.. _sphx_glr_auto_examples_neighbors_plot_species_kde.py:


================================================
Kernel Density Estimate of Species Distributions
================================================
This shows an example of a neighbors-based query (in particular a kernel
density estimate) on geospatial data, using a Ball Tree built upon the
Haversine distance metric -- i.e. distances over points in latitude/longitude.
The dataset is provided by Phillips et. al. (2006).
If available, the example uses
`basemap <http://matplotlib.org/basemap>`_
to plot the coast lines and national boundaries of South America.

This example does not perform any learning over the data
(see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for
an example of classification based on the attributes in this dataset).  It
simply shows the kernel density estimate of observed data points in
geospatial coordinates.

The two species are:

 - `"Bradypus variegatus"
   <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ ,
   the Brown-throated Sloth.

 - `"Microryzomys minutus"
   <http://www.iucnredlist.org/details/13408/0>`_ ,
   also known as the Forest Small Rice Rat, a rodent that lives in Peru,
   Colombia, Ecuador, Peru, and Venezuela.

References
----------

 * `"Maximum entropy modeling of species geographic distributions"
   <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_
   S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling,
   190:231-259, 2006.



.. image:: /auto_examples/neighbors/images/sphx_glr_plot_species_kde_001.png
    :align: center


.. rst-class:: sphx-glr-script-out

 Out::

      - computing KDE in spherical coordinates
     - plot coastlines from coverage
     - computing KDE in spherical coordinates
     - plot coastlines from coverage




|


.. code-block:: python

    # Author: Jake Vanderplas <jakevdp@cs.washington.edu>
    #
    # License: BSD 3 clause

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.datasets import fetch_species_distributions
    from sklearn.datasets.species_distributions import construct_grids
    from sklearn.neighbors import KernelDensity

    # if basemap is available, we'll use it.
    # otherwise, we'll improvise later...
    try:
        from mpl_toolkits.basemap import Basemap
        basemap = True
    except ImportError:
        basemap = False

    # Get matrices/arrays of species IDs and locations
    data = fetch_species_distributions()
    species_names = ['Bradypus Variegatus', 'Microryzomys Minutus']

    Xtrain = np.vstack([data['train']['dd lat'],
                        data['train']['dd long']]).T
    ytrain = np.array([d.decode('ascii').startswith('micro')
                      for d in data['train']['species']], dtype='int')
    Xtrain *= np.pi / 180.  # Convert lat/long to radians

    # Set up the data grid for the contour plot
    xgrid, ygrid = construct_grids(data)
    X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1])
    land_reference = data.coverages[6][::5, ::5]
    land_mask = (land_reference > -9999).ravel()

    xy = np.vstack([Y.ravel(), X.ravel()]).T
    xy = xy[land_mask]
    xy *= np.pi / 180.

    # Plot map of South America with distributions of each species
    fig = plt.figure()
    fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05)

    for i in range(2):
        plt.subplot(1, 2, i + 1)

        # construct a kernel density estimate of the distribution
        print(" - computing KDE in spherical coordinates")
        kde = KernelDensity(bandwidth=0.04, metric='haversine',
                            kernel='gaussian', algorithm='ball_tree')
        kde.fit(Xtrain[ytrain == i])

        # evaluate only on the land: -9999 indicates ocean
        Z = -9999 + np.zeros(land_mask.shape[0])
        Z[land_mask] = np.exp(kde.score_samples(xy))
        Z = Z.reshape(X.shape)

        # plot contours of the density
        levels = np.linspace(0, Z.max(), 25)
        plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)

        if basemap:
            print(" - plot coastlines using basemap")
            m = Basemap(projection='cyl', llcrnrlat=Y.min(),
                        urcrnrlat=Y.max(), llcrnrlon=X.min(),
                        urcrnrlon=X.max(), resolution='c')
            m.drawcoastlines()
            m.drawcountries()
        else:
            print(" - plot coastlines from coverage")
            plt.contour(X, Y, land_reference,
                        levels=[-9999], colors="k",
                        linestyles="solid")
            plt.xticks([])
            plt.yticks([])

        plt.title(species_names[i])

    plt.show()

**Total running time of the script:**
(0 minutes 10.640 seconds)



.. container:: sphx-glr-download

    **Download Python source code:** :download:`plot_species_kde.py <plot_species_kde.py>`


.. container:: sphx-glr-download

    **Download IPython notebook:** :download:`plot_species_kde.ipynb <plot_species_kde.ipynb>`