Java Programming Language -
Advance Feature

Peter.Cheng
founder_chen@yahoo.com.cn

2004-04

Huihoo - Enterprise Open Source http://www.huihoo.com 1

http://www.huihoo.como/

Course Goal

e The main goal of this course is to
provide you with the knowledge and
skill necessary for object-oriented
programming of java application. In
this course, you will learn Java
programming language syntax and
object-oriented concepts,
multithreading, and networking.

Huihoo - Enterprise Open Source http://www.huihoo.com 2

Course Overview

This course covers the following areas:

e Java Programming Language

Advance Feature

e Multithreading

e Networking

Huihoo - Enterprise Open Source http://www.huihoo.com 3

Course Map

The Java Programming Language Basics

Object-Oriented Identifiers,
i Keywords,
Programming o Types

More Object-Oriented Programming

Inheritance Advanced
Class Features

Advanced Java Programming

[Threads] [Networking]

Huihoo - Enterprise Open Source http://www.huihoo.com

Advance Feature

e Describe static variables, methods, and
Initializers

e Describe final classes, methods, and
variables

e Explain how and when to use abstract
classes and methods

e Explain how and when to use an interface

In a Java software program, identify:
e static methods and attributes

e final methods and attributes

e interface and abstract classes

e abstract methods

Huihoo - Enterprise Open Source http://www.huihoo.com >

The static keyword

e The static keyword iIs used as a
modifier on variables, methods, and
Inner class

e Thus static members are often class
“class members”, such as “class
attributes” or “class methods

Huihoo - Enterprise Open Source http://www.huihoo.com 6

static keyword - Class Attributes

e Are shared with all instances of a class

Counter

-counter :int
-serialNumber : int

. —= =)
Instance_ ——— — =~ _ Instance
Counter Counter
-counter :int -counter :int
-serialNumber : int -serialNumber : int

public class Count {
private int serialNumber;
public static int counter = 0;
public Count() {
counter++;
serialNumber = counter;

}
JAVA)

Huihoo - Enterprise Open Source http://www.huihoo.com 7

static keyword - Class Attributes
(Continued)

e In this example, every object that is created is
assigned a unique serial number, starting at 1 and
counting upwards. The variable counter is shared
among all instances, so when the constructor of one
object increments counter, the next object to be
created receives the incremented value.

e A static variable is similar in some ways to a global
variable in other languages. The Java programming
language does not have globals as such, but a static
variable is a single variable accessible from any
Instance of the class.

e (@see staticclass.Count.java staticclass.TestCount.java

Huihoo - Enterprise Open Source http://www.huihoo.com 8

static keyword — Class Method

e Sometimes you need to access program code when
you do not have an instance of a particular object
available. A method that is marked using the
keyword static can be used in this way and is
sometimes called a class method.

1 public class Count {

2 private int serialNumber;

3 private static int counter = O;
4

5 public static int getTotalCount() {
6 return counter;

7 be

8

9 public Count() {

10 counter++;

11 serialNumber = counter;
12 }

13 }

Huihoo - Enterprise Open Source http://www.huihoo.com 9

static keyword — Class Method (Continued)-

e Because you can invoke a static method without any
instance of the class to which it belongs, there is no this
value.

e The consequence is that a static method cannot access
any variables apart from the local variables and its
parameters.

e A static method cannot be overridden.

e main() is static because the JVM does not create an
instance of the class when executing the main method.
So if you have member data, you must create an object
to access it.

1 public class Count {

2 private int serialNumber;

3 private static int counter = O;

4

5 public static int getSerialNumber() {

6 return serialNumber; // COMPILER ERROR!
7}

8%}

e @see staticmethod.Count.java

Huihoo - Enterprise Open Source http://www.huihoo.com 10

static keyword — Static Initializers

e A class can contain code In a static block
that does not exist within a method body

e Static block code executes only once, when
the class Is loaded

e A static block is usually used to initialize
static (class) attributes

e (@see staticinit.Count.java

Huihoo - Enterprise Open Source http://www.huihoo.com 11

static keyword - Implementing the
Singleton Design Pattern

The goal of the Singleton is to ensure that—
throughout the software system—only one
Instance of a given class exists and that there is
a single point of access to that object.

Design patterns are solutions to common
problems in OO design and they are
Implementation-independent. Visit
http://hillside.net/patterns/ for more
iInformation.

@see singleton.Company.java

Singleton

ClientClass [— — — ™

-ingtance : Singleton

+getinstance (] : Singleton
-Singleton (]

Huihoo - Enterprise Open Source http://www.huihoo.com 12

The final keyword

e You cannot subclass a final class

e You cannot override a final method

e A final variable I1s constant

e A final variable can only be set once

Huihoo - Enterprise Open Source http://www.huihoo.com 13

The final keyword - Final Class

e The Java programming language allows
you to apply the keyword final to classes.
If this is done, the class cannot be
subclassed.

e @see finalstat.BankFinal.java
finalstat.ChinaBank.java

Huihoo - Enterprise Open Source http://www.huihoo.com 14

The final keyword - Final method

e You can also mark individual methods as
final. Methods marked final cannot be
overridden.

e Methods declared final are sometimes used
for optimization. The compiler can
generate code that causes a direct call to
the method, rather than the usual virtual
method invocation that involves a runtime
lookup.

Huihoo - Enterprise Open Source http://www.huihoo.com 15

The final keyword — Final variable

e If a variable 1s marked as final, the
effect Is to make It a constant.

e Any attempt to change the value of a
final variable causes a compiler
error.

e @see finalstat.FinalVarible.java

Huihoo - Enterprise Open Source http://www.huihoo.com 16

Abstract class & abstract method

e The Java language allows a class designer
to specify that a superclass

declares a method that does not supply an
Implementation.

e The implementation of this method is
supplied by the subclasses. This is

called an abstract method.

e Any class with one or more abstract
methods Is called an abstract class.

e (@see abstractclass.*.java

Huihoo - Enterprise Open Source http://www.huihoo.com 17

Interface

e A “public interface” Is contract
between client code and the class
that implements that interface

e Many, unrelated classes can
Implement the same interface

e A class can implement many,
unrelated interfaces

e @see Iinterfaceimpl.™

Huihoo - Enterprise Open Source http://www.huihoo.com 18

Multiple implementations

<<interface>>
Flyer
+takeoff()
+land()
7~ - - I
- - I
g I
i d |
- |
Airplane Bird
+takeoff() +takeoff()
+land() +land()
+buildNest()

Huihoo - Enterprise Open Source http://www.huihoo.com

19

Multiple interface

<<interface>> <<interface>>
Flyer Animal
+takeoff() +buildNest()
+land()
N
> y
\\\ //
AN //
AN /
AN /
AN /
AN /
AN /
AN Z
Bird
+takeoff()
+land()
+buildNest()

Huihoo - Enterprise Open Source http://www.huihoo.com

20

Uses of Interface

Declaring methods that one or more
classes are expected to implement.

Revealing an object’s programming
Interface without revealing the actual body
of the class. (This can be useful when
shipping a package of classes to other
developers.)

Capturing similarities between unrelated
classes without forcing a class relationship.

Simulating multiple inheritance by
declaring a class that implements several
Interfaces.

Huihoo - Enterprise Open Source http://www.huihoo.com 21

Exception

e What Is an exception?

In the Java programming language,
the Exception class defines mild
error conditions that your programs

might encounter. Rather than letting
the program terminate, you can
write code to handle your exceptions
and continue program execution

Huihoo - Enterprise Open Source http://www.huihoo.com 22

Exceptions

e Exceptions can occur when:
e The file you try to open does not exist.
e The network connection is disrupted.

e Operands being manipulated are out of
prescribed ranges.

e The class file you are interested In
loading is missing.

Huihoo - Enterprise Open Source http://www.huihoo.com 23

Try-catch statement

e The Java programming language provides a
mechanism for figuring out which exception was
thrown and how to recover from it.

try {
// code that might throw a particular exception
} catch (MyExceptionType myExcept) {
// code to execute if a MyExceptionType
exception is thrown
} catch (Exception otherExcept) {
// code to execute if a general Exception
exception is thrown

+

e (@see exceptions.*.java

Huihoo - Enterprise Open Source http://www.huihoo.com 24

e public void testException() {
inti = 0;

String greetings [] = {
"Hello world!",
"No, | mean it!",
"HELLO WORLD!!"

¥

while (i< 4) {
System.out.printin(greetings|i]);
I+

by
}

Huihoo - Enterprise Open Source http://www.huihoo.com 25

Finally statement

e The finally statement defines a block of code that
always executes, regardless of whether an
exception was caught.

try {
// code that might throw a particular exception
} catch (MyExceptionType myExcept) {
// code to execute if a MyExceptionType
exception is thrown
} catch (Exception otherExcept) {
// code to execute if a general Exception
exception is thrown

} finally {
// execute

}

Huihoo - Enterprise Open Source http://www.huihoo.com 26

Exception Categories

Throwable—

— Error

— Exception _

Huihoo - Enterprise Open Source

_ VirtualMachineError __ |

AWTError

_ RuntimeExcepticn

IOException — |- — -

StackOverflowError

outCfMemoryError

ArithmeticException

NullPointerException

IndexOutOfBoundsException

— EOFExcepticon

—— FileNotFoundExcenticon

http://www.huihoo.com 27

Exceptions types

e EXce
exce
exce

otions are of two types Checked
ptions and Unchecked

ntions.

e Checked exceptions should either be
declared in the throws clause or
caught in the catch block.

e Unchecked exceptions need not be

declared in the throws clause but can to

be

caught in the catch clause

Huihoo - Enterprise Open Source http://www.huihoo.com 28

Check your progress

Describe static variables, methods, and
Initializers
Describe final classes, methods, and

variables and how and when to use
abstract classes and methods

Explain how and when to use an interface
Define exceptions

Use try, catch, and finally statements
Describe exception categories

Describe exception types

Huihoo - Enterprise Open Source http://www.huihoo.com 29

Thread

e What’s thread?
e A virtual CPU

e a thread, or execution context, Is
considered to be the encapsulation of a
virtual CPU with its own program code
and data. The class java.lang.Thread
allows you to create and control threads.

Huihoo - Enterprise Open Source http://www.huihoo.com 30

Three Parts of a Thread

e A thread or execution context is
composed of three main parts:

e A virtual CPU

e The code the CPU is executing

e The data on which the code works

Huihoo - Enterprise Open Source http://www.huihoo.com 31

Three Parts of a Thread (Continued)

e Code can be shared by multiple threads, independent
of data. Two threads share the same code when they
execute code from instances of the same class.

e In Java programming, the virtual CPU is
encapsulated in an instance of the Thread class.

A thread or
CPU execution context

Code| Data

Huihoo - Enterprise Open Source http://www.huihoo.com 32

Creating the Thread

e Extend Thread class
e Implements Runnable interface

e Multithread programming:

e Multiple threads from the same
Runnable instance

e Thread share the same data code
e Example

Thread theadl = new Thread(helloRunner)

Thread thead2 = new Thread(helloRunner)
e @See SimpleThread.java HelloRunner.java

Huihoo - Enterprise Open Source http://www.huihoo.com 33

Creating a thread (Continue)

e The thread begins execution at the start of a
loaded Runnable instance’s run method.

e The data that the thread works on is taken from
the specific instance of Runnable, which is passed
to that Thread constructor.

New thread
A Thread t
..._._._,_,_._.--r"
CPU
o
HelloRunner Code| Data Instance "¢

class of HelloRunner

Huihoo - Enterprise Open Source http://www.huihoo.com 34

Starting the thread

e Using the start() method
e Placing the thread in runnable state

start()
JUM

Huihoo - Enterprise Open Source http://www.huihoo.com 35

Thread Scheduling

e A Thread object can exist in several different states throughout its
lifetime.
Thread states

@ sleepootrim eout
threagl Hom()s

interupt()

Otherwise
Blocked

start()

*gen0
join()

run()
s (o)
completes

Scheduler

Lock
available

Blocked in
object’s
lock pool

Blocked in
object’s
wait()pool

notify()
interupt()

Huihoo - Enterprise Open Source http://www.huihoo.com 36

Thread Scheduling (Continued)

e Given that Java threads are not necessarily timesliced,
you must ensure that the code for your threads gives
other threads a chance to execute from time to time.

public class Runner implements Runnable {
public void run() {
while (true) {

// do lots of interesting stuff

// Give other threads a chance

try {
Thread.sleep(10);

} catch (InterruptedException e) {
// This thread’s sleep was interrupted
// by another thread

}

+
}

Huihoo - Enterprise Open Source http://www.huihoo.com 37

Terminating a Thread

e When a thread completes execution
and terminates, It cannot run again.

e You can stop a thread by using a flag
that indicates that the run method
should exit.

e @see StopRunner.java
ThreaController.java

Huihoo - Enterprise Open Source http://www.huihoo.com 38

Creating Thread by Thread

P Runnable

° Thread
Runnable Thread
Runnable

E MyThread.java

Huihoo - Enterprise Open Source http://www.huihoo.com

39

Thread

ISAlive

jion

resume

suspend

run

sleep

sleep

start

stop

suspend

yield

Huihoo - Enterprise Open Source

http://www.huihoo.com

40

Thread

Runnable

Thread

Huihoo - Enterprise Open Source http://www.huihoo.com 41

Runnable

P Thread
o Java
Thread
Applet
Runnable
P Runnable

Huihoo - Enterprise Open Source http://www.huihoo.com 42

Thread

o run() Thread
this Thread

Thread.currentThread().join();

Join();

Huihoo - Enterprise Open Source http://www.huihoo.com 43

Networking

e Develop code to set up the network
connection

e Understand the TCP/IP protocol

e Use ServerSocket and Socket class
for implementing TCP/IP clients and
servers

e Distributed Communication

--Remote Procedure Calls (RPCs)
--Remote Method Invocation (RMI)
--CORBA,RMI-I1IOP

Huihoo - Enterprise Open Source http://www.huihoo.com 44

e URL
URL java

http://localhost:80/test/test.htmI#33
e Socket

e Datagram

Huihoo - Enterprise Open Source http://www.huihoo.com 45

Networking - Sockets

e Socket is the name given, in one particular programming
model, to the endpoints of a communication link between
processes.

e In java technology, it uses stream model, A socket can
hold two stream: one input stream and one output

stream.

e A process sends data to another process through
the network by writing to the output stream
associated with the socket. A process reads data
written by another process by read from the input
stream with the socket

Huihoo - Enterprise Open Source http://www.huihoo.com 46

Setting up the connection

e To set up the connection, one machine must be running
a program that is waiting for a connection, and the other
machine must try to reach the first.

cllient.bar.com

2000

server . foo. com

2000

3001

client . baz.com

zoo0 [

Huihoo - Enterprise Open Source http://www.huihoo.com 47

TCP/IP Network Model

Telnet FTP HTTP | | Avplication
TCP UDP Transport
IP Physics
ARPANET LAN WLAN Data link

Huihoo - Enterprise Open Source http://www.huihoo.com 48

Network with java technology

e Addressing the connection
e Address or name of remote machine
e Port number to identify purpose

e Port numbers
e Range from O to 65535

Huihoo - Enterprise Open Source http://www.huihoo.com 49

Addressing

e Java.net
e InetAddress
e Inet4Address
e |net6Address
e SocketAddress
e InetSocketAddress

Ihetiddress

mocketiddress -

Inetdiddress - Inetbtiddress InetiocketAddress

Huihoo - Enterprise Open Source http://www.huihoo.com 50

Java networking model

e In the Java programming language, TCP/IP socket
connections are implemented with classes in the
java.net package.

Server _
Register with
this service
ServerSocket (port #) .
Wait for a Client
ServerSocket .accept () connection
* socket (host, port#)
Socket () (Attempt to connect)
OoutputStream OutputStream
InputStream =
® InputStream
Socket.close () Socket.close ()

Huihoo - Enterprise Open Source http://www.huihoo.com o1

Client-Server model

Client

§ = new Sockef{serveur, portServeur);

o = s.gerCutputSreamy)
i= s getinputStreams)

Serveur

§ = new Serversocket{portServeur)

Connexion ‘

= SEIVICE = 5.aCCept()

o = service. getOupuiSireams
i= service. getInputSreams)

s:: p— — E-
2| iwritel) = iread() |
LG ! ! oo
= =] ! | = E
ooy ! ! mo o
g gl (25
S o . ==
Aeom o preadi; === owred) | @

=.

s =

g L - =
s.closel) service.closei)

Huihoo - Enterprise Open Source

http://www.huihoo.com 52

Java Socket

e Connection-Oriented (TCP) Sockets
(TCP)Sockets

e Connection-less (UDP) Sockets
(UDP)Sockets

e Connection-less (UDP) Sockets
(UDP)Sockets

Huihoo - Enterprise Open Source http://www.huihoo.com 53

TCP/IP socket connection

e The server assigns a port number. When
the client requests a connection, the server
opens the socket connection with the
accept() method.

e The client establishes a connection with
hoston port port#.

e Both the client and server communicate by
using an InputStream and an

OutputStream.

Huihoo - Enterprise Open Source http://www.huihoo.com o4

Time-Of-Day Server/Client

o 5155 Socket
s = new ServerSocket(5155)

Socket client = s.accept()

o 1P :
Socket s = new Socket(*127.0.0.17,5155);

Huihoo - Enterprise Open Source http://www.huihoo.com 55

Making TCP Connections

These classes are related to making normal TCP
connections:

e ServerSocket

e Socket

ilient

Application

i eI

R

Socket

instance

.

Server

Application
T
| 3 merveroocket
| instance
| accept() |
| >
| return
; : 3 mocket
i ! instance
| | 1)
i i L~

The
accept |)
method
blocks the
caller until a
connection
has heen
gstablished.

The twid
sockets are
o
connected

Huihoo - Enterprise Open Source

http://www.huihoo.com

56

Sending/Receiving Datagram
Packets via UDP

The following are related to sending and receiving datagram
packets via UDP:

e DatagramPacket
e DatagramSocket

Application
e .
» Datagram-ocket

instance

e ™ DatagramPacket

; instance dp

send (dp) i -

>

Huihoo - Enterprise Open Source http://www.huihoo.com o7

Locating/ldentifying Network
Resources

These classes are related to locating or identifying network
resources:

URI

URL
URLClassLoader
URLConnection
URLStreamHandler
HttpURLConnection
JarURLConnection

The most commonly used classes are URI, URL, URLConnection, and
HttpURLConnection.

ORI . e
e URI : Uniform Resource ldentifier

upr. | URH e URL: Uniform Resource Locator
e URN: Uniform Resource Name

Huihoo - Enterprise Open Source http://www.huihoo.com 58

Locating/ldentifying Network
Resources

URLConnection is the abstract superclass of all classes that represent a
connection between an application and a network resource identified by a
URL. Given a URL and hence a protocol, URL.openConnection() returns an
instance of the appropriate implementation of URLConnection for the
protocol. (The protocol is known from the URL.) The instance provides the
means—URLConnection.connect()—to actually open the connection and
access the URL.

Application

TLET LIRL
> instance

openConnection (] -

™

[R=10

L URLConnection
instance

connect | i

L |E
The
connction
is now
open.

Huihoo - Enterprise Open Source http://www.huihoo.com 59

Package javax.net

Provides classes for networking applications.

This class creates
server sockets.

This class creates sockets.

Huihoo - Enterprise Open Source http://www.huihoo.com 60

Minimal TCP/IP Server

e TCP/IP server applications rely on
the ServerSocket and Socket
networking classes provided by the
Java programming language. The

ServerSocket class takes most of the
work out of establishing a server
connection.

Huihoo - Enterprise Open Source http://www.huihoo.com 61

Minimal TCP/IP Client

e The client side of a TCP/IP application
relies on the Socket class. Again, much of
the work involved in establishing
connections has been done by the Socket
class. The client attaches to the server

presented on the previous page and prints
everything sent by the server to the
console.

Huihoo - Enterprise Open Source http://www.huihoo.com 62

USING HTTPURLCONNECTION TO ACCESS
WEB PAGES

e use HttpURLConnection in the following WebPageReader program to
connect to a given URL, and then print the contents of the page to
standard out.

import java.net.URL;
import java.net.MalformedURLEXxception;
import java.net.URLConnection;
import java.io.lOException;
import java.io.BufferedReader;
import java.io.lnputStreamReader;

public class WebPageReader {

private static URLConnection connection;

private static void connect(String urlString) {

try {
URL url = new URL(urlString);
connection = url.openConnection();

} catch (MalformedURLException e){
e.printStackTrace();

} catch (I10Exception e) {
e.printStackTrace();

}

1 Huihoo - Enterprise Open Source http://www.huihoo.com 63

USING HTTPURLCONNECTION TO ACCESS
WEB PAGES

private static void readContents() {
BufferedReader in = null;
try {
in = new BufferedReader(
new InputStreamReader(
connection.getlnputStream()));

String inputLine;
while (
(inputLine = in.readLine()) !'= null) {
System.out.printin(inputLine);
by
} catch (IOException e) {
e.printStackTrace();
¥
¥

public static void main(String[] args) {
if (args.length '=1) {
System.err.printin("usage: java WebPageReader "
+ "<url=");
System.exit(0);
by
connect(args[0]);
readContents();

Huihoo - Enterprise Open Source http://www.huihoo.com 64

USING HTTPURLCONNECTION TO ACCESS
WEB PAGES

=

java WebPageReader http://www.huihoo.com
java WebPageReader http://localhost: 7001

Huihoo - Enterprise Open Source http://www.huihoo.com

65

Remote Procedure Calls (RPC)

e Sockets are Considered Low-level. Sockets

e RPCs Offer a Higher-level Form of
Communication RPC

e Client Makes Procedure Call to “Remote”

Server Using Ordinary Procedure Call
Mechanisms.

Huihoo - Enterprise Open Source http://www.huihoo.com 66

Remote Method Invocation (RMI)

e Java’'s Version of RPCs
RPC Java

e A Thread May Invoke a Method on a Remote
Object

e An Object 1s Considered “remote” If It

Resides In a Separate Java Virtual Machine.
Java ’

Huihoo - Enterprise Open Source http://www.huihoo.com 67

Remote Method Invocation (BMI)

JVM
JVM
Java @ | remos met
program ___‘___""‘-ﬁqgj_’?_\f{}caﬁon
1T® remote
object

Huihoo - Enterprise Open Source http://www.huihoo.com 68

RPC RMI

RPC’s Support Procedural Programming Style
RPC

RMI Supports Object-Oriented Programming Style
RMI

Parameters to RPCs are Ordinary Data Structures
RPC

Parameters to RMI are Objects
RMI

Huihoo - Enterprise Open Source http://www.huihoo.com 69

Stubs and Skeletons

e “Stub” is a Proxy for the Remote Object —
Resides on Client.

e The Stub “Marshalls” the Parameters and
Sends Them to the Server.

e “Skeleton” iIs on Server Side.

e Skeleton “Unmarshalls” the Parameters and
Delivers Them to the Server.

Huihoo - Enterprise Open Source http://www.huihoo.com 70

Marshalling Parameters

EEE
client remote object
someMethod (Object x, Object y)
val = server.someMethod (A, B) {
implementation of
someMethod()
}
stub
A
T Y
skeleton
A, B, someMethod()
Boolean return value
71

Huihoo - Enterprise Open Source http://www.huihoo.com

Parameters

e Local (Non-Remote) Objects are
Passed by Copy using Object
Serialization

e Remote Objects are Passed by
Reference

Huihoo - Enterprise Open Source http://www.huihoo.com 12

Remote Objects

e Remote ODbjects are Declared by

Specifying an interface that extends
jJava.rmi.Remote

Java.rmi.Remote
e Every Method Must Throw
Java.rmi .RemoteException

Java.rmi.RemoteException

Huihoo - Enterprise Open Source http://www.huihoo.com 3

MessageQueue interface

public Interface MessageQueue
extends java.rmi.Remote
{
public void send(Object 1tem)
throws java.rmi.RemoteException;
public Object receive()
throws java.rmi.RemoteException;

Huihoo - Enterprise Open Source http://www.huihoo.com &

MessageQueue implementation

public class MessageQueuelMPL

extends
Java.rmi.server.UnicastRemoteObject

implements MessageQueue
{
public void send(Object 1tem)
throws java.rmi.RemoteException
{ /7* i1mplementation */ }
public Object receive()
throws java.rmi.RemoteException
{ /7* mmplementation */ }
by

Huihoo - Enterprise Open Source http://www.huihoo.com &

The Client

The Client Must
(1) Install a Security Manager:
System.setSecurityManager(
new RMISecurityManager());

(2) Get a Reference to the Remote Object

MessageQueue mb;
mb = (MessageQueue)Naming.

lookup(“rmi://127.0.0.1/MessageServer’)

Huihoo - Enterprise Open Source http://www.huihoo.com 6

Running the Producer-Consumer Using RMI
RMI -

e Compile All Source Files

e Generate Stub and Skeleton
rmic MessageQueuelmpl

e Start the Registry Service
rmiregistry
e Create the Remote Object

java —Djava.security.policy=java.policy
MessageQueuelmpl

e Start the Client
Jjava —Djava.security.policy=java.policy
Factory

Huihoo - Enterprise Open Source http://www.huihoo.com K

Policy File

Javaz2
grant {

permission
Java.net.SocketPermission
"*:1024-
65535","'connect,accept';

Huihoo - Enterprise Open Source http://www.huihoo.com 8

CORBA

RMI is Java-to-Java Technology RMI Java

CORBA is Middleware that Allows Heterogeneous Client
and Server Applications to Communicate CORBA

Interface Definition Language (IDL) is a Generic Way to
Describe an Interface to a Service a Remote Object
Provides

Object Request Broker (ORB) Allows Client and Server to
Communicate through IDL.

IDL
Internet InterORB Protocol (110P) is a Protocol Specifying
how the ORBs can Communicate. ORB

(110P) ORB

Huihoo - Enterprise Open Source http://www.huihoo.com 9

CORBA Model

client

server

reference to
CORBA object

CORBA object

skeleton

Internet InterORB Protocol (IIOP)

Huihoo - Enterprise Open Source

http://www.huihoo.com

80

Registration Services

e Registration Service Allows Remote
Objects to “register” Their Services.

e RMI, CORBA Require Registration
Services

RMI CORBA

Huihoo - Enterprise Open Source http://www.huihoo.com 81

Think Beyond

e How many situations can you think
of that would require you to create
new classes of exceptions?

e How can you create a distributed
object system using object
serialization and these network
protocols? Have you heard of
Remote Method Invocation (RMI)?

Huihoo - Enterprise Open Source http://www.huihoo.com 82

Exercises

e Rewrite, compile, and run a program that
use the static, final keyword

e Implement the Singleton design pattern in
your program

e Rewrite, compile, and run a program

that uses an abstract class and an
Interface.

e Using sockets by implementing a client
and server which communicate using
sockets.

Huihoo - Enterprise Open Source http://www.huihoo.com 83

Further Reading

e Advance Java %]AVA
Networking 2nd T
Prentice Hall 2001

e Soctt Oaks, Henry
Wong Java Thread

. 2nd O'Reilly 1999

Huihoo - Enterprise Open Source

Srwit dfnke & Mevey Bimy

http://www.huihoo.com

84

Resources

e http://www.javaranch.com/
JavaRanch - A Friendly Place for Java Greenhorns

Huihoo - Enterprise Open Source http://www.huihoo.com 85

Q&A

Huihoo - Enterprise Open Source

http://www.huihoo.com

86

Thank You

Huihoo - Enterprise Open Source http://www.huihoo.com 87

	Java Programming Language – Advance Feature
	Course Goal
	Course Overview
	Course Map
	Advance Feature
	The static keyword
	static keyword - Class Attributes
	static keyword - Class Attributes (Continued)
	static keyword – Class Method
	static keyword – Class Method (Continued)
	static keyword – Static Initializers
	static keyword - Implementing the Singleton Design Pattern
	The final keyword
	The final keyword - Final Class
	The final keyword - Final method
	The final keyword – Final variable
	Abstract class & abstract method
	Interface
	Multiple implementations
	Multiple interface
	Uses of Interface
	Exception
	Exceptions
	Try-catch statement
	
	Finally statement
	Exception Categories
	Exceptions types
	Check your progress
	Thread
	Three Parts of a Thread
	Three Parts of a Thread (Continued)
	Creating the Thread
	Creating a thread (Continue)
	Starting the thread
	Thread Scheduling
	Thread Scheduling (Continued)
	Terminating a Thread
	Creating Thread by Thread类
	Thread类
	使用哪种方法创建Thread
	实现Runnable的优点
	继承Thread的优点
	Networking
	三大类
	Networking - Sockets
	Setting up the connection
	TCP/IP Network Model
	Network with java technology
	Addressing
	Java networking model
	Client-Server model
	Java Socket
	TCP/IP socket connection
	Time-Of-Day Server/Client
	Making TCP Connections
	Sending/Receiving Datagram Packets via UDP
	Locating/Identifying Network Resources
	Locating/Identifying Network Resources
	Package javax.net
	Minimal TCP/IP Server
	Minimal TCP/IP Client
	USING HTTPURLCONNECTION TO ACCESS WEB PAGES
	USING HTTPURLCONNECTION TO ACCESS WEB PAGES
	USING HTTPURLCONNECTION TO ACCESS WEB PAGES
	Remote Procedure Calls (RPC)远程过程调用
	Remote Method Invocation (RMI)远程方法引用
	Remote Method Invocation (BMI)
	RPC 与 RMI
	Stubs and Skeletons 存根和骨架
	Marshalling Parameters
	Parameters
	Remote Objects
	MessageQueue interface
	MessageQueue implementation
	The Client
	Running the Producer-Consumer Using RMI使用RMI实现生产者-消费者问题
	Policy File 保险单文件
	CORBA
	CORBA Model
	Registration Services
	Think Beyond
	Exercises
	Further Reading
	Resources
	
	

