
Lukas Renggli, 2005 Seaside 1

Call/Answer

Lukas Renggli

renggli@iam.unibe.ch, University of Bern

renggli@netstyle.ch, netstyle.ch GmbH

Lukas Renggli, 2005 Seaside 2

Problem

One Page

==

One script to run

Lukas Renggli, 2005 Seaside 3

Solution

#call: aComponent

Transfer control to aComponent

aComponent will be given control

#answer: anObject

anObject will be returned from #call:

Receiving component will be removed

Lukas Renggli, 2005 Seaside 4

Components
(Web Browser)

B>>go

! ...
! self answer: 77.

B

Server
(Source Code)

A
A>>go

! x := self call: B .
! x asString.

A
A>>go

! x := self call: B .
! x asString.
! -> 77

Lukas Renggli, 2005 Seaside 5

Call/Answer

Why do other frameworks not give you this
simplicity?

What is the magic behind call/answer?

How is it implemented?

Lukas Renggli, 2005 Seaside 6

What is a continuation?

Escaper

+ Context

= Continuation

Lukas Renggli, 2005 Seaside 7

The Escaper

Object>>withEscaperDo: aBlock

“Capture a starting-point and
eventually return to it by evaluating
the block that is passed into aBlock.”

^ aBlock value: [:result | ^ result].

Lukas Renggli, 2005 Seaside 8

break / continue

self withEscaperDo: [:break |
[condition] whileTrue: [

self withEscaperDo: [:continue |
...
break value: 2.
...]]].

Lukas Renggli, 2005 Seaside 9

The Context

“A pseudo variable representing the current
execution context. It contains references to
the parent context, the receiver, the
program pointer, the arguments and the
current temporary variables.”

thisContext

Lukas Renggli, 2005 Seaside 10

thisContext

Lukas Renggli, 2005 Seaside 11

The Continuation

Takes a one-argument block, that will be evaluated
immediately with a continuation-object passed in.

If this continuation is evaluated later on, it will abandon
whatever calculation is in effect at that time and will
instead resume the calculation that was in effect when the
continuation was captured.

Continuation class>>currentDo: aBlock

Lukas Renggli, 2005 Seaside 12

Simple Continuation

| result continuation |
result := Continuation currentDo: [:cc |

continuation := cc.
false].

result
ifFalse: [continuation value: true].

self assert: x.

Lukas Renggli, 2005 Seaside 13

Examples

Control structures

Exception handling

Non-local returns

Co-routines

Generators

Web application flow

Lukas Renggli, 2005 Seaside 14

Seaside & Continuations

send-suspend: page-builder

 return continuation: [:cc |
 cc-url := create unique url.
 register cc-url in server: [:request |
 cc value: request].
 html := build html with
 page-builder and cc-url.
 send response html.
 terminate process].

Lukas Renggli, 2005 Seaside 15

#call:

WAComponent>>call: aComponent

^ Continuation currentDo: [:cc |
self

show: aComponent
onAnswer: cc].

Lukas Renggli, 2005 Seaside 16

#show:onAnswer:

WAComponent>>show: aComponent

onAnswer: aContinuation

| delegation |
delegation := WADelegation new

delegate: aComponent.
aComponent

onAnswer: [:value |
delegation remove.
aContinuation value: value].

self addDecoration: delegation.

Lukas Renggli, 2005 Seaside

Summary

Seaside provides a high abstraction over HTTP
and programmers don’t need to be aware of
continuations that it is using to archive this.

17 Lukas Renggli, 2005 Seaside

Further Reading

Stéphane Ducasse, Adrian Lienhard, Lukas Renggli,
Seaside – Multiple Control Flow Web Application
Framework

Avi Bryant, HREF Considered Harmful
http://www.cincomsmalltalk.com/userblogs/avi/
blogView?searchCategory=continuations

Lukas Renggli, Seaside Tutorial:

Questions: 36 – 40

18

