
Salesforce.com: Salesforce Summer '09

Quick Reference for Developing Packages

Last updated: July 6, 2009

© Copyright 2000-2009 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Overview of Packages..2
What Is In a Package?...2
Managed Package Statuses..3

Packageable Components..4
Component Attributes in Managed Packages...9
Component Behavior in Packages...14

Component Availability After Deployment..19
Versioning and Deprecation in Package Versions..20

Versioning and Deprecation Apex in Package Versions...20
Behavior in Package Versions..20
Versioning Apex Code Behavior...20
Deprecation Effects for Subscribers..21

Salesforce Editions and Limits..23
Packaging Glossary...26

Index...30

i

Table of Contents

Overview of Packages
Packages provide you with a powerful way to distribute your applications. A package is a container for something as small as
an individual component or as large as a set of related apps. After you create a package, you can distribute it to other Salesforce
users and organizations, including those outside your company.

This guide provides quick reference information that is useful when you are starting to design and develop packages. It explains
basic packaging concepts as well as which components, such as custom objects, can be included in packages. See the AppExchange
Publishing Guide for information on how to upload your packages after development is complete and more tips and best
practices for preparing, building, and packaging your applications.

Packages come in two forms—managed and unmanaged:

• Unmanaged packages can be used for a one time distribution or migration of components to one or more Salesforce
organizations. Once the components are distributed in an unmanaged package, the developer loses all control over the
components and the installers can alter them as they see fit. Unmanaged packages are not upgradeable and are typically
free. They are useful for distributing application templates to provide developers with the basic building blocks for an
application.

• A collection of application components that are posted as a unit on AppExchange, and are associated with a namespace
and a License Management Organization. A package must be managed for it to be published publicly on AppExchange,
and for it to support upgrades. An organization can create a single managed package that can be downloaded and installed
by many different organizations. They differ from unmanaged packages in that some components are locked, allowing the
managed package to be upgraded later. Unmanaged packages do not include locked components and cannot be upgraded.
In addition, managed packages obfuscate certain components (like Apex) on subscribing organizations, so as to protect
the intellectual property of the developer. Managed packages are ideal when you are building an app that you have plans
to upgrade and sell. Managed packages also offer license management and intellectual property protection.

You need a Developer Edition organization to create a managed package. You can create an unmanaged package in Group,
Professional, Enterprise, Unlimited, and Developer Editions. If you are not already a member of the developer community,
go to developer.force.com/join and follow the instructions for signing up for a Developer Edition account.

A package version is a set of components uploaded in a package. It is denoted by a version number,
majorNumber.minorNumber, such as 2.1.

What Is In a Package?
Packages consist of one or more Salesforce components, which, in turn, consist of one or more attributes. Components and
their attributes behave differently in managed and unmanaged packages.

Packages

A package is comprised of many components, such as custom objects, Apex classes and triggers, or apps. They can be
managed or unmanaged. For a list of all the components that can be included in a package, see Packageable Components
on page 4.

Components

A component is one constituent part of a package. A component defines an item, such as a custom object or a custom
field. You can combine components in a package to produce powerful features or applications. In an unmanaged package,
components are not upgradeable. In a managed package, some components can be upgraded while others cannot.

2

Overview of Packages

http://na1.salesforce.com/help/doc/en/salesforce_appexchange_publish_guide.pdf
http://na1.salesforce.com/help/doc/en/salesforce_appexchange_publish_guide.pdf
http://developer.force.com/join

Attributes

An attribute is a field on a component, such as the name of an email template or the Allow Reports checkbox on a
custom object. On a non-upgradeable component in either an unmanaged or managed package, attributes are editable
by both the developer and the subscriber. On an upgradeable component in a managed package, some attributes can be
edited by the developer, some can be edited by the subscriber, and some are locked, meaning they cannot be edited by
either the developer or subscriber. For information on which attributes are editable for each component, see Component
Attributes in Managed Packages on page 9.

The following image illustrates these concepts.

Managed Package Statuses
When uploading a managed package, you must determine whether you are ready to release the contents of the package.
Releasing a package has irreversible implications that you should understand prior to uploading a package. The following are
the two types of uploads available for managed packages:

Managed - Beta

The purpose of a Managed - Beta package is to allow the developer to test their application in different Salesforce
organizations and to share the app with a pilot set of users for evaluation and feedback. This type of package provides
the developer with the most flexibility as any changes can be made to the package. However, subscribers to a beta package
cannot upgrade their packages.The best practice is for subscribers to uninstall the beta package when testing is complete,
then install the Managed - Released package.

A beta package cannot be installed into a company's production Salesforce organization. Users can install beta packages
in sandbox, Developer Edition, or testing organizations only. Partners registered in the Force.com ISV Program receive
access to free Enterprise and Professional Edition testing organizations that can be used for beta package testing. For
free registration, see developer.force.com/isv.

Managed - Released

A package should only be uploaded as Managed - Released once all testing is complete and the package is ready for
installation by customers. The released version of the package can be listed on the AppExchange and made publicly
available. Once a Managed - Released version of a package is uploaded, the components in the package are also Managed
- Released and certain destructive changes cannot be made by the developer. These restrictions ensure that subscribers
can easily upgrade in the future.

3

Overview of Packages

http://developer.force.com/isv

Packageable Components
The Salesforce components in a managed package behave differently than those in an unmanaged package at different points
in the release process. For example, a subscriber cannot change certain attributes of managed components in any package that
is installed, regardless of whether it is beta. Likewise, the developer cannot change certain attributes of managed components
previously uploaded in a Managed - Released state. However, Managed - Beta components have the same properties as
unmanaged components in the developer's organization. Developers should determine when the right time is to make a beta
package Managed - Released because doing so restricts the properties of each component within it. To understand each state
of a managed package, see "Planning the Release of Managed Packages" in the Salesforce online help.

A package is comprised of many different types of components. A component may behave differently depending on the type
of package. The table that follows shows the behavior of components for each of the properties listed below, such as Packaged
Explicitly or Implicitly. Each property represents a column in the table. For information on the component attributes, see
Component Attributes in Managed Packages on page 9.

Packaged Explicitly or Implicitly (Applies to managed and unmanaged packages)

Components can be added either explicitly or implicitly. For example, when you create a custom field on a standard
object, you must add the custom field to your package explicitly. However, if you have created a custom object and added
a custom field on it, when you add the custom object to the package the custom field is implicitly added to the package.

• Explicitly: The component can be directly included in the package.
• Implicitly: The component cannot be added directly to the package. The component is added to the package when

another dependent component, usually a custom object, is added to the package.

Automatic Renaming (Applies to unmanaged packages)

Salesforce can resolve naming conflicts automatically on install.

• No: If a naming conflict occurs the install is blocked.
• Yes: If a naming conflict occurs Salesforce can optionally change the name of the component being installed.

Upgradeable (Applies to managed packages)

Some components are updated to a newer version when a package is upgraded.

• No: The component is not upgraded.
• Yes: The component is upgraded.

Developer Deleteable (Applies to managed packages)

A developer can delete some components after the package is uploaded as Managed - Released. Deleted components
are not deleted in the subscriber's organization during a package upgrade. For additional information on deleting
components, see Protectable on page 5.

• No: The developer cannot delete a Managed - Released component..
• Yes: The developer can delete a Managed - Released component.

Subscriber Deleteable (Applies to managed packages)

A subscriber or installer of a package can delete the component.

• No: The subscriber cannot delete the component.

4

Packageable Components

• Yes: The subscriber can delete the component.

Standard and Extension Objects Supported (Applies to managed and unmanaged packages)

Some components related to a standard object or a custom object installed by another managed package can be packaged,
even though the object cannot be packaged. For example, a custom field on a standard object can be individually packaged,
while the only way to include a custom field on a custom object created in the developer organization is to add the object
to the package. An extension is any package that adds to the functionality of another managed package.

• No: The component cannot be packaged on standard and extension objects.
• Yes: The component can be packaged on standard and extension objects.
• Not applicable: The component has no relationship to a standard or extension object.

Protectable (Applies to managed packages)

Developers can mark certain components as protected. Protected components cannot be linked to or referenced by
components created in a subscriber organization. A developer can delete a protected component in a future release
without worrying about failing installations. However, once a component is marked as unprotected and is released
globally, the developer cannot delete it. When the subscriber upgrades to a version of the package where the component
is deleted, the component is removed from the subscriber's organization.

• No: The component cannot be marked protected.
• Yes: The component can be marked protected.

IP Protection (Applies to managed packages)

Certain components automatically include intellectual property protection, such as obfuscating Apex code. The only
exceptions are Apex methods declared as global, meaning that the method signatures can be viewed by the subscriber.
The information in the components you package and publish may be visible to users on Force.com AppExchange. Use
caution when adding your code to a custom s-control, formula, Visualforce page, or any other component that you cannot
hide in your app.

• No: The component does not support intellectual property protection.
• Yes: The component supports intellectual property protection.

IP
Protection

ProtectableStandard
and
Extension
Objects
Supported

Subscriber
Deleteable

Developer
Deleteable

UpgradeableAutomatic
Renaming

Packaged
Explicitly or
Implicitly

Component

NoNoYesYesYesNoYesExplicitlyAnalytic
Snapshot

YesNoN/ANoNoYesNoExplicitlyApex Class

NoNoNoNoNoYesNoImplicitlyApex
Sharing
Reason

5

Packageable Components

IP
Protection

ProtectableStandard
and
Extension
Objects
Supported

Subscriber
Deleteable

Developer
Deleteable

UpgradeableAutomatic
Renaming

Packaged
Explicitly or
Implicitly

Component

NoNoNoYesYesNoNoImplicitlyApex
Sharing
Recalculation

YesNoYesNoNoYesNoOn a
standard or

Apex
Trigger

extension
object:
Explicitly

On an
object in the
package:
Implicitly

NoNoN/AYesYesNoNoExplicitlyApplication

NoNo, except
custom links

YesNoNoYesNoOn a
standard

Custom
Button or
Link (for Home

page only)
object:
Explicitly

On a
custom
object:
Implicitly

NoNoYesNoNoYesNoOn a
standard

Custom
Field

object:
Explicitly

On a
custom
object:
Implicitly

NoYesN/ANoYes, if
protected

YesNoExplicitlyCustom
Label

NoNoN/ANoNoYesNoExplicitlyCustom
Object

NoNoYesNoNoYesNoExplicitlyCustom
Report
Type

6

Packageable Components

IP
Protection

ProtectableStandard
and
Extension
Objects
Supported

Subscriber
Deleteable

Developer
Deleteable

UpgradeableAutomatic
Renaming

Packaged
Explicitly or
Implicitly

Component

NoNoN/AYesYesNoYesExplicitly

In a folder:
Implicitly

Dashboard

NoNoN/AYesYesNoYesExplicitly

In a folder:
Implicitly

Document

NoNoN/AYesYesNoYesExplicitly

In a folder:
Implicitly

Email
Template

NoNoN/AYesYesNoYesExplicitlyFolder

NoNoN/ANoNoYesNoExplicitlyHome Page
Component

NoNoN/AYesYesNoNoExplicitlyHome Page
Layout

NoNoN/AYesYesNoYesExplicitlyLetterhead

NoNoNoYesYesNoYesImplicitlyList View

NoNoNoYesYesNoNoImplicitlyPage
Layout

NoNoNoNoNoYesNoImplicitlyRecord
Type

NoNoN/AYesYesNoYesExplicitly

In a folder:
Implicitly

Report

NoNoN/ANoNoYesNoExplicitlyS-Control

NoNoN/ANoNoYesNoExplicitlyStatic
Resource

NoNoYesNoNoYesNoExplicitlyTab

NoNoN/ANoNoYesNoExplicitlyTranslation

NoNoNoNoNoYesNoImplicitlyValidation
Rule

YesNoYesNoNoYesNoExplicitlyVisualforce
Component

7

Packageable Components

IP
Protection

ProtectableStandard
and
Extension
Objects
Supported

Subscriber
Deleteable

Developer
Deleteable

UpgradeableAutomatic
Renaming

Packaged
Explicitly or
Implicitly

Component

NoNoYesNoNoYesNoExplicitlyVisualforce
Page

NoYesYesNoYes, if
protected

YesNoExplicitlyWorkflow
Email Alert

NoYesYesNoYes, if
protected

YesNoExplicitlyWorkflow
Field
Update

NoYesYesNoYes, if
protected

YesNoExplicitlyWorkflow
Outbound
Message

NoNoYesNoNoYesNoExplicitlyWorkflow
Rule

NoYesYesNoYes, if
protected

YesNoExplicitlyWorkflow
Task

8

Packageable Components

Component Attributes in Managed Packages
A component is composed of a series of attributes, or fields, that specify properties of the component, such as the Description
attribute of a dashboard. The following table shows the behavior of attributes on components in a managed package. In an
unmanaged package, all attributes can be edited by both the subscriber and the developer since the package cannot be upgraded.
For information on the properties of packageable components, see Packageable Components on page 4.

Developer Editable

The developer can edit the component attributes in this column.These attributes are locked in the subscriber's organization.

Subscriber and Developer Editable

The subscriber and developer can edit the component attributes in this column. However, they are not upgradeable; only
new subscribers receive the latest changes.

Locked

Once a package is Managed - Released, the developer and subscriber cannot edit the component attributes in this column.

LockedSubscriber and Developer
Editable

Developer EditableComponent

Analytic Snapshot •• Analytic Snapshot Unique
Name

All attributes except
Analytic Snapshot Unique
Name

Apex Class •• NameAPI Version
• Code

Apex Sharing Reason •• Reason NameReason Label

Apex Sharing Recalculation • Apex Class

Apex Trigger •• NameAPI Version
• Code

Application •• App NameAll attributes except App
Name

Custom Button or Link ••• Display TypeHeightBehavior
• ••Button or Link URL NameResizeable

•• Show Address BarContent Source
• •Description Show Menu Bar

•• Show ScrollbarsDisplay Checkboxes
• •Label Show Status Bar

•• Show ToolbarsLink Encoding
• Width
• Window Position

9

Component Attributes in Managed Packages

LockedSubscriber and Developer
Editable

Developer EditableComponent

Custom Field • Child Relationship Name• Help Text• Auto-Number Display
Format •• Data TypeMask Type

• Description •• Decimal PlacesMask Character
• Default Value •• External IDSharing Setting
• Field Label •• Field NameSort Picklist Values
• Formula • Length
• Related List Label • Required
• Roll-Up Summary Filter

Criteria
• Roll-Up Summary Field
• Roll-Up Summary Object
• Roll-Up Summary Type
• Unique

Custom Label •• NameCategory
• Short Description
• Value

Custom Object ••• Object NameAllow ActivitiesDescription
• ••Label Record Name Data TypeAllow Reports

•• •Available for Customer
Portal

Plural Label Record Name Display
Format• Record Name

• Context-Sensitive Help
Setting

• Starts with a Vowel Sound

• Default Sharing Model

• Development Status
• Enable Divisions
• Grant Access Using

Hierarchy
• Search Layouts
• Track Field History

Custom Report Type ••• Report Type NameDevelopment StatusAll attributes except
Development Status and
Report Type Name

Dashboard •• Dashboard Unique NameAll attributes except
Dashboard Unique Name

Document •• Document Unique NameAll attributes except
Document Unique Name

Email Template •• Email Template NameAll attributes except Email
Template Name

10

Component Attributes in Managed Packages

LockedSubscriber and Developer
Editable

Developer EditableComponent

Folder •• Folder Unique NameAll attributes except
Folder Unique Name

Home Page Component •• NameBody
• •Component Position Type

Home Page Layout •• Layout NameAll attributes except
Layout Name

Letterhead •• Letterhead NameAll attributes except
Letterhead Name

List View •• View Unique NameAll attributes except View
Unique Name

Page Layout •• Page Layout NameAll attributes except Page
Layout Name

Record Type ••• NameActiveDescription
• •Record Type Label Business Process

Report •• Report Unique NameAll attributes except
Report Unique Name

S-Control ••• S-Control NamePrebuild in PageContent
• •Description Type
• Encoding
• Filename
• Label

Static Resource •• NameDescription
• File

Tab ••• Tab NameMobile ReadyDescription
• •Encoding Tab Style
• Has Sidebar
• Height
• Label
• S-Control
• Splash Page Custom Link
• Type
• URL

11

Component Attributes in Managed Packages

LockedSubscriber and Developer
Editable

Developer EditableComponent

• Width

Translation • All attributes

Validation Rule ••• Rule NameActiveDescription
• Error Condition Formula
• Error Location
• Error Message

Visualforce Component •• NameAPI Version
• Description
• Label
• Markup

Visualforce Page •• NameAPI Version
• Description
• Label
• Markup

Workflow Email Alert •• DescriptionAdditional Emails
• Email Template
• Recipients

Workflow Field Update ••• NameLookupDescription
• •Field Value Notify Assignee
• Formula Value

Workflow Outbound
Message

••• NameUser to Send AsDescription
• Endpoint URL
• Fields to Send
• Send Session ID

Workflow Rule ••• Rule NameActiveDescription
• Evaluation Criteria
• Rule Criteria

Workflow Task •• SubjectAssign To
• Comments
• Due Date
• Notify Assignee
• Priority
• Record Type

12

Component Attributes in Managed Packages

LockedSubscriber and Developer
Editable

Developer EditableComponent

• Status

13

Component Attributes in Managed Packages

Component Behavior in Packages
When building an app for distribution, it is important to consider how packaging affects your app and its components. This
section contains guidelines and information on special behaviors in packages. Use these guidelines to help you determine what
to include in your packages, how to design your app, and how to distribute your packages (managed or unmanaged).

Note:

• For more information on the properties of each component in packages, see the packaged components properties
table on page 5. For more information on the attributes of each component in packages, see the component
attributes table on page 9.

• Component names must be unique within an organization. To ensure that your component names do not conflict
with those in an installer's organization, use a managed package so that all of your component names contain your
namespace prefix.

Analytic Snapshot

Developers of managed packages must consider the implications of introducing analytic snapshots that reference reports
released in a previous version of the package. If the subscriber deleted the report or moved the report to a personal folder,
the analytic snapshot referencing the report will not be installed, even though the Package Installation page may indicate
that it will be. Also, if the subscriber has modified the report, that report may return results impacting the information
displayed by the analytic snapshot. As a best practice, the developer should release an analytic snapshot and the related
reports in the same version.

Custom objects are developer-controlled so analytic snapshot field mappings could become invalid when the package is
upgraded. For example, if the developer deletes a custom field included in the field mapping, it would become invalid.
Analytic snapshots can be created, installed, and run with invalid mappings as long as one valid mapping exists.

Since the running user is selected by the subscriber, some analytic snapshot field mappings could become invalid if the
running user does not have access to source or target fields.

Apex Classes or Triggers

Any Apex that is included as part of a Force.com AppExchange package must have at least 75% cumulative test coverage.
Each trigger must also have some test coverage. When you upload your package to AppExchange, all tests are run to
ensure that they run without errors. In addition, all tests are run when the package is installed in the installer's organization.
The installer can decide whether or not to install the package if any tests fail.

Tip: To prevent naming conflicts, Salesforce recommends using managed packages for all packages that contain
Apex. This way, all of the Apex objects contain your namespace prefix. For example, if there is an Apex class
called MyHelloWorld and the namespace for your organization is OneTruCode, the class is referenced as
OneTruCode:MyHelloWorld.

Keep the following considerations in mind when including Apex in your package:

• If you are exposing any methods as Web services, include detailed documentation so that subscribers can write external
code that calls your Web service.

• If an Apex class references a custom label, and that label has translations, you must explicitly package the individual
languages desired in order for those translations to be included in the package.

• If you reference a custom object's sharing object (such as MyCustomObject__share) in Apex, this adds a sharing
model dependency to your package. You must set the organization-wide sharing default access level for the custom

14

Component Behavior in Packages

object to Private in order for other organizations to install your package successfully. For more information on setting
the sharing model, see "Managing the Sharing Settings" in the Salesforce online help.

• The code contained in an Apex script that is part of a managed package is automatically obfuscated and cannot be
viewed in an installing organization. The only exceptions are methods declared as global, meaning that the method
signatures can be viewed in an installing organization.

• You can use the deprecated annotation in Apex to identify methods, classes, exceptions, enums, interfaces, and
variables that can no longer be referenced in subsequent releases of the managed package in which they reside. This
is useful when you are refactoring code in managed packages as the requirements evolve. After you upload another
package version as Managed - Released, new subscribers that install the latest package version cannot see the deprecated
elements, while the elements continue to function for existing subscribers and API integrations.

Custom Fields

• Picklist field values for custom fields can be added, edited, or deleted by subscribers. A developer should carefully
consider this when explicitly referencing a picklist value in code. Picklist values can be added or deleted by the
developer. During a package upgrade, no new picklist values are installed into the subscriber's organization for existing
fields. Any picklist values deleted by the developer are still available in the subscriber's organization.

• Auto-number type fields and required fields cannot be added after the object is uploaded in a managed-released
package.

• Developers can add universally required custom fields to managed packages as long as they have default values.

Custom Labels

If a label is translated, the language must be explicitly included in the package in order for the translations to be included
in the package. Subscribers can override the default translation for a custom label.

Custom Objects

• If a developer enables the Allow Reports or Allow Activities attributes on a packaged custom object, the
subscriber's organization also has these features enabled during an upgrade. Once enabled in a managed-released
package, the developer and the subscriber cannot disable these attributes.

• Standard button and link overrides are not packageable. The subscriber must manually configure these settings after
installation.

Custom Report Types

A developer can edit a custom report type in a managed package after it is released. Subscribers automatically receive
these changes when they install a new version of the managed package. However, developers cannot remove objects or
fields from the report type once the package is released.

Custom Tabs

• The Tab Style for a custom tab must be unique within your app. However, it does not need to be unique within
the organization where it is installed. A custom tab's style will not conflict with an existing custom tab in the installer's
environment.

• If you want to provide custom tab names in different languages, see "Renaming Tab and Field Labels" in the Salesforce
online help. Subscribers cannot edit custom tabs in a managed package.

15

Component Behavior in Packages

Customer Portal and Partner Portal

Packages referring to Customer Portal or Partner Portal fields are supported. The subscriber installing the package must
have the respective portal enabled to install the package.

Dashboard Components

Developers of managed packages must consider the implications of introducing dashboard components that reference
reports released in a previous version of the package. If the subscriber deleted the report or moved the report to a personal
folder, the dashboard component referencing the report is dropped during install. Also, if the subscriber has modified
the report, that report may return results impacting what information is displayed by the dashboard component. As a
best practice, the developer should release a dashboard and the related reports in the same version.

Divisions

• When divisions are enabled on a custom object in a package, the subscribing organization must have the divisions
feature enabled to install the package.

• Setting the division filter on a report does not cause a dependency. The setting is dropped when installed into the
subscriber's organization.

• Summarizing by the object's division field—for example, Account Division—in a report causes a dependency.
• If the object's division field in a report is included as a column, and the subscriber's organization does not support

divisions on the object, then the column is dropped during install.
• If you install a custom report type that includes an object's division field as a column, that column is dropped if the

organization does not support divisions.

Field Dependencies

• Developers and subscribers can add, change, or remove field dependencies.
• If the developer adds a field dependency, it is added during installation unless the subscriber has already specified a

dependency for the same field.
• If a developer removes a dependency, this change is not reflected in the subscriber's organization during an upgrade.
• If the developer introduces a new picklist value mapping between the dependent and controlling fields, the mapping

is added during an upgrade.
• If a developer removes a picklist value mapping, the change is not reflected in the subscriber's organization during

an upgrade.

Folders

• Components that Salesforce stores in folders, such as documents, cannot be added to packages when stored in personal
and unfiled folders. Put documents, reports, and other components that Salesforce stores in folders in one of your
publicly accessible folders.

• Components such as documents, email templates, reports, or dashboards are stored in new folders in the installer’s
organization using the publisher’s folder names. Give these folders names that indicate they are part of the package.

• If a new report, dashboard, document, or email template is installed during an upgrade, and the folder containing
the component was deleted by the subscriber, the folder is re-created. Any components in the folder that were
previously deleted are not restored.

• The name of a component contained in a folder must be unique across all folders of the same component type,
excluding personal folders. Components contained in a personal folder must be unique within the personal folder
only.

16

Component Behavior in Packages

Home Page Components

When you package a custom home page layout, all the custom home page components included on the page layout are
automatically added. Standard components such as Messages & Alerts are not included in the package and do not
overwrite the installer's Messages & Alerts. To include a message in your custom home page layout, create an HTML
Area type custom Home tab component that contains your message and add it to your custom home page layout.

Home Page Layouts

Once installed, your custom home page layouts are listed with all the subscriber's home page layouts. Distinguish them
by including the name of your app in the page layout name.

List Views

List views associated with queues cannot be included in a package.

Multi-Currency

• If a subscriber installs a report or custom report type that includes an object's currency field as a column, that column
is dropped if the subscriber's organization is not enabled for multiple currencies.

• Referencing an object's currency field in a report's criteria—for example,Account Currency—causes a dependency.
• Summarizing by an object's currency field in a report causes a dependency.
• Using a currency designation in a report criteria value—for example, "Annual Revenue equals GBP 100"—does not

cause a dependency. The report generates an error when run in the installers organization if it does not support the
currency.

• If an object's currency field in a report is included as a column and the subscriber's organization is not enabled for
multiple currencies, that column is dropped during install.

• If a subscriber installs a custom report type that includes an object's currency field as a column, that column is dropped
if the organization is not enabled for multiple currencies.

Page Layouts

The page layout of the person uploading a package is the layout used for Group and Professional Edition organizations
and becomes the default page layout for Enterprise, Unlimited, and Developer Edition organizations.

Person Accounts

Packages referring to fields related to person accounts on the Account object—for example, Is Person Account,
First Name, Last Name, Title—cannot be uploaded.

Picklist Values

• Subscribers can rename or delete picklist field values. A developer should carefully consider this when explicitly
referencing a picklist field value in Apex.

• Picklist field values can be added or deleted in the developer's organization. Upon upgrade, no new values are installed.
Any values deleted by the developer are still available in the subscriber's organization until the subscriber deletes
them.

Profile Settings

Once a managed package is Managed - Released, the developer can make changes to the profile settings but subscribers
will not get these changes when upgrading. Salesforce recommends contacting subscribers to ask them to make important
profile changes manually when they upgrade.

17

Component Behavior in Packages

Record Types

• If record types are included in the package, the subscriber's organization must support record types to install the
package.

• When a new picklist value is installed, it is associated with all installed record types according to the mappings
specified by the developer. A subscriber can change this association.

• Referencing an object's record type field in a report's criteria—for example, Account Record Type—causes a
dependency.

• Summarizing by an object's record type field in a report's criteria—for example, Account Record Type—causes
a dependency.

• If an object's record type field is included as a column in a report , and the subscriber's organization is not using
record types on the object or does not support record types, then the column is dropped during install.

• If you install a custom report type that includes an object's record type field as a column, that column is dropped if
the organization does not support record types or the object does not have any record types defined.

• Record types on standard objects cannot be packaged and therefore should not be referenced by any components
included in the package.

Reports

If a report includes elements that cannot be packaged, those elements will be dropped or the package upload will fail.
For example:

• Hierarchy drill-downs are dropped from activity and opportunities reports.
• Filters on unpackageable fields are automatically dropped (for example, in filters on standard object record types).
• Package upload fails if a report includes advanced filter conditions on an unpackageable field (for example, in filters

on standard object record types).
• Lookup values on the Select Campaign field of standard campaign reports are dropped.
• Reports are dropped from packages if they have been moved to a private folder or to the Unfiled Public Reports

folder.

Translation Workbench

• If you have enabled the translation workbench and added a language to your package, any associated translated values
are automatically packaged for the appropriate components in your package. Make sure that you have provided
translations for all possible components.

• An installer of your package can see which languages are supported on the package detail page. The installer does
not need to enable anything for the packaged language translations to appear. The only reason installers may want
to enable the translation workbench is to change translations for unmanaged components after installation, override
custom label translations in a managed package, or to translate into additional languages.

• If you are designing a package extension, you can include translations for the extension components but not additional
translations for components in the base package.

• On install, a subscriber must activate a language if it is not active in the subscriber's organization.

Workflow

• Salesforce prevents you from uploading workflow alerts that have a public group, partner user, or role recipient.
Change the recipient to a user before uploading your app. During installation, Salesforce replaces that user with the
user installing the app, and the installer can customize it as necessary.

18

Component Behavior in Packages

• Salesforce prevents you from uploading workflow field updates that change an Owner field to a queue. Change the
updated field value to a user before uploading your app. During installation, Salesforce replaces that user with the
user installing the app, and the installer can customize it as necessary.

• Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record
type on a standard or managed-installed object.

• Salesforce prevents you from uploading workflow tasks that are assigned to a role. Change the Assigned To field
to a user before uploading your app. During installation, Salesforce replaces that user with the user installing the app,
and the installer can customize it as necessary.

• You can package workflow rules and all associated workflow actions, such as alerts and field updates. However, any
time-based triggers are not included in the package. Notify your installers to set up any time-based triggers that are
essential to your app.

• Workflow alerts, field updates, outbound messages, and tasks can be protected by the developer. For more information
on protected components, see "Protected Components" in the Salesforce online help.

• Developers can associate or disassociate workflow actions with a workflow rule at any time.These changes, including
disassociation, are reflected in the subscriber's organization upon install. In managed packages, a subscriber cannot
disassociate workflow actions from a workflow rule if it was associated by the developer.

• References to a specific user in workflow actions, such as the email recipient of a workflow email alert, are replaced
by the user installing the package. Workflow actions referencing roles, public groups, account team, sales team, or
case team roles may not be uploaded.

• On install, all workflow rules are inactive.The subscriber must deploy the package or individually activate the workflow
rules.

Component Availability After Deployment
Many components have an attribute that controls whether they are available for end users. After installation, certain components
are immediately available if they were available in the developer's organization. Other components are not available by default
and must be activated using the package deploy process or they can be activated individually.

The following components are available by default based on the developer's setting.

• Apex triggers
• Email templates
• Folders

Note: Folders shared with specific users or groups are installed with this option selected, however, no users or
groups are selected in the subscriber's organization.

• Letterheads
• Record types
• Validation rules

The following components are not available by default, and must be activated using the package deploy process or they can
be activated individually. For more information, see "Deploying Installed Packages" in the Salesforce online help.

• Custom objects
• Custom report types
• Workflow rules

19

Component Behavior in Packages

Versioning and Deprecation in Package Versions
A package version is a set of components uploaded in a package. It is denoted by a version number,
majorNumber.minorNumber, such as 2.1. Unmanaged packages are not upgradeable so each package version is simply a
set of components for distribution. A package version has more significance for managed packages. Packages can exhibit
different behavior for different versions. Publishers can use package versions to evolve the components in their managed
packages gracefully by releasing subsequent package versions without breaking existing customer integrations using the package.

When an existing subscriber installs a new package version, there is still only one instance of each component in the package,
but the components can emulate older versions. For example, a subscriber may be using a managed package that contains an
Apex class. If the publisher decides to deprecate a method in the Apex class and release a new package version, the subscriber
still sees only one instance of the Apex class after installing the new version. However, this Apex class can still emulate the
previous version for any code that references the deprecated method in the older version.

Versioning and Deprecation Apex in Package Versions
Package developers can use the deprecated annotation in Apex to identify methods, classes, exceptions, enums, interfaces,
and variables that can no longer be referenced in subsequent releases of the managed package in which they reside. This is
useful when you are refactoring code in managed packages as the requirements evolve. After you upload another package
version as Managed - Released, new subscribers that install the latest package version cannot see the deprecated elements,
while the elements continue to function for existing subscribers and API integrations. A deprecated identifier can still be
referenced internally by the package developer.

Note: You cannot use the deprecated annotation in Apex classes or triggers in unmanaged packages.

Package developers can use Managed - Beta package versions for evaluation and feedback with a pilot set of users in different
Salesforce organizations. If a developer deprecates an Apex identifier and then uploads a version of the package as Managed
- Beta, subscribers that install the package version still see the deprecated identifier in that package version. If the package
developer subsequently uploads a Managed - Released package version, subscribers will no longer see the deprecated identifier
in the package version after they install it.

Behavior in Package Versions
A package component can exhibit different behavior in different package versions. This behavior versioning allows you to add
new components to your package and refine your existing components, while still ensuring that your code continues to work
seamlessly for existing subscribers. If a package developer adds a new component to a package and uploads a new package
version, the new component is available to subscribers that install the new package version.

Versioning Apex Code Behavior
Apex has special syntax so that package developers can use conditional logic in classes and triggers to exhibit different behavior
for different versions. This allows the package developer to continue to support existing behavior in classes and triggers in
previous package versions while continuing to evolve the code.

20

Versioning and Deprecation in Package Versions

When subscribers install multiple versions of your package and write code that references Apex classes or triggers in your
package, they must specify the version that they are referencing. Within the Apex code that is being referenced in your package,
you can conditionally execute different code paths based on the version setting of the calling Apex code that is making the
reference. The package version setting of the calling code can be determined within the package code by accessing the
Package.Version.Request object. Package developers can use this object and accompanying methods to determine the
request context and exhibit different behavior for different versions of the package.

The following sample shows different behavior in a trigger for different package versions

trigger oppValidation on Opportunity (before insert, before update) {

for(Opportunity o : Trigger.new){

// New validation added in package version 1.5
// Applies to all version of the managed package, except 1.0
If(Package.Version.Request.isGreaterThan(Package.Version.1.0)){

If(o.Probability >= 50 && o.Description == NULL){
o.addError('All deals over 50% require a description');

}
}

// Validation applies to all versions of the managed package
If(o.IsWon == true && o.LeadSource == NULL){

o.addError('A lead source must be provided for all Closed Won deals');
}

}
}

For more information about Package.Version.Request, see the Force.com Apex Code Developer's Guide.

Deprecation Effects for Subscribers
Package developers can use the deprecated annotation to identify methods, classes, exceptions, enums, interfaces, and
variables that can no longer be referenced in subsequent releases of the managed package in which they reside. This section
demonstrates how deprecation of an Apex method affects subscribers that install the managed package. The table shows a
typical sequence of actions by a package developer in the first column and actions by a subscriber in the second column. Each
row in the table denotes either a package developer or subscriber action.

NotesSubscriber ActionPackage Developer Action

Create a global Apex class,
PackageDevClass, containing a global
method m1.

Upload as Managed - Released version 1.0 of
a package that contains PackageDevClass.

The Version Number for the
package is 1.0. The First

Install version 1.0 of the package.

Installed Version
Number is 1.0.

Create an Apex class, SubscriberClass,
that references m1 in PackageDevClass.

21

Versioning and Deprecation in Package Versions

http://www.salesforce.com/us/developer/docs/apexcode/index.htm

NotesSubscriber ActionPackage Developer Action

Deprecate m1 and create a new method, m2.

Upload as Managed - Released version 2.0 of
the package.

The Version Number for the
package is 2.0. The First

Install version 2.0 of the package.

Installed Version
Number is still 1.0.
SubscriberClass still
references version 1.0 of the
package and continues to
function, as before.

Edit the version settings for
SubscriberClass to reference version 2.0
of the package. Save the class. Note an error
message indicating that m1 cannot be
referenced in version 2.0 of the package.

Change SubscriberClass to reference m2
instead of m1. Successfully save the class.

22

Versioning and Deprecation in Package Versions

Salesforce Editions and Limits
Use the table below to determine the features and maximum number of items supported in each Salesforce Edition. The
following sections provide more detailed information about their respective areas:

• Custom Field Limit Details on page 24
• Rules Limit Details on page 24

Developer
Edition

Unlimited
Edition

Enterprise
Edition

Professional
Edition

Group
Edition

Personal
Edition

Feature

10Unlimited1051Not AvailableCustom Apps

4002,0002005050Not AvailableCustom Objects

101003010Not AvailableNot AvailableCustom Report Types

(Limits apply to all custom
report types regardless of
development status.)

100Unlimited25105Not AvailableTabs

500 per object500 per object500 per object100 per object100 per object5 per objectCustom Fields

(Additional restrictions apply
for activities, long text area
fields, relationship fields, and
roll-up summary fields. For
more information, see Custom
Field Limit Details on page
24.)

50 per object50 per object50 per object50 per objectNot AvailableNot AvailableActive Rules

(Limits apply to any
combination of active
workflow, assignment,
auto-response, and escalation
rules. For more information,
see Rules Limit Details on
page 24.)

5 per object5 per object5 per object5 per object5 per object5 per objectFormulas: Number of
Relationships

10 per object10 per object10 per object10 per object10 per object10 per objectFormulas: VLOOKUP
Functions

100 per object500 per object100 per object20 per object20 per objectNot AvailableActive Validation Rules

100100100100Not AvailableNot AvailableSharing Rules

23

Salesforce Editions and Limits

Developer
Edition

Unlimited
Edition

Enterprise
Edition

Professional
Edition

Group
Edition

Personal
Edition

Feature

A single static
resource can

A single static
resource can

A single static
resource can

A single static
resource can

A single static
resource can

Not AvailableStatic Resources

be up to 5
MB in size.

An
organization

be up to 5
MB in size.

An
organization

be up to 5
MB in size.

An
organization

be up to 5
MB in size.

An
organization

be up to 5
MB in size.

An
organization

can have up tocan have up tocan have up tocan have up tocan have up to
250 MB of250 MB of250 MB of250 MB of250 MB of
staticstaticstaticstaticstatic
resources,
total.

resources,
total.

resources,
total.

resources,
total.

resources,
total.

Custom Field Limit Details

The number of custom fields allowed per object varies according to Salesforce edition. The number of activities, long text area
fields, relationship fields, and roll-up summary fields varies as well. The following table shows the maximum limits for each
custom field type with respect to edition.

Unlimited
Edition

Developer
Edition

Enterprise
Edition

Professional
Edition

Group EditionPersonal
Edition

Custom Field
Limits

5005005001001005Total Custom
Fields Allowed

10010010020No additional
limit

No additional
limit

Activities

25252555No additional
limit

Long Text Area
Fields

2525252525No additional
limit

Relationship
Fields

1010101010No additional
limit

Roll-up
Summary Fields

Rules Limit Details

Different types of rules can have restrictions, depending on your Salesforce edition. The following table shows the restrictions
with respect to edition.

Unlimited
Edition

Developer
Edition

Enterprise
Edition

Professional
Edition

Group EditionPersonal
Edition

Restrictions

300 per object

500 per org

300 per object

500 per org

300 per object

500 per org

300 per object

500 per org

Not AvailableNot AvailableTotal Rules
Allowed

(Limits apply to
any combination
of workflow,

24

Salesforce Editions and Limits

Unlimited
Edition

Developer
Edition

Enterprise
Edition

Professional
Edition

Group EditionPersonal
Edition

Restrictions

assignment,
auto-response,
and escalation
rules, both active
and inactive.)

For Enterprise, Developer, and Unlimited Editions,
each workflow rule and approval process can have:

Not AvailableNot AvailableNot AvailableWorkflow Rules
and Approval
Processes

• 10 time triggers
• 40 immediate actions
• 40 time-dependent actions per time trigger

Note that for both immediate and time-dependent
actions, there can be no more than:

• 10 email alerts
• 10 tasks
• 10 field updates
• 10 outbound messages

For Professional, Enterprise, Developer, and Unlimited Editions, each
assignment, auto-response, and escalation rule can have:

Not AvailableNot AvailableAssignment,
Auto-response,
and Escalation
Rules • 3000 rule entries

• 300 formula criteria rule entries
• 25 filter criteria per rule entry

1,00050500Not AvailableNot AvailableNot AvailableWorkflow Time
Triggers Per
Hour

(For more
information, see
"Time-Dependent
Action and
Time Trigger
Considerations"
in the Salesforce
online help.)

25

Salesforce Editions and Limits

Packaging Glossary
Available in: Group, Professional, Enterprise, Unlimited, and Developer Editions

Review the following terminology with Force.com AppExchange:

App

A collection of components such as tabs, reports, dashboards, and Visualforce pages that address a specific business need.
Short for "application." Salesforce provides standard apps such as Sales and Call Center. You can customize the standard
apps to match the way you work. In addition, you can package an app and upload it to Force.comAppExchange along
with related components such as custom fields, custom tabs, and custom objects. Then, you can make the app available
to other Salesforce users from AppExchange.

AppExchange Directory

A Web directory where hundreds of apps are available to Salesforce customers to review, demo, comment upon, and/or
install. Developers can submit their apps for listing on AppExchange if they wish to share them with the community.

Beta, Managed Package

In the context of managed packages, an early version of a managed package that is uploaded to Force.com AppExchange
for a sampling of your intended audience to test it.

Deploy

To move functionality from an inactive state to active. For example, when developing new features in the Salesforce user
interface, you must select the "Deployed" option to make the functionality visible to other users.

The process by which an application or other functionality is moved from development to production.

To move metadata components from a local file system to a Salesforce organization.

For installed apps, deployment makes any custom objects in the app available to users in your organization. Before a
custom object is deployed, it is only available to administrators and any users with the "Customize Application" permission.

Deprecated Component

A publisher may decide to refine the functionality in a managed package over time as the requirements evolve. This may
involve redesigning some of the custom objects or fields in the managed package. Publishers cannot delete some
components in a Managed - Released package, but they can deprecate a component in a later package version so that
new subscribers do not receive the component, while the component continues to function for existing subscribers and
API integrations. A publisher can deprecate Apex methods, classes, exceptions, enums, interfaces, or variables.

License Management Application (LMA)

A free AppExchange app that allows you to track sales leads and accounts for every user who downloads a managed
package of yours from AppExchange.

License Management Organization (LMO)

The Salesforce organization that you use to track all the Salesforce users who install your package. A license management
organization must have the License Management Application (LMA) installed. It automatically receives notification
every time your package is installed or uninstalled so that you can easily notify users of upgrades. You can specify any

26

Packaging Glossary

http://sites.force.com/appexchange/

Enterprise, Unlimited, or Developer Edition organization as your license management organization. For more information,
go to sites.force.com/appexchange/publisherHome.

Managed Package

A collection of application components that are posted as a unit on AppExchange, and are associated with a namespace
and a License Management Organization. A package must be managed for it to be published publicly on AppExchange,
and for it to support upgrades. An organization can create a single managed package that can be downloaded and installed
by many different organizations. They differ from unmanaged packages in that some components are locked, allowing
the managed package to be upgraded later. Unmanaged packages do not include locked components and cannot be
upgraded. In addition, managed packages obfuscate certain components (like Apex) on subscribing organizations, so as
to protect the intellectual property of the developer.

Managed Package Extension

Any package, component, or set of components that adds to the functionality of a managed package. An extension
requires that the base managed package be installed in the organization.

Namespace Prefix

In a packaging context, a namespace prefix is a one to 15-character alphanumeric identifier that distinguishes your
package and its contents from packages of other developers on AppExchange. Namespace prefixes are case-insensitive.
For example, ABC and abc are not recognized as unique. Your namespace prefix must be globally unique across all
Salesforce organizations. It keeps your managed package under your control exclusively.

Native App

An app that is built exclusively with setup (metadata) configuration on Force.com. Native apps do not require any external
services or infrastructure.

Package

A group of Force.com components and applications that are made available to other organizations through the
AppExchange. You use packages to bundle an app along with any related components so that you can upload them to
Force.com AppExchange together.

Package Dependency

Created when one component references another component, permission, or preference, which must exist for the
component to be valid. Components can include but are not limited to:

• Standard or custom fields
• Standard or custom objects
• Visualforce pages
• Apex scripts

Permissions and preferences can include but are not limited to:

• Divisions
• Multicurrency
• Record types

27

Packaging Glossary

http://sites.force.com/appexchange/publisherHome

Package Installation

Incorporates the contents of a package into your Salesforce organization. A package on AppExchange can include an
app, a component, or a combination of the two. After you install a package, you may need to deploy components in the
package to make it generally available to the users in your organization.

Package Publication

Publishing your package makes it publicly available on Force.com AppExchange. Apps can be found under specific
categories and by doing a search for keywords.

Package Registration

Registering your package allows you to access information about users who visit or download your app from the Force.com
AppExchange.

Package Version

A package version is a set of components uploaded in a package. It is denoted by a version number,
majorNumber.minorNumber, such as 2.1. Unmanaged packages are not upgradeable so each package version is simply
a set of components for distribution. A package version has more significance for managed packages. Packages can exhibit
different behavior for different versions. Publishers can use package versions to evolve the components in their managed
packages gracefully by releasing subsequent package versions without breaking existing customer integrations using the
package.

Private Sharing

The process of privately sharing a package uploaded to the AppExchange, by using the URL that you receive from
Salesforce upon upload. This URL is not listed in the AppExchange. Using the unlisted URL allows you to share a
package manually without making it public.

Publisher

The publisher of a package is the Salesforce user or organization that published the package on AppExchange. Publishers
are required to register using their contact information after registering their package on AppExchange.

Subscriber

The subscriber of a package is a Salesforce user with an installed package in their Salesforce organization.

Test Drive

A test drive, also known as a demo, is a fully functional Salesforce organization that contains an app and any demo
records added by the publisher for a particular package. It allows users on Force.com AppExchange to experience an app
as a read-only user using a familiar Salesforce interface.

Unmanaged Package

An AppExchange package that cannot be upgraded or controlled by its developer. Unmanaged packages allow you to
take any app components and move them "as is" to AppExchange without going through a lengthy publishing process.

Upgrading

Upgrading a package is the process of installing a newer version. Salesforce supports upgrades for managed packages
that are not beta.

28

Packaging Glossary

Uploading

Uploading a package sends it to Force.com AppExchange. Uploading your package is just the first step; all apps on
AppExchange must be registered, making them privately available. The final and optional step is to publish it, making
it publicly available on AppExchange.

29

Packaging Glossary

Index

A

AppExchange
designing apps 14

Approval processes
limits 23

Apps
design 14

Assignment rules
limits 23

Attributes 2
locked 9

Auto-response rules
limits 23

C

Components 2
attributes 9
behavior versioning 20
properties 4

Custom apps
limits 23

Custom fields
limits 23

Custom objects
limits 23

Custom Report Types
limits 23

E

Editions
limits 23

Escalation rules
limits 23

F

Formulas
limits 23

M

Managed packages 2
attributes 9
status 2
versions 20

P

Package versions 20
behavior versioning 20
deprecating Apex 20
deprecation effects 21

Packages
components 4
deprecating Apex 20
designing apps 14
developing 2
Editions 2
managed 2
status 2
terminology 2
unmanaged 2
versions 20

S

Sharing rules
limits 23

Static resources
limits 23

T

Tabs
limits 23

U

Unmanaged packages 2

V

Validation rules
limits 23
VLOOKUP limits 23

W

Workflow rules
limits 23

30

Index

	Overview of Packages
	What Is In a Package?
	Managed Package Statuses

	Packageable Components
	Component Attributes in Managed Packages
	Component Behavior in Packages
	Component Availability After Deployment

	Versioning and Deprecation in Package Versions
	Versioning and Deprecation Apex in Package Versions
	Behavior in Package Versions
	Versioning Apex Code Behavior
	Deprecation Effects for Subscribers

	Salesforce Editions and Limits
	Packaging Glossary
	Index

