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* Flask architecture

— Security server

— Object managers

— Access vector caches (AVCs)
* Object Managers
— Bind security labels to their objects

— Query the security server for labeling and access decisions

— Enforce the security decisions of the security server
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* Configuration system for GNOME
~ Not GNOME specific

* Stores configuration data for programs

* Provides change notification to programs
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* Configuration sources
* Client library
* Per-user configuration server
* ORBI1t
— CORBA
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* Data: Key-value pairs

* Metadata: expected type, default value,
description

* Accessed through a backend
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* Interface to access the contiguration sources
* Caches configuration values

* Allows a specific set of configuration sources to
be specitied

* Works with the configuration server to notify the
client when the value of a registered key changes
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Server

* Accesses the configuration sources through the
appropriate backend

* Presents a unified set of configuration data to the
client

* Notifies the client library of all clients effected
when the value of a key changes



Providing Security

Controls over a Program

* Adequate control is often achieved by merely
running an application in the domain of its
parent.

* If not, then either:

— The application should not be run

— The security goals of the system reduced to allow the
program to run, Oor

— Security controls must be added
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Program
* Add SELinux policy for the program

* Add additional or finer-grained controls to
SELinux

* Re-architect the program to make use of existing
SELinux controls

* Modity the program to become an userspace
object manager
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* Does not require modification of the program

— Least obtrusive strategy

* May be able to use the policy for another program
with similar functions

* Custom policy involves:

— Specifying the security label the process will run in
— Labeling security-relevant objects

— Specifying rules for the process and objects to interact
with each other and the rest of the system 11
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to SEL1nux

* Add additional or finer-grained SELinux kernel

controls

* SELinux 1s meant to have comprehensive
controls over kernel objects, so new kernel
controls shouldn't be required often

* If new controls are written, then new policy 1s
needed to take advantage of those controls

12
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* Decompose a program into a small, privileged

process and a larger, unprivileged process

* Run multiple copies ot the program 1n different
domains

* Rewrite the program

13
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* SELinux provides object managers for kernel
objects

* New object managers are needed for any object not
controlled by the kernel

* Natural part of implementing the Flask architecture

on Linux

14
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Object Manager

* Bind security labels to the objects that it controls

* Request labeling and access decisions from the
appropriate security server

* Enforce the decisions returned by the security
server

15
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&= Userspace Object Manager

* Only trusted to control its objects
* Not trusted 1n all of its operations

* Still controlled by the system's security policy

16
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*/ Userspace Object Manager

* Identify the objects in greater detail

* Provide a way to uniquely and reliably label the
object

* Add access checks and labeling requests where
needed to control the object

* Make the subject's label available at the access
checks

17
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* Add an access Vect r cache (AVC) to the

program to cache the access decisions of the
security server

* Create new SELinux policy classes and
permissions as needed

* Create SELinux policy to control the objects

18
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* Configuration sources
* Key-value pairs

* ORBIi1t IORs

19



A SSURANTCE

4% Adding SELinux Policy to
o Secure GConf

* Only the configuration server can access or
modify the configuration data of the user

* Cannot label the configuration data itself

20
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Secure GConf

* Add additional features to SELi1nux

— Configuration data of GContf 1s only visible to the
configuration server at the appropriate granularity

* Re-Architect GConf

— Some advantages, more disadvantages

21
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==/ Userspace Object Manager

* Using the other strategies, some progress has been
made

* Configuration data still not adequately controlled

* Configuration data 1s only visible at the right level
to the configuration server

* The configuration server must be made into an
userspace object manager

22
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* Security labels stored in a separate namespace
— /selinux

* Security labels are normal GCont value strings

* Created functions to access the security labels of
a key without knowing about the namespace

* Security label always chosen from the default
configuration sources

23
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and Access Checks

* Access checks are done before an operation on the
configuration data

~ For server-side notification registration, the check 1s done
sooner

~ For querying all keys 1in a directory or all directories in a
directory, the check 1s done after

* Labeling request 1s done on a set operation if the
key doesn't already have a security context

24
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* Would like to get 1t from the kernel

— Can't because the client and server communicate through
ORBiIt

* Would like to get it from a process that the server
trusts

~— Modifying ORBIt to provide the context would be a lot of
work

— If D-Bus replaces ORBIt, then 1t would be easier

* Actually trusts the client to provide the context



Add an Access Vector
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Cache (AVC)

* Provided by the library libselinux

* Start the AVC when the configuration server
starts

* Used GConf specific memory allocation, logging,
and audit callback functions
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Permissions

* Security class
— gcont
* Permissions

— get_value, set_value, create_value, remove_value,
get_meta, set_meta, relabel_from, relabel_to
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Control Objects

* Sensitive keys must be 1dentified and labeled

* Processes that need to have different accesses to
configuration data must run in different domains

— Currently, most user processes run in one domain

* Only policy to test for proper operation has been
written at this time

28
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* Questions?
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