
Winning the Application
Server Arms Race

Using Smalltalk to Redefine Web Development
Avi Bryant

Web apps: why bother?

“I’m more of the mind that HTML based
apps suck.”

— James Robertson

Web apps: why bother?

“One of the reasons to use Lisp in writing
Web-based applications is that you ca!
use Lisp. When you’re writing software
that is only going to run on your own
servers, you can use whatever language
you want.”

— Paul Graham

What is a web app?

“A collection of functions that take
HTTP requests as input and produce
HTTP responses as output.”

What is a web app?

User with Web Browser

GET /foo?x=3
...

Content-Type:
text/html

...

/foo

What is a web app?

User with Web Browser

GET /foo?x=3
...

Content-Type:
text/html

<a href=“/bar”
...

/foo /bar /baz

Client/server app

VisualWorks Client

GemStone Server

Get
Shipping
Address

Get
Billing

Address

Get
Payment

Info

Show
Confirmation

Get
Shipping
Address

Get
Billing

Address

Get
Payment

Info

Show
Confirmation

Cart info Cart info
Shipping info

Cart info
Shipping info
Billing info

Cart info
Shipping info
Billing info

Payment info

/shipping

User with Web Browser

cart

/billing

cart
shipping

cart
shipping

/payment

cart
shipping
billing

cart
shipping
billing

cart
shipping
billing

payment

User with Web Browser

cart cart
shipping

cart
shipping

cart
shipping
billing

cart
shipping
billing

cart
shipping
billing

payment

formatting

processing

formatting

do stuff

processing

formatting

do stuffdo stuff

processing

an App

a32cf6d

a Sessiona Sessiona Session

76ebc65
...

User

GET /foo?sid=a32cf6d

... ...

/foo

an App

a32cf6d

a Sessiona Sessiona Session

76ebc65
...

User

GET /bar?sid=a32cf6d

... ...

/bar

/shipping

User with Web Browser

/billing

sid
shipping

/payment

sid
billing

sid
payment

a Session
shipping billing

sid sid sid

sessions

Book
flight

Browse
flights

Choose
flight

Choose
seat

Why global session state is evil

Book
flight

Browse
flights

Choose
flight

Choose
seat

Choose
flight

Choose
seat

Why global session state is evil

Book
flight

Browse
flights

Choose
flight

Choose
seat

Choose
flight

Choose
seat

?

Why global session state is evil

an App

a32cf6d

a Sessiona Sessiona Session

76ebc65
...

a Component

f5c

a Component a Component

a21...

... <input name=“page”
value=“f5b”>...

a Session

a21
a BrowseFlights

POST ... page=a21&flight=747

... <input name=“page”
value=“a21”>...

User a ChooseFlight

f5b

a Session

a21
a BrowseFlights

POST ... page=a21&flight=525

User

... <input name=“page”
value=“cc4”>...

a ChooseFlight

cc4
f5b

a ChooseFlight

WOComponent
subclass: #BillingAddress
instanceVariableNames: ‘ship bill’

response
^ ‘<form ...’

processRequest: aRequest
bill := self addressFrom: aRequest.

^ PaymentInfo new
shippingAddress: ship;
billingAddress: bill;
yourself

“Seaside is to most other Smalltalk web
toolkits as Smalltalk is to most other OO
languages, it’s as simple as that.”

— Cees de Groot

WebObjects

• http://www.apple.com/webobjects/

• http://jakarta.apache.org/tapestry/

WOComponent
subclass: #BillingAddress
instanceVariableNames: ‘ship bill’

processRequest: aRequest
bill := self addressFrom: aRequest.

^ PaymentInfo new
shippingAddress: ship;
billingAddress: bill;
yourself

WOComponent
subclass: #BillingAddress
instanceVariableNames: ‘ship bill’

processRequest: aRequest
bill := self addressFrom: aRequest.

^ PaymentInfo new
shippingAddress: ship;
billingAddress: bill;
next: (ConfirmationPage new)
yourself

WOComponent
subclass: #BillingAddress
instanceVariableNames: ‘ship bill’

processRequest: aRequest
bill := self addressFrom: aRequest.

^ next
shippingAddress: ship;
billingAddress: bill;
yourself

checkoutProcess
^ (ShippingAddress new next:

(BillingAddress new next:
(PaymentInfo new next:

(ConfirmationPage new))))

WOComponent
subclass: #BillingAddress
instanceVariableNames: ‘ship bill’

processRequest: aRequest
bill := self addressFrom: aRequest.

^ next value: bill

“BillingAddress new next:
[:bill |
PaymentInfo new
billingAddress: bill;
....]”

checkoutProcess
^ ShippingAddress new next:

[:ship |
BillingAddress new next:
[:bill |
PaymentInfo new next:
[:pay |
ConfirmationPage new
shippingAddress: ship;
billingAddress: bill;
paymentInfo: pay;
yourself]

checkoutProcess
^ PaymentInfo new next:

[:pay |
ShippingAdress new next:
[:ship |
BillingAddress new next:
[:bill |
ConfirmationPage new
shippingAddress: ship;
billingAddress: bill;
paymentInfo: pay;
yourself]

“...programming language features do well
(all other things being equal) when they
eliminate either distant or dynamic state
and replace it with either close or lexical
state. The underlying point being that we
may favour language features that
facilitate copying and modifying small
bits of code -- fragments which work in
their new context -- as a fundamental
programming activity.”

— Graydon Hoare

checkoutProcess
|pay ship bill|
pay := self call: PaymentInfo new.
ship := self call: ShippingAddress new.
bill := self call: BillingAddress new.
self call:
(ConfirmationPage new
shippingAddress: ship;
billingAddress: bill;
paymentInfo: pay)

“We could write the code to say, if the
user clicks on this link, go to the color
selection page, and then come back
here.... It made our software visibly more
sophisticated than that of our
competitors.”

— Paul Graham

<form>
Name: <input name="name">

Street: <input name="street">

City: <input name="city">

Country:
<select name="country">
<option value="CA">Canada</option>
<option value="US">US</option>

</select>

<input type="submit">
</form>

aRequest(‘name’->‘Avi’,
‘street’-> ‘123 W. 15th’
‘city’->‘Vancouver’,
‘country’-> ‘CA’)

renderOn: html

html form: [
html label: ‘Name’.
html textInputNamed: ‘name’; break.
html label: ‘Street’.
html textInputNamed: ‘street’; break.
html label: ‘City’.
html textInputNamed: ‘city’; break.
html label: ‘Country’.
html selectNamed: ‘country’ do: [
html optionNamed: ‘CA’ label: ‘Canada’.
html optionNamed: ‘US’ label: ‘US’.

]; break.
html submitButton.

]

processRequest: aRequest
name := aRequest at: ‘name’.
street := aRequest at: ‘street’.
...

renderOn: html

html form: [
html label: ‘Name’.
html textInputWithCallback: [:v | name := v]; break.
html label: ‘Street’.
html textInputWithCallback: [:v | street := v]; break.
html label: ‘City’.
html textInputWithCallback: [:v | city := v]; ‘city’; break.
html label: ‘Country’.
html selectFromList: self countries; break.
html submitButtonWithAction: [self saveAddress].

]

<form>
Name: <input name="1">

Street: <input name="2">

City: <input name="3">

Country:
<select name="4">
<option value="5">Canada</option>
<option value="6">US</option>

</select>

<input type="submit" name="7" value="Submit">
</form>

aRequest(
 ‘1’->‘Avi’,
‘2’->...,

 ‘7’-> ‘Submit’)

aCallbackStore(
 ‘1’->[:v | name := v],

‘2’->...,
‘7’->[self saveAddress])

