abelian variety that is canonically defined over Q. Likewise, one defines a modular abelian
variety 𝐽0(𝑁) associated to Γ0(𝑁).

A modular abelian variety is an abelian variety over Q that is a quotient of 𝐽1(𝑁) for some 𝑁 .

The biggest recent theorem in number theory is the proof of Serre’s conjecture by Khare and Wintenberger. According
to an argument of Ribet and Serre, this implies the following modularity theorem, which generalizes the modularity
theorem that Taylor-Wiles proved in the course of proving Fermat’s Last Theorem.

One of my long-term research goals is to develop a systematic theory for computing with modular abelian varieties.
A good start is the observation using the Abel-Jacobi theorem that every modular abelian variety (up to isomorphism)
can be specified by giving a lattice in a space of modular symbols.

Computing in Sage

We define some modular abelian varieties of level 39, and compute some basic invariants.

sage: D = J0(39).decomposition(); D
[
Simple abelian subvariety 39a(1,39) of dimension 1 of J0(39),
Simple abelian subvariety 39b(1,39) of dimension 2 of J0(39)
]
sage: D[1].lattice()
Free module of degree 6 and rank 4 over Integer Ring
Echelon basis matrix:
[1 0 0 1 -1 0]
[0 1 1 0 -1 0]

12.1. Thematic tutorial document tree 397

Thematic Tutorials, Release 8.0

[0 0 2 0 -1 0]
[0 0 0 0 0 1]
sage: G = D[1].rational_torsion_subgroup(); G
Torsion subgroup of Simple abelian subvariety 39b(1,39)
of dimension 2 of J0(39)
sage: G.order()
28
sage: G.gens()
[[(1/14, 2/7, 0, 1/14, -3/14, 1/7)], [(0, 1, 0, 0, -1/2, 0)],
[(0, 0, 1, 0, -1/2, 0)]]

sage: B, phi = D[1]/G
sage: B
Abelian variety factor of dimension 2 of J0(39)
sage: phi.kernel()
(Finite subgroup with invariants [2, 14] ...

Endomorphisms

There is an algorithm in Sage for computing the exact endomorphism ring of any modular abelian variety.

sage: A = J0(91)[2]; A
Simple abelian subvariety 91c(1,91) of dimension 2 of J0(91)
sage: R = End(A); R
Endomorphism ring of Simple abelian subvariety 91c(1,91)
of dimension 2 of J0(91)
sage: for x in R.gens():
....: print(x.matrix())
....: print("")
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

[0 4 -2 0]
[-1 5 -2 1]
[-1 2 0 2]
[-1 1 0 3]

It is also possible to test isomorphism of two modular abelian varieties. But much exciting theoretical and computa-
tional work remains to be done.

12.1.21 Creating a Tutorial from a Worksheet

Sage has a number of thematic tutorials and contains everything needed to turn a worksheet created in the Sage
notebook (sagenb) into a tutorial.

• Once you have created a worksheet and are satisfied with the text and computations, download it to a directory.

We will assume here that the worksheet is called Tutorial.sws and the directory is called make_tutorial.
We also assume that sage is your Sage command; if it is not in your PATH then replace this with the path to
your Sage installation, such as /Applications/Sage-6.2.app/Contents/Resources/sage/sage if
you are using the Mac app and have placed it in your Applications directory.

• Next, you will need an optional package to parse your worksheet. Use the command:

398 Chapter 12. Documentation

https://github.com/sagemath/sagenb
https://github.com/sagemath/sagenb

Thematic Tutorials, Release 8.0

sage --pip install beautifulsoup4

to install it (or, in the Mac app, use the Terminal Session advanced menu with --pip install
beautifulsoup4).

• Then we will use the sws2rst script to turn the worksheet into a document in the ReStructuredText format.
Be sure you are in the same directory as the worksheet:

sage --sws2rst Tutorial.sws

This will create an .rst file along with a subdirectory of image files (which may be empty if there are no
images).

You can find help for sws2rst with the command sage --sws2rst -h once you have installed beauti-
fulsoup.

• In principle, such a file could be added directly to Sage’s documentation (see the developer’s manual). However,
you probably want to check whether it looks right first. So next we will compile this file to html documentation.

– Follow the instructions of sage --sws2rst --sphinxify. First, we will open a Sage shell session,
where all appropriate Sage references already work properly:

sage --sh

From here, you should be able to just type:

sphinx-quickstart

and then respond to prompts for turning your .rst file into documentation. For most of them you can
just hit enter/return to accept the defaults. However, you will probably want to

* Enter a name for the project

* Enter a name for you

* Type y for the question about using MathJax

Keep note of the instructions; the main other thing to do is add your file’s name to index.rst, and then
just do:

make html

and wait while magic happens. To see the results, open the file make_tutorial/_build/html/
Tutorial.html with a browser, or use your graphical file system to navigate to the same place.

• Now you can modify the .rst file more and repeat the steps of compiling it until it is ready for inclusion, or
just for distribution among other Sage users as an HTML file. (Do make pdf for a PDF version.)

12.1.22 Profiling in Sage

This page lists several methods available in Sage to measure and analyze the performances of a piece of code. For
more general information on profiling, see Wikipedia article Profiling_(computer_programming).

Table of contents

• Profiling in Sage

12.1. Thematic tutorial document tree 399

http://sphinx-doc.org/rest.html
https://en.wikipedia.org/wiki/Profiling_(computer_programming)

Thematic Tutorials, Release 8.0

– How long does it take? %time and %timeit

– Python-level function calls: %prun

– Python-level line-by-line profiling: %lprun

– C-level function calls: %crun

– C-level line-by-line profiling: perf (Linux only)

How long does it take? %time and %timeit

The two IPython magics %time and %timeit measure the time it takes to run a command:

sage: %time p=random_prime(2**300)
CPU times: user 152 ms, sys: 0 ns, total: 152 ms
Wall time: 150 ms

sage: %timeit p=random_prime(2**300)
10 loops, best of 3: 62.2 ms per loop

Note that while %time only runs the command once, %timeit tries to return a more meaningful value over several
runs.

For more information see %timeit? or this page.

Note that Sage provides a timeit function which also runs in the Sage notebook.

Python-level function calls: %prun

With %prun, you can obtain the list of all Python functions involved in a computation, as well as the time spent on
each of them:

sage: %prun _=random_prime(2**500)
468 function calls in 0.439 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
32 0.438 0.014 0.438 0.014 {method 'is_prime' of 'sage.rings.integer.

→˓Integer' objects}
32 0.001 0.000 0.439 0.014 arith.py:407(is_prime)
32 0.000 0.000 0.001 0.000 random.py:175(randrange)
32 0.000 0.000 0.000 0.000 random.py:244(_randbelow)

...

The most time-consuming functions should appear on the top. A description of the different columns is available here.

Note: You may want to sort this list differently, e.g: use %prun -s cumulative for decreasing cumulative time.

Alternatively, you can “save” this data to a Stats object for further inspection:

sage: %prun -r random_prime(2**500)
sage: stats_object = _
sage: stats_object.total_calls
2547

400 Chapter 12. Documentation

https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-timeit
https://docs.python.org/2/library/profile.html#instant-user-s-manual
https://docs.python.org/library/profile.html#pstats.Stats

Thematic Tutorials, Release 8.0

For more information see %prun? or this page.

Visualize the statistics: you can obtain a more graphical output with RunSnake and Sage’s function runsnake():

sage: runsnake('random_prime(2**500)')

Python-level line-by-line profiling: %lprun

With line_profiler and its %lprun magic, you can find out which lines of one (or many) functions are the most
time-consuming. The syntax is the following:

%lprun -f function1 -f function2 code_to_run

This will display the line-by-line analysis of function1 and function2 when code_to_run is executed:

sage: %lprun -f random_prime random_prime(2**500)
Line # Hits Time Per Hit % Time Line Contents
==
1193 def random_prime(n, proof=None,
→˓lbound=2):
... ...
1251 # since we don't want current_
→˓randstate to get
1252 # pulled when you say "from sage.
→˓arith.all import *".
1253 1 11 11.0 0.0 from sage.misc.randstate import
→˓current_randstate
1254 1 7 7.0 0.0 from sage.structure.proof.proof
→˓import get_flag
1255 1 6 6.0 0.0 proof = get_flag(proof, "arithmetic
→˓")
1256 1 17 17.0 0.0 n = ZZ(n)
...

In order to install line_profiler you must first run the following command:

[user@localhost ~] sage -pip install "line_profiler"

C-level function calls: %crun

With %crun, you can obtain the list of all C functions involved in a computation, as well as the time spent on each of
them. You will need to have the Google performance analysis tools installed on your system:

sage: %crun p=random_prime(2**500)
PROFILE: interrupts/evictions/bytes = 45/0/18344
Total: 45 samples

0 0.0% 0.0% 35 77.8% PyEval_EvalCode
0 0.0% 0.0% 35 77.8% PyEval_EvalCodeEx
0 0.0% 0.0% 35 77.8% PyEval_EvalFrameEx
0 0.0% 0.0% 35 77.8% PyObject_Call
0 0.0% 0.0% 35 77.8% PyRun_StringFlags
0 0.0% 0.0% 35 77.8% __Pyx_PyObject_Call.constprop.73

...

For more information on %crun, see sage.misc.gperftools.

12.1. Thematic tutorial document tree 401

http://ipython.org/ipython-doc/dev/interactive/magics.html#magic-prun
http://www.vrplumber.com/programming/runsnakerun/
https://pypi.python.org/pypi/line_profiler/
https://github.com/gperftools/gperftools/

Thematic Tutorials, Release 8.0

C-level line-by-line profiling: perf (Linux only)

If your code is written in C or in Cython, you can find out line-by-line which are the most costly using perf (included
in the Ubuntu package linux-tools).

The easiest way to use it is to run some (very long) computation in Sage, and to type in a console:

[user@localhost ~] sudo perf top

Select the entry that interests you, and press Enter. The annotate command will show you:

• the CPU instructions

• the source code

• the associated time

| * cdef unsigned long word = (<unsigned long>1) << (v & self.radix_
→˓mod_mask)

| * return (self.edges[place] & word) >> (v & self.radix_mod_mask)
→˓ # <<<<<<<<<<<<<<

| *
| * cpdef bint has_arc(self, int u, int v) except -1:
| */
| __pyx_r = (((__pyx_v_self->edges[__pyx_v_place]) & __pyx_v_word) >> (__

→˓pyx_v_v & __pyx_v_self->radix_mod_mask));
10.88 | movslq %esi,%rsi
6.52 | and (%rdi,%rsi,8),%rax

12.84 | shr %cl,%rax

Note:

• press s to toggle source code view

• press H to cycle through hottest instructions

• press h for help

Alternatively, or if you have no sudo privileges, you can record the statistics of a specific process into a file perf.
data from its PID. Then, visualize the result using perf report:

[user@localhost ~] perf record -p PID
[user@localhost ~] perf report --vmlinux vmlinux

402 Chapter 12. Documentation

https://perf.wiki.kernel.org/index.php/Main_Page

BIBLIOGRAPHY

[Stanley2013] Richard Stanley. Algebraic Combinatorics: walks, trees, tableaux and more, Springer, first edition,
2013.

[Bidigare1997] Thomas Patrick Bidigare. Hyperplane arrangement face algebras and their associated Markov chains.
ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.) University of Michigan.

[Brown2000] Kenneth S. Brown. Semigroups, rings, and Markov chains. J. Theoret. Probab., 13(3):871-938, 2000.

[AKS2013] Arvind Ayyer, Steven Klee, Anne Schilling. Combinatorial Markov chains on linear extensions J. Alge-
braic Combinatorics, doi:10.1007/s10801-013-0470-9, Arxiv 1205.7074.

[Levine2014] Lionel Levine. Threshold state and a conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle, Com-
munications in Mathematical Physics.

[BN] Matthew Baker, Serguei Norine, Riemann-Roch and Abel-Jacobi Theory on a Finite Graph, Advances in Math-
ematics 215 (2007), 766–788.

[BTW] Per Bak, Chao Tang and Kurt Wiesenfeld (1987). Self-organized criticality: an explanation of 1/ƒ noise,
Physical Review Letters 60: 381–384 Wikipedia article.

[CRS] Robert Cori, Dominique Rossin, and Bruno Salvy, Polynomial ideals for sandpiles and their Gröbner bases,
Theoretical Computer Science, 276 (2002) no. 1–2, 1–15.

[H] Holroyd, Levine, Meszaros, Peres, Propp, Wilson, Chip-Firing and Rotor-Routing on Directed Graphs. The final
version of this paper appears in In and out of Equilibrium II, Eds. V. Sidoravicius, M. E. Vares, in the Series
Progress in Probability, Birkhauser (2008).

[Bourbaki46] Nicolas Bourbaki. Lie Groups and Lie Algebras: Chapters 4-6. Springer, reprint edition, 1998.

[BumpNakasuji2010] D. Bump and M. Nakasuji. Casselman’s basis of Iwahori vectors and the Bruhat order.
arXiv:1002.2996, http://arxiv.org/abs/1002.2996.

[Carrell1994] J. B. Carrell. The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness
of Schubert varieties. In Algebraic Groups and Their Generalizations: Classical Methods, AMS Proceedings of
Symposia in Pure Mathematics, 56, 53–61, 1994.

[Deodhar1977] V. V. Deodhar. Some characterizations of Bruhat ordering on a Coxeter group and determination of
the relative Moebius function. Inventiones Mathematicae, 39(2):187–198, 1977.

[Dyer1993] M. J. Dyer. The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals. Inventiones Mathematicae,
111(1):571–574, 1993.

[Dynkin1952] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras. (Russian) Mat. Sbornik N.S.
30(72):349–462, 1952.

[FauserEtAl2006] B. Fauser, P. D. Jarvis, R. C. King, and B. G. Wybourne. New branching rules induced by plethysm.
Journal of Physics A. 39(11):2611–2655, 2006.

403

https://dx.doi.org/10.1007/s10801-013-0470-9
http://arxiv.org/abs/1205.7074
http://people.math.gatech.edu/~mbaker/papers.html
http://en.wikipedia.org/wiki/Bak-Tang-Wiesenfeld_sandpile
http://front.math.ucdavis.edu/0801.3306

Thematic Tutorials, Release 8.0

[Fulton1997] W. Fulton. Young Tableaux. Cambridge University Press, 1997.

[FourierEtAl2009] G. Fourier, M. Okado, A. Schilling. Kirillov–Reshetikhin crystal for nonexceptional types. Ad-
vances in Mathematics, 222:1080–1116, 2009.

[FourierEtAl2010] G. Fourier, M. Okado, A. Schilling. Perfectness of Kirillov-Reshetikhin crystals for nonexcep-
tional types. Contemp. Math., 506:127–143, 2010.

[HatayamaEtAl2001] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi. Paths, crystals and fermionic for-
mulae. in MathPhys Odyssey 2001, in : Prog. Math. Phys., vol 23, Birkhauser Boston, Boston, MA 2002, pp.
205–272.

[HainesEtAl2009] T. J. Haines, R. E. Kottwitz, and A. Prasad. Iwahori-Hecke Algebras. arXiv:math/0309168,
http://arxiv.org/abs/math/0309168.

[HongKang2002] J. Hong and S.-J. Kang. Introduction to Quantum Groups and Crystal Bases. AMS Graduate Studies
in Mathematics, American Mathematical Society, 2002.

[HongLee2008] J. Hong and H. Lee. Young tableaux and crystal 𝐵(∞) for finite simple Lie algebras. J. Algebra,
320:3680–3693, 2008.

[HoweEtAl2005] R. Howe, E.-C.Tan, and J. F. Willenbring. Stable branching rules for classical symmetric pairs.
Transactions of the American Mathematical Society, 357(4):1601–1626, 2005.

[Iwahori1964] N. Iwahori. On the structure of a Hecke ring of a Chevalley group over a finite field. J. Fac. Sci. Univ.
Tokyo Sect. I, 10:215–236, 1964.

[Jimbo1986] M. A. Jimbo. 𝑞-analogue of 𝑈(gl(𝑁 + 1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math.
Phys, 11(3):247–252, 1986.

[JonesEtAl2010] B. Jones, A. Schilling. Affine structures and a tableau model for E_6 crystals J. Algebra, 324:2512-
2542, 2010.

[Joseph1995] A. Joseph. Quantum Groups and Their Primitive Ideals. Springer-Verlag, 1995.

[Kac] Victor G. Kac. Infinite Dimensional Lie algebras Cambridge University Press, third edition, 1994.

[KKMMNN1992] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki. Affine crystals
and vertex models. Int. J. Mod. Phys. A 7 (suppl. 1A): 449–484, 1992.

[KKS2007] S.-J. Kang, J.-A. Kim, and D.-U. Shin. Modified Nakajima monomials and the crystal 𝐵(∞). J. Algebra,
308 (2007), 524-535.

[Kashiwara1993] M. Kashiwara. The crystal base and Littelmann’s refined Demazure character formula. Duke Math.
J., 71(3):839–858, 1993.

[Kashiwara1995] M. Kashiwara. On crystal bases. Representations of groups (Banff, AB, 1994), 155–197, CMS
Conference Proceedings, 16, American Mathematical Society, Providence, RI, 1995.

[KashiwaraNakashima1994] M. Kashiwara and T. Nakashima. Crystal graphs for representations of the 𝑞-analogue
of classical Lie algebras. Journal Algebra, 165(2):295–345, 1994.

[KimShin2010] J.-A. Kim and D.-U. Shin. Generalized Young walls and crystal bases for quantum affine algebra of
type 𝐴. Proc. Amer. Math. Soc., 138(11):3877–3889, 2010.

[King1975] R. C. King. Branching rules for classical Lie groups using tensor and spinor methods. Journal of Physics
A, 8:429–449, 1975.

[Knuth1970] D. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific Journal of Mathematics,
34(3):709–727, 1970.

[Knuth1998] D. Knuth. The Art of Computer Programming. Volume 3. Sorting and Searching. Addison Wesley Long-
man, 1998.

404 Bibliography

Thematic Tutorials, Release 8.0

[LNSSS14I] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. A uniform model for for Kirillov-
Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph. (2014) Arxiv 1211.2042

[LNSSS14II] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. A uniform model for for Kirillov-
Reshetikhin crystals II: Alcove model, path model, and 𝑃 = 𝑋 . (2014) Arxiv 1402.2203

[L1995] P. Littelmann. Paths and root operators in representation theory. Ann. of Math. (2) 142 (1995), no. 3, 499-
525.

[McKayPatera1981] W. G. McKay and J. Patera. Tables of Dimensions, Indices and Branching Rules for Representa-
tions of Simple Lie Algebras. Marcel Dekker, 1981.

[OkadoSchilling2008] M. Okado, A.Schilling. Existence of crystal bases for Kirillov–Reshetikhin crystals for nonex-
ceptional types. Representation Theory 12:186–207, 2008.

[Seitz1991] G. Seitz, Maximal subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc. 90 (1991), no.
441.

[Rubenthaler2008] H. Rubenthaler, The (A2,G2) duality in E6, octonions and the triality principle. Trans. Amer.
Math. Soc. 360 (2008), no. 1, 347–367.

[SalisburyScrimshaw2015] B. Salisbury and T. Scrimshaw. A rigged configuration model for 𝐵(∞). J. Combin. The-
ory Ser. A, 133:29–57, 2015.

[Schilling2006] A. Schilling. Crystal structure on rigged configurations. Int. Math. Res. Not., Volume 2006. (2006)
Article ID 97376. Pages 1-27.

[SchillingTingley2011] A. Schilling, P. Tingley. Demazure crystals, Kirillov-Reshetikhin crystals, and the energy
function. preprint arXiv:1104.2359

[Stanley1999] R. P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge University Press, 1999.

[Testerman1989] Testerman, Donna M. A construction of certain maximal subgroups of the algebraic groups E6 and
F4. J. Algebra 122 (1989), no. 2, 299–322.

[Testerman1992] Testerman, Donna M. The construction of the maximal A1’s in the exceptional algebraic groups.
Proc. Amer. Math. Soc. 116 (1992), no. 3, 635–644.

[CormenEtAl2001] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, USA, 2nd edition, 2001.

[MenezesEtAl1996] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, Boca Raton, FL, USA, 1996.

[Stinson2006] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC, Boca Raton, USA, 3rd
edition, 2006.

[TrappeWashington2006] W. Trappe and L. C. Washington. Introduction to Cryptography with Coding Theory. Pear-
son Prentice Hall, Upper Saddle River, New Jersey, USA, 2nd edition, 2006.

Bibliography 405

http://arxiv.org/abs/1211.2042
http://arxiv.org/abs/1402.2203

	Introduction to Sage
	Introduction to Python
	Calculus and plotting
	Algebra
	Number Theory
	Geometry
	Combinatorics
	Algebraic Combinatorics
	Parents/Elements, Categories and algebraic structures
	Numerical computations
	Advanced programming
	Documentation
	Bibliography

