Using GCont as an

N ATI ON AL
INFORMATI O N

A SSURANTCE

WMl Example of How to Create

LABORATORY

an Userspace Object
Manager

James Carter
jwcart2 @tycho.nsa.gov
National Security Agency

National Information Assurance Research Laboratory
(NIARL)

N ATI ONA AL
INFORMATION

Background - SELinux poomsr

R E S E A RCH

’\\@TES@@/"’/ LABORATORY
* Flask architecture

— Security server

— Object managers

— Access vector caches (AVCs)
* Object Managers
— Bind security labels to their objects

— Query the security server for labeling and access decisions

— Enforce the security decisions of the security server

N ATI ON AL

Background - GConf

R E S E A RCH

LABORATORY

* Configuration system for GNOME
~ Not GNOME specific

* Stores configuration data for programs

* Provides change notification to programs

N ATI ON AL

A Ml " GConf Architecture pxrrvers

R E S E A RCH

LABORATORY

* Configuration sources
* Client library
* Per-user configuration server
* ORBI1t
— CORBA

N ATI ON AL

:
GCont Operation B
LABORATORY
— Client Library Client Library [
> ORBit [«
Configuration
‘ Server l
—®| Backend Backend [<—

Y Y v

Configuration Configuration Configuration
Source Source Source

N ATI ONA AL
INFORMATION

Configuration Sources pmrr

R E S E A RCH

LABORATORY

* Data: Key-value pairs

* Metadata: expected type, default value,
description

* Accessed through a backend

N ATI ON AL

Client Library

R E S E A RCH

LABORATORY

* Interface to access the contiguration sources
* Caches configuration values

* Allows a specific set of configuration sources to
be specitied

* Works with the configuration server to notify the
client when the value of a registered key changes

Per-user Configuration [FEei=ss

Server

* Accesses the configuration sources through the
appropriate backend

* Presents a unified set of configuration data to the
client

* Notifies the client library of all clients effected
when the value of a key changes

Providing Security

Controls over a Program

* Adequate control is often achieved by merely
running an application in the domain of its
parent.

* If not, then either:

— The application should not be run

— The security goals of the system reduced to allow the
program to run, Oor

— Security controls must be added

INFORMATI O N

s, Four Strategies for Adding prsmes

A SSURANTCE

Security Controls over a

LABORATORY

Program
* Add SELinux policy for the program

* Add additional or finer-grained controls to
SELinux

* Re-architect the program to make use of existing
SELinux controls

* Modity the program to become an userspace
object manager

10

N ATI ON AL

Add SELinux Policy s

R E S E A RCH

f{)”érfsp@‘g\/ LABORATORY

* Does not require modification of the program

— Least obtrusive strategy

* May be able to use the policy for another program
with similar functions

* Custom policy involves:

— Specifying the security label the process will run in
— Labeling security-relevant objects

— Specifying rules for the process and objects to interact
with each other and the rest of the system 11

s Add Additional Features
1]

A SSURANTCE

to SEL1nux

* Add additional or finer-grained SELinux kernel

controls

* SELinux 1s meant to have comprehensive
controls over kernel objects, so new kernel
controls shouldn't be required often

* If new controls are written, then new policy 1s
needed to take advantage of those controls

12

N ATI ON AL

140 Re-Architect the Program R

R E S E A RCH

LABORATORY

* Decompose a program into a small, privileged

process and a larger, unprivileged process

* Run multiple copies ot the program 1n different
domains

* Rewrite the program

13

Creating an Userspace

f” ,‘\\ V\ \\\
afiil 1= ASSURANCE
\G o5 2y =/
\ P/ LABORATORY
NS7aTes 0F =

* SELinux provides object managers for kernel
objects

* New object managers are needed for any object not
controlled by the kernel

* Natural part of implementing the Flask architecture

on Linux

14

Zriy Functions of an Userspace oo

R E S E A RCH

Object Manager

* Bind security labels to the objects that it controls

* Request labeling and access decisions from the
appropriate security server

* Enforce the decisions returned by the security
server

15

Trust Required of an

R E S E A RCH
L

ABORATORY

&= Userspace Object Manager

* Only trusted to control its objects
* Not trusted 1n all of its operations

* Still controlled by the system's security policy

16

Steps 1n Creating an ~ SFREsEs

A SSURANTCE

*/ Userspace Object Manager

* Identify the objects in greater detail

* Provide a way to uniquely and reliably label the
object

* Add access checks and labeling requests where
needed to control the object

* Make the subject's label available at the access
checks

17

Steps 1in Creating an sz

A SSURANTCE

Userspace Object
Mana qlCont
* Add an access Vect r cache (AVC) to the

program to cache the access decisions of the
security server

* Create new SELinux policy classes and
permissions as needed

* Create SELinux policy to control the objects

18

A SSURANCE

e What Needs to be Secured
‘\\ ,A"{‘i\ ° R ESEATRTCH
in GConf e

* Configuration sources
* Key-value pairs

* ORBIi1t IORs

19

A SSURANTCE

4% Adding SELinux Policy to
o Secure GConf

* Only the configuration server can access or
modify the configuration data of the user

* Cannot label the configuration data itself

20

Strategies Not Used to

A SSURANTCE

Secure GConf

* Add additional features to SELi1nux

— Configuration data of GContf 1s only visible to the
configuration server at the appropriate granularity

* Re-Architect GConf

— Some advantages, more disadvantages

21

GConf Needs to be an

A SSURANTCE

R E S E A RCH
L

ABORATORY

==/ Userspace Object Manager

* Using the other strategies, some progress has been
made

* Configuration data still not adequately controlled

* Configuration data 1s only visible at the right level
to the configuration server

* The configuration server must be made into an
userspace object manager

22

Labeling the Configuration
:Jll‘i‘@ ASSURANCE

Data

LABORATORY

* Security labels stored in a separate namespace
— /selinux

* Security labels are normal GCont value strings

* Created functions to access the security labels of
a key without knowing about the namespace

* Security label always chosen from the default
configuration sources

23

i Adding Labeling Requests

A SSURANTCE

and Access Checks

* Access checks are done before an operation on the
configuration data

~ For server-side notification registration, the check 1s done
sooner

~ For querying all keys 1in a directory or all directories in a
directory, the check 1s done after

* Labeling request 1s done on a set operation if the
key doesn't already have a security context

24

Making the Client's

<@/ Security Context Available mrrm

* Would like to get 1t from the kernel

— Can't because the client and server communicate through
ORBiIt

* Would like to get it from a process that the server
trusts

~— Modifying ORBIt to provide the context would be a lot of
work

— If D-Bus replaces ORBIt, then 1t would be easier

* Actually trusts the client to provide the context

Add an Access Vector

A SSURANTCE

Cache (AVC)

* Provided by the library libselinux

* Start the AVC when the configuration server
starts

* Used GConf specific memory allocation, logging,
and audit callback functions

26

Create New SEL1nux —

A SSURANTCE

Policy Class and

LABORATORY

Permissions

* Security class
— gcont
* Permissions

— get_value, set_value, create_value, remove_value,
get_meta, set_meta, relabel_from, relabel_to

27

s Create SELinux Policy to
1] /;

A SSURANTCE

Control Objects

* Sensitive keys must be 1dentified and labeled

* Processes that need to have different accesses to
configuration data must run in different domains

— Currently, most user processes run in one domain

* Only policy to test for proper operation has been
written at this time

28

N ATI ONA AL
INFORMATION

Conclusions ELTTEY T

R ESEARTCH

LABORATORY

* Questions?

29

