
Testing Seaside Components

C. David Shaffer
Department of Mathematics and Computer Science

Westminster College

Features

● Tests run on server = access to
component being tested

● Uses Smalltalk debugger
● Web test runner
● Available for Squeak and VisualWorks

(thanks to Michel Bany for VW port!)

First example

renderContentOn: html
html cssId: 'main'.
html span: 'hello'

Class SCTestComponent1

SCComponentTestCase subclass: #SCSampleComponentTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'SeasideTesting-Examples'

First example

testComponent1
self newApplicationWithRootClass: SCTestComponent1.
self establishSession.
self assert: (self lastResponse

stringWithId: 'main') = 'hello'

First example

Following anchors

renderContentOn: html
html cssId: 'first'.
html
anchorWithAction: [self firstPressed]
text: 'first link'.

Class SCAnchorDemo

firstPressed
self inform: 'pressed'

SCAnchorDemo

testAnchor
self newApplicationWithRootClass: SCAnchorDemo.
self establishSession.
self followAnchor: (self lastResponse

anchorWithId: 'first').

self assert: (self lastResponse
containsString: 'pressed')

“alternatively”
self assert: (self lastResponse

elementsNamed: 'h3') first
contentString = 'pressed'

Following anchors

lastResponse

Response parsed --> XML DOM (XMLElement)

Wrapped in SCSeasideResponse:

● Conveience methods for searching for XML elements
by id, class or name (tag)

● Method for wrapping parts in subclasses of
SCXMLElementWrapper. For example:

● SCSubmitButtonHtmlInput

● SCTextAreaHtmlInput

● SCSeasideForm

● SCSeasideAnchor

Finding anchors

anchorWithId: -- uses CSS id

anchorWithLabel: -- text inside A tag

anchors – collection of anchors in order of occurrence

Selected methods of SCSeasideResponse which
return SCSeasideAnchor(s)

Web TestRunner

Web TestRunner

Forms

renderContentOn: html
html form: [
html text: 'Name: ';
cssId: 'name';
textInputOn: #name of: self; br;
text: 'Age: ';
cssId: 'age';
textInputOn: #age of: self; br;
submitButtonWithAction:
[self displayInfo]text:'Display']

Class SCFormDemo

Class SCFormDemo

testDisplay
| form |
self newApplicationWithRootClass: SCFormDemo.
self establishSession.
form := self lastResponse forms first.
form textInputWithId: 'name' value: 'Bob Smith'.
form textInputWithId: 'age' value: '40'.
self

submitForm: form
pressingButton: form buttons first.

self assert: (self lastResponse
elementsNamed: 'h3') first

contentString =
'Hello Bob Smith. You are 40 years old.'

Forms

What do we test?

● State: often tests of state are less brittle
that tests of displayed content

● “answer”: components that provide a
Seaside answer

● Callbacks: components that provide
hooks

Seaside component more than just visual display

Need access to Seaside component

Testing the Counter (WACounter)

#component answers the instance of the
component used to satisfy the last request

Seaside may be keeping track of several
“versions” of that component registered with
#registerObjectForBacktracking:

Testing the Counter (WACounter)

Testing the Counter (WACounter)

testBack
self newApplicationWithRootClass: WACounter.
self establishSession.
self followAnchor: (self lastResponse

anchorWithLabel: '++').
self followAnchor: (self lastResponse

anchorWithLabel: '++').

Testing the Counter (WACounter)

testBack
self newApplicationWithRootClass: WACounter.
self establishSession.
self followAnchor: (self lastResponse

anchorWithLabel: '++').
self followAnchor: (self lastResponse

anchorWithLabel: '++').
self assert: self component count = 2.

Testing the Counter (WACounter)

testBack
self newApplicationWithRootClass: WACounter.
self establishSession.
self followAnchor: (self lastResponse

anchorWithLabel: '++').
self followAnchor: (self lastResponse

anchorWithLabel: '++').
self assert: self component count = 2.
self back.

Testing the Counter (WACounter)

testBack
self newApplicationWithRootClass: WACounter.
self establishSession.
self followAnchor: (self lastResponse

anchorWithLabel: '++').
self followAnchor: (self lastResponse

anchorWithLabel: '++').
self assert: self component count = 2.
self back.
self

followAnchor: (self lastResponse
anchorWithLabel: '++').

self assert: self component count = 2

Testing the Counter (WACounter)

Detecting answers

Detecting answers

Detecting answers

testYes
| form |
self newApplicationWithRootClass: WAYesOrNoDialog.
form := self establishSession forms first.
self

submitForm: form
pressingButton: (form buttonWithValue: 'Yes').

self assert: self answer

Detecting answers

Related methods:

answer – components last answer (error if none)

componentAnswered – boolean, has the component
answered?

componentAnswered: value – did the component
answer the specified value?

Testing callbacks

WAMiniCalendar
Must supply canSelectBlock to
instance – server creates instance!

Optional selectBlock callback

WAMiniCalendar

testSelectedDate
| selected anchors |
self

newApplicationWithRootClass: WAMiniCalendar
initializeWith: [:cal |

cal canSelectBlock: [:date | true].
cal selectBlock: [:date | selected := date]].

WAMiniCalendar

testSelectedDate
| selected anchors |
self

newApplicationWithRootClass: WAMiniCalendar
initializeWith: [:cal |

cal canSelectBlock: [:date | true].
cal selectBlock: [:date | selected := date]].

self establishSession.
self assert: selected isNil.
anchors := self lastResponse

anchorsWithLabel:
(Date today dayOfMonth printString).

self followAnchor: anchors last.
self assert: selected = Date today.

Other topics...

● Session also available
● Hook for configuring application
● History in Web TestRunner is “live”
● Marking interactions for visual

inspection
● http://www.cdshaffer.com/david/Seaside

Issues

● Visual appearance not tested

– Support for storing snapshots of pages for
human testers to view

● Client scripting (Javascript/DHTML) not
tested – Squelenium Demo?

Other free frameworks
● SmallHttpUnit

– VW, runs “outside” server

– Excellent API for accessing page elements

● HttpUnit

– Java, runs “outside” server

● Cactus

– Java, designed to run in-container like
SeasideTesting

● StrutsTestCase – like Cactus+HttpUnit

Conclusions

● Test components in isolation or in larger
application

● Can interact directly with
component/session to test state

● Can test back button behavior

