
Generics of a Higher Kind

Adriaan Moors Frank Piessens
K.U. Leuven

{adriaan, frank}@cs.kuleuven.be

Martin Odersky
EPFL

martin.odersky@epfl.ch

Abstract
With Java 5 and C# 2.0, first-order parametric polymor-
phism was introduced in mainstream object-oriented pro-
gramming languages under the name of generics. Although
the first-order variant of generics is very useful, it also im-
poses some restrictions: it is possible to abstract over a type,
but the resulting type constructor cannot be abstracted over.
This can lead to code duplication. We removed this restric-
tion in Scala, by allowing type constructors as type param-
eters and abstract type members. This paper presents the
design and implementation of the resulting type construc-
tor polymorphism. Furthermore, we study how this feature
interacts with existing object-oriented constructs, and show
how it makes the language more expressive.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features—
Polymorphism

General Terms Design, Experimentation, Languages

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala

1. Introduction
First-order parametric polymorphism is now a standard fea-
ture of statically typed programming languages. Starting
with System F [19, 41] and functional programming lan-
guages, the constructs have found their way into object-
oriented languages such as Java, C#, and many more. In
these languages, first-class parametric polymorphism is usu-
ally called generics. Generics rest on sound theoretical
foundations, which were established by Abadi and Cardelli

[Copyright notice will appear here once ’preprint’ option is removed.]

[2, 1], Igarashi et al. [25], and many others; they are well-
understood by now.

One standard application area of generics are collections.
For instance, the type List[A] represents lists of a given
element type A, which can be chosen freely. In fact, generics
can be seen as a generalisation of the type of arrays, which
has always been parametric in the type of its elements.

First-order parametric polymorphism has some limita-
tions, however. Although it allows to abstract over types,
which yields type constructors such as List, these type con-
structors cannot be abstracted over. For instance, one cannot
pass a type constructor as a type argument to another type
constructor. Abstractions that require this, are quite com-
mon, even in object-oriented programming, and this restric-
tion thus leads to unnecessary duplication of code. We pro-
vide several examples of such abstractions in this paper.

The generalisation of first-order polymorphism to a
higher-order system was a natural step in lambda calculus
[19, 41, 8]. This theoretical advance has since been incorpo-
rated into functional programming languages. For instance,
the Haskell programming language [22] supports type con-
structor polymorphism, which is also integrated with its
type class concept [27]. This generalisation to types that
abstract over types that abstract over types (“higher-kinded
types”) has many practical applications. For example, com-
prehensions [44], parser combinators [24, 29], as well as
more recent work on embedded Domain Specific Languages
(DSL’s) [12] critically rely on higher-kinded types.

The same needs – as well as more specific ones – arise in
object-oriented programming. LINQ brought direct support
for comprehensions to the .NET platform [5, 31], Scala has
had a similar feature from the start, and Java 5 introduced
a lightweight variation. Parser combinators are also gaining
momentum: Bracha uses them as the underlying technology
for his Executable Grammars [7], and Scala’s distribution
includes a library [32] that implements an embedded DSL
for parsing, which allows users to express parsers directly
in Scala, in a notation that closely resembles EBNF. Type
constructor polymorphism is crucial in defining a common
parser interface that is implemented by different back-ends.

1 2008/3/20

In this paper, we focus on our experience with extend-
ing Scala with type constructor polymorphism, and on the
resulting gain in expressivity of the language as a whole. A
similar extension could be added to, for example, Java in the
same way [3]. Our extension was incorporated in Scala 2.5,
which was released in May 2007.

The main contributions of this paper are as follows:

• We illustrate the utility and practicality of type construc-
tor polymorphism using a realistic example.

• We develop a kind system that captures both lower and
upper bounds, and variances of types.

• We formalise the core subset of the kind system through
an encoding in an object-oriented calculus, and we state
the main soundness theorem.

• We survey how the integration with existing features of
Scala (such as subtyping, definition-site variance annota-
tions, and implicit arguments) makes the language more
powerful.

• We relate our experience with implementing the kind
system in the open-source Scala compiler.

The rest of this paper is divided in three parts, which each
consider a different facet of the evaluation of type construc-
tor polymorphism. First, Section 2 demonstrates that our ex-
tension reduces boilerplate that arises from the use of gener-
icity. We establish intuitions with a simple example, and ex-
tend it to a realistic implementation of the comprehensions
fragment of Iterable. We conclude the first part with a
small quantitative analysis of the reduction in code duplica-
tion.

Second, we present the type and kind system. First, Sec-
tion 3 discusses the surface syntax in full Scala, and the un-
derlying model of kinds. Second, Section 4 provides a trans-
lation from the relevant fragment of full Scala into an exist-
ing object-oriented calculus, and states the main soundness
theorem. Based on the ideas established in the theoretical
part, Section 5 refines Iterable, so that it accommodates
collections that impose bounds on the type of their elements.

Third, we have validated the practicality of our design by
implementing our extension in the Scala compiler, and we
report on our experience in Section 6. Throughout the paper,
we discuss various interactions of type constructor polymor-
phism with existing features in Scala. Section 7 focusses on
the integration with Scala’s implicits, which are used to en-
code Haskell’s type classes. Our extension lifts this encoding
to type constructor classes. Furthermore, due to subtyping,
Scala supports abstracting over type class contexts, so that
the concept of a bounded monad can be expressed cleanly,
which is not possible in (mainstream extensions of) Haskell.

Finally, we summarise related work in Section 8 and
conclude in Section 9.

2. Reducing Code Duplication with Type
Constructor Polymorphism

This section illustrates the benefits of generalising generic-
ity to type constructor polymorphism using the well-known
Iterable abstraction. The first example, which is due to
Alexander Spoon, illustrates the essence of the problem in
the small. Section 2.1 extends it to more realistic propor-
tions.

Figure 1 shows a Scala [36] implementation of the trait1

Iterable[T]. It contains an abstract method filter and a
convenience method remove. Subclasses should implement
filter so that it creates a new collection by retaining only
the elements of the current collection that satisfy the pred-
icate p. This predicate is modelled as a function that takes
an element of the collection, which has type T, and returns
a Boolean. As remove simply inverts the meaning of the
predicate, it is implemented in terms of filter.

Naturally, when filtering a list, one expects to again re-
ceive a list. Thus, List overrides filter to refine its result
type covariantly. For brevity, List’s subclasses, which im-
plement this method, are omitted. For consistency, remove
should have the same result type, but the only way to achieve
this is by overriding it as well. The resulting code duplica-
tion is a clear indicator of a limitation of the type system:
both methods in List are redundant, but the type system is
not powerful enough to express them at the required level of
abstraction in Iterable.

Our solution, depicted in Fig. 2, is to abstract over the
type constructor that represents the container of the result of
filter and remove. The improved Iterable now takes
two type parameters: the first one, T, stands for the type
of its elements, and the second one, Container, repre-
sents the type constructor that determines part of the result
type of the filter and remove methods. More specifically,
Container is a type parameter that itself takes one type pa-
rameter. Although the name of this higher-order type param-
eter (X) is not needed here, more sophisticated examples will
show the benefit of explicitly naming2 higher-order type pa-
rameters.

Now, to denote that applying filter or remove to
a List[T] returns a List[T], List simply instantiates
Iterable’s type parameter to the List type constructor.

In this simple example, one could also use a construct like
Bruce’s MyType [9]. However, this scheme breaks down in
more complex cases, as demonstrated in the next section.

2.1 Improving Iterable
In this section we design and implement the abstraction that
underlies comprehensions [44]. Type constructor polymor-
phism plays an essential role in expressing the design con-

1 A trait is an abstract class that supports mixin composition.
2 In full Scala ‘_’ may be used as a wild-card name for higher-order type
parameters.

2 2008/3/20

Why Type Constructor Polymorphism Matters 3

trait Iterable[T] {
def filter(p: T ⇒ Boolean): Iterable[T]
def remove(p: T ⇒ Boolean): Iterable[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T] {
def filter(p: T ⇒ Boolean): List[T]
override def remove(p: T ⇒ Boolean): List[T]
= filter (x ⇒ !p(x))

}

Listing 1. Limitations of Genericity

trait Iterable[T, Container[X]] {
def filter(p: T ⇒ Boolean): Container[T]
def remove(p: T ⇒ Boolean): Container[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T, List]

Listing 2. Removing Code Duplication

have the same result type, but the only way to achieve this is by overriding it
as well. The resulting code duplication is a clear indicator of a limitation of
the type system: both methods in List are redundant, but the type system
is not powerful enough to express them at the required level of abstraction in
Iterable.

Our solution, depicted in Listing 2, is to abstract over the type constructor
that represents the container of the result of filter and remove. Our improved
Iterable now takes two type parameters: the first one, T, stands for the type
of its elements, and the second one, Container, represents the type constructor
that determines part of the result type of the filter and remove methods.

Now, to denote that applying filter or remove to a List[T] returns a
List[T], List simply instantiates Iterable’s type parameter to the List type
constructor.

In this simple example, we could also have used a construct like Bruce’s
MyType [9]. However, this scheme breaks down in more complex cases, as we will
demonstrate in Section 2.2. First, we introduce type constructor polymorphism
in more detail.

2.1 Type constructors and kinds

A type that abstracts over another type, such as List in our previous exam-
ple, is called a “type constructor”. Genericity does not give type constructors
the same status as the types which they abstract over. As far as eligibility for

copy/pastelegend:
redundant code

Figure 1. Limitations of Genericity

Why Type Constructor Polymorphism Matters 3

trait Iterable[T] {
def filter(p: T ⇒ Boolean): Iterable[T]
def remove(p: T ⇒ Boolean): Iterable[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T] {
def filter(p: T ⇒ Boolean): List[T]
override def remove(p: T ⇒ Boolean): List[T]
= filter (x ⇒ !p(x))

}

Listing 1. Limitations of Genericity

trait Iterable[T, Container[X]] {
def filter(p: T ⇒ Boolean): Container[T]
def remove(p: T ⇒ Boolean): Container[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T, List]

Listing 2. Removing Code Duplication

have the same result type, but the only way to achieve this is by overriding it
as well. The resulting code duplication is a clear indicator of a limitation of
the type system: both methods in List are redundant, but the type system
is not powerful enough to express them at the required level of abstraction in
Iterable.

Our solution, depicted in Listing 2, is to abstract over the type constructor
that represents the container of the result of filter and remove. Our improved
Iterable now takes two type parameters: the first one, T, stands for the type
of its elements, and the second one, Container, represents the type constructor
that determines part of the result type of the filter and remove methods.

Now, to denote that applying filter or remove to a List[T] returns a
List[T], List simply instantiates Iterable’s type parameter to the List type
constructor.

In this simple example, we could also have used a construct like Bruce’s
MyType [9]. However, this scheme breaks down in more complex cases, as we will
demonstrate in Section 2.2. First, we introduce type constructor polymorphism
in more detail.

2.1 Type constructors and kinds

A type that abstracts over another type, such as List in our previous exam-
ple, is called a “type constructor”. Genericity does not give type constructors
the same status as the types which they abstract over. As far as eligibility for

abstractionlegend:
instantiation

Figure 2. Removing Code Duplication

trait Iterable[T] {
type Container[X]

def filter(p: T ⇒ Boolean): Container[T]
}

Listing 1. Iterable with an abstract type constructor
member

straints, as well as in factoring out boilerplate code without
losing type safety. More specifically, we discuss the signa-
ture and implementation of Iterable’s map, filter, and
flatMap methods. The LINQ project brought these to the
.NET platform as Select, Where, and SelectMany [30].

Comprehensions provide a simple mechanism for deal-
ing with collections by transforming their elements (map,
Select), retrieving a sub-collection (filter, Where), and
collecting the elements from a collection of collections in a
single collection (flatMap, SelectMany).

To achieve this, each of these methods interprets a user-
supplied function in a different way in order to derive a new
collection from the elements of an existing one: map trans-
forms the elements as specified by that function, filter
interprets the function as a predicate and retains only the el-
ements that satisfy it, and flatMap uses the given function
to produce a collection of elements for every element in the

trait Builder[Container[X], T] {
def +=(el: T): Unit
def finalise(): Container[T]

}

trait Iterator[T] {
def next(): T
def hasNext: Boolean

def foreach(op: T ⇒ Unit): Unit
= while(hasNext) op(next())

}

Listing 2. Builder and Iterator

original collection, and then collects the elements in these
collections in the resulting collection.

The only collection-specific operations that are required
by a method such as map, are iterating over a collection,
and producing a new one. Thus, if these operations can
be abstracted over, these methods can be implemented in
Iterable in terms of these abstractions. Listing 2 shows
the well-known, lightweight, Iterator abstraction that en-
capsulates iterating over a collection, as well as the Builder
abstraction, which captures how to produce a collection, and
thus may be thought of as the dual of Iterator.

Builder crucially relies on type constructor polymor-
phism, as it must abstract over the type constructor that rep-
resents the collection that it builds. The += method is used

3 2008/3/20

to supply the elements in the order in which they should
appear in the collection. The collection itself is returned
by finalise. For example, the finalise method of a
Builder[List, Int] returns a List[Int].

Listing 3 shows a minimal Buildable with an abstract
buildmethod, and a convenience method, buildWith, that
captures the typical use-case for build.

By analogy to the proven design that keeps Iterator

and Iterable separated, Builder and Buildable are
modelled as separate abstractions as well. In a full imple-
mentation, Buildable would contain several more meth-
ods, such as unfold (the dual of fold [18]), which should
not clutter the lightweight Builder interface.

Finally, the map/filter/flatMap methods can be im-
plemented in terms of the even more flexible trio mapTo

/filterTo/flatMapTo. The generalisation consists of de-
coupling the original collection from the produced one –
they need not be the same, as long as there is a way of build-
ing the target collection. Thus, these methods take an ex-
tra argument of type Buildable[C]. Section 7 shows how
an orthogonal feature of Scala can be used to relieve callers
from supplying this argument explicitly.

For simplicity, the mapTo method is implemented as
straightforwardly as possible. The filterTo method shows
how the buildWith convenience method can be used.

The result types of map, flatMap, and their generali-
sations illustrate why a MyType-based solution would not
work: whereas the type of this would be C[T], the result
type of these methods is C[U]: it is the same type construc-
tor, but it is applied to different type arguments!

Listings 4 and 5 show the objects3 that implement the
Buildable interface for List and Option. An Option

corresponds to a list that contains either 0 or 1 elements,
and is commonly used in Scala to avoid null’s.

A brief note on methodology: Buildable’s main pur-
pose is to build a certain container. Thus, Container is
a type parameter: a characteristic that is manifest to exter-
nal clients of Buildable, as it is (syntactically) part of the
type of its values. In Iterable a type member is used, as
its external clients are generally only interested in the type
of its elements. Syntactically, type members are less visi-
ble, as Iterable[T] is a valid proper type. To make the
type member explicit, one may write Iterable[T]{type
Container[X]=List[X]}.

2.2 Example: using Iterable
This example demonstrates how to use map and flatMap to
compute the average age of the users of, say, a social net-
working site. Since users do not have to enter their birthday,
the input is a List[Option[Date]]. An Option[Date]

3 An object definition is like an anonymous class definition with exactly
one instance, which can be referred to using the object’s name.

trait Buildable[Container[X]] {
def build[T]: Builder[Container, T]

def buildWith[T](f: Builder[Container,T]⇒
Unit): Container[T] ={

val buff = build[T]
f(buff)
buff.finalise()

}
}

trait Iterable[T] {
type Container[X] <: Iterable[X]

def elements: Iterator[T]

def mapTo[U, C[X]](f: T ⇒ U)
(b: Buildable[C]): C[U] = {

val buff = b.build[U]
val elems = elements

while(elems.hasNext){
buff += f(elems.next)

}
buff.finalise()

}
def filterTo[C[X]](p: T ⇒ Boolean)

(b: Buildable[C]): C[T] = {
val elems = elements

b.buildWith[T]{ buff ⇒
while(elems.hasNext){
val el = elems.next
if(p(el)) buff += el

}
}

}
def flatMapTo[U,C[X]](f: T⇒Iterable[U])

(b: Buildable[C]): C[U] = {
val buff = b.build[U]
val elems = elements

while(elems.hasNext){
f(elems.next).elements.foreach{ el ⇒
buff += el

}
}
buff.finalise()

}

def map[U](f: T ⇒ U)
(b: Buildable[Container]): Container[U]

= mapTo[U, Container](f)(b)
def filter(p: T ⇒ Boolean)

(b: Buildable[Container]): Container[T]
= filterTo[Container](p)(b)

def flatMap[U](f: T ⇒ Container[U])
(b: Buildable[Container]): Container[U]

= flatMapTo[U, Container](f)(b)
}

Listing 3. Buildable and Iterable

4 2008/3/20

object ListBuildable extends Buildable[List]{
def build[T]: Builder[List, T] = new
ListBuffer[T] with Builder[List, T] {
// += is inherited from ListBuffer (Scala
standard library)
def finalise(): List[T] = toList

}
}

Listing 4. Building a List

object OptionBuildable extends
Buildable[Option] {

def build[T]: Builder[Option, T]
= new Builder[Option, T] {

var res: Option[T] = None()

def +=(el: T)
= if(res.isEmpty) res = Some(el)
else throw new UnsupportedOperation

-Exception(">1 elements")

def finalise(): Option[T] = res
}

}

Listing 5. Building an Option

either holds a date or nothing. Listing 6 shows how to pro-
ceed.

First, a small helper is introduced that computes the cur-
rent age in years from a date of birth. To collect the known
ages, an optional date is transformed into an optional age
using map. Then, the results are collected into a list using
flatMapTo. Note the use of the more general flatMapTo.
With flatMap, the inner map would have had to convert its
result from an Option to a List, as flatMap(f) returns
its results in the same kind of container as produced by the
function f (the inner map). Finally, the results are aggregated
using reduceLeft (not shown here). The full code of the
example is available on the paper’s homepage4.

Note that the Scala compiler infers most proper types (we
added some annotations to aid understanding), but it does not
infer type constructor arguments. Thus, type argument lists
that contain type constructors, must be supplied manually.

Finally, the only type constructor that arises in the exam-
ple is the List type argument, as it cannot be inferred. This
demonstrates that the complexity of type constructor poly-
morphism, much like with genericity, is concentrated in the
internals of the library. The upside is that library designers
and implementers have more control over the interfaces of
the library, while clients remain blissfully ignorant of the un-

4 http://www.cs.kuleuven.be/∼adriaan/?q=genericshk

val bdays: List[Option[Date]] = List(
Some(new Date("1981/08/07")), None,
Some(new Date("1990/04/10")))

def toYrs(bd: Date): Int = // omitted

val ages: List[Int]
= bdays.flatMapTo[Int, List]{ optBd ⇒

optBd.map{d ⇒ toYrs(d)}(OptionBuildable)
}(ListBuildable)

val avgAge = ages.reduceLeft[Int](_ + _) /
ages.length

Listing 6. Example: using Iterable

derlying complexity. (As noted earlier, Section 7 will show
how the arguments of type Buildable[C] can be omitted.)

2.3 Quantitative evaluation
As an indication of how much boilerplate can be scrapped
using type constructor polymorphism, we performed a small
experiment. We selected a subset of the actual Scala collec-
tion API (Iterator, Iterable, List, and Option) and
re-implemented it, making full use of our extension. This
rewrite resulted in a 10% savings of lines of code (from 154
lines to 139 lines)5. This ratio is in line with others’ results
[6].

Of course, our sample is quite small. However, for a
bigger sample, the absolute reduction does not decrease,
given more subclasses of Iterable, and more methods in
Iterable that need to be re-implemented. Suppose the full
Iterable interface contains M methods (average LoC in
such a method: N) that build a collection and that must be
re-implemented in Iterable’s subclasses (say there are C
of those). In List a List must be produced, in Set, the
result must again be a Set, and so on.

Thus, if one scraps this boilerplate using the Buildable
pattern (whose implementation takes N ′ lines per class, on
average), C∗M methods can be omitted, or C∗(M∗N−N ′)
lines of code. The results from this smaller example indicate
that it is safe to assume that M ∗N > N ′.

Finally, this comparison does not consider the impact on
performance (a re-implementation in subclasses may some-
times yield a performance increase, although this is certainly
not always the case), or more qualitative aspects, such as pre-
cision of the interface, reusability,. . .

3. Of Types and Kinds
Even though proper types and type constructors are placed
on equal footing as far as parametric polymorphism is con-
cerned, one must be careful not to mix them up. Clearly, a
type parameter that stands for a proper type, must not be

5 The full source code for the experiment is available on the paper’s home-
page.

5 2008/3/20

http://www.cs.kuleuven.be/~adriaan/?q=genericshk

TypeParamClause ::= ‘[’ TypeParam {‘,’ TypeParam} ‘]’
TypeParam ::= id [TypeParamClause] [‘>:’ Type] [‘<:’ Type]

AbstractTpMem ::= ‘type’ TypeParam

Figure 3. Syntax for type declarations (type parameters and abstract type members)

K
I
N
D
S

T
Y
P
E
S

V
A
L
U
E
S

Any

Int List[Int]

1 [1,2,3]

List

∗ → ∗∗

(1, 2)

Pair[Int, Int]

∗ → ∗ → ∗

Pair

…

…

…

…

classification
subtyping

legend:

Why Type Constructor Polymorphism Matters 5

trait Iterable[T] {
type Container[X]

def filter(p: T ⇒ Boolean): Container[T]
}

Listing 1. Iterable with an abstract type constructor member

is the kind of the type that results from applying the type constructor to an
argument.

For example, class List[T] gives rise to a type constructor List that is
classified by the kind * → *, as applying List to a proper type yields a proper
type. Note that, since kinds are structural, given e.g., class Animal[FoodType
], Animal has the exact same kind as List.

Our initial model of the level of kinds can be described using the following
grammar3:

K ::= ∗ | K → K

The rules that define the well-formedness of types in a language without
type constructor polymorphism, correspond to the rules that assign a kind * to
a type. Our extensions generalises this to the notion of kind checking, which is
to types as type checking is to values and expressions.

A class, or an unbounded type parameter or abstract type member receives
the kind K’ → * if it has one type parameter with kind K’. For bounded type
parameters or abstract members, the kind K’ → K is assigned, where K corre-
sponds to the bound. We use currying to generalise this scheme to deal with
multiple type parameters. The type application T[T’] has the kind K if T has
kind K’ → K, and T’ is classified by the kind K’.

Finally, the syntactical impact of extending Scala with type constructor poly-
morphism is minor. Before, only classes and type aliases could declare formal
type parameters, whereas this has now been extended to include type parameters
and abstract type members. Listing 2 already introduced the notation for type
constructor parameters, and Listing 1 completes the picture with an alternative
formulation of our running example using an abstract type constructor member.

The next section elaborates on the example of this section. More concretely,
we introduce an implementation of Iterable that crucially relies on type con-
structor polymorphism to make its signatures more accurate, while further re-
ducing code duplication. Section 2.3 discusses Scala’s implicits and shows how
they can be leveraged in Iterable. This approach is then generalised into an
encoding of Haskell’s type classes, which – thanks to type constructor polymor-
phism – applies to constructor classes as well.

3 In Section 3, we will extend this model with support for bounds, and Section 5
describes the impact of variance on the level of kinds.

proper types

type constructors

Figure 4. Diagram of levels

applied to type arguments, whereas a type constructor pa-
rameter cannot classify a value until it has been turned into
a proper type by supplying the right type arguments.

In this section we give an informal overview of how
programmers may introduce higher-kinded type parameters
and abstract type members, and sketch the rules that govern
their use. We describe the surface syntax that was introduced
with the release of Scala 2.5, and the underlying conceptual
model of kinds.

Section 4 gives a more formal, though brief, account in
the context of a minimal object-oriented calculus that can
faithfully encode type constructor polymorphism.

3.1 Surface syntax for types
Figure 3 shows a simplified fragment of the syntax of type
parameters and abstract type members, which we collec-
tively call “type declarations”. The full syntax, which ad-
ditionally includes variance annotations, is described in the
Scala language specification [35]. Syntactically, our exten-
sion introduces an optional TypeParamClause as part of
a type declaration. The scope of the higher-order type pa-
rameters that may thus be introduced, extends over the outer
type declaration to which they belong.

For example, Container[X] is a valid TypeParam,
which introduces a type constructor parameter that expects
one type argument. To illustrate the scoping of higher-
order type parameters, Container[X] <: Iterable[X]

declares a type parameter that, when applied to a type argu-
ment Y – written as Container[Y] – must be a subtype of
Iterable[Y].

As a more complicated example, C[X <: Ordered[X]]

<: Iterable[X] introduces a type constructor parameter
C, with an F-bounded higher-order type parameter X, which
occurs in its own bound as well as in the bound of the type
parameter that it parameterises. Thus, C abstracts over a type
constructor so that, for any Y that is a subtype of Ordered[
Y], C[Y] is a subtype of Iterable[Y]

3.2 Kinds
Conceptually, kinds are used to distinguish a type parameter
that stands for a proper type, such as List[Int], from a
type parameter that abstracts over a type constructor, such as
List. An initial, simplistic kind system is illustrated in the
diagram in Fig. 4, and it is refined in the remainder of this
section. The figure shows the three levels of classification,
where entities in lower levels are classified by entities in the
layer immediately above them.

Kinds populate the top layer. The kind * classifies types
that classify values, and the → kind constructor is used to
construct kinds that classify type constructors. Note that
kinds are inferred by the compiler. They cannot appear in
Scala’s surface syntax.

Nonetheless, Fig. 5 introduces syntax for the kinds that
classify the types that can be declared as described in the

6 2008/3/20

Kind ::= ‘*(’ Type ‘,’ Type ‘)’
| [id ‘@’] Kind ‘->’ Kind

Figure 5. Kinds (not in surface syntax)

previous section. The first kind, *(T, U), classifies proper
types (such as type declarations without higher-order type
parameters), and tracks their lower (T) and upper bounds
(U). It should be clear that this kind is easily inferred, as
type declarations either explicitly specify bounds or receive
the minimal lower bound, Nothing, and the maximal upper
bound, Any. Note that intersection types can be used to
specify a disjunction of lower bounds, and a conjunction
of upper bounds. Since we mostly use upper bounds, we
abbreviate *(Nothing, T) to *(T), and *(Nothing,

Any) is written as *.
We refine the kind of type constructors by turning it into

a dependent function kind, as higher-order type parameters
may appear in their own bounds, or in the bounds of their
outer type parameter.

In the examples that was introduced above, Container
[X] introduces a type constructor parameter of kind * →
*, and Container[X] <: Iterable[X] implies the kind
X @ * → *(Iterable[X]) for Container. Finally, the
declaration C[X <: Ordered[X]] <: Iterable[X] re-
sults in C receiving the kind X @ *(Ordered[X]) → *(

Iterable[X]). Again, the syntax for higher-order type pa-
rameters provides all the necessary information to infer a
(dependent) function kind for type constructor declarations.

Informally, type constructor polymorphism introduces an
indirection through the kinding rules in the typing rule for
type application, so that it uniformly applies to generic
classes, type constructor parameters, and abstract type con-
structor members. These type constructors, whether concrete
or abstract, are assigned function kinds by the kind system.
Thus, if T has kind X @ K → K’, and U has kind K, in
which X has been replaced by U, a type application T[U]

has kind K’, with the same substitution applied. Multiple
type arguments are supported through the obvious general-
isation (taking the necessary care to perform simultaneous
substitutions).

3.3 Subkinding
Similar to the subtyping relation that is defined on types,
subkinding relates kinds. Thus, we overload <: to operate on
kinds as well as on types. As the bounds-tracking kind stems
from Scala’s bounds on type declarations, subkinding for
this kind simply follows the rules that were already defined
for type member conformance: *(T, U) <: *(T’, U’) if
T’ <: T and U <: U’. Intuitively, this amounts to interval
inclusion. For the dependent function kind, we transpose
subtyping of dependent function types [4] to the kind level.

class Iterable[Container[X], T]
trait NumericList[T <: Number] extends

Iterable[NumericList, T]

Listing 7. NumericList: an illegal subclass of Iterable

class Iterable[Container[X <: Bound], T <:
Bound, Bound]

trait NumericList[T <: Number] extends
Iterable[NumericList, T, Number]

Listing 8. Safely subclassing Iterable

3.4 Example: why kinds track bounds
Suppose Iterable6 is subclassed as in Listing 7. This pro-
gram is rejected by the compiler because the type application
Iterable[NumericList, T] is ill-kinded. The kinding
rules classify NumericList as a *(Number) → *, which
must be a subkind of the expected kind of Iterable’s first
type parameter, * → *. Now, *(Number) <: *, whereas
subkinding for function kinds requires the argument kinds
to vary contravariantly.

Intuitively, this type application must be ruled out, be-
cause passing NumericList as the first type argument to
Iterable would “forget” that NumericList may only
contain Number’s: Iterable is kind-checked under the as-
sumption that its first type argument does not impose any
bounds on its higher-order type parameter, and it could thus
apply NumericList to, say, String. The next section elab-
orates on this.

Fortunately, Iterable can be defined so that it can ac-
commodate bounded collections, as shown in Listing 8.
To achieve this, Iterable abstracts over the bound on
Container’s type parameter. NumericList instantiates
this bound to Number. We refine this example in Section 5.

3.5 Kind soundness
Analogous to type soundness, which provides guarantees
about value-level abstractions, kind soundness ensures that
type-level abstractions do not go “wrong”.

At the value level, passing, e.g., a String to a function
that expects an Integer goes wrong when that function in-
vokes an Integer-specific operation on that String. Type
soundness ensures that application is type-preserving, in the
sense that a well-typed application evaluates to a well-typed
result.

As a type-level example, consider what happens when a
type function that expects a type of kind * → *, is applied

6 For simplicity, we define Iterable using type parameters in this
example.

7 2008/3/20

to a type of kind *(Number) → *. This application goes
wrong, even though the type function itself is well-kinded,
if it does something with that type constructor that would be
admissible with a type of kind * → *, but not with a type
of kind *(Number) → *, such as applying it to String. If
the first, erroneous, type application were considered well-
kinded, type application would not be kind-preserving, as it
would turn a well-kinded type into a nonsensical, ill-kinded,
one (such as NumericList[String]).

As our kind system is closely related to dependently
typed lambda calculus with subtyping, it is reasonable to as-
sume that it is sound. Proving this conjecture (mechanically)
is ongoing work. In the next section we describe the theory in
which the theorems that we are developing, are formulated.

Finally, it is important to note that kind unsoundness
results in type applications “going wrong” at compile time.
Thus, the problem is less severe than with type unsoundness,
but these errors can be detected earlier in the development
process, without effort from the programmer.

4. Object-Oriented Formalism
This section outlines the foundations of our extension by
translating a subset of Scala into a formally defined object-
oriented calculus. It does not introduce any new features, and
it may thus be skipped on first reading. Moreover, as dis-
cussed in Section 8, many others have worked out the formal
intricacies that underlie our extension; we focus on bringing
them together in a full-blown, object-oriented, language.

4.1 Introduction
We use Scalina, which we presented in detail in earlier work
[33], as a model for Scala. Scalina is a simplification of the
νObj calculus [37], extended with one crucial feature: un-
members. Whereas normal members behave covariantly –
and as such, they are suited to encode the result of a function
– un-members introduce contravariance, so that they can be
used to encode parameters. In other words, normal members
represent output from an abstraction to its clients, while un-
members are used for input, like the arguments of a method
or a class’s type parameters.

Scalina is a three-level calculus. Kinds classify types,
which in turn classify values. Figure 6 defines the syntax
for its types and values. A value, an object, may have con-
crete value or type members, and value or type un-members.
An un-member is turned into a concrete member using mem-
ber refinement. Syntactically, an un-member is distinguished
from an abstract member by its classifier, which is either Un
[TT] or Un[KK].

The remaining value-level operations are instantiation,
which is only allowed on types without abstract members
(i.e., only concrete ones or un-members), and value member
selection, which is not allowed on objects with un-members
(they must first be provided using refinement).

t , u ::= term
| x variable
| t . l selection
| t ! { cm } refinement
| newT instantiation

TT ::= type
| TT #L selection
| TT ! { cm } refinement
| { x ! : TT " ⇒ mi

i } structural type
| TT1 &TT2 intersection type
| p . type singleton type
| Any top type
| Nothing bottom type
| ! TT necessarily TT

T , S ::= type or un-type
| TT type
| Un [TT] un-type

m ::= member
| val l : T ! = t " value member
| typeL : K ! = T " type member

cm ::= refinement member
| val l = t value member
| typeL = T type member

Figure 1. Scalina Syntax (terms and types)

must be made for abstract members. We introduce un-members,
which safely model the input to an abstraction, and re-use tradi-
tional members to represent the result of the abstraction. Thus, an
object with un-members may be thought of as a curried function
that takes its keyword arguments in any order. The members of
such an object represent its results.

We study purely object-oriented abstraction in a dependently
typed, three-level calculus that uses the same concepts for abstrac-
tion and computation on terms and types. As in the νObj calculus,
function application is decomposed into refinement and member
selection. Because the level of types is modelled after the level of
terms, a type-level function is modelled as a type with type un-
members.

The distinction between un-members, which behave contravari-
antly, and normal, covariant, members, is instrumental in proving
soundness on the level of types and kinds. Due to the symmetric
design of our calculus, the soundness proofs proceed by similar ar-
guments at both levels.

2. Scalina: Syntax and Intuitions
Scalina is a three-level object-oriented calculus: we distinguish
terms (objects), types, and kinds. Terms are for computation, types
are used for classification as well as computation, and the role of
kinds is strictly limited to classification. Computation is performed
using two mechanisms: member selection and member refinement.
Classification is more intricate, ranging from merely structural de-
scriptions of the classified entities over nominal classification, the
intersection of classifiers, singletons, and strictly empty classifiers.

2.1 Syntax
Figures 1 and 2 outline Scalina’s syntax. We use ‘! . . . "’ to denote
the optionality of ‘. . . ’.

The term level consists of member selection, member refine-
ment, and instantiation. Analogously, a type may be a type selec-
tion, a refinement or a structural type. A structural type binds the
self variable x in the members it includes; if the type of the self
variable is not specified, it is assumed to be the structural type it-
self. We use the meta-variable R to refer to a structural type. Addi-

tionally, a type may be an intersection type, a singleton type (that
depends on a path), the top or the bottom of the subtype lattice, or
an un-type. Finally, we introduce !T , which stands for the result
of refining all of T ’s un-members with unknown terms and types.
We will discuss this construct in more detail in Section 2.2.3.

Figure 2 defines the shape of kinds, paths, values, and the typing
context Γ. A path is a chain of member selections that starts with a
variable or an instantiation expression new T, which represents an
object. We mainly restrict the shape of paths to simplify the proofs
in the meta-theory.

2.2 Core concepts
Before describing the rules that define computation and classifica-
tion in Scalina, we build up intuitions about the core concepts that
underlie these mechanisms.

2.2.1 Members and un-members
Members are the liaisons between the different levels: a type de-
scribes the value members that may be selected on the terms it
classifies, as well as the type members that may be selected on the
type itself. The description of a member consists of the label of the
member, the classifier of the entity it stands for and – if the member
is concrete – the actual entity it is bound to (its right-hand side, or
RHS). For value members, the classifier is a type and the RHS is
a term, and type members specify the kind that classifies the type
they are bound to.

Scalina’s un-members are a more radical departure from Scala.
Un-members are used to encode parameterisation: they are place-
holders for members that must be provided by the client of the ab-
straction, much like the arguments of a function. Un-members are
turned into normal members using member refinement, which cor-
responds to passing arguments to a function. An entity with multi-
ple un-members is the equivalent of a curried function: refining one
of the un-members results in an entity with one less un-member to
be refined. Once all un-members have been refined, the member
representing the function’s result may be selected to complete the
application. This constitutes the essence of computation – on terms
as well as types – in Scalina.

Members and un-members can be seen as the two halves of
the contract specified by a classifier: members are available to the
client, whereas it must supply the un-members. Note that abstract
members have different semantics from un-members: an abstract
member is made concrete using composition within a subtyping
hierarchy, while an un-member is to be supplied by an external
client. A type with abstract members cannot be instantiated. An
abstract type can however be constrained (using the kind Concrete
(R)) so that it does not contain any abstract members.

2.2.2 Terms
The canonical form of a term is an object. For syntactic economy,
and since Scalina does not model effects yet, an object is repre-
sented by the instantiation of a type without abstract members.
Conceptually, an entity is just a vessel for denoting to which en-
tity each of its members – as described by the entity’s classifier
– is bound. Thus, an object contains mappings (from a label to a
term) for all of the members specified in its type. Operationally,
un-members can be thought of as members that are simply absent
from this mapping.

2.2.3 Types
If, on the term level, parameterising over functions is useful,
doing the same on the level of types sounds like an obvious
thing to do.

Erik Meijer

Figure 6. Scalina syntax for terms, types, and members

The level of types consists of the standard structural
types, singleton types, intersection types, and type mem-
ber selection. We supplement this with type member refine-
ment, which, analogously to the value level, turns a type un-
member into a concrete type member by supplying its right-
hand side. Finally, the un-type constructor turns a type into
an un-type, which is not inhabited. Thus, Un[TT] is used to
classify a value un-member that can be refined to a concrete
value member with type TT.

The typing and kinding rules, which have been included
in the appendix, are as expected, with the necessary caveat
due to the introduction of un-members. Subsumption may be
used by clients to relax their expectations of an abstraction,
but it would be unsound to also allow a client to relax
its obligations towards the abstraction. Thus, un-members
represent an exception to the usual width-subtyping rule for
structural types, as a client should not be able to forget
them using subsumption. Correspondingly, a type member’s
bounds must not be strengthened by a subtype, that is, they
behave contravariantly.

Finally, as shown in Fig. 7, Scalina uses kinds to uni-
formly support bounded type members (through the inter-
val kind), structural types, nominal subtyping, and type un-
members. The Concrete kind captures types that may be
instantiated.

4.2 Encoding
We illustrate the encoding from Scala into Scalina using
a series of examples. We set out with the smallest Scala
program that we are interested in:

class List[T]

8 2008/3/20

KK ::= kind
| In (T1 , T2) interval kind
| Struct (R) structural kind
| Nominal (R) nominal kind
| Concrete (R) concrete kind

K ::= kind or un-kind
| KK kind
| Un [KK] un-kind

p ::= path
| x variable
| p . l selection
| newT instantiation

v ::= value
| newT instantiation

Γ ::= typing context
| ∅
| Γ , x : T assume x has type T

Figure 2. Scalina Syntax (kinds, etc.)

To generalise Meijer’s motivation for higher-kinded types [18],
rephrasing in our terminology: “If, on the term level, abstracting
over terms that themselves abstract over terms is useful, doing the
same on the level of types sounds like an obvious thing to do.”
Scalina manifestly supports this view by using the same abstraction
mechanism on both levels: entities that abstract over other entities
(using un-members) are themselves first-class entities.

Types play a dual role: besides computation, their main purpose
is classifying terms. As explained in the introduction, types differ
from terms in that they may contain abstract members for abstrac-
tion towards subtyping clients. Another distinction with the term
level is that we intend to tone down type-level computation so that
it becomes decidable (this is future work).

Types classify terms by specifying the labels and the types of
the members that may be selected on these terms. A structural type
classifies all terms that have the prescribed members. Note that
we use kinds to distinguish nominal types from structural ones.
An intersection type is inhabited by the terms that inhabit both its
constituent types. A singleton type classifies exactly one object and
an un-type does not classify any terms at all. An un-type is used as
the classifier of a value un-member.

Type-level computation uses the same concepts as computation
at the term level. However, because types may contain abstract
members, we must be more careful. For soundness, type member
selection is only allowed on types that (eventually) consist solely
of concrete members, although the exact RHS need not be known.
Type selection on a singleton type is always safe, even if the
selected type member’s right-hand side is not known statically. As
long as it is not an un-member, the object that the singleton type
depends on, could not have been created unless that member was
concrete.

In Scala, these abstract type members may only be selected on
singleton types. Scalina generalises this to the notion of concrete
types, so that abstract type members may be selected on any type
that necessarily contains only concrete type members, which natu-
rally includes singleton types.

Similarly, it is always safe to assume that the type of the self
variable does not contain any un-members: the self-variable can
only be accessed as a consequence of an external member selection,
which in turn is not allowed on objects with un-members. To exploit
this invariant, we introduce the type !T , which stands for the result
of refining all T ’s un-members. We shall illustrate this with an
example in Section 2.3

The canonical form of a type is computed by performing all
allowed member selections. This corresponds to the β-normal form
in functional calculi.

2.2.4 Kinds
Kinds are only used for classifying types: they denote which mem-
bers may be selected on the types they classify. An interval kind
takes over the role of the bounds of a Scala-style abstract type
member: In(S, T) is inhabited by types that are subtypes of T
and supertypes of S.

Struct(R) is inhabited by types that have at least the members
specified in R. These members must be well-formed under the as-
sumption that the self variable has the declared self type. Nominal
(R) is similar to Struct(R), except that it serves as a marker for
concrete type bindings that represent classes: normalisation should
not replace a type selection of this kind with its right-hand side.

Finally, T has kind Concrete(R) if it has at least the members
specified in R, and none of these are abstract. Furthermore, !T
must be a subtype of the self type declared in R, so that such a type
may be instantiated (if it is not a singleton type) or be used as the
target of type member selection.

2.3 Example: polymorphic lists
Listing 6 implements polymorphic lists with map to illustrate
Scalina’s support for parametric polymorphism and higher-order
functions.

First, we introduce a little syntactic sugar.
• The kind ! should be expanded to Struct({x ⇒ }),
• the type p.L is shorthand for p.type#L,
• the following type members are easily expanded:

type L = R becomes type L : Struct(R) = R,
type L ≺ T means type L : Nominal(R) = T, where
R is the expansion of T to its least structural supertype (by
the ≺≺ relation defined in Fig. 7).

Since type members must always be nested in other types, our
program is a term that instantiates the structural type that represents
our “universe” (hence the u as the self variable). The type u.type#
Fun1, or using syntactic sugar, u.Fun1, corresponds to a top-level
class in Scala.

The first abstraction is a polymorphic unary function. Fun1 is
a nominal type that expands to a structural type with self variable
self, whose type is assumed to be the nominal type itself, with all
its un-members refined. This special self type is crucial: without it,
the body of the function could not access its arguments, as these
would be considered un-members. In this example, !u.Fun1 ex-
pands to the structural type {x ⇒ type T1: !; type T2: !;
val v: x.T1; val apply: x.T2}

Fun1 takes two type arguments: the type of its value argument
(T1) and the type of its result (T2). It also requires one value
argument (v). These arguments are un-members, which must be
provided by the caller of the function. The abstract apply member
models the function’s body. It must be made concrete before an
actual function value can be created.

List abstracts over the type of its elements (Element) and
declares one abstract method, map. We define a structural type,
map, and an abstract value member with the same name. This
way, it becomes more convenient to make this member concrete,
subclasses of List may simply use an instance of the composition
of map with another type that makes the apply method concrete.

The implementation of the map “method” in Nil simply returns
a new instance of Nil with the appropriate element-type. In Cons,
the result is another cons cell that applies the supplied function to
the head of the list and that recurses on the tail.

Figure 7. Scalina syntax for kinds, paths, and values

In Scalina, a class is modelled as a type member, which
is necessarily nested in another type. We call the root of this
nesting hierarchy, a plain object, the “universe”, which is
reflected by the name of its self variable, u. More precisely,
a type member that encodes a class, is an alias for the
intersection type that composes the class’s parents (if any)
with its body. To indicate that nominal subtyping should be
used to determine whether a type is a subtype of this type
member, it receives the kind Nominal(R), where R roughly
corresponds to the (structural) flattening of the member’s
right-hand side.

Type parameters are turned into type un-members (which
are distinct from abstract members!). T’s implicit lower and
upper bounds are made explicit using the interval kind In(

Nothing, Any), which we again abbreviate as *.

new { u ⇒
type List: Nominal({type T: Un[*]})={this ⇒
type T: Un[*]

}
}

Thus, the following Scalina type encodes the Scala type
List[Int]:

u.type#List<{type T = Int}

Since type members may only be selected on types, we
turn the universe object’s self variable into the singleton type
that is only inhabited by that object. Then, the List type
member is selected, and the type un-member that represents
its first type parameter is turned into the corresponding con-
crete type member that is equal to Int, which is assumed to
be built-in.

To illustrate the higher-kinded case, consider:

class Builder[Container[X]]

We transform this into a Scalina-style type member def-
inition, while abbreviating the pattern type C : Nominal

(R) = T to type C ≺ T, as the omitted information can
be inferred.

type Builder ≺ { this ⇒

type Container: Un[Struct({type X: Un[*];
type Apply: *})]

}

Here, the interesting bit is how we abstract over a type
constructor of kind * → *: this corresponds precisely to a
structural type with a type un-member for the higher-order
type parameter, and an abstract type member Apply to re-
trieve the type function’s result. This encoding is similar to
the encoding of functions in νObj, except that we can now
correctly use an un-member for the encoding of a parameter.
Note that bounds on the higher-order type parameter X can
easily be encoded as the kind of the X un-member, and sim-
ilarly for the Container parameter: its bounds determine
the kind of the Apply member.

Note that the previous scheme for type applications needs
to be adapted slightly when an abstract type constructor
is involved. In the context of the class Builder, a type
application such as Container[Int] is written as:

(this.type#Container<{type X = Int})#Apply

The type Builder[List] becomes:

u.type#Builder<{type Container =
{s : {type X: *} ⇒
type X: Un[*];
type Apply: * =
u.type#List<{type T=s.type#X}}}

Finally, an algorithm for this encoding should use a nam-
ing scheme that codifies the positional nature and the class-
local scope of type parameters. We do not discuss this as it
does not affect correctness, nor does it provide any new in-
sights.

4.3 Soundness
In this context, kind preservation is the property that a well-
kinded type normalises to a type with the same kind, modulo
kind subsumption. Kind progress states that a well-kinded
type is either a canonical type, or it can be normalised to
one. Together, these properties imply kind soundness. As
type normalisation corresponds to evaluation, and kinding
is the equivalent of typing, the analogy with type soundness
should be clear.

Together with the encoding, the kinding and typing rules
from the appendix form a precise specification of the rel-
evant checks in the Scala compiler. Thus, soundness of
Scalina carries over to the fragment of Scala that Scalina en-
codes. Variance is the only missing feature, as discussed in
Section 6.2. Finally, Scalina is intended as a minimal object-
oriented calculus with features that exceed the needs of the
current paper, as motivated in earlier work [33]. Its devel-
opment is ongoing work, including more powerful support
for type-level computation, and a mechanisation of its meta-
theory.

9 2008/3/20

trait Builder[Container[X <: B[X]], T <: B[T],
B[Y]]

trait Buildable[Container[X <: B[X]], B[Y]] {
def build[T <: B[T]]: Builder[Container,T,B]

}
trait Iterable[T <: Bound[T], Bound[X]] {
type Container[X <: Bound[X]] <: Iterable[X,
Bound]

def map[U <: Bound[U]](f: T ⇒ U)
(b: Buildable[Container, Bound]):
Container[U] = ...

}

Listing 9. Essential changes to extend Iterable with support
for (F-)bounds

class List[T] extends Iterable[T, Any] {
type Container[X] = List[X]

}

trait OrderedCollection[T <: Ordered[T]]
extends Iterable[T, Ordered] {

type Container[X <: Ordered[X]] <:
OrderedCollection[X]

}

trait Wrap1[T]{type Apply[X]=T}

trait Number
class NumericList[T <: Number] extends

Iterable[T, Wrap1[Number]#Apply] {
type Container[X <: Number] = NumericList[X]

}

Listing 10. (Bounded) subclasses of Iterable

5. Bounded Iterable
As motivated in Section 3.4, in order for Iterable to model
collections that impose an (F-)bound on the type of their
elements, it must accommodate this bound from the start.

To allow subclasses of Iterable to declare an (F-)bound
on the type of their elements, Iterable must abstract over
this bound. Listing 9 generalises the interface of the orig-
inal Iterable from Listing 3. The implementation is not
affected by this change.

Listing 10 illustrates various kinds of subclasses, includ-
ing List, which does not impose a bound on the type of its
elements, and thus uses Any as its bound (Any and Nothing
are kind-overloaded). Note that NumericList can also be
derived, by encoding the anonymous type function X →
Number as Wrap1[Number]#Apply.

Again, the client of the collections API is not exposed
to the relative complexity of Listing 9. However, without

it, a significant fraction of the collection classes could not
be unified under the same Iterable abstraction. Thus, the
clients of the library benefit, as a unified interface for col-
lections, whether they constrain the type of their elements or
not, means that they need to learn fewer concepts.

Alternatively, it would be interesting to introduce kind-
level abstraction to solve this problem. Tentatively, Iter-
able and List could then be expressed as:
trait Iterable[T : ElemK, ElemK : Kind]
class List[T] extends Iterable[T, *]

This approach is more expressive than simply abstracting
over the upper bound on the element type, as the interval
kind can express lower and upper bounds simultaneously.
This would become even more appealing in a language that
allows the user to define new kinds [42].

6. Full Scala
In this section we discuss our experience with extending the
full Scala compiler with type constructor polymorphism. As
discussed below, the impact7 of our extension is mostly re-
stricted to the type checker. Finally, we list the limitations
of our implementation, and discuss the interaction with vari-
ance. The implementation supports variance annotations on
higher-order type parameters, but this has not been inte-
grated in the formalisation yet.

6.1 Implementation
Extending the Scala compiler with support for type construc-
tor polymorphism came down to introducing another level of
indirection in the well-formedness checks for types.

Once abstract types could be parameterised (a simple
extension to the parser and the abstract syntax trees), the
check that type parameters must always be proper types
had to be relaxed. Instead, a more sophisticated mechanism
tracks the kinds that are inferred for these abstract types.
Type application then checks two things: the type that is
used as a type constructor must indeed have a function kind,
and the kinds of the supplied arguments must conform to
the expected kinds. Additionally, one must ensure that type
constructors do not occur as the type of a value.

Since Scala uses type erasure in the back-end, the extent
of the changes is limited to the type checker. Ironically, as
type erasure is at the root of several limitations in Scala, it
was an important benefit in implementing type constructor
polymorphism.

Similar extensions in languages that target the .NET plat-
form, face a tougher challenge, as the virtual machine has
a richer notion of types and thus enforces stricter invari-
ants. Unfortunately, the model of types does not include
higher-kinded types. Thus, to ensure full interoperability
with genericity in other languages on this platform, compil-
ers for languages with type constructor polymorphism must

7 The initial patch to the compiler can be viewed at http://lampsvn.
epfl.ch/trac/scala/changeset/10642

10 2008/3/20

http://lampsvn.epfl.ch/trac/scala/changeset/10642
http://lampsvn.epfl.ch/trac/scala/changeset/10642

resort to partial erasure, as well as code specialisation in or-
der to construct the necessary representations of types that
result from abstract type constructors being applied to argu-
ments.

6.1.1 Limitations
Syntactically, there are a few limitations that we would like
to lift in upcoming versions. As it stands, we do not directly
support partial type application and currying, or anonymous
type functions. However, these features can be encoded, as
illustrated in Section 5.

We have not yet extended the type inferencer to infer
higher-kinded types. In all likelihood, type constructor in-
ference will have to be limited to a small subset in order to
ensure decidability.

6.2 Variance
Another facet of the interaction between subtyping and type
constructors is seen in Scala’s support for definition-site
variance annotations [16]. Variance annotations provide the
information required to decide subtyping of types that result
from applying the same type constructor to different types.

As the classical example, consider the definition of the
class of immutable lists, class List[+T]. The + before
List’s type parameter denotes that List[T] is a subtype of
List[U] if T is a subtype of U. We say that + introduces
a covariant type parameter, - denotes contravariance (the
subtyping relation between the type arguments is the inverse
of the resulting relation between the constructed types), and
the lack of an annotation means that these type arguments
must be identical.

Variance annotations pose the same kind of challenge to
the model of kinds as did bounded type parameters: kinds
must encompass them as they represent information that
should not be glossed over when passing around type con-
structors. The same strategy as for including bounds into *
can be applied here, except that variance is a property of type
constructors, so it should be tracked in →, by distinguishing
+→ and −→ [43].

Without going in too much detail, we illustrate the need
for variance annotations on higher-order type parameters and
how they influence kind conformance.

Listing 11 defines a perfectly valid Seq abstraction, albeit
with a contrived lift method. Because Seq declares C’s
type parameter X to be covariant, it may use its covariant
type parameter A as an argument for C, so that C[A] <: C[

B] when A <: B.
Seq declares the type of its this variable to be C[A]

(self: C[A] ⇒ declares self as an alias for this, and
gives it an explicit type). Thus, the lift method may return
this, as its type can be subsumed to C[B].

Suppose that a type constructor that is invariant in its first
type parameter, could be passed as the argument for a type
constructor parameter that assumes its first type parameter
to be covariant. This would foil the type system’s first-order

trait Seq[+A, C[+X]] { self: C[A] ⇒
def lift[B >: A]: C[B] = this

}

class Cell[A] extends
Seq[A, Cell] { // the only (static) error

private var cell: A = _
def set(x: A) = cell = x
def get: A = cell

}

class Top
class Ext extends Top {
def bar() = println("bar")

}

val exts: Cell[Ext] = new Cell[Ext]
val tops: Cell[Top] = exts.lift[Top]
tops.set(new Top)
exts.get.bar() // method not found error, if

// the above static error is ignored

Listing 11. Example of unsoundness if higher-order
variance annotations are not enforced.

variance checks: Seq’s definition would be invalid if C were
invariant in its first type parameter.

The remainder of Listing 11 sets up a concrete example
that would result in a run-time error if the type application
Seq[A, Cell] were not ruled out statically.

More generally, a type constructor parameter that does
not declare any variance for its parameters, does not impose
any restrictions on the variance of the parameters of its type
argument. However, when either covariance or contravari-
ance is assumed, the corresponding parameters of the type
argument must have the same variance.

7. Leveraging Scala’s implicits
In this section we discuss how the introduction of type con-
structor polymorphism has made Scala’s support for implicit
arguments more powerful. Implicits have been implemented
in Scala since version 1.4. They are the minimal extension
to an object-oriented language so that Haskell’s type classes
[46] can be encoded [34].

We first show how to improve the example from Sec-
tion 2 using implicits, so that clients of Iterable no longer
need to supply the correct instance of Buildable[C]. Since
there generally is only one instance of Buildable[C] for a
particular type constructor C, it becomes quite tedious to sup-
ply it as an argument whenever calling one of Iterable’s
methods that requires it.

Fortunately, Scala’s implicits can be used to shift this bur-
den to the compiler. It suffices to add the implicit keyword
to the parameter list that contains the b: Buildable[C]

parameter, and to the XXXIsBuildable objects. With this

11 2008/3/20

change, which is sketched in Listing 12, callers (such as in
the example of Listing 6) typically do not need to supply this
argument.

In the rest of this section we explain this feature in or-
der to illustrate the interaction with type constructor poly-
morphism. With the introduction of type constructor poly-
morphism, our encoding of type classes is extended to con-
structor classes, such as Monad, as discussed in Section 7.3.
Moreover, our encoding exceeds the original because we in-
tegrate type constructor polymorphism with subtyping, so
that we can abstract over bounds. This would correspond to
abstracting over type class contexts, which is not supported
in Haskell [23, 26, 28, 13]. Section 7.3 discusses this in more
detail.

7.1 Introduction to implicits
The principal idea behind implicit parameters is that argu-
ments for them can be left out from a method call. If the ar-
guments corresponding to an implicit parameter section are
missing, they are inferred by the Scala compiler.

Listing 13 introduces implicits by way of a simple exam-
ple. It defines an abstract class of monoids and two concrete
implementations, StringMonoid and IntMonoid. The two
implementations are marked with an implicit modifier.

Listing 14 implements a sum method, which works
over arbitrary monoids. sum’s second parameter is marked
implicit. Note that sum’s recursive call does not need to
pass along the m implicit argument.

The actual arguments that are eligible to be passed to
an implicit parameter include all identifiers that are marked
implicit, and that can be accessed at the point of the
method call without a prefix. For instance, the scope of the
Monoids object can be opened up using an import state-
ment, such as import Monoids._ This makes the two
implicit definitions of stringMonoid and intMonoid el-
igible to be passed as implicit arguments, so that one can
write:

sum(List("a", "bc", "def"))
sum(List(1, 2, 3))

These applications of sum are equivalent to the following
two applications, where the formerly implicit argument is
now given explicitly.

sum(List("a", "bc", "def"))(stringMonoid)
sum(List(1, 2, 3))(intMonoid)

If there are several eligible arguments that match an im-
plicit parameter’s type, a most specific one will be chosen
using the standard rules of Scala’s static overloading reso-
lution. If there is no unique most specific eligible implicit
definition, the call is ambiguous and will result in a static
error.

trait Iterable[T] {
def map[U](f: T ⇒ U)

(implicit b: Buildable[Container
]): Container[U]
= mapTo[U, Container](f)
// no need to pass b explicitly
// similar for other methods

}

implicit object ListBuildable
extends Buildable[List]{...}

implicit object OptionBuildable
extends Buildable[Option]{..}

// client code (previous example, using
succinct function syntax):

val ages: List[Int]
= bdays.flatMapTo[Int, List]{_.map{toYrs(_)}}

Listing 12. Snippet: leveraging implicits in Iterable

abstract class Monoid[T] {
def add(x: T, y: T): T
def unit: T

}

object Monoids {
implicit object stringMonoid

extends Monoid[String] {
def add(x: String, y: String): String
= x.concat(y)

def unit: String = ""
}
implicit object intMonoid

extends Monoid[Int] {
def add(x: Int, y: Int): Int
= x + y

def unit: Int = 0
}

}

Listing 13. Using implicits to model monoids

def sum[T](xs: List[T])(implicit m: Monoid[T
]): T

= if(xs.isEmpty) m.unit else m.add(xs.head,
sum(xs.tail))

Listing 14. Summing lists over arbitrary monoids

12 2008/3/20

class Ord a where
(<=) :: a → a → Bool

instance Ord Date where
(<=) = ...

max :: Ord a ⇒ a → a → a
max x y = if x <= y then y else x

Listing 15. Using type classes to overload <= in Haskell

trait Ord[T] {
def <= (other: T): Boolean

}

import java.util.Date

implicit def dateAsOrd(self: Date)
= new Ord[Date] {
def <= (other: Date) = self.equals(other)

|| self.before(other)
}

def max[T <% Ord[T]](x: T, y: T): T
= if(x <= y) y else x

Listing 16. Encoding type classes using Scala’s implicits

7.2 Encoding Haskell’s type classes with implicits
Haskell’s type classes have grown from a simple mechanism
that deals with overloading [46], to an important tool in
dealing with the challenges of modern software engineering.
Its success has prompted others to explore similar features
in Java [47].

7.2.1 An example in Haskell
Listing 15 defines a simplified version of the well-known
Ord type class. This definition says that if a type a is in
the Ord type class, the function <= with type a → a →
Bool is available. The instance declaration instance Ord

Date gives a concrete implementation of the <= operation
on Date’s and thus adds Date as an instance to the Ord type
class. To constrain an abstract type to instances of a type
class, contexts are employed. For example, max’s signature
constrains a to be an instance of Ord using the context Ord
a, which is separated from the function’s type by a ⇒.

Conceptually, a context that constrains a type a, is trans-
lated into an extra parameter that supplies the implementa-
tions of the type class’s methods, packaged in a so-called
“method dictionary”. An instance declaration specifies the
contents of the method dictionary for this particular type.

def max[T](x: T, y: T)
(implicit conv: T ⇒ Ord[T]): T

= if(x <= y) y else x

Listing 17. Desugaring view bounds

def max[T](x: T, y: T)(c: T ⇒ Ord[T]): T
= if(c(x).<=(y)) y else x

Listing 18. Making implicits explicit

7.2.2 Encoding the example in Scala
It is natural to turn a type class into a class, as shown in
Listing 16. Thus, an instance of that class corresponds to
a method dictionary, as it supplies the actual implementa-
tions of the methods declared in the class. The instance dec-
laration instance Ord Date is translated into an implicit
method that converts a Date into an Ord[Date]. An object
of type Ord[Date] encodes the method dictionary of the
Ord type class for the instance Date.

Because of Scala’s object-oriented nature, the creation of
method dictionaries is driven by member selection. Whereas
the Haskell compiler selects the right method dictionary
fully automatically, this process is triggered by calling miss-
ing methods on objects of a type that is an instance (in the
Haskell sense) of a type class that does provide this method.
When a type class method, such as <=, is selected on a type
T that does not define that method, the compiler searches an
implicit value that converts a value of type T into a value that
does support this method. In this case, the implicit method
dateAsOrd is selected when T equals Date.

Note that Scala’s scoping rules for implicits differ from
Haskell’s. Briefly, the search for an implicit is performed
locally in the scope of the method call that triggered it,
whereas this is a global process in Haskell.

Contexts are another trigger for selecting method dictio-
naries. The Ord a context of the max method is encoded as
a view bound T <% Ord[T], which is syntactic sugar for an
implicit parameter that converts the bounded type to its view
bound. Thus, when the max method is called, the compiler
must find the appropriate implicit conversion. Listing 17 re-
moves this syntactic sugar, and Listing 18 goes even further
and makes the implicits explicit. Clients would then have
to supply the implicit conversion explicitly: max(dateA,
dateB)(dateAsOrd).

7.2.3 Conditional implicits
By defining implicit methods that themselves take implicit
parameters, Haskell’s conditional instance declarations can
be encoded:

13 2008/3/20

class Monad m where
(>>=) :: m a → (a → m b) → m b

data (Ord a) ⇒ Set a = ...

instance Monad Set where
-- (>>=) :: Set a → (a → Set b) → Set b

Listing 19. Set cannot be made into a Monad in Haskell

instance Ord a ⇒ Ord (List a) where
(<=) = ...

This is encoded in Scala as:

implicit def listAsOrd[T](self: List[T])(
implicit v: T ⇒ Ord[T]) =

new Ord[List[T]] {
def <= (other: List[T]) = // compare
elements in self and other

}

Thus, two lists with elements of type T can be compared
as long as their elements are comparable. To ensure that
the compiler’s search for implicit arguments terminates,
the Scala Language Specification defines a contractiveness
check for implicit methods [35].

Type classes and implicits both provide ad-hoc polymor-
phism. Like parametric polymorphism, this allows methods
or classes to be applicable to arbitrary types. However, para-
metric polymorphism implies that a method or a class is
truly indifferent to the actual argument of its type param-
eter, whereas ad-hoc polymorphism maintains this illusion
by selecting different methods or classes for different actual
type arguments.

This ad-hoc nature of type classes and implicits can be
seen as a retroactive extension mechanism. In OOP, vir-
tual classes [38, 17] have been proposed as an alternative
that is better suited retroactive extension. However, ad-hoc
polymorphism also allows types to drive the selection of
functionality as demonstrated by the selection of (implicit)
instances of Buildable[C] in our Iterable example8.
Buildable clearly could not be truly polymorphic in its
parameter, as that would imply that there could be one
Buildable that knew how to supply a strategy for build-
ing any type of container.

7.3 Exceeding type classes
As shown in Listing 19, Haskell’s Monad abstraction [45]

does not apply to type constructors with a constrained type
parameter, such as Set, as explained below. Resolving this
issue in Haskell is an active research topic [13, 14, 23].

8 Java’s static overloading mechanism is another example of ad-hoc poly-
morphism.

trait Monad[A, M[X]] {
def >>= [B](f: A ⇒ M[B]): M[B]

}

Listing 20. Monad in Scala

trait BoundedMonad[A <: Bound[A], M[X <: Bound[
X]], Bound[X]] {

def >>= [B <: Bound[B]](f: A ⇒ M[B]): M[B]
}

trait Set[T <: Ord[T]]

implicit def SetIsBoundedMonad[T <: Ord[T]](
s: Set[T]): BoundedMonad[T, Set, Ord] = ...

Listing 21. Set as a BoundedMonad in Scala

In this example, the Monad abstraction9 does not accom-
modate constraints on the type parameter of the m type con-
structor that it abstracts over. Since Set is a type constructor
that constrains its type parameter, it is not a valid argument
for Monad’s m type parameter: m a is allowed for any type a,
whereas Set a is only allowed if a is an instance of the Ord
type class. Thus, passing Set as m could lead to violating
this constraint.

For reference, Listing 20 shows a direct encoding of the
Monad type class. To solve the problem in Scala, we gener-
alise Monad to BoundedMonad in Listing 21 to deal with
bounded type constructors. Finally, implicits are used to
retroactively turn Set into a BoundedMonad, as explained
in Section 7.2.
8. Related Work
8.1 Roots of our kinds
Since the seminal work of Girard and Reynolds in the early
1970’s, fragments of the higher-order polymorphic lambda
calculus or System Fω [19, 41, 8] have served as the basis for
many programming languages. The most notable example is
Haskell [22], which has supported higher-kinded types for
over 15 years [21].

Although Haskell has higher-kinded types, it eschews
subtyping. Most of the use-cases for subtyping are subsumed
by type classes, which handle overloading systematically
[46]. However, it is not (yet) possible to abstract over class
contexts [23, 26, 28, 13]. In our setting, this corresponds to
abstracting over a type that is used as a bound, as discussed
in Section 7.3.

The interaction between higher-kinded types and subtyp-
ing is a well-studied subject [11, 40, 15]. As far as we know,

9 In fact, the main difference between our Iterable and Haskell’s
Monad is spelling.

14 2008/3/20

none of these approaches combine bounded type construc-
tors, subkinding, subtyping and variance, although all of
these features are included in at least one of them. A sim-
ilarity of interest is Cardelli’s notion of power types [10],
which corresponds to our bounds-tracking kind *(L, U).

In summary, the presented type system can be thought of
as the integration of an object-oriented system with Polar-
ized Fω

sub [43], Cardelli’s power type, and subkinding. Sub-
kinding is based on interval inclusion and the transposition
of subtyping of dependent function types [4] to the level of
kinds.

8.2 Type constructor polymorphism in OOPL’s
Languages with virtual types or virtual classes, such as gbeta
[17], can encode type constructor polymorphism through ab-
stract type members. The idea is to model a type construc-
tor such as List as a simple abstract type that has a type
member describing the element type. Since Scala has virtual
types, List could also be defined as a class with an abstract
type member instead of as a type-parameterised class:

abstract class List { type Elem }

Then, a concrete instantiation of List could be modelled
as a type refinement, as in List{type Elem = String}.
The crucial point is that in this encoding List is a type, not
a type constructor. So first-order polymorphism suffices to
pass the List constructor as a type argument or an abstract
type member refinement.

Compared to type constructor polymorphism, this encod-
ing has a serious disadvantage, as it permits the definition
of certain accidentally empty type abstractions that cannot
be instantiated to concrete values later on. By contrast, type
constructor polymorphism has a kind soundness property
that guarantees that well-kinded type applications never re-
sult in nonsensical types.

Type constructor polymorphism has recently started to
trickle down to object-oriented languages. Cremet and Al-
therr’s work on extending Featherweight Generic Java with
higher-kinded types [3] partly inspired the design of our syn-
tax. However, since they extend Java, they do not model type
members and path-dependent types, definition-site variance,
or intersection types. They do provide direct support for
anonymous type constructors. Furthermore, although their
work demonstrates that type constructor polymorphism can
be integrated into Java, they only provide a prototype of a
compiler and an interpreter.

Finally, we briefly mention OCaml and C++. C++’s tem-
plate mechanism is related, but, while templates are very
flexible, this comes at a steep price: they can only be type-
checked after they have been expanded. Recent work on
“concepts” alleviates this [20].

In OCaml (as in ML), type constructors are first-order.
Thus, although a type of, e.g., kind * → * → * is sup-
ported, types of kind (* → *) → * → * cannot be ex-
pressed directly. However, ML dialects that support applica-

tive functors, such as OCaml and Moscow ML, can encode
type constructor polymorphism in much the same way as
languages with virtual types.

9. Conclusion
Genericity is a proven technique to reduce code duplication
in object-oriented libraries, as well as making them easier to
use by clients. The prime example is a collections library,
where clients no longer need to cast the elements they re-
trieve from a generic collection.

Unfortunately, though genericity is extremely useful, the
first-order variant is self-defeating in the sense that abstract-
ing over proper types gives rise to type constructors, which
cannot be abstracted over. Thus, by using genericity to re-
duce code duplication, other kinds of boilerplate arise. Type
constructor polymorphism allows to further eliminate these
redundancies, as it generalises genericity to type construc-
tors.

As with genericity, most use cases for type constructor
polymorphism arise in library design and implementation,
where it provides more control over the interfaces that are
exposed to clients, while reducing code duplication. More-
over, clients are not exposed to the complexity that is in-
herent to these advanced abstraction mechanisms. In fact,
clients benefit from the more precise interfaces that can
be expressed with type constructor polymorphism, just like
genericity reduced the number of casts that clients of a col-
lections library had to write.

We implemented type constructor polymorphism in Scala
2.5. The essence of our solution carries over easily to Java,
see Altherr et al. for a proposal [3].

Finally, we have only reported on one of several applica-
tions that we experimented with. Embedded domain specific
languages (DSL’s) [12] are another promising application
area of type constructor polymorphism. We are currently ap-
plying these ideas to our parser combinator library, a DSL
for writing EBNF grammars in Scala [32]. Independently,
Ostermann et al. [39] are investigating similar applications,
which critically rely on type constructor polymorphism.

Acknowledgments
The authors would like to thank Dave Clarke, Marko van
Dooren, Burak Emir, Erik Ernst, Bart Jacobs, Andreas Ross-
berg, Jan Smans, and Alexander Spoon for their insightful
comments and interesting discussions. We also gratefully
acknowledge the Scala community for providing a fertile
testbed for this research. Finally, we thank the reviewers of
earlier versions of this paper.

The first author is supported by a grant from the Flemish
IWT. Part of the reported work was performed during a 3-
month stay at EPFL.

15 2008/3/20

References
[1] M. Abadi and L. Cardelli. A theory of primitive objects:

Second-order systems. Sci. Comput. Program., 25(2-3):81–
116, 1995.

[2] M. Abadi and L. Cardelli. A theory of primitive objects:
Untyped and first-order systems. Inf. Comput., 125(2):78–
102, 1996.

[3] P. Altherr and V. Cremet. Adding type constructor parameter-
ization to Java. Accepted to the workshop on Formal Tech-
niques for Java-like Programs (FTfJP’07) at the European
Conference on Object-Oriented Programming (ECOOP),
2007.

[4] D. Aspinall and A. B. Compagnoni. Subtyping dependent
types. Theor. Comput. Sci., 266(1-2):273–309, 2001.

[5] G. M. Bierman, E. Meijer, and W. Schulte. The essence
of data access in Comega. In A. P. Black, editor, ECOOP,
volume 3586 of Lecture Notes in Computer Science, pages
287–311. Springer, 2005.

[6] A. P. Black, N. Schärli, and S. Ducasse. Applying traits to
the Smalltalk collection classes. In R. Crocker and G. L. S.
Jr., editors, OOPSLA, pages 47–64. ACM, 2003.

[7] G. Bracha. Executable grammars in Newspeak. Electron.
Notes Theor. Comput. Sci., 193:3–18, 2007.

[8] K. B. Bruce, A. R. Meyer, and J. C. Mitchell. The semantics
of second-order lambda calculus. Inf. Comput., 85(1):76–
134, 1990.

[9] K. B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A type-
safe polymorphic object-oriented language. In W. G. Olthoff,
editor, ECOOP, volume 952 of Lecture Notes in Computer
Science, pages 27–51. Springer, 1995.

[10] L. Cardelli. Structural subtyping and the notion of power
type. In POPL, pages 70–79, 1988.

[11] L. Cardelli. Types for data-oriented languages. In J. W.
Schmidt, S. Ceri, and M. Missikoff, editors, EDBT, volume
303 of Lecture Notes in Computer Science, pages 1–15.
Springer, 1988.

[12] J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless,
partially evaluated. In Z. Shao, editor, APLAS, volume
4807 of Lecture Notes in Computer Science, pages 222–238.
Springer, 2007.

[13] M. Chakravarty, S. L. P. Jones, M. Sulzmann, and T. Schri-
jvers. Class families, 2007. On the GHC Developer
wiki, http://hackage.haskell.org/trac/ghc/
wiki/TypeFunctions/ClassFamilies.

[14] M. M. T. Chakravarty, G. Keller, S. L. P. Jones, and
S. Marlow. Associated types with class. In J. Palsberg
and M. Abadi, editors, POPL, pages 1–13. ACM, 2005.

[15] A. B. Compagnoni and H. Goguen. Typed operational seman-
tics for higher-order subtyping. Inf. Comput., 184(2):242–
297, 2003.

[16] B. Emir, A. Kennedy, C. V. Russo, and D. Yu. Variance
and generalized constraints for C# generics. In D. Thomas,
editor, ECOOP, volume 4067 of Lecture Notes in Computer

Science, pages 279–303. Springer, 2006.

[17] E. Ernst. gbeta – a Language with Virtual Attributes,
Block Structure, and Propagating, Dynamic Inheritance.
PhD thesis, Department of Computer Science, University of
Aarhus, Århus, Denmark, 1999.

[18] J. Gibbons and G. Jones. The under-appreciated unfold. In
ICFP, pages 273–279, 1998.

[19] J. Girard. Interpretation fonctionelle et elimination des
coupures de l’arithmetique d’ordre superieur. Thèse d’État,
Paris VII, 1972.

[20] D. Gregor, J. Järvi, J. G. Siek, B. Stroustrup, G. D. Reis,
and A. Lumsdaine. Concepts: linguistic support for generic
programming in C++. In P. L. Tarr and W. R. Cook, editors,
OOPSLA, pages 291–310. ACM, 2006.

[21] P. Hudak, J. Hughes, S. L. P. Jones, and P. Wadler. A
history of Haskell: being lazy with class. In B. G. Ryder
and B. Hailpern, editors, HOPL, pages 1–55. ACM, 2007.

[22] P. Hudak, S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn,
J. H. Fasel, M. M. Guzmán, K. Hammond, J. Hughes,
T. Johnsson, R. B. Kieburtz, R. S. Nikhil, W. Partain, and
J. Peterson. Report on the programming language Haskell,
a non-strict, purely functional language. SIGPLAN Notices,
27(5):R1–R164, 1992.

[23] J. Hughes. Restricted datatypes in Haskell. Technical Report
UU-CS-1999-28, Department of Information and Computing
Sciences, Utrecht University, 1999.

[24] G. Hutton and E. Meijer. Monadic Parser Combinators.
Technical Report NOTTCS-TR-96-4, Department of Com-
puter Science, University of Nottingham, 1996.

[25] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001.

[26] M. P. Jones. constructor classes & ”set” monad?,
1994. http://groups.google.com/group/comp.
lang.functional/msg/e10290b2511c65f0.

[27] M. P. Jones. A system of constructor classes: Overloading
and implicit higher-order polymorphism. J. Funct. Program.,
5(1):1–35, 1995.

[28] E. Kidd. How to make data.set a monad, 2007. http:
//www.randomhacks.net/articles/2007/03/
15/data-set-monad-haskell-macros.

[29] D. Leijen and E. Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical Report UU-CS-
2001-27, Department of Computer Science, Universiteit
Utrecht, 2001.

[30] E. Meijer. There is no impedance mismatch: (language
integrated query in Visual Basic 9). In P. L. Tarr and W. R.
Cook, editors, OOPSLA Companion, pages 710–711. ACM,
2006.

[31] E. Meijer. Confessions of a used programming language
salesman. In R. P. Gabriel, D. F. Bacon, C. V. Lopes, and
G. L. S. Jr., editors, OOPSLA, pages 677–694. ACM, 2007.

[32] A. Moors, F. Piessens, and M. Odersky. Parser combina-

16 2008/3/20

http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions/ClassFamilies
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions/ClassFamilies
http://groups.google.com/group/comp.lang.functional/msg/e10290b2511c65f0
http://groups.google.com/group/comp.lang.functional/msg/e10290b2511c65f0
http://www.randomhacks.net/articles/2007/03/15/data-set-monad-haskell-macros
http://www.randomhacks.net/articles/2007/03/15/data-set-monad-haskell-macros
http://www.randomhacks.net/articles/2007/03/15/data-set-monad-haskell-macros

tors in Scala. Technical Report CW491, Department of
Computer Science, K.U. Leuven, 2008. http://www.
cs.kuleuven.be/publicaties/rapporten/cw/
CW491.abs.html.

[33] A. Moors, F. Piessens, and M. Odersky. Safe type-level
abstraction in Scala. In Proc. FOOL ’08, Jan. 2008.
http://fool08.kuis.kyoto-u.ac.jp/.

[34] M. Odersky. Poor man’s type classes, July 2006. Talk at IFIP
WG 2.8, Boston.

[35] M. Odersky. The Scala Language Specification, Version 2.6.
EPFL, Nov. 2007. http://www.scala-lang.org/
docu/files/ScalaReference.pdf.

[36] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubo-
chet, B. Emir, S. McDirmid, S. Micheloud, N. Mihaylov,
M. Schinz, L. Spoon, E. Stenman, and M. Zenger. An
Overview of the Scala Programming Language (2. edition).
Technical report, 2006.

[37] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal
theory of objects with dependent types. In L. Cardelli, editor,
ECOOP, volume 2743 of Lecture Notes in Computer Science,
pages 201–224. Springer, 2003.

[38] H. Ossher and W. H. Harrison. Combination of inheritance
hierarchies. In OOPSLA, pages 25–40, 1992.

[39] K. Ostermann and C. Hofer, 2007. Private communication.

[40] B. C. Pierce and M. Steffen. Higher-order subtyping. Theor.
Comput. Sci., 176(1-2):235–282, 1997.

[41] J. C. Reynolds. Towards a theory of type structure. In
B. Robinet, editor, Symposium on Programming, volume 19
of Lecture Notes in Computer Science, pages 408–423.
Springer, 1974.

[42] T. Sheard. Type-level computation using narrowing in
Ωmega. Electr. Notes Theor. Comput. Sci., 174(7):105–128,
2007.

[43] M. Steffen. Polarized Higher-Order Subtyping. PhD thesis,
Universität Erlangen-Nürnberg, 1998.

[44] P. Wadler. Comprehending monads. Mathematical Structures
in Computer Science, 2(4):461–493, 1992.

[45] P. Wadler. Monads for functional programming. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming,
volume 925 of Lecture Notes in Computer Science, pages
24–52. Springer, 1995.

[46] P. Wadler and S. Blott. How to make ad-hoc polymorphism
less ad-hoc. In POPL, pages 60–76, 1989.

[47] S. Wehr, R. Lämmel, and P. Thiemann. JavaGI : Generalized
interfaces for Java. In E. Ernst, editor, ECOOP, volume
4609 of Lecture Notes in Computer Science, pages 347–372.
Springer, 2007.

A. Typing and Kinding Rules

Γ ` t : T t has type T

Γ ` p : {x ⇒ val l : T}
T not an un-type
Γ ` p . l : [x 7→ p]T

T SELPATH

Γ ` t : {x ⇒ val l : T}
x /∈ FV(T)
T not an un-type

Γ ` t . l : T
T SEL

Γ ` t : T
T ≡ {x : S ⇒ m1 ..mn}
∃i ∈ 1..n. m ′ = refines(mi , cm)
Γ , x : S ` m ′ WF
x /∈ FV(cm)

Γ ` t /{cm} : T /{cm}
T RFN

Γ ` T ≺≺ R
Γ ` R : Concrete (R)
T not a singleton type
T not of shape �T ′

Γ ` newT : T
T NEW

Γ ` p : R

Γ ` p : p . type
T SING

Γ ` t : T
Γ ` T <:S

Γ ` t : S
T SUBSUME

Figure 8. Term Classification

17 2008/3/20

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://fool08.kuis.kyoto-u.ac.jp/
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf

Γ ` T <:T ′ T is a subtype of T ′

Γ ` S <:T
Γ ` T : K
Γ ` T <:T ′

Γ ` S <:T ′ ST TRANS

Γ ` S : K
Γ ` S ≺≺ R

Γ ` S <:R
ST EXP

Γ ` S : K
Γ ` T : K
Γ ` S ∼= T

Γ ` S <:T
ST EQ

Γ ` T 3 typeL : K \\ x
Γ ` K <: In (, S)

Γ ` T #L<:S
ST ABS UPPER

Γ ` T 3 typeL : K \\ x
Γ ` K <: In (S ,)

Γ ` S <:T #L
ST ABS LOWER

Γ ` T1 <:T2

Γ ` T1 /{typeL = U}<:T2 /{typeL = U}
ST INVAR

Γ ` S <:S2

∀j ∈ 1..k . ∃i ∈ 1..n. (mi
label≡ m ′

j ∧ Γ ` mi <:m ′
j)

∀i ∈ 1..n. (mi deferred ⇒ ∃j ∈ 1..k . mi
label≡ m ′

j)

Γ ` {x : S ⇒ m1 ..mn}<: {x : S2 ⇒ m ′
1 ..m ′

k}
ST R

Γ ` T1 ≺≺ {x : ⇒ m1 ..mn}
Γ ` T2 ≺≺ {x : ⇒ m ′

1 ..m ′
k}

∀i ∈ 1..k . (m ′
i deferred ⇒ ∃j ∈ 1..n. m ′

i

label≡ mj)

Γ ` T1 &T2 <:T1
ST IELIMR

Γ ` T1 ≺≺ {x : ⇒ m1 ..mn}
Γ ` T2 ≺≺ {x : ⇒ m ′

1 ..m ′
k}

∀i ∈ 1..n. (mi deferred ⇒ ∃j ∈ 1..k . mi
label≡ m ′

j)

Γ ` T1 &T2 <:T2
ST IELIML

Γ ` T <:T1

Γ ` T <:T2

Γ ` T <:T1 &T2
ST IINTRO

Γ ` T : K
T not an un-type

Γ ` T <:Any
ST ANY

Γ ` T : K

Γ ` Nothing <:T
ST NOTHING

Γ ` T <:S

Γ ` Un [S] <:Un [T]
ST UN

Figure 9. Subtyping

Γ ` T ≺≺ R T expands to the structural type R

Γ ` T 3 typeL : K = S \\ x
Γ ` [x 7→ T]S ≺≺ R

Γ ` T #L ≺≺ R
X SEL

Γ ` T ≺≺ {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. m ′

i = refineIf(mi , cm)

Γ ` T /{cm} ≺≺ {x : S ⇒ m ′
1 ..m ′

n}
X RFN

Γ ` R ≺≺ R
X REFL

Γ ` T ≺≺ {x ⇒ m1 ..mn}
Γ ` T ≺≺ {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

X SELFX

Γ ` T1 ≺≺ {x : S1 ⇒ mi
i}

Γ ` T2 ≺≺ {x : S2 ⇒ m ′
j

j}
m ′′

k

k
= mi

i] m ′
j

j

Γ ` T1 &T2 ≺≺ {x : S2 ⇒ m ′′
k

k}
X MIX

x : T ∈ Γ
Γ ` T ≺≺ R

Γ ` x . type ≺≺ R
X SINGVAR

Γ ` T ≺≺ R

Γ ` (newT) . type ≺≺ R
X SINGNEW

Γ ` p . type 3 val l : T \\ x
Γ ` [x 7→ p]T ≺≺ R

Γ ` p . l . type ≺≺ R
X SINGSEL

Γ ` T ≺≺ {x : S ⇒ m1 ..mh}
∀i ∈ 1..n. m ′

i = refineIf(mi ,)

Γ ` �T ≺≺ {x : S ⇒ m ′
1 ..m ′

n}
X NCSRY

Γ ` T 3 m \\ x

Γ ` T ≺≺ {x : ⇒ m1 ..mn}
∃i ∈ 1..n. mi ≡ m

Γ ` T 3 m \\ x
X LU

Figure 10. Type Expansion

18 2008/3/20

Γ ` T T ′ T normalises to T ′

Γ ` T 3 typeL : K = S \\ x
K not nominal
Γ ` [x 7→ T]S S ′

Γ ` T #L S ′ N SEL

Γ ` T {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. m ′

i = refineIf(mi , cm)

Γ ` T /{cm} {x : S ⇒ m ′
1 ..m ′

n}
N RFN

Γ ` T {x ⇒ m1 ..mn}
Γ ` T {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

N SELFX

Γ ` T1 {x : S1 ⇒ mi
i}

Γ ` T2 {x : S2 ⇒ m ′
j

j}
m ′′

k

k
= mi

i] m ′
j

j

Γ ` T1 &T2 {x : S2 ⇒ m ′′
k

k}
N MIX

Γ ` p : q . type

Γ ` p . type q . type
N SNG

Γ ` K <:K ′ K is a subkind of K ′

Γ ` K2 <:K1

Γ ` Un [K1] <:Un [K2]
SK UN

Γ ` Nominal (R) <:Struct (R)
SK NOM

Γ ` Concrete (R) <:Struct (R)
SK CONC

Γ ` Struct (R) <: In (Nothing , R)
SK STRUCT

Γ ` R1 <:R2

Γ ` Concrete (R1) <:Concrete (R2)
SK CTX CONC

Γ ` R1 <:R2

Γ ` Struct (R1) <:Struct (R2)
SK CTX STRUCT

Γ ` T2 <:S2

Γ ` S1 <:T1

Γ ` In (T1 , T2) <: In (S1 , S2)
SK CTX IN

Γ ` m <:m ′ m is a submember of m ′

Γ ` T <:T ′

Γ ` val l : T <:val l : T ′ SM VAL

Γ ` K <:K ′

Γ ` typeL : K <: typeL : K ′ SM TYPEA

Γ ` typeL : K = <: typeL : K =
SM TYPEC

Figure 11. Type Normalisation, Subkinding, and Subtyping
for members

Γ ` T : K T has kind K

R ≡ {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. Γ , x : S ` mi WF
m1 ..mn noDuplicates

Γ ` R : Struct (R)
K R

Γ ` {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn} : K

Γ ` {x ⇒ m1 ..mn} : K
K RX

Γ ` T1 : Struct ({x : S1 ⇒ mi
i})

Γ ` T2 : Struct ({x : S2 ⇒ m ′
j

j})
∀i ∈ 1..n. ∀j ∈ 1..k . (mi

label≡ m ′
j ⇒ Γ ` m ′

j <:mi)

m ′′
k

k
= mi

i] m ′
j

j

Γ ` S2 <:S1

Γ ` T1 &T2 : Struct ({x : S2 ⇒ m ′′
k

k})
K MIX

Γ ` T : Struct ({x : S ⇒ m1 ..mn})
Γ ` �T <:S
∀i ∈ 1..n. mi nonAbstract

Γ ` T : Concrete ({x : S ⇒ m1 ..mn})
K CONCRETE

Γ ` p : T
Γ ` T : Struct ({x : S ⇒ m1 ..mn})

Γ ` p . type : Concrete ({x : S ⇒ m1 ..mn})
K SING

Γ ` p . type : Concrete ({x ⇒ typeL : K})
Γ ` p . type#L : [x 7→ p]K

K SELPATH

Γ ` T : Concrete ({x ⇒ typeL : K})
x /∈ FV(K)

Γ ` T #L : K
K SEL

Γ ` T : Struct ({x : S ⇒ m1 ..mn})
∃i ∈ 1..n. m ′ = refines(mi , cm)
Γ , x : S ` m ′ WF
m ′′

1 ..m ′′
n = m1 ..mn] m ′

x /∈ FV(cm)

Γ ` T /{cm} : Struct ({x : S ⇒ m ′′
1 ..m ′′

n})
K RFN

Γ ` T : K1

Γ ` K1 <:K2

Γ ` T : K2
K SUBSUME

Γ ` Any : Struct ({x ⇒ })
K ANY

Γ ` R : Struct (R)

Γ ` Nothing : Struct (R)
K NOTHING

Γ ` T : K

Γ ` Un [T] : Struct ({x ⇒ })
K UN

Figure 12. Classifying Types

19 2008/3/20

	Introduction
	Reducing Code Duplication with Type Constructor Polymorphism
	Improving Iterable
	Example: using Iterable
	Quantitative evaluation

	Of Types and Kinds
	Surface syntax for types
	Kinds
	Subkinding
	Example: why kinds track bounds
	Kind soundness

	Object-Oriented Formalism
	Introduction
	Encoding
	Soundness

	Bounded Iterable
	Full Scala
	Implementation
	Limitations

	Variance

	Leveraging Scala's implicits
	Introduction to implicits
	Encoding Haskell's type classes with implicits
	An example in Haskell
	Encoding the example in Scala
	Conditional implicits

	Exceeding type classes

	Related Work
	Roots of our kinds
	Type constructor polymorphism in OOPL's

	Conclusion
	Typing and Kinding Rules

