
Project Shoal - Project Shoal -
A Generic Clustering A Generic Clustering
Framework Framework
Shreedhar Ganapathy(GlassFish)Shreedhar Ganapathy(GlassFish)
shreed@sun.comshreed@sun.com
Mohamed Abdelaziz(JXTA)Mohamed Abdelaziz(JXTA)
hamada@jxta.orghamada@jxta.org

2

What is Project Shoal?What is Project Shoal?
• A Java.net project aimed at building a Clustering Framework
> for Java EE/J2EE Application Servers and any other product

requiring clustering features
> At https://shoal.dev.java.nethttps://shoal.dev.java.net

• Shoal provides a Group Management Service (GMS) that
provides
>group membership management through discovery of

events
– join, shutdown and failure notifications, delegated

recovery initiation, and
>state caching facilities

• Applications interact with Shoal's GMS API using their logical
identity semantics to communicate with other group members

https://shoal.dev.java.net/

Shoal GMS Feature ThemesShoal GMS Feature Themes

Three broad feature themes:
• Features providing
> a group sensory-action theme.
> a group communications theme.
> Shared or Distributed Storage theme.

Shoal GMS Group Sensory-Action ThemeShoal GMS Group Sensory-Action Theme
• Provides a set of Client APIs for signalling cluster

events. Such Signals include
> Lifecycle Signals
>Cluster Member(s)

– joining the cluster at runtime
– leaving the cluster at runtime
– going into in-doubt(suspected) state.
– being confirmed failed

> Recovery oriented Signals and Support
>Automatic Recovery Member Selection Signal
>Protective failure fencing operations

Shoal GMS Group Communication Theme Shoal GMS Group Communication Theme

• GMS provides Group Communication Provider SPI
> Group communication technologies such as JXTA,

JGroups, etc. integrate through SPI
• GMS provides a group messaging handle
> to clients to send messages to group or particular

member(s),
> client components can address messages to specific

components in destination
• GMS hands Message Signals in recipient clients
> GMS delivers the Signal to the target component

Shared or Distributed Storage ThemeShared or Distributed Storage Theme
• GMS provides a Distributed State Cache (DSC)

interface
> Can be implemented to suit custom requirements
> Default Implementation is a shared concurrent hashmap

• DSC can be implemented for in-memory
shared/distributed cache for application state
• Group communication providers provide tunable

performance properties for better throughput

Application, Shoal GMS, Group Communication Application, Shoal GMS, Group Communication
Provider RelationshipsProvider Relationships

ApplicationApplication

SPI Impl for JXTA/JGroups/othersSPI Impl for JXTA/JGroups/others

JVMJVM

NetworkNetwork

Startup &
Shutdown

View Change

Analyze View

Register ActionFactory
ProduceAction
& Deliver Signal

Notify MessageListenerJoin Leave

GMS Client API

GMS Service Provider Interface
Shoal GMSShoal GMS

Shoal GMS in Application Server Instance Shoal GMS in Application Server Instance
Application Server starts various in-process Services, one of which is the GMS Application Server starts various in-process Services, one of which is the GMS

JVMJVM

9

Shoal Group Management ServiceShoal Group Management Service
• At startup, GMS in each process joins predefined group (and at shutdown

leaves that group).
• Pluggable GroupCommunicationProvider Impl provide communication

channels, and protocols for group composition and failure monitoring
• When member joins, leaves or fails, GMS calls client components informing

them
• On failure confirmation, if enabled, Recovery Oriented Computing Support

kicks in –
> GMS selects a recovery candidate member
> Notifies registered client components in selected member process
> Shares this selection information through DSC.
> Protects recovery operations through failure fencing
> Ensures recovery-in-progress ops are tracked for multiple failures

• Provides a default Distributed State Cache implementation for caching
recovery states and application lightweight data

Shoal GMS in an Application Server Shoal GMS in an Application Server
ClusterCluster

What do Shoal GMS clients get?What do Shoal GMS clients get?
• Peace of mind :)
• Saves many person years of work in writing

complex code to emulate its functionality in common
enterprise applications
• GMS takes on the complexity of group formation,

discovery of members, preconfigured endpoint
locational details, networking semantics
• Clients simply use the group's logical membership

identities to communicate and be notified of events

12

What do Shoal GMS Clients get ?What do Shoal GMS Clients get ?
• Allows client components in a process to :

> Send and Receive Messages using app level addressing semantics ex. Using
instance Id or name for addressing the destination.

> Use GMS Event Model for receiving Group Event Notifications & Message
Delivery

> Use GMS APIs for getting member states, current group composition, caching
app level information, and for messaging one-to-one, one-to-many, and one-to-
all.

• Each system installation uses a particular Group Communication Provider,
plugs in the same with SPI implementation. Clients don't change any code.

• Useful features yet a lightweight component providing an engine for building
enterprise distributed systems functionality

• Recovery oriented computing semantics without application specific
artifacts, a basis for building fault tolerance solutions.

• Several current use cases within Sun's Appserver, more to come...

13

Shoal GMS Startup code sampleShoal GMS Startup code sample
public class GMSLifecycleManager {

Runnable gms;
public void startGMS(){

try {
//creates a Runnable and inits with serverId, groupId, membertype and lifetime
//config properties.
gms = GMSFactory.startGMSModule(serverId, groupName,

GroupManagementService.MemberType.CORE, properties);
Thread t = new Thread(gms, “GMSThread”);
t.start();

}
catch (GMSException e){
 //deal with it :)
}

public void shutdownGMS(){
gms.shutdown(GMSConstants.ShutdownType.INSTANCE_SHUTDOWN)

}
}

14

Shoal GMS Client CodeSampleShoal GMS Client CodeSample
public class GMSClient implements CallBack {

.....
registerWithGMS(){

GroupManagementService gms = GMSFactory.getGMSModule(clusterName);
//register interest in events
gms.addActionFactory(new JoinNotificationActionFactoryImpl(this));
gms.addActionFactory(new FailureSuspectedActionFactoryImpl(this));
gms.addActionFactory(new FailureNotificationActionFactoryImpl(this));
gms.addActionFactory(new FailureRecoveryActionFactoryImpl(this));
gms.addActionFactory(new PlannedShutdownActionFactoryImpl(this));

}

processNotification(Signal signal){
//process the appropriate Signal type, say FailureNotificationSignal according to client logic

}
As seen above, for GMS clients, this is a Breeze to do and very simple.
GMS takes on complexities of Group and Endpoint discovery, failures, etc.

15

Shoal GMS in GlassFish V2Shoal GMS in GlassFish V2
• In GlassFish v2 cluster mode, Shoal GMS is used

for
> Automated delegated transaction recovery
> Timer migrations
> IIOP Failover Loadbalancer
> Self Management
> Read-only Bean's cache change notifications
> Domain Admin Server for cluster health
> In-memory replication component's discovery and failure

detection needs.

16

Shoal GMS in the enterprise worldShoal GMS in the enterprise world
• Shoal can be used for common enterprise clustering

requirements
• Some products that can benefit
> MQ Broker Clusters
> Directory Server Clusters
> Compute Grid
> Telco carrier grade app infrastructures
> App level clustering in small scale deployments (plug in

Shoal into a GF v1 instance, and apps can directly use it
for their cluster needs)

> Several others limited only by imagination and some
contrarian thinking :)

17

GMS SPI HighlightsGMS SPI Highlights
• Goaled to work with both JGroups and JXTA
• Extracted out of common functionalities from both

the group communication technologies and GMS
client requirements
• Open to other GCP implementations as suitable for

a specific application
• SPI rev is in progress to make it more

comprehensive and truly pluggable

18

GMS's Use of JXTAGMS's Use of JXTA
• GMS requirements
• Jxta Management – a collaborative effort between

Appserver Group and JXTA (Advanced
Development) Group
• Critical JXTA Platform Functionality

19

GMS RequirementsGMS Requirements
• At the minimum
> Group and Membership detection
> Failure Detection
> Guaranteed Message delivery
> Ordered Messaging (particularly for group membership

messages)
• Of Added Use
> Flow Control (Dynamic Sliding Window management)
> Merging of split groups
> Fragmentation of packets over 64K

20

JxtaManagement ArchitectureJxtaManagement Architecture
• Shoal GMS utilizes JxtaManagement component (a JXTA based group

service provider) for dynamic cluster configuration, formation, and
monitoring.

21

JxtaManagement ArchitectureJxtaManagement Architecture
• NetworkManager

> Given instance and group name, uses a SHA-1 hash to encode the cluster GroupID, and
NodeID

> defines a set of predefined communication identifiers used for formation, monitoring and
messaging.

> Application can pass additional config parameters, such as bootstrapping addresses to
facilitate cross sub-net and firewall communication.

• SystemAdvertisement
> An extensible XML document describing system characteristics (HW/SW configuration.

CPU load would be a nice extension).
> Envisioned that this would serve at the foundation of a Grid framework.

• MasterNode
> Lightweight protocol allowing a set of nodes to discover one another, and autonomously

elect a master for the cluster.
> Resilient to multi node collisions and employs an autonomous mechanism to avoid

network chatter to resolve collisions.

22

Jxta Management ArchitectureJxta Management Architecture
• ClusterView
> Maintains an ordered view of the Cluster

• HealthMonitor
> A lightweight protocol allowing a set of nodes to monitor the health of a

cluster.
> Relies on a tunable heart beat,

> acted upon by MasterNode to notify the group of failures,
> and by other members to elect a new master if the master node fails.

• ClusterManager
> Manages lifecycle of this SPI

23

Critical Jxta Platform FunctionalityCritical Jxta Platform Functionality
• Membership scoping - Infrastructure NetPeerGroup provides

group isolation from the world
• Rendezvous Protocol - PeerGroup and Peer locational and

route tracking, and provides end point routing abstraction
• Platform provides virtualizing of PeerID to network addresses
• Platform's messaging envelope - the Message object

encapsulates MessageElements allowing for separation of
payload from metadata

• Secure communication channels – PKI-based public key for
Unicast, shared keystore based for multicast

• NetworkConfigurator – API for programmatic configuration,
configuration stays in-memory during lifetime of peer.

24

Current Status, Tests Run
Current Status
• Source code has been made available at Project Shoal. Download it

and have fun with it :)
• GMS SPI implementation uses Jxta layer implementing Group

Communication Provider SPI initial version
• Weekly review meetings with JXTA team for continuous improvement
Tests Run
• Tests covered: Various time Startup scenarios, Join tests, Shutdown

tests, Failure tests, and Recovery behaviors tests
• QE continues to run test cases from their GMS suite of 40 tests with

several iterations. Many tests involve timing variations as well.
• P3s are being filed as they are identified.

25

Plans
• Stabilize current implementation for release with

GlassFish Application Server 9.1
• Involve user community to test and deploy Shoal

and contribute bugs and RFEs.
• Possible Shoal Cache implementation being looked

at.
• Shoal for compute grid being worked on.
• Engage within and outside Sun for adoption.
• Shoal as a driver for GlassFish adoption.

