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Overview

 Research goal
 A crash course on formal concept analysis
 Delving Smalltalk source code with FCA
 Experiments
 Results
 Conclusion
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Research Goal

 A lightweight source-code mining tool
– get “initial understanding” of structure of software system
– detect recurring patterns in the source code

 Formal concept analysis (FCA)
– A mathematical technique
– Known applications in data analysis and knowledge processing

 Can we use FCA to delve code for indications of patterns?
– Coding conventions
– Programming idioms and design patterns
– Opportunities for refactoring
– Relevant domain concepts
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A crash course on FCA — example
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A crash course on FCA — theory

A. Starts from
– a set of elements
– a set of properties of those elements
– incidence table

B. Determines concepts
– Maximal groups of elements and properties
– Group:

• Every element of the concept has those properties
• Every property of the concept holds for those elements

– Maximal
• No other element (outside the concept) has those same properties
• No other property (outside the concept) is shared by all elements

C. Organizes these concepts in a lattice structure
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object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

A. Incidence table
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object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

B. Concepts
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C. Concept Lattice
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Delving ST source code with FCA

 Elements : classes, methods, argument names
 Properties : substrings of classes, methods, …

Foo Zork
import: aFoo

Bar

asFoo: anObject

The “Foo” concept



September 6, 2004 ESUG 2004 Research Track 16

Delving source code

1. Generate the formal context
• Elements, properties & incidence relation

2. Concept Analysis
• Calculate the formal concepts
• Organize them into a concept lattice

3. Filtering
• Remove irrelevant concepts (false positives, noise,

useless, …)

4. Classify, combine and annotate concepts
• In a way that is more easy for a software engineer to

interpret

Foo Zork
import: aFoo

Bar

asFoo: anObject
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DelfSTof, our Code Delving Tool
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1. Generate formal context

 We want to group elements that share a substring
 As elements we collect

– all classes, methods and parameters
– in some package(s) of interest

 As properties : “relevant” substrings of element names
– Normalisation :

• extract terms based on where uppercases occur
• convert to lower case and remove special characters like ‘:’
• QuotedCodeConstant → { quoted, code, constant }

– Elimination of stopwords : with, do, object
– Stemming : reduce words to their root

 Incidence relation : An element has a certain property if
– It has the substring in its name

Foo Zork
import: aFoo

Bar

asFoo: anObject



September 6, 2004 ESUG 2004 Research Track 19

…

X

-

-

-

variable

…
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-

-
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messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:
inEnv: myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWith: inEnv:
myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

2. Concept Analysis
Foo Zork

import: aFoo

Bar

asFoo: anObject
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3. Filtering

 Preprocessing to filter irrelevant properties :
– with little meaning : “do”, “with”, “for”, “from”, “the”, “ifTrue”, …
– too small (< 3 chars)
– ignore plurals, uppercase and colons

 Extra filtering
– Drop top & bottom concept when empty
– Drop concepts with two elements are less
– Drop concepts that group only classes

 More filtering needed (ongoing work)
– Recombine substrings belonging together
– Require some minimal coverage of element name by properties
– Concepts higher in the lattice may be more relevant (more properties)
– Avoid redundancy in discovered concepts

• Make better use of the lattice structure (Now it is “flattened”)

Foo Zork
import: aFoo

Bar

asFoo: anObject
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4. Classification,
Combination & Annotation
 Annotate concepts with their properties

– i.e. with the substring(s) shared by their elements
 Classification

– Single class concepts
• Elements are methods (or their parameters) in that class

– Hierarchy concepts
• Group classes, methods and parameters in same class hierarchy
• Annotate concept with root of hierarchy
• Annotate methods with implementing class

– Crosscutting concepts
• When two different class hierarchies are involved

 Combine concepts
– that belong together (subconcept relationship)

 Group methods
– belonging to the same class

Foo Zork
import: aFoo

Bar

asFoo: anObject
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Quantitative results

 Time to compute = a few seconds / minutes
   properties  <  elements  is a good sign
 Still too much concepts remain after filtering

Upperlimit: theoretical < 2min(#elements, #properties); experimental < #elements

7115740352731 (52)StarBrowser

5131650247802 (135)DelfSTof

447124342287364834 (271)Ref.Browser

327

284

#filtered

1419

1206

#raw

24

22

time (sec)

4771370 (93)CodeCrawler

4381488 (111)Soul

#properties#elementsCase study

Foo Zork
import: aFoo

Bar

asFoo: anObject
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 Code duplication
 Design patterns

– Visitor,  Abstract Factory, Builder, Observer

 Programming idioms
– Accessing methods, chained messages, delegating methods,

polymorphism

 Relevant domain concepts
– Correspond to frequently occurring properties
– “Unification”,  “Bindings”, “Horn clauses”, “resolution”

 Opportunities for refactoring
 Some crosscutting concerns

Discovered “indications”
of patterns

Foo Zork
import: aFoo

Bar

asFoo: anObject
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Conclusion

 Current status : feasibility study
– Approach produced relevant results
– Efficiency is acceptable
– Tool needs refinement

• More advanced filtering ; extra checking a posteriori

 Future work : applying FCA to delve source code for
– aspects and crosscutting concerns

• based on “generic parse trees”
• by using an incidence relation that represents “message sends”

– refactoring opportunities
– Both Smalltalk and Java source code


