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Problem

One Page

==

One script to run
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Solution

#call: aComponent

Transfer control to aComponent

aComponent will be given control

#answer: anObject

anObject will be returned from #call:

Receiving component will be removed
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Components 
(Web Browser)

B>>go

! ...
! self answer: 77.

B

Server 
(Source Code)

A
A>>go

! x := self call:  B .
! x asString.

A
A>>go

! x := self call:  B .
! x asString. 
!         -> 77
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Call/Answer

Why do other frameworks not give you this 
simplicity?

What is the magic behind call/answer?

How is it implemented?
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What is a continuation?

Escaper

+ Context

= Continuation
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The Escaper

Object>>withEscaperDo: aBlock

“Capture a starting-point and 
eventually return to it by evaluating 
the block that  is passed into aBlock.”

^ aBlock value: [ :result | ^ result ].
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break / continue

self withEscaperDo: [ :break |
[ condition ] whileTrue: [

self withEscaperDo: [ :continue |
...
break value: 2.
... ] ] ].
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The Context

“A pseudo variable representing the current 
execution context. It contains references to 
the parent context, the receiver, the 
program pointer, the arguments and the 
current temporary variables.”

thisContext
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thisContext
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The Continuation

Takes a one-argument block, that will be evaluated 
immediately with a continuation-object passed in.

If this continuation is evaluated later on, it will abandon 
whatever calculation is in effect at that time and will 
instead resume the calculation that was in effect when the 
continuation was captured.

Continuation class>>currentDo: aBlock
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Simple Continuation

| result continuation |
result := Continuation currentDo: [ :cc |

continuation := cc. 
false].

result
ifFalse: [ continuation value: true].

self assert: x.
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Examples

Control structures

Exception handling

Non-local returns

Co-routines

Generators

Web application flow
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Seaside & Continuations

send-suspend: page-builder

    return continuation: [ :cc |
        cc-url := create unique url.
        register cc-url in server: [ :request |
            cc value: request ].
        html := build html with
            page-builder and cc-url.
        send response html.
        terminate process ].
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#call:

WAComponent>>call: aComponent

^ Continuation currentDo: [ :cc |
self

show: aComponent
onAnswer: cc ].
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#show:onAnswer:

WAComponent>>show: aComponent

onAnswer: aContinuation

| delegation |
delegation := WADelegation new

delegate: aComponent.
aComponent

onAnswer: [ :value |
delegation remove.
aContinuation value: value ].

self addDecoration: delegation.
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Summary

Seaside provides a high abstraction over HTTP 
and programmers don’t need to be aware of 
continuations that it is using to archive this.
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Further Reading

Stéphane Ducasse, Adrian Lienhard, Lukas Renggli,  
Seaside – Multiple Control Flow Web Application 
Framework

Avi Bryant, HREF Considered Harmful
http://www.cincomsmalltalk.com/userblogs/avi/
blogView?searchCategory=continuations
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