
Delving (Smalltalk) Source Code

Dr. Tom Tourwé
SEN / CWI

Pr. Kim Mens
INGI / UCL

Monday, September 6, 2004

with Formal Concept Analysis

September 6, 2004 ESUG 2004 Research Track 2

Overview

 Research goal
 A crash course on formal concept analysis
 Delving Smalltalk source code with FCA
 Experiments
 Results
 Conclusion

September 6, 2004 ESUG 2004 Research Track 3

Research Goal

 A lightweight source-code mining tool
– get “initial understanding” of structure of software system
– detect recurring patterns in the source code

 Formal concept analysis (FCA)
– A mathematical technique
– Known applications in data analysis and knowledge processing

 Can we use FCA to delve code for indications of patterns?
– Coding conventions
– Programming idioms and design patterns
– Opportunities for refactoring
– Relevant domain concepts

September 6, 2004 ESUG 2004 Research Track 4

object-
oriented functional logic static

typing
dynamic
typing

C++

Find relevant taxonomy of
programming languages

based on their common properties

Java

Smalltalk

Scheme

Prolog

A crash course on FCA — example

September 6, 2004 ESUG 2004 Research Track 5

A crash course on FCA — theory

A. Starts from
– a set of elements
– a set of properties of those elements
– incidence table

B. Determines concepts
– Maximal groups of elements and properties
– Group:

• Every element of the concept has those properties
• Every property of the concept holds for those elements

– Maximal
• No other element (outside the concept) has those same properties
• No other property (outside the concept) is shared by all elements

C. Organizes these concepts in a lattice structure

September 6, 2004 ESUG 2004 Research Track 6

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

A. Incidence table

September 6, 2004 ESUG 2004 Research Track 7

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concept 1

September 6, 2004 ESUG 2004 Research Track 8

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concept 2

September 6, 2004 ESUG 2004 Research Track 9

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concept 3

September 6, 2004 ESUG 2004 Research Track 10

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. More concepts …

September 6, 2004 ESUG 2004 Research Track 11

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. More concepts …

September 6, 2004 ESUG 2004 Research Track 12

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. More concepts …

September 6, 2004 ESUG 2004 Research Track 13

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concepts

September 6, 2004 ESUG 2004 Research Track 14

C. Concept Lattice

September 6, 2004 ESUG 2004 Research Track 15

Delving ST source code with FCA

 Elements : classes, methods, argument names
 Properties : substrings of classes, methods, …

Foo Zork
import: aFoo

Bar

asFoo: anObject

The “Foo” concept

September 6, 2004 ESUG 2004 Research Track 16

Delving source code

1. Generate the formal context
• Elements, properties & incidence relation

2. Concept Analysis
• Calculate the formal concepts
• Organize them into a concept lattice

3. Filtering
• Remove irrelevant concepts (false positives, noise,

useless, …)

4. Classify, combine and annotate concepts
• In a way that is more easy for a software engineer to

interpret

Foo Zork
import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 17

DelfSTof, our Code Delving Tool

September 6, 2004 ESUG 2004 Research Track 18

1. Generate formal context

 We want to group elements that share a substring
 As elements we collect

– all classes, methods and parameters
– in some package(s) of interest

 As properties : “relevant” substrings of element names
– Normalisation :

• extract terms based on where uppercases occur
• convert to lower case and remove special characters like ‘:’
• QuotedCodeConstant → { quoted, code, constant }

– Elimination of stopwords : with, do, object
– Stemming : reduce words to their root

 Incidence relation : An element has a certain property if
– It has the substring in its name

Foo Zork
import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 19

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:
inEnv: myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWith: inEnv:
myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

2. Concept Analysis
Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 20

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:
inEnv: myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWith: inEnv:
myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

2. Concept Analysis
Foo Zork

import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 21

3. Filtering

 Preprocessing to filter irrelevant properties :
– with little meaning : “do”, “with”, “for”, “from”, “the”, “ifTrue”, …
– too small (< 3 chars)
– ignore plurals, uppercase and colons

 Extra filtering
– Drop top & bottom concept when empty
– Drop concepts with two elements are less
– Drop concepts that group only classes

 More filtering needed (ongoing work)
– Recombine substrings belonging together
– Require some minimal coverage of element name by properties
– Concepts higher in the lattice may be more relevant (more properties)
– Avoid redundancy in discovered concepts

• Make better use of the lattice structure (Now it is “flattened”)

Foo Zork
import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 22

4. Classification,
Combination & Annotation
 Annotate concepts with their properties

– i.e. with the substring(s) shared by their elements
 Classification

– Single class concepts
• Elements are methods (or their parameters) in that class

– Hierarchy concepts
• Group classes, methods and parameters in same class hierarchy
• Annotate concept with root of hierarchy
• Annotate methods with implementing class

– Crosscutting concepts
• When two different class hierarchies are involved

 Combine concepts
– that belong together (subconcept relationship)

 Group methods
– belonging to the same class

Foo Zork
import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 23

Quantitative results

 Time to compute = a few seconds / minutes
 properties < elements is a good sign
 Still too much concepts remain after filtering

Upperlimit: theoretical < 2min(#elements, #properties); experimental < #elements

7115740352731 (52)StarBrowser

5131650247802 (135)DelfSTof

447124342287364834 (271)Ref.Browser

327

284

#filtered

1419

1206

#raw

24

22

time (sec)

4771370 (93)CodeCrawler

4381488 (111)Soul

#properties#elementsCase study

Foo Zork
import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 24

 Code duplication
 Design patterns

– Visitor, Abstract Factory, Builder, Observer

 Programming idioms
– Accessing methods, chained messages, delegating methods,

polymorphism

 Relevant domain concepts
– Correspond to frequently occurring properties
– “Unification”, “Bindings”, “Horn clauses”, “resolution”

 Opportunities for refactoring
 Some crosscutting concerns

Discovered “indications”
of patterns

Foo Zork
import: aFoo

Bar

asFoo: anObject

September 6, 2004 ESUG 2004 Research Track 25

Conclusion

 Current status : feasibility study
– Approach produced relevant results
– Efficiency is acceptable
– Tool needs refinement

• More advanced filtering ; extra checking a posteriori

 Future work : applying FCA to delve source code for
– aspects and crosscutting concerns

• based on “generic parse trees”
• by using an incidence relation that represents “message sends”

– refactoring opportunities
– Both Smalltalk and Java source code

