
Scarab - Developer's Guide

Scarab for Scarab developers

The Scarab Development Team

Scarab - Developer's Guide: Scarab for Scarab developers
The Scarab Development Team

Table of Contents
1. Scarab architecture ... 1

Scarab: a bird's eye view .. 1
An MVC web application based on the Turbine framework ... 1

The main Scarab components .. 2
Intake ... 2
Turbine (in the strict sense of the word) ... 2
Fulcrum: the services ... 3
YAAFI (Avalon): the microcontainer for Fulcrum services ... 3
O/R mapping: Torque and the Peer classes ... 3
The View: Velocity ... 4

2. Understanding the Ant build .. 5
$SCARAB_ROOT/build/build.xml .. 5
$SCARAB_ROOT/src/conf/conf/build.xml .. 5

3. Maven ... 7
Maven 1 .. 7
Building Scarab with Maven ... 7

Normal (full) build .. 7
Quick build .. 7
Running the tests ... 7

4. Scarab development with Eclipse .. 9
Getting the Scarab sources .. 9

Getting the subclipse plugin .. 9
Connecting to the Scarab Subversion repository .. 9

Scarab in-place development ..17
Installing the Sysdeo Tomcat Plugin ..17
Generating the required files with Maven ..17
Configuring and using the Tomcat plugin ...18

5. Scarab development with Netbeans ..20
Getting the Scarab sources ...20
Getting the Mevenide plug-in (Maven-Netbeans integration) ..20

Installing the Mevenide plug-in ...20
Scarab in-place development ..24

6. The Scarab data model ...28
Introduction ..28
Unique IDs generation: the id_table table ..28

Reserved ID ranges ..28
Turbine framework tables ..29
Scarab tables ...31

Entities related to users ...31
Modules ...33
Issue types ..35
Attributes ...37
Issues ...39
Queries ..45
Workflow ...47

7. Workflow ..48
Introduction ..48
Workflows in Scarab ..48
DefaultWorkflow ...48
BasicWorkflow ..48
Defining a new workflow ..49
Using WfmOpen as a Scarab workflow engine ..49

8. Accessing Scarab via XML-RPC ...50

iv

List of Tables
6.1. ID ranges ..28

v

vi

Chapter 1. Scarab architecture
Scarab: a bird's eye view

An MVC web application based on the Turbine framework

A web application

Scarab is a web application that uses the Java servlet technology..

MVC Architecture

Regarding its global architecture, Scarab uses the MVC (Model-View-Controller) design pattern. The part that
interacts with the user (View) is decoupled from the data defining the application state (Model) by a Controller
that managing the navigation in Scarab.

The Turbine framework

A framework is a way of building applications, plus tools to help building them. The Turbine framework (ht-
tp://jakarta.apache.org/trubine [http://jakarta.apache.org/trubine/]) is a doctrine to program web applications ac-
cording to the MVC design pattern. Turbine also brings quite a set of tools (components, projects) to help code
your application. Some of these components are detailed below, as they are used by Scarab.

1

http://jakarta.apache.org/trubine/
http://jakarta.apache.org/trubine/

The main Scarab components
Intake

The form data sent by the user may be submitted to a validation process (required fields, well-formed an-
swers,...). This preliminary check is performed by a Turbine component called Intake.

Intake is now a part of Fulcrum (see below).

Note

Intake plays in Turbine the same role as the Struts Validator in Struts, if you're familiar with this
well-known framework.

In the Scarab distribution

Intake validation rules are expressed in XML in the src/conf/intake.xml file.

On the Internet

The Intake documentation is available at this URL: http://jakarta.apache.org/turbine/fulcrum/fulcrum-intake
[http://jakarta.apache.org/turbine/fulcrum/fulcrum-intake/].

Turbine (in the strict sense of the word)
It's the heart of the framework. As in others MVC2 frameworks, there is only one entry point in the application,
the scarab servlet, that is an instance of the org.apache.turbine.Turbine class.

The behaviour of this servlet is ruled by five properties files, declared in the TurbineConfiguration.xml
deployment descriptor :

1. custom.properties

2. defaultCustom.properties

3. PermissionMapping.properties

4. TurbineResources.properties

5. Torque.properties

Note

Which version of Turbine ?

If you know Turbine or if you have read the documentation on the Jakarta web site, you have prob-
ably realized that the architecture of the different versions of Turbine (2.3 and 2.4 are currently
available) is quite different.

In fact, Scarab has been developed initially by members of the Turbine project and it used a pre-
version of Turbine 3 -- that will probably never be released. So the current development team
spends some energy trying to bring Scarab back in the current Turbine development flow by
"downgrading" the version of some of the components and integrating some of the Turbine 3 evol-
utions back in Turbine 2.4.

In the Scarab distribution

Scarab architecture

2

http://jakarta.apache.org/turbine/fulcrum/fulcrum-intake/

Configuration files mentioned above are in the src/conf/conf/ directory of the Scarab distribution, and un-
der WEB-INF/conf in the web application.

Turbine itself is a jar in www/repository/turbine/jars (and the corresponding source files in www/
repository/turbine/src). As explained above, it is an intermediary release to which you probably can-
not sustitute another tagged release.

On the Internet

The Turbine project documentation is available at this URL: http://jakarta.apache.org/turbine
[http://jakarta.apache.org/turbine/].

Fulcrum: the services
The Turbine architecture in 2.4= versions is based on the concept of services and uses a microcontainer of the
Avalon family. Some of these services (among which Intake, mentioned earlier) are part of Fulcrum and used by
Scarab.

In the Scarab distribution

The Fulcrum archives (a dozen of jars) are in www/repository/fulcrum/jars

On the Internet

The Fulcrum project documentation is available at this URL: http://jakarta.apache.org/turbine/fulcrum/

YAAFI (Avalon): the microcontainer for Fulcrum services
The services used by Scarab are implemented on top of a microcontainer, member of the Avalon family. (By the
way, YAAFI is just an acronym for Yet Another Avalon Framework Implementation.)

In the Scarab distribution

YAAFI is in www/repository/fulcrum/jars/fulcrum-yaafi-1.0.3.jar

On the Internet

The YAAFI project documentation and its interface with Fulcrum are available at this URL: ht-
tp://jakarta.apache.org/turbine/fulcrum/fulcrum-yaafi [http://jakarta.apache.org/turbine/fulcrum/fulcrum-yaafi/].

O/R mapping: Torque and the Peer classes
Scarab Java objects are populated from, and persisted to, a relational database (RDBMS) using a software com-
ponent that was once part of Turbine but became independent since: Torque (Torque now belongs to the Apache
database project).

From an XML high-level description of the database schema, Torque can generate:

1. database schema creation scripts (SQL/DDL), for various RDBMS;

2. Java classes that map the various database tables to JavaBeans, with finders and accessor methods.

If you are interested in further details about the database schema, read chapter 3.

In the Scarab distribution

The three XML files describing the database schema are in the src/schema of the Scarab distribution.

Scarab architecture

3

http://jakarta.apache.org/turbine/
http://jakarta.apache.org/turbine/fulcrum/
http://jakarta.apache.org/turbine/fulcrum/fulcrum-yaafi/
http://jakarta.apache.org/turbine/fulcrum/fulcrum-yaafi/

On the Internet

The documentation of the Torque project is available at this URL: http://db.apache.org/torque
[http://db.apache.org/torque/]

The View: Velocity
Turbine can use JSP (JavaServer Pages) but the first Scarab developers chose to use the Velocity technology for
the dynamic pages sent to the user.

Velocity is a template language: at runtime, the values of JavaBeans placed in the Velocity "Context" are inser-
ted in a predefined (static) content.

There are two differences with the JSP technology that are worth a mention here, that may well have been the
motives of the initial Scarab development team:

1. first, there is a point about architecture. There are control structures in Velocity (such as conditions, loops,
etc.) but it is not possible to insert Java code in a template, there is no way to insert the so-called
"scriptlets". This should make the maintenance easier in the long term because the view and the controller
are completely decoupled from each other.

2. in practice, the JSP can only be used to generate web pages (HTML or XML); Velocity is a more general
templating language and can be used to generate mails, SQL scripts, PostScript and quite a lot of other
funny things.

In the Scarab distribution

The Velocity templates for the Scarab web pages (and emails, etc.) are under src/
webapp/WEB-INF/templates, grouped by functionality.

On the Internet

The documentation of the Velocity project is available at this URL: http://jakarta.apache.org/velocity
[http://jakarta.apache.org/velocity/].

Scarab architecture

4

http://db.apache.org/torque/
http://jakarta.apache.org/velocity/

Chapter 2. Understanding the Ant build
Abstract

The Scarab application currently may be built by the end user using Ant. Ant is used to create and initialize the
database.

$SCARAB_ROOT/build/build.xml
This is the main build file.

The default target, deploy, is used to generate the code of the OM (Object Mapping) classes and to compile and
build the Scarab application.

The second main target, create-db, is used to create and initialize the Scarab database. It does this by calling the
second ant build file, described in the second section.

The target dependency graph below may help you visualize how targets are related to each other and the order in
which they are called.

$SCARAB_ROOT/src/conf/conf/build.xml
This build file is used to create and populate the Scarab database.

The target dependency graph below may help you visualize how targets are related to each other and the order in
which they are called.

5

Understanding the Ant build

6

Chapter 3. Maven
Abstract

Though Scarab end-users are more likely to use Ant to build Scarab, as a developer you will need Maven to ac-
cess all development functionalities, among which documentation generation.

Maven 1
Though Maven 2 is getting momentum and has officially become the mainstream version at the end of 2005,
Scarab still uses Maven 1.

Maven 1 and Maven 2 are functionnally equivalent but they are not syntactically compatible and use different
build files.

So you will need to install Maven 1 and refer to the Maven 1 documentation at this URL: ht-
tp://maven.apache.org/maven-1.x/

Building Scarab with Maven
Normal (full) build

Go to the $SCARAB_ROOT directory.

Launch Maven:

maven war

Quick build
Go to the $SCARAB_ROOT directory.

Launch Maven:

maven war -Dmaven.test.skip

-Dmaven.test.skip skips the execution of unit tests. Scarab unit tests have been designed to be executed
against a database; if yours is not (yet) configured, they will most certainly fail.

Running the tests
Just launch:

maven test

The results of the tests will be in $(SCARAB_HOME)/target/test-results/

If you'd like to make your tests with another db environment, follow these steps:

1. maven clean (you better start from scratch if you gonna test)

2. Configure your build.properties to contain at least the correct scarab.database.type value.

3. maven war

4. maven scarab:create-db (make sure you choose the same database than before!!)

7

http://maven.apache.org/maven-1.x/
http://maven.apache.org/maven-1.x/

5. maven test

Maven

8

Chapter 4. Scarab development with
Eclipse
Getting the Scarab sources
Getting the subclipse plugin

You will need the Subclipse plugin to connect to the Subversion repository that hosts and manages the Scarab
source code base.

If you do not have this plugin already installed, you will find detailed installation instructions at this URL : ht-
tp://subclipse.tigris.org/install.html

Connecting to the Scarab Subversion repository
Select the 'SVN Repository Exploring' perspective :

Right-click in the SVN Repository view to connect to a new Subversion repository :

9

http://subclipse.tigris.org/install.html
http://subclipse.tigris.org/install.html

The connection URL is :: http://scarab.tigris.org/svn/scarab

and the Root URL is : http://scarab.tigris.org/svn

If you are a Scarab committer, use your tigris.org login and password to connect; otherwise you do not need any
particular identification and you may leave the User and Password fields blank (though it seems that any User/
Password will work here).

Scarab development with Eclipse

10

To get the current version, choose the 'trunk' branch (equivalent to CVS HEAD for those who have used this
version control system before).

Scarab development with Eclipse

11

You can then use 'Checkout As Project', which allows you to rename the project (otherwise Eclipse would name
it trunk, which is not that meaningful).

Scarab development with Eclipse

12

The 'New Project' wizard appears. Choose 'Java project'.

Scarab development with Eclipse

13

You now have to fill in the project name (you may choose scarab or any other name that suits you best).

Scarab development with Eclipse

14

If you are using Eclipse 3.1, you must choose J2SDK compatibility. At the moment, the development team has
chosen to preserve JDK 1.3 compatibility.

Scarab development with Eclipse

15

Last step : it is best to change the Default output folder to :scarab/tar-
get/webapps/scarab/scarab/WEB-INF/classes

Scarab development with Eclipse

16

Scarab in-place development
Installing the Sysdeo Tomcat Plugin

The Sysdeo Tomcat plugin allows you to start and stop Tomcat from Eclipse and makes debugging the applica-
tion under development easier.

Download the 3.1 beta version from this URL: http://www.sysdeo.com/eclipse/tomcatplugin.

To install this plugin, all you need is to uncompress the ZIP archive in the plugins directory of your Eclipse
installation.

Generating the required files with Maven

Scarab development with Eclipse

17

http://www.sysdeo.com/eclipse/tomcatplugin

At the root of your project, type the following commands :

maven war:inplace

maven eclipse

This command generates the .project file used by Eclipse.

Configuring and using the Tomcat plugin

Rebuilding the project

You may now launch the build of the Scarab project in Eclipse.

Configuring the Tomcat preferences

In Window | Preferences... | Tomcat :

• Select the 4.0.x version

• Tomcat directory : the tomcat directory in your Scarab project

• Context declaration in server.xml

Scarab development with Eclipse

18

Setting the project Tomcat properties

In Project | Properties | Tomcat :

• Check the 'Is Tomcat project'

• Enter 'scarab' as context name

• Uncheck 'can update server.xml'

• Check 'Mark context as reloadable'

• Check 'Redirect context logger to Eclipse console...'

Scarab development with Eclipse

19

Chapter 5. Scarab development with
Netbeans
Getting the Scarab sources

The current implementation of a Subversion client for Netbeans (code named "teepee", available from ht-
tp://subversion.netbeans.org/) is only a prototype. So, at the moment, you need to use another client to check the
sources out of the Scarab Subversion repository. If you use Windows as your development environment, you'll
probably want to use TortoiseSVN [http://tortoisesvn.tigris.org/] - another Tigris project.

Getting the Mevenide plug-in (Maven-Netbeans in-
tegration)

Your best option to develop Scarab in Netbeans is certainly to use the Mevenide plug-in (which is, by the way,
much more stable and functional in Netbeans than in Eclipse, not to mention JBuilder).

Download Mevenide for Netbeans at this URL: ht-
tp://mevenide.codehaus.org/mevenide-netbeans-project/index.html

You will get a ZIP file with 16 nbm (Netbeans modules) inside. Unzip the file to a temporary directory.

Installing the Mevenide plug-in

Tip

If you are familiar with Netbeans modules installation, you will probably want to skip this section.

In the Tools menu, choose Update Center

20

http://subversion.netbeans.org/
http://subversion.netbeans.org/
http://tortoisesvn.tigris.org/
http://mevenide.codehaus.org/mevenide-netbeans-project/index.html
http://mevenide.codehaus.org/mevenide-netbeans-project/index.html

Check 'Install Manually Downloaded Modules (.nbm Files)'

Use the 'Add...' button to add the 16 files you have downloaded.

Scarab development with Netbeans

21

Just click 'Next >'.

You will have to accept the different licences. The modules are then ready for installation.

Scarab development with Netbeans

22

View the certificate (there is only one here) and click 'Finish' to install the modules.

You need now to restart Netbeans to use the Mevenide plug-in you have just installed.

Scarab development with Netbeans

23

Scarab in-place development
Accessing the Scarab project is now as easy as it can be. In the File menu, choose 'Open Project...'

Choose the directory in which you checked out Scarab from the Subversion repository.

Scarab development with Netbeans

24

There it is !

Scarab development with Netbeans

25

You have direct access to Scarab custom Maven goals by right-clicking the Scarab project.

Scarab development with Netbeans

26

Scarab development with Netbeans

27

Chapter 6. The Scarab data model
Introduction

Scarab data are accessed via Torque, the OR mapping developed for and with the Turbine framework (but
Torque is today independent in its way).

The Scarab database schema is formally described in XML. This schema will be explained in three parts, corres-
ponding to the three XML files under ./src/schema.

• the table associated to the primary key broker (id-table-schema.xml);

• the tables used to manage the Scarab users (for authentification and other purposes) and the permissions in
the Turbine framework (turbine-schema.xml);

• the tables of the Scarab application itself (scarab-schema.xml).

From this formal definition of the database schema, Torque generates:

• SQL (DDL) scripts to create tables in the various RDBMS;

• a set of java classes that map the database entities as objects (the so called "peers").

Unique IDs generation: the id_table table
Most tables in the Scarab schema have meaningless (large) integers as primary keys. Many RDBMS offer a nat-
ive mechanism to generate such primary keys (integers, not necessarily in sequence): Oracle SEQUENCE's,
auto-incremented columns in MySQL or MSSQL, etc.

One of the Scarab design goals was to be portable across many RDBMS; thus, the generation of primary keys
could hardly rely on such native mechanisms. So Scarab uses for this a Torque functionality ("id broker").

The id_table table is used to generate primary keys for the various tables in the Scarab schema.

Reserved ID ranges
As a rule, everything under 10000 is reserved for development use (default data, sample data etc.)

Table 6.1. ID ranges

28

ID range Use

0-99 Required data.

100-189 Default data.

190-199 Anonymous user data.

200-299 JIRA templates.

300-399 Bugzilla templates.

1000-1999 Sample data.

2000-8999 (Reserved for future use.)

9000-9999 User custom (custom user templates, etc.)

Turbine framework tables
These tables are used to authenticate and manage the Scarab users, their roles and permissions in the different
modules.

The tables in this part of the model are:

• turbine_user : stores data about the Scarab users, their logins, passwords, etc..

• turbine_role : stores the list of roles. Roles are common to all Scarab modules.

• turbine_permission : stores the different permissions defined in the Scarab application.

• turbine_group : this table may be required by Turbine at runtime but it is not used by Scarab. It is al-
ways empty.

• The turbine_user_group_role and turbine_role_permission tables are many-to-many rela-
tions. Their role is explained in the ERD below:

The Scarab data model

29

The following screenshot shows the definition of roles in Scarab (with the example data):

This is an illustration of the corresponding data model:

The following screenshot shows the definition of a user's roles (in the example data):

The Scarab data model

30

This is an illustration of the corresponding data model:

Scarab tables
Entities related to users

Before entering the heart of the Scarab data model, let us mention two series of simple entities related to the
users as defined just above.

Preferences

The Scarab data model

31

Pending role demands

The scarab_pending_group_user_role table stores temporarily the role demands as supplied by users.
These demands must be approved by the module administrator.

The Scarab data model

32

Modules
The list of modules and the corresponding data are stored in the scarab_module table.

The Scarab data model

33

Tip

Our QA manager asked one day for a table that would give a correspondance between the module
codes and their names. The slight difficulty here is that the module name is often meaningful with

The Scarab data model

34

the name of the parent module. It is easy to obtain this kind of table from SCARAB_MODULE with
the following SQL request:

select M1.MODULE_CODE, M2.MODULE_NAME, M1.MODULE_NAME from
SCARAB_MODULE M1, SCARAB_MODULE M2 where M1.PARENT_ID =
M2.MODULE_ID order by M1.MODULE_CODE;

There it is!

Issue types

The Scarab data model

35

Issue types are stored in the scarab_issue_type table. Modules and issue types are related to each other in
a many-to-many relationship through the scarab_r_module_issue_type relation table.

The global issue types, as illustrated below, are related to the "Global" module (the ID of this module is always
0).

The Scarab data model

36

Attributes

The Scarab data model

37

The Scarab data model

38

Issues

The Scarab data model

39

Attributes

The Scarab data model

40

The Scarab data model

41

Attribute groups

The Scarab data model

42

Attachments

Dependencies

The Scarab data model

43

History

The Scarab data model

44

Queries

The Scarab data model

45

The Scarab data model

46

Workflow

The Scarab data model

47

Chapter 7. Workflow
Introduction

As has been said in the Workflow chapter of the Scarab User's Guide, Scarab has no "hard-coded" workflow.
When saving issues, all state transitions are allowed and there is no interaction with any external system ever.

Now let's have a look at how this is implemented.

Workflows in Scarab
At the programming level, a workflow is any java class that implements the
org.tigris.scarab.workflow.Workflow interface (the source code of this interface is located under
src/java).

The workflow is then instantiated dynamically at runtime by Turbine, according to a declaration in
Scarab.properties (this file is located at runtime in the web application tree under WEB-INF/conf).

The workflow tool
scarab.workflow.classname=org.tigris.scarab.workflow.DefaultWorkflow
scarab.workflow.classname=org.tigris.scarab.workflow.CheapWorkflow

DefaultWorkflow
This was the default workflow for all versions of Scarab until milestone 19.

This workflow is implemented in the org.tigris.scarab.workflow.DefaultWorkflow class. This
class is a stub, that does nothing and allows all transitions.

BasicWorkflow

48

This is the default workflow for all Scarab versions from milestone 20. The way it works from the user point of
view is explained in the User's Guide.

This workflow is implemented in the org.tigris.scarab.workflow.CheapWorkflow class (againts
the odds). It implements the Workflow interface indirectly by inheriting from the default workflow, Default-
Workflow probably not to redefine certain default behaviours.

Defining a new workflow
To define a new workflow, using other mechanismes, communicating with one or several external systems or
more adapted to the needs or processes of your organization, you just need to:

• write a java class that implements the org.tigris.scarab.workflow.Workflow interface (either
directly or by inheriting from org.tigris.scarab.workflow.DefaultWorkflow);

• set the name of this class in the Scarab.properties mentioned above.

Using WfmOpen as a Scarab workflow engine
Someone wrote an interface between Scarab and the WfmOpen open-source workflow engine. This implement-
ation, or the base of it, is currently stored in the SourceForge tracker at thie URL: ht-
tp://sourceforge.net/tracker/index.php?func=detail&aid=961620&group_id=76143&atid=546206
[http://sourceforge.net/tracker/index.php?func=detail&aid=961620&group_id=76143&atid=546206l].

The status of this development is unknown.

Workflow

49

http://sourceforge.net/tracker/index.php?func=detail&aid=961620&group_id=76143&atid=546206l
http://sourceforge.net/tracker/index.php?func=detail&aid=961620&group_id=76143&atid=546206l

Chapter 8. Accessing Scarab via
XML-RPC

It is possible to access remotely the Scarab functionalities via XML-RPC.

An example is supplied in the Scarab sources (under src/java):

• la classe org.tigris.scarab.util.SimpleHandler.java (server, in Scarab) is used by the
Scarab-Subversion integration (read the corresponding chapter in the Scarab User's Guide);

• la classe org.tigris.scarab.util.SimpleHandlerClient.java (client, in another applica-
tion) is a simple example of using the server above.

50

	Scarab - Developer's Guide
	Table of Contents
	Chapter 1. Scarab architecture
	Scarab: a bird's eye view
	An MVC web application based on the Turbine framework
	A web application
	MVC Architecture
	The Turbine framework

	The main Scarab components
	Intake
	In the Scarab distribution
	On the Internet

	Turbine (in the strict sense of the word)
	In the Scarab distribution
	On the Internet

	Fulcrum: the services
	In the Scarab distribution
	On the Internet

	YAAFI (Avalon): the microcontainer for Fulcrum services
	In the Scarab distribution
	On the Internet

	O/R mapping: Torque and the Peer classes
	In the Scarab distribution
	On the Internet

	The View: Velocity
	In the Scarab distribution
	On the Internet

	Chapter 2. Understanding the Ant build
	$SCARAB_ROOT/build/build.xml
	$SCARAB_ROOT/src/conf/conf/build.xml

	Chapter 3. Maven
	Maven 1
	Building Scarab with Maven
	Normal (full) build
	Quick build
	Running the tests

	Chapter 4. Scarab development with Eclipse
	Getting the Scarab sources
	Getting the subclipse plugin
	Connecting to the Scarab Subversion repository

	Scarab in-place development
	Installing the Sysdeo Tomcat Plugin
	Generating the required files with Maven
	Configuring and using the Tomcat plugin
	Rebuilding the project
	Configuring the Tomcat preferences
	Setting the project Tomcat properties

	Chapter 5. Scarab development with Netbeans
	Getting the Scarab sources
	Getting the Mevenide plug-in (Maven-Netbeans integration)
	Installing the Mevenide plug-in

	Scarab in-place development

	Chapter 6. The Scarab data model
	Introduction
	Unique IDs generation: the id_table table
	Reserved ID ranges

	Turbine framework tables
	Scarab tables
	Entities related to users
	Preferences
	Pending role demands

	Modules
	Issue types
	Attributes
	Issues
	Attributes
	Attribute groups
	Attachments
	Dependencies
	History

	Queries
	Workflow

	Chapter 7. Workflow
	Introduction
	Workflows in Scarab
	DefaultWorkflow
	BasicWorkflow
	Defining a new workflow
	Using WfmOpen as a Scarab workflow engine

	Chapter 8. Accessing Scarab via XML-RPC

