
Introduction to
Seaside

Randal L. Schwartz, merlyn@stonehenge.com
Version 2.01 on 20 July 2009

This document is copyright 2008, 2009 by Randal L. Schwartz, Stonehenge Consulting Services, Inc.
This work is licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/

1Monday, July 20, 2009

Goals

• Components
• Callbacks
• HTML Generation (including forms)
• Persistence (including ORM)
• Deploying your application
• AJAX Integration (if time permits)

2Monday, July 20, 2009

Getting Seaside

• Squeak - one click image or packages
• VisualWorks - Store or WebVelocity
• GNU Smalltalk - ?
• GemStone/S - GLASS

3Monday, July 20, 2009

The Counter Example

• Launch one-click image
• Ignore GUI for a moment

• Navigate to URL
• Count!
• All that excitement (yawn)

4Monday, July 20, 2009

The Smallalk GUI

• Workspace - run snippets of code
• Browser - edit and view code
• Debugger - “d” bugs
• Inspector - look at complex values
• Monticello - share and load code

5Monday, July 20, 2009

The Workspace

• Evaluate code snippets
• “do it”: just run the code
• “print it”: run the code, show the result
• “debug it”: run the code in the debugger
• Operates on selection
• If nothing selected, line cursor is on

6Monday, July 20, 2009

Smalltalk in a Hurry

• Just enough to understand Seaside

7Monday, July 20, 2009

Objects and classes

• Everything’s an object
• An object belongs to a class
• An object has methods
• The class (also an object) has methods

• A class inherits from a single superclass
• Class-side and instance-side separately

8Monday, July 20, 2009

Variables
• Alphanumerics
• Camelcased with initial lowercase:
• rate, accelerationRate

• Value belongs to a class, variables don’t care
• Assign to get a value:
• rate := 30

• Special vars:
• self, true, false, nil, super, thisContext

9Monday, July 20, 2009

Methods
• Unary: single name, follows variable:
• rate squared

• Binary: 1-2 punctuation chars:
• rate * time

• Keyword: names and colons:
• rate raisedTo: 2.5
• rate between: 5 and: 10

• Simple precedence!

10Monday, July 20, 2009

Literal data

• Strings: ‘hello world’
• Numeric data: 3 2.5 1.23e45 -2e-5
• Symbols: #size #foo:bar: #+

11Monday, July 20, 2009

Classes

• Alphanumeric, initial uppercase
• Class methods are often constructors:
• rates := Set new.

• But could also have other uses:
• superclassOfSet := Set superclass.

12Monday, July 20, 2009

Method syntax
• Signature (like message send without self):
• squared
• * aNumber
• raisedTo: aNumber
• between: lowNumber and: highNumber

• Temporaries: | aDog aCat |
• Statements separated by periods
• Last statement can have ^ (“answer this”)
• Comments are in “double quotes”

13Monday, July 20, 2009

Control structures
• Conditionals:
• aBoolExpr ifTrue: [some. code. here].
• aBoolExpr ifFalse: [some. other. code].
• #ifTrue:ifFalse:, #ifFalse:ifTrue:

• Loops:
• [code. code. aBoolExpr] whileTrue.
• [code. aBoolExpr] whileTrue: [code].
• #whileFalse, #whileFalse:

14Monday, July 20, 2009

The Code Browser
• Packages - groups of classes
• Classes
• Class/instance/comment toggle
• Method categories (including “all”)
• Method names
• Lower pane views/edits selection
• Sometimes preloaded with a template

• Lots of coding help available in menus

15Monday, July 20, 2009

The Debugger
• Debug notifier: proceed/cancel/full
• Full debugger:
• Stack
• Code pane (current line highlighted)
• Instance vars
• Temps and arguments

• Everything is live, editable, resumable
• Action buttons to step in, over, through

16Monday, July 20, 2009

Hello World
• Create class for top-level component
• Should inherit from WAComponent

• class #canBeRoot for GUI access
• Or register during class #initialize

• Components implement:
renderContentOn: html

• In our case:
 html text: ‘hello world’.

17Monday, July 20, 2009

Configure the app

• Visit configuration screen (/seaside/config)
• Create a new URL path (below /seaside)
• Select our class as the root component
• Visit the URL!

18Monday, July 20, 2009

When the Web Breaks

• Add time display to output
• Refactor it to use concatenation
• Boom! (Needs #asString)
• Walkback in browser
• Select debug to use Smalltalk GUI
• “Proceed”, and browser refreshed

19Monday, July 20, 2009

Halos

• Inspect components
• Edit CSS (for prototyping)
• View pretty-printed HTML source
• Edit source code (proof of concept)

20Monday, July 20, 2009

Web Velocity

• Stay in web browser for:
• Code browser
• Debugger
• Inspector
• Source code management

• Everything!
• Lots of scaffolding for database views

21Monday, July 20, 2009

Configuring brushes
• Each step separate:

brush := html heading.
brush level: 3.
brush with: ‘my third level heading’.

• Combining first and second steps:
brush := (html heading) level: 3.
brush with: ‘...’.

• Any number of configurations
• But #with: has to be last!

22Monday, July 20, 2009

Cascades
• Cascade omits common object:

batallion selectTank target: enemy; fire.
• Same as (without the variable):

aTank := batallion selectTank.
aTank target: enemy.
aTank fire.

• So our heading looks like:
html heading level: 3; with: ‘my head’.

23Monday, July 20, 2009

Fancier Blocks
• Like methods in square brackets
• Argument list (if any)

:arg1 :arg2 :arg3 |
• Temporaries (if any)

| temp1 temp2 |
• Statements

arg1 dothis. arg2 dothat. arg3 + arg1.
• ^ exits enclosing method, not block!

24Monday, July 20, 2009

Example

• add3ToDoubleOf := [:x | x * 2 + 3].
• a := add3ToDoubleOf.
• b := a value: 17.
• c := a value: (17 / 2).

25Monday, July 20, 2009

Callbacks

• html anchor with: ‘text’ - not useful
• html anchor

 callback: [self increase];
 with: ‘text’.

26Monday, July 20, 2009

Components

• Reusable chunks of HTML
• Individual instance vars for state
• Example: current counter value

• State can be rewound if a URL is reused
• Or not, depending on coder’s choice

• Components can be nested
• Need to be declared with #children

27Monday, July 20, 2009

Back to the Counter

• Simple code
• Instance var holds the counter
• Main view shows increase/decrease buttons
• Actions linked via callbacks

28Monday, July 20, 2009

Collection classes

• OrderedCollection
• Array (fixed size OrderedCollection)
• Set
• Bag (counted items of Set)
• SortedCollection (order from chaos)
• Dictionary (key/value mappings)
• Interval (5 to: 100 by: 3)

29Monday, July 20, 2009

Collection protocols

• collect:
• fractions := (1 to: 10) collect: [:n | 1 / n]

• do:
• fractions do: [:each | html div: each]

• select:
• overQuarter :=

fractions select: [:f | f > 0.25]

30Monday, July 20, 2009

Multicounter

• Just a bunch of counters

31Monday, July 20, 2009

The Back Button
• Callback URLs modify instance vars
• What if we reinvoke the same URL?
• Might want original action on old value
• Or maybe on new current value

• To act on old value, use #states
• Values are associated with URLs
• Frozen and thawed as necessary

• Otherwise, acts on current value

32Monday, July 20, 2009

Styles

• Add class to any relevant brush:
html div class: ‘entry’; with: ‘some text’.

• Style with CSS
• External files can be edited by designer

• Simple styles for testing defined inline
• String returned by #style on component

33Monday, July 20, 2009

Forms
• Input fields painted with brushes
• Callbacks executed on form submission
• No need to name anything:

html text: ‘name:’.
html textInput callback: [:v | self name: v].

• Default values can be provided
• With right accessors, code is simple:

html textInput on: #name.

34Monday, July 20, 2009

LCM two numbers

• Build code to do this

35Monday, July 20, 2009

Persistence Solutions

• Saving the image
• Writing objects
• Object prevayler (Sandstone, Prevayler)
• Object database (GemStone/S, Magma)
• Object/Relational Mapper (GLORP)

36Monday, July 20, 2009

GLASS

• GemStone/S object engine
• Linux, Apache, Smalltalk, Seaside
• All wrapped up in a VMWare appliance
• Free to use for small applications
• Even commercial applications!

• Not open source though. :(
• As hits increase, scale up for modest fee

37Monday, July 20, 2009

Ajax

• JavaScript library integration
• Scriptaculous (now)
• jQuery (soon)
• MooTools

• No need to write JavaScript
• Everything is coded from Smalltalk!

• [demo]

38Monday, July 20, 2009

Testing

• Component level testing
• Using standard Smalltalk Unit Tests

• HTTP level testing
• SeasideTesting package
• Albatross (like Selenium)

39Monday, July 20, 2009

More info

• http://seaside.st/
• http://MethodsAndMessages.vox.com/

40Monday, July 20, 2009

