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Overview

• Basic Terms and Questions

• Infrastructure Framework

• Business Model Framework

• Transformers Framework

• User Inteface Framework

• Summary: Advocated Approach
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Terms: BCA

•  Business Critical Application
 

- critical to the business
 

- many (50-100 +) simultaneous users

 

- many geographical locations (2+)

 

Also often:

 

- high stress/fast turnover environment

 

-loosely structured development

 

- a number of concurrent teams

 

- low average experience with OO

 

- legacy factors

•  Examples
 

- Dealing room systems
 

- Insurance policy maintenance

 

- Collaterals management

 

- Risk/Exposure reporting

 

- Generation of advertising campaign plans
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Terms: Framework

 
Framework is described as:
 

either a design or its expression;

 

a result, rather than a process;

 

a purely “technical” thing.

 

In practice, each of the descriptions is useful only

 

as a regulative idea.

• Descriptions

• Main Features

 
Framework is a set of cooperating classes that make up a reusable design 
for a specific class of software[Gamma & al].

 

Framework is a reusable design of a program or a part of a program

 

expressed a s a set of classes [Deutsch][Johnson].

 

“The framework dictates the architecture of your applications.”

 

“The framework captures the design decisions that are common

 

to its application domain".
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Smallt alk  Framewor ks: Diff erent?

• Fast lifecycle

• Changing roles and procedures

• Consequences

• Consistent; rich and open

• Examples of frameworks provided: MVC + dependency; UI builders

• Permissive 

• Syntactically and semantically simple

• Language

• Environment

• Reflexive
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Frameworks for BCAs

• Conflicting requirements
 

- long term expectations vs short term constraints;
 

- genericity and reuse vs short time available to build and deploy first iteration;

 

- levels of skills required vs the actual inexperience (analysts, developers, managers);

 

- delivering vs learning;

 

- “old ways” vs. “new ways”;

 

- creeping nad/or conflicting user requirements.

 
What are the measures and approaches for BCAs to increase your chances
 

for succesful delivery of a viable Smalltalk framework, given all constraints?

• Central Question
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‘Naive’ Framework
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Typical Failure Causes

 
The development of large applications [...] is one of the most
 

hazardous and risky business undertakings in the modern world

 

[Capers Jones]

• Tinkering rather than (re-)Design

• Poor Communicaton; No Code Reviews

• Weak Configuration and Change Control

• No Business Model; GUI-orientation

• Inability to meet creeping user requirements

• Weak testing procedures, esp.regression testing

• Architectural

• Procedural

• No Standards, Conventions, Guidelines
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Framewor ks for BCAs

 
“Frameworks”

• “Infrastructure” Framework

• Domain Model Framework

• Transformer Framework

• User Interface Framework

• Persistency Framework

 
In practice, a BCA is built and maintained using a number of frameworks:
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Infrastructure Framework

• “Technical” Side

• Standards, Conventions and Guidelines

• Change/Configuration Management

• Testing/Debugging Support

• “Managerial” Side

• Leadership , Communication and Peer Pressure

• Coding and Code Reviews
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IF: Commun ication

• Unused Framework is only as good as a non-existent one

• Framework not understood and/or misused is as good as a bad one

• Division of Roles in Smalltalk Development: Centralised Democracy

• News Groups, e-mail, scheduled meetings; ad-hoc problem groups

• Talk to people before you code
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IF: Standards and Guidelines

• Scope

• APIs

• Look and Feel

• Training for the needy, workshops for others

• Establishing peer pressure

• Enforcing conventions and common style

• Permanent dissemination

• Coding (Mis-)Practices
 
(self dependents at: 3 ) perform: #update
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IF: Configura tion Managemen t

• Additions

• Deliverables

• Development tools

 
Frameworks

• Extensions

• Base System

• Deliverables
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IF: Change Management

• System “ as is”

• System “tinkered”

• In-house tools

• Commercial Tools

• Customised Commercial Tools

• Tools

• Requirements

• Change as an object

• Arbitrary unit of change

• Support for recursive prerequisites

• Detection & resolution of conflicts
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IF: Testing

• Tools?

• For Spying

• For Profiling

• For Documentation

• Logging

• External Configuration

• Tracing

• Test Methods

• Basic Functionality Test

• Regression Tests

• Interface-driven testing?

• Testing
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IF: Architecture

Domain ModelsDomain Models

MetaModel

Persistence

User Interface

Transformer

Transform
er

Other
(sub)systems

Transformer

• Interface-centric

• Types:

• Model-Centric

• Ego-centric
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Domain Model Framewor k

• Base Responsibilities

• Meta-description

• Common Patterns

• Auxiliary Classes

Domain ModelsDomain Models

MetaModel

 
Domain Models (aka Enterprise Object):
 

representations of the structure and behaviour

 

of the entities involved.
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DMF: Meta-description

• What ?
 
Central specification of basic properties of an object
 

(instances of a domain model class).

 

Available at runtime.

• What for?
 
- Mechanised generation of the code
 

- Pre- & post-conditions in testing

 

- High-level interaction with transformers, 
eg:

 

- validation

 

- construction of SQL

• How?
 
- Feature descriptions
 

- Relationship descriptions

 

- View descriptions

superclass
methodDict

format
subclasses

...
features
relations

views

TestClass
name

relation
dbColumn

type
length

preAction
postAction

TestFeature

name
fields

relationFields
relationTable
relationClass

collectionClass

TestRelation

featureNames
TestView
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DMF: Model Respons ibiliti es

• Administratrivia

• Auto-validation

• State control

• Concurrency control

• Security support

• Support for transformers

• Mappings and codesets
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DMF: Common Patterns

• Objectives
 
-Avoiding hard-coding (class names, requests)
 

-Avoiding tight dependence (local API, expression of an algorithm)

 

[Gamma &al]

• Factory
 
Provides an interface for creating families of related or dependent 
objects without specifying their concrete class

• Policy (Strategy)
 
Defines a family of encapsulated and 
interchangeable algorithms

• Builder  
Separates the construction of an object from its representation.

 
Decouples an abstraction from its implementation so 
that the two can be changed independently.

• Bridge

• Patterns
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DMF: Auxili ary Classes

• State machines

• Condition objects

• Relation objects (incl. trees and containers)

• Filter objects

• Input simulators

• SQL generators

• Registries (incl. code sets & object caches)
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Transformer Framework

• Types

• Dependency transformers

• Slot- and aspect- adaptors

• Object-Relational transformers

• UI-bindings

Persistence

Transformer

Other
(sub)systems

Transformer

User Interface
Transformer

• Transformers (aka adaptors)
 
Active APIs encapsulated as plugguble objects
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TF: Patterns

• Proxy
 
Provides a surrogate or placeholder for another 
object to control access to it.

• Chain of Responsibility
 
Requests between two objects are handled by 
an intermediary.

• Mediator
 
Defines an object that encapsulates how a set 
of objects interact.

• Visitor
 
Represents an operation to be performed on the 
elements of an object structure.

• Command
 
Encapsulates a request as an object.
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TF: Example

 
Object
 

Model  (’dependents’)

 

 ValueModel  ()

 

  ComputedValue  (’cachedValue’ ‘eagerEvaluation’)

 

   BlockValue  (’block’ ‘arguments’ ‘numArgs’)

 

  PluggableAdaptor  (’model’ ‘getBlock’ ‘putBlock’ ‘updateBlock’)

 

   TypeConverter  ()

 

  ProtocolAdaptor  (’subject’ ‘subjectSendsUpdates’ ‘subjectChannel’ ‘accessPath’)

 

   AspectAdaptor  (’getSelector’ ‘putSelector’ ‘aspect’)

 

   DomainAdaptor  (’aspect’ ‘getBlock’ ‘putBlock’)

 

   IndexedAdaptor  (’index’) 
    SlotAdaptor  () 
   RangeAdaptor  (’subject’ ‘rangeStart’ ‘rangeStop’ ‘grid’)

 

  ValueHolder  (’value’)

 

   BufferedValueHolder  (’subject’ ‘triggerChannel’)

 
Source: VisualWorks 2.0, base image
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User Interface Framewor k

• Reusable UI components

• 4GL-ish UI tools

• Linking Models and UIs

• Typical Elements
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UIF: Components

change

Top Interface Object

update

change

a Component

ivars

update

change

a Component

ivars

update

ivars
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UIF: An Examp le

 
Smalltalk Frameworks for BCAs

 
28

 
© FreeFall Software, 1995

 
UIF: Tools

• 4GL-sh GUI tools
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Pers istency Framewor k

• Physical layer

• Connections

• Sessions

• RDBM API encapsulation

• Transactions

• Logical layer

• Object layer

• Decomposition & construction of objects

• Validation & exception handling
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The Future?

• Frameworks as products

• Domain Models driven by high level OOAD tools

• Emergence of standard types of transformers

• More framework elements available as component-ware

• First signs: NeXTSTEP

• OO host APIs
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• Processual rather than Reistic

• Pragmatic rather than Theoretical

• Top Down rather than Bottom-Up

 
Standard approaches concentrate on the strictly technical
 

and on the outcome rather than the process.

 

Procedure begets results, and not vice versa.

 
Too much confidence in methodologies (actually, methods) and authority is not productive.
 

Magic spells cannot replace invention, although adopting any reasonable rules increases your chances.

 

Formal rules are not always helpful in a real situation.

 
Many elements can be determined a priori, eg.
 

cornerstones of an architecture can be described and taken into account before concrete design 
takes place.

 

Move first from generic assumptions to specialised ones, not vice versa.

 

Foresee rather than use inductive trial and error.

Summary: Advoca ted Approac h
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• Credits
 
Some of the screen shots come from past development stages of 
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Thanks to Kevin Bungard of Object Oriented P/L for the early 
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