

1

© FreeFall Software, 1995

Smalltalk Frameworks

for Business-Critical Aplications

presented by

Piotr Palacz

FreeFall Software Pty Ltd, Sydney

Smalltalk Frameworks for BCAs

2

© FreeFall Software, 1995

Overview

• Basic Terms and Questions

• Infrastructure Framework

• Business Model Framework

• Transformers Framework

• User Inteface Framework

• Summary: Advocated Approach

3

© FreeFall Software, 1995

Terms: BCA

• Business Critical Application

- critical to the business

- many (50-100 +) simultaneous users

- many geographical locations (2+)

Also often:

- high stress/fast turnover environment

-loosely structured development

- a number of concurrent teams

- low average experience with OO

- legacy factors

• Examples

- Dealing room systems

- Insurance policy maintenance

- Collaterals management

- Risk/Exposure reporting

- Generation of advertising campaign plans

Smalltalk Frameworks for BCAs

4

© FreeFall Software, 1995

Terms: Framework

Framework is described as:

either a design or its expression;

a result, rather than a process;

a purely “technical” thing.

In practice, each of the descriptions is useful only

as a regulative idea.

• Descriptions

• Main Features

Framework is a set of cooperating classes that make up a reusable design
for a specific class of software[Gamma & al].

Framework is a reusable design of a program or a part of a program

expressed a s a set of classes [Deutsch][Johnson].

“The framework dictates the architecture of your applications.”

“The framework captures the design decisions that are common

to its application domain".

5

© FreeFall Software, 1995

Smallt alk Framewor ks: Diff erent?

• Fast lifecycle

• Changing roles and procedures

• Consequences

• Consistent; rich and open

• Examples of frameworks provided: MVC + dependency; UI builders

• Permissive

• Syntactically and semantically simple

• Language

• Environment

• Reflexive

Smalltalk Frameworks for BCAs

6

© FreeFall Software, 1995

Frameworks for BCAs

• Conflicting requirements

- long term expectations vs short term constraints;

- genericity and reuse vs short time available to build and deploy first iteration;

- levels of skills required vs the actual inexperience (analysts, developers, managers);

- delivering vs learning;

- “old ways” vs. “new ways”;

- creeping nad/or conflicting user requirements.

What are the measures and approaches for BCAs to increase your chances

for succesful delivery of a viable Smalltalk framework, given all constraints?

• Central Question

7

© FreeFall Software, 1995

‘Naive’ Framework

Smalltalk Frameworks for BCAs

8

© FreeFall Software, 1995

Typical Failure Causes

The development of large applications [...] is one of the most

hazardous and risky business undertakings in the modern world

[Capers Jones]

• Tinkering rather than (re-)Design

• Poor Communicaton; No Code Reviews

• Weak Configuration and Change Control

• No Business Model; GUI-orientation

• Inability to meet creeping user requirements

• Weak testing procedures, esp.regression testing

• Architectural

• Procedural

• No Standards, Conventions, Guidelines

9

© FreeFall Software, 1995

Framewor ks for BCAs

“Frameworks”

• “Infrastructure” Framework

• Domain Model Framework

• Transformer Framework

• User Interface Framework

• Persistency Framework

In practice, a BCA is built and maintained using a number of frameworks:

Smalltalk Frameworks for BCAs

10

© FreeFall Software, 1995

Infrastructure Framework

• “Technical” Side

• Standards, Conventions and Guidelines

• Change/Configuration Management

• Testing/Debugging Support

• “Managerial” Side

• Leadership , Communication and Peer Pressure

• Coding and Code Reviews

11

© FreeFall Software, 1995

IF: Commun ication

• Unused Framework is only as good as a non-existent one

• Framework not understood and/or misused is as good as a bad one

• Division of Roles in Smalltalk Development: Centralised Democracy

• News Groups, e-mail, scheduled meetings; ad-hoc problem groups

• Talk to people before you code

Smalltalk Frameworks for BCAs

12

© FreeFall Software, 1995

IF: Standards and Guidelines

• Scope

• APIs

• Look and Feel

• Training for the needy, workshops for others

• Establishing peer pressure

• Enforcing conventions and common style

• Permanent dissemination

• Coding (Mis-)Practices

(self dependents at: 3) perform: #update

13

© FreeFall Software, 1995

IF: Configura tion Managemen t

• Additions

• Deliverables

• Development tools

Frameworks

• Extensions

• Base System

• Deliverables

Smalltalk Frameworks for BCAs

14

© FreeFall Software, 1995

IF: Change Management

• System “ as is”

• System “tinkered”

• In-house tools

• Commercial Tools

• Customised Commercial Tools

• Tools

• Requirements

• Change as an object

• Arbitrary unit of change

• Support for recursive prerequisites

• Detection & resolution of conflicts

15

© FreeFall Software, 1995

IF: Testing

• Tools?

• For Spying

• For Profiling

• For Documentation

• Logging

• External Configuration

• Tracing

• Test Methods

• Basic Functionality Test

• Regression Tests

• Interface-driven testing?

• Testing

Smalltalk Frameworks for BCAs

16

© FreeFall Software, 1995

IF: Architecture

Domain ModelsDomain Models

MetaModel

Persistence

User Interface

Transformer

Transform
er

Other
(sub)systems

Transformer

• Interface-centric

• Types:

• Model-Centric

• Ego-centric

17

© FreeFall Software, 1995

Domain Model Framewor k

• Base Responsibilities

• Meta-description

• Common Patterns

• Auxiliary Classes

Domain ModelsDomain Models

MetaModel

Domain Models (aka Enterprise Object):

representations of the structure and behaviour

of the entities involved.

Smalltalk Frameworks for BCAs

18

© FreeFall Software, 1995

DMF: Meta-description

• What ?

Central specification of basic properties of an object

(instances of a domain model class).

Available at runtime.

• What for?

- Mechanised generation of the code

- Pre- & post-conditions in testing

- High-level interaction with transformers,
eg:

- validation

- construction of SQL

• How?

- Feature descriptions

- Relationship descriptions

- View descriptions

superclass
methodDict

format
subclasses

...
features
relations

views

TestClass
name

relation
dbColumn

type
length

preAction
postAction

TestFeature

name
fields

relationFields
relationTable
relationClass

collectionClass

TestRelation

featureNames
TestView

19

© FreeFall Software, 1995

DMF: Model Respons ibiliti es

• Administratrivia

• Auto-validation

• State control

• Concurrency control

• Security support

• Support for transformers

• Mappings and codesets

Smalltalk Frameworks for BCAs

20

© FreeFall Software, 1995

DMF: Common Patterns

• Objectives

-Avoiding hard-coding (class names, requests)

-Avoiding tight dependence (local API, expression of an algorithm)

[Gamma &al]

• Factory

Provides an interface for creating families of related or dependent
objects without specifying their concrete class

• Policy (Strategy)

Defines a family of encapsulated and
interchangeable algorithms

• Builder
Separates the construction of an object from its representation.

Decouples an abstraction from its implementation so
that the two can be changed independently.

• Bridge

• Patterns

21

© FreeFall Software, 1995

DMF: Auxili ary Classes

• State machines

• Condition objects

• Relation objects (incl. trees and containers)

• Filter objects

• Input simulators

• SQL generators

• Registries (incl. code sets & object caches)

Smalltalk Frameworks for BCAs

22

© FreeFall Software, 1995

Transformer Framework

• Types

• Dependency transformers

• Slot- and aspect- adaptors

• Object-Relational transformers

• UI-bindings

Persistence

Transformer

Other
(sub)systems

Transformer

User Interface
Transformer

• Transformers (aka adaptors)

Active APIs encapsulated as plugguble objects

23

© FreeFall Software, 1995

TF: Patterns

• Proxy

Provides a surrogate or placeholder for another
object to control access to it.

• Chain of Responsibility

Requests between two objects are handled by
an intermediary.

• Mediator

Defines an object that encapsulates how a set
of objects interact.

• Visitor

Represents an operation to be performed on the
elements of an object structure.

• Command

Encapsulates a request as an object.

Smalltalk Frameworks for BCAs

24

© FreeFall Software, 1995

TF: Example

Object

Model (’dependents’)

 ValueModel ()

 ComputedValue (’cachedValue’ ‘eagerEvaluation’)

 BlockValue (’block’ ‘arguments’ ‘numArgs’)

 PluggableAdaptor (’model’ ‘getBlock’ ‘putBlock’ ‘updateBlock’)

 TypeConverter ()

 ProtocolAdaptor (’subject’ ‘subjectSendsUpdates’ ‘subjectChannel’ ‘accessPath’)

 AspectAdaptor (’getSelector’ ‘putSelector’ ‘aspect’)

 DomainAdaptor (’aspect’ ‘getBlock’ ‘putBlock’)

 IndexedAdaptor (’index’)
 SlotAdaptor ()
 RangeAdaptor (’subject’ ‘rangeStart’ ‘rangeStop’ ‘grid’)

 ValueHolder (’value’)

 BufferedValueHolder (’subject’ ‘triggerChannel’)

Source: VisualWorks 2.0, base image

25

© FreeFall Software, 1995

User Interface Framewor k

• Reusable UI components

• 4GL-ish UI tools

• Linking Models and UIs

• Typical Elements

Smalltalk Frameworks for BCAs

26

© FreeFall Software, 1995

UIF: Components

change

Top Interface Object

update

change

a Component

ivars

update

change

a Component

ivars

update

ivars

27

© FreeFall Software, 1995

UIF: An Examp le

Smalltalk Frameworks for BCAs

28

© FreeFall Software, 1995

UIF: Tools

• 4GL-sh GUI tools

29

© FreeFall Software, 1995

Pers istency Framewor k

• Physical layer

• Connections

• Sessions

• RDBM API encapsulation

• Transactions

• Logical layer

• Object layer

• Decomposition & construction of objects

• Validation & exception handling

Smalltalk Frameworks for BCAs

30

© FreeFall Software, 1995

The Future?

• Frameworks as products

• Domain Models driven by high level OOAD tools

• Emergence of standard types of transformers

• More framework elements available as component-ware

• First signs: NeXTSTEP

• OO host APIs

31

© FreeFall Software, 1995

• Processual rather than Reistic

• Pragmatic rather than Theoretical

• Top Down rather than Bottom-Up

Standard approaches concentrate on the strictly technical

and on the outcome rather than the process.

Procedure begets results, and not vice versa.

Too much confidence in methodologies (actually, methods) and authority is not productive.

Magic spells cannot replace invention, although adopting any reasonable rules increases your chances.

Formal rules are not always helpful in a real situation.

Many elements can be determined a priori, eg.

cornerstones of an architecture can be described and taken into account before concrete design
takes place.

Move first from generic assumptions to specialised ones, not vice versa.

Foresee rather than use inductive trial and error.

Summary: Advoca ted Approac h

Smalltalk Frameworks for BCAs

32

© FreeFall Software, 1995

Last Page!

• References

[Gamma &al] Design Patterns, Addison-Wesley 1995

[Capers Jones] Patterns of large software systems: Failure and success,
in: Computer, March 1995.

[Martin Griss] Software reuse: A process of getting organized, in:

Object Magazie, May 1995

• Feedback • piotr@FreeFall.com.au; piotr@smalltalk.org.au

http://WWW.smalltalk.org.au/piotr

• Credits

Some of the screen shots come from past development stages of
the code owned by Macquarie Bank Limited.

Thanks to Kevin Bungard of Object Oriented P/L for the early
input on database transformers.

VisualWorks 1.0 and 2.0 were the environment used for the xamples.

