
Design, Implementation and Evaluation of the

Resilient Smalltalk

Embedded Platform

g

Mads Torgersen

University of Aarhus



Joint work by

Esmertec OOVM:

� Lars Bak

� Steffen Grarup

� Jakob Roland Andersen

� Kasper Verdich Lund

Aarhus University:

� Toke Eskildsen

� Klaus Marius Hansen

� Mads Torgersen



The drill of small embedded systems

� Low-level unsafe language

� Platform-dependent semantics

� Expensive code-run cycle

� Debugging requires special configuration or even

hardware

� No post-deployment serviceability



We would prefer...

� High level, safe language

� Platform independence

� Complete code/run integration

� Full, continuous inspection/modification

� ... also after deployment

...please!



We would prefer...

� High level, safe language

� Platform independence

� Complete code/run integration

� Full, continuous inspection/modification

� ... also after deployment

...please!

In practice...

Smalltalk!



But...

� Resource constrained devices

� Real-time demands

� No GUI

...not so Smalltalk.

� Resilient: How small can we get but stay nice?



The Resilient Platform

� No OS (Smalltalk back in charge!)

� External programming environment through
reflective interface (no self modification)

� Small interpreter-based VM (no native compilation)

� Real-time GC

� Eat our own dog-food (scheduler, tcp/ip stack etc.
written in Smalltalk)

� Some language changes



Programming environment

� Eclipse plug-in with network connection to running

device

� Editor, byte-code compiler, debugger

� Source code based!

� Keeps source and device synchronised via reflective

interface

� Designed towards a �Smalltalk experience�

� Can be connected to VM at any stage



The Resilient programming language

� Several deviations from standard Smalltalk

� compliance not a priority

� Source code based � syntax for classes

� Low-level synchronisation construct test-and-set

� LIFO blocks � statically typed!

� Evaluation order �backwards�

� Lexical namespaces



Example

Mutex = Object (
  | owner |

  do: [action] = (
    [ owner ? nil := Scheduler current ] 
      whileFalse: [ Scheduler yield ].
    action value.
    owner := nil
  )
)



Typed LIFO blocks

� Surviving blocks

� performance problem

� rarely used

� Resilient: LIFO (last-in-first-out) behaviour

� compiler enforced

� � type declaration�: do: [ action ]  = ( ... )

� cannot be assigned or returned



Typed LIFO blocks

� Pros

� No heap allocated environments: significant

performance boost

� No stress on GC

� Safe non-local return

� Cons

� Loss of purity (two static types, not one)

� Comparators

� GUI callbacks



Virtual machine

� Interpretation � no compilation

� space for speed

� no bridges burnt

� Everything in the heap

� embedded memory too small for segmentation

� growable stacks

� bytecode for methods and blocks

� everything subject to GC



Virtual machine

� Real time GC

� Philosophy: Small is better than fast, but small is

also often fast

� footprint < 64K

� realistic applications comfortable in 128K

� fast, but not as fast as compiled code

� Safe memory access

io := Memory at: 16r90040000 size: 16r20



Conclusions

� Small Smalltalk is for real

� Unorthodox approach helps

� Comfortable niche between C/assembler and Java

CLDC

� Embedded programming for ordinary programmers

� Open issues

� deployment

� performance-critical code



Oh, by the way...

� ® © � ® © � ® © � ® © � ® © �
® © � ® © � ® © � ® © � ® © � ®
© � ® © � ® © � ® © � ® © � ® ©
� ® © � ® © � ® © � ® © � ® © �
® © � ® © � ® © � ® © � ® © � ®
© � ® © � ® © � ® © � ® © � ® ©
� ® © � ® © � ® © � ® © � ® © �
® © � ® © � ® © � ® © � ® © � ®
© � ® © � ® © � ® © � ® © � ® ©
� ® © � ® © � ® © � ® © � ® © �



Thank you!�


