Micro Object Testing

Author: Andy Berry

Version: 1.0 – 16th August 2003

Introduction

This document describes the Micro Object Testing (MOT) methodology that enables testing to be easily carried out during the development of Object-Orientated software systems.

Since the Model/View approach is fundamental to MOT, we’ll explain that as well.

Although the examples are in Smalltalk (VisualWorks 7), the principles are applicable to any OO project.

Where does MOT come from?

MOT is about testing but it is part of a larger trend towards so-called ‘agile’ software development methodologies.

These methodologies all say that your development cycle should be like that shown below:

[image: image1.png]Develop a bit
Test a bit

Your aim should be to test very often (every few minutes) and deliver as often as possible – in stages, if necessary.

Models and Views

To understand MOT, you have to appreciate the Model and View approach to OO design.

[image: image2.png]Name | Fred Smith
A

payrollNo: 123

Here, we have a window on the screen representing a model object somewhere in our application.

By a technique such as aspect adaptors, we link the model to the view so that changes in the model (made by other objects in our application) are reflected in any view and changes to the view (made by the user) are reflected in the model.

The advantage of dividing your application in this way is that it allows you to separate the ‘domain model’ (the things your application is actually handling) from the messy business of displaying them. Believe me, it’s well worth doing!

You may have heard of MVC (Model, View, Controller) and be asking: where’s the controller? Well, there is one (actually, several) but in modern OO development environments these are hidden somewhere in the background.

So, what is MOT?

MOT essentially specifies the design of your tests.

But, rather than talk in abstract, I developed a little application as I was writing this document…

The code I wrote is part of a large payroll application, and so, like all such applications, it needs an Employee object.

The employee has some attributes: payrollNo, name, address, telephone.

So, step 1 was to develop the Employee object:

Smalltalk.MicroObjectTesting defineClass: #Employee

superclass: #{Core.Object}

indexedType: #none

private: false

instanceVariableNames:

'payrollNo name address telephone '

classInstanceVariableNames: ''

imports: ''

category: 'MicroObjectTestingExamples'

Then, I realised that I’d need an example, so I added this method to the Employee class:

exampleObject

"answer an example of an Employee object"

" Employee exampleObject "

^self new

payrollNo: '374';

name: 'Fred Smith';

address: '12 Some Street, Somewhere';

telephone: '0111 222 333'

This is one sort of MOT method – it answers an example object that other tests can use.

Notice that it includes the actual line of code needed to “run” it. In this case, inspecting the result of running this code will show what an Employee object looks like.

Obviously, the users of the application are going to want to look at Employee objects, so let’s supply them with a view:

[image: image3.png]CEE
Payroll Number | 374

Name [Fied Smith

Address

12 Some Streat, A
‘Somewhere =]

Telephane [0111 222333
Close.

Notice something? The view is populated from the example of its model object.

This is the code responsible for opening this view:

basicTest

"perform a basic functional test"

" Employee basicTest "

| employee |

employee := self exampleObject.

employee openView

OK, I know that may need some explanation, so here’s the openView method:

openView

"open a view on this object"

| view |

view := EmployeeView new.

view

model: self;

open

Yes, it really is this simple! The code creates a new instance of the view, tells it its model and opens the view.

There’s a bit of messy code in the view. Each field needs to know what ‘aspect’ of the model it’s displaying, like this:

address

"answers the aspect adaptor for the address field"

^address isNil

ifTrue:

[address :=

AspectAdaptor

subject: self model.

 address

forAspect: #address;

subjectSendsUpdates: true.

 address]

ifFalse:

[address]

But, most of the code is automatically generated anyway.

Now, some confessions…

1) I forgot to put a title on this view

2) I forgot to write the code for the Close button

3) I had the wrong aspect in the payroll number field. Actually, I didn’t notice this until later.

But, as I was concentrating on this area of the application, these were simple to correct as soon as I noticed them. This is one of the ‘principles’ of MOT – make corrections as soon as you can.

The example object gives you a means for showing other developers what an Employee object is like. It forms the basis of a ‘knowledge database’ for the application.

Consider this…

Some time later, you’re asked to create a Section class that includes an employees instance variable – this will be a collection of the employees in the Section.

You need to create a view of the Section and so you need an example object to test the view…

exampleObject

"answer an example of a Section"

" Section exampleObject "

| section |

section := self new.

section

addEmployee: Employee exampleObject.

^section

Now, we’ve used the example object previously created to create this object. We know that it will answer a valid Employee, because we tested that earlier.

A Section with only one employee may not be very realistic but you can do most of your testing (such as adding and removing employees) with a Section with just one employee. It reflects another MOT principle – always try and keep your test code to a minimum.

This example also shows yet another principle of MOT – build tests from the bottom-up so you can reuse earlier tests in developing new ones.

How much Effort is MOT?

It’s difficult to give statistics, but…

1) I reckon I probably run a test every couple of changes I make to the code I’m developing.

2) Typically, running a test involves: Going to the class definition of the object I’m testing, finding the ‘test code’ category, finding the methods and running the sample code. Most tests open a window and may need you to do some things like pressing a few buttons.

3) Overall, I probably spend as much time testing as I do writing code.

But…

The benefits of having confidence in the code you write, the ease with which you can test new or old code and having a knowledge base available, more than make up for any additional effort.

MOT and Real Applications

I know you’re probably saying – “Nice idea, but how do I apply it in real applications?”

Well, let’s look at a (part of a) real application.

This reads some files, turns the data in them into objects and displays the objects so that the user can change them.

The models are quite complex (several different classes of sub-object) and the windows have fairly complex behaviour.

So…

I built a general purpose object reader. This was ‘infrastructure’ (it could be re-used by several applications) and it was tested first using MOT.

Then, I got some sample files. Since we were trying to generate objects from files, I built example objects from the sample files using the infrastructure.

This is a good example of bottom-up testing. The example objects aren’t simple, but they are built using software that was tested and so I was fairly confident the example objects themselves were working.

Now, I had the models. Next, I built the main view on the model. I then added test methods to the models to display the view. Since the model was functional, I could assume (unless it proved otherwise during testing) that any problems were with the code in the view and not in the model.

Right, I now had a model and a way of looking at it.

Now, I could gradually add features and explore ways of manipulating the model object.

During this process, if I made a change to a part of the model, I’d re-run the relevant tests.

Introducing MOT

The application you are working on may not have the Model/View separation and may be highly dependent on data coming from ‘outside’ itself.

As initial suggestions, consider these:

1) It may be worthwhile developing a ‘simulated environment’ (using examples of real data) to ensure repeatability and to avoid any risk of making damaging changes to the real data.

2) Even if the application code doesn’t separate Models and Views, the test code could. You could, for example, have a Tester object.

The MOT Principles

1. Test frequently – every few minutes or as soon as you’ve completed a testable chunk of code.

2. Test the domain objects, not the views.

3. Construct example objects for objects that hold data.

4. Test methods must run stand-alone and display results for testers.

5. Build tests from the bottom-up.

6. Test infrastructure code first, then application specific code.

7. Re-use as much test code as you can.

8. Keep the tests as simple as possible.

9. Ensure that running the tests is straightforward. Where possible, include the actual line of code needed to run the test.

10. Whenever you change code, always re-run the test for the code you’ve changed. If the changes affects the behaviour of the object, you may need to re-run higher level tests as well.

11. Always bear in mind that the tests form an essential knowledge base about your application.

12. Make corrections as soon as you can. If you find an error you can’t correct immediately, write it down so you won’t forget it.

