
Smalltalk Solutions 2002, Cincinnati, 22 - 24 April 2002

When the world ends I want to be in Cincinnati; things happen ten years
later there : Mark Twain (quoted by the mayor in a welcome speech that
had three good jokes and, better still, was not too long). I can report that
the conference was a lot more interesting than Mark Twain would have
expected and, while the end of the world may come late in Cincinnati, the
long-overdue end of the Java phenomenon may be happening early there.
(Frequent changes between thunderstorms and pleasant weather also
made my visit to Cincinnati more interesting than Twain s quote would
suggest.)

In the UK, we sometimes have the impression of the USA as the land of
political correctness and cynicism. I m happy to report that, in Cincinnati
at least, these trends have clearly not yet overcome all more old-
fashioned views. The conference opening (combined with that of the co-
running Cincom Control User Group) featured a patriotic medley of
american songs well-presented by the Cincinnati school of the performing
arts. Being sufficiently old-fashioned myself to wonder whether the 1776
rebellion against the crown was not a most questionable innovation, I
nevertheless found this a pleasantly different way to open a conference.

A visit to the impressive Newport aquarium on Monday night was fun.
Cincom stood us dinner on Tuesday and ice cream on Wednesday.

Style
In the text below, I or my refers to Niall Ross; speakers are referred to
by name or in the third person. A question asked in or after a talk is
prefaced by Q. (occasionally I identify the questioner if it seems
relevant). A question not prefaced by Q. is a rhetorical question asked
by the speaker (or is just my way of summarising their meaning).

Author s Disclaimer and Acknowledgements
This report was written by Niall Ross of eXtremeMetaProgrammers Inc
(send any comments to nfr@bigwig.net). It is as accurate as my speed of
typing in talks and my memory of them afterwards can make it. My
thanks to all to the speakers and participants whose work gave me
something to report. Thanks also to the conference sponsors: Cincom
Systems, CG E&Y, Gemstone Systems, IBM, Object Arts, Synchrony Systems, Inc.,
Precision Systems, Reiling Consulting Corporation and Totally Objects.

As there were usually six and sometimes seven (!!!) programme tracks,
plus BOFs and ad-hoc discussions, I could not attend, still less report on,
half of what happened. (Some of the choices forced by the schedule were
very painful; should I listen to Dave Simmons on Smallscript, Eric
Clayberg on advanced VA programming, or Don Roberts and John Brant
on Refactoring?) Slides of all talks should soon be on the conference
website (http://www.gosmalltalk.com/). John McIntosh has notes on
many of the talks I missed; see his report

http://www.gosmalltalk.com/

http://wiki.cs.uiuc.edu/CampSmalltalk/
Smalltalk+Solutions+2002+Trip+report.

Summary of Presentations
I have sorted the talks I attended into various categories:

Applications

eXtreme Programming and Testing

Patterns and Frameworks

Development and Deployment Platforms

Miscellaneous

followed by Other Discussions, Follow-up Actions and my Conclusions.

Opening (shared with Cincom Control Users Group)
After the rousing opening (see above), Tom Nies speech stressed
Cincom s support for collaborative web-enabled business models. Next
came a philosophical Keynote (Think Naked, Marc Marsan, Marco Polo
Explorers). Kent Beck says an extreme programmer needs a modicum of
courage and conviction. Marc s talk, amusingly if not very deeply, made
the same point. His equivalents of the smiley (I agree with you so you
can stop talking) and rat-hole (off-line this discussion) signs my team
uses were spheres with faces on them which he encouraged us to throw at
people who came out with OTT ideas. The spheres were soft but the
message still seemed a trifle mixed. He advised thinkers to see others
reactions to way-out ideas as invitations to explain further and said that
no concept should be sacred when thinking out of the box. These are
common ideas but in my opinion wrong: a window lets you see through a
wall but if you also see through the objects outside then you re blind.
Thinking achieves nothing unless some concepts are sacred. I ducked out to see
the exhibitors area.

Exhibitors
Totally Objects had a great Smalltalk Solutions offer (their entire VA
toolset at 70% off) and had a good show; some very positive comments
about them made by clients.

I helped the VA people pin up their banners and talked to Mark about
how the VA packager maps CompiledMethods and how to package
method wrappers.

I discussed meta-programming frameworks with Paul Baumann on the
Gemstone stand. A Gemstone-oriented consultancy (Rolling Stone -
Gemstone administration tools, etc.) also had a stand.

I won a CGEY T-shirt by providing three questions to their Smalltalk
quiz, interspersed with three from Eric Clayberg, which set me a
challenging standard. (However as Dr. Johnson said, You should never
be embarrassed in exams because the greatest fool can ask more than the
wisest can answer. , so I think those who won T-shirts by answering three

http://wiki.cs.uiuc.edu/CampSmalltalk/

questions achieved most.) CGEY s Smalltalk consultancy arm is XP-
oriented: they like to run contracts with clients according to XP s tenets.

I failed to win the GPS that Precision (Smalltalk placements) were
offering. Perhaps it s as well; my yacht has two already.

Synchrony provide tools and consultancy for migrating between dialects.

Object Arts (Dolphin) had a stand but I never caught them at it.

I talked with Mark Foulkrod of Silvermark about what instrumentation
TestMentor adds to VA UI widgets, and whether my deep comparison
tests could invoke it.

The Why Smalltalk stand projected slides on various Smalltalk projects
during breaks (exhibitors area was also coffee area).

Applications
MarketPlaces Trader, Reinout Heeck, SOOPS
This system, implemented in VW, provide one-click trading of stocks in
real-time. (Can be dangerous - it once raised 1000 orders per second due
to someone resting a book on keyboard - but warnings protect you.)
Supervisor function monitors risk exposure and margin for each trader.
The system presents stocks, to-do-list for day, portfolio (separate
subsystem as required by Dutch law), status of trades, options, etc.

It was first developed as a value-add to raw market information. A leased
line between premises and customer, essentially an ethernet connection
plus lots of encryption, transfers the trading information. (Satellite dish is
weakest link; some parts of customer s system designed to work on
deltas; bird flies past dish, lose delta).

The system permissions need to be flexibly configurable; people on
holiday or sick need to hand their trading portfolio management
permissions to others and every now and then there is a panic to get
things done that needs lots of extra permissions.

Their system took 3 hours to start up early in development due to the time
needed to pull data from the customer s AS400 system (later cut to 20
minutes). Smalltalk s ability to develop without restarting was therefore
very useful to them.

Their first client had a very complex model: client and server shared
object model. The second was simpler. The third needed complex
communication between client and server, leading to complex timing
issues that they solved. They are now working on a trading solution
(called SpotLight) for their fourth client, power exchanges. The current
power market trading system is very slow (trades can take 10 seconds).
They duplicated that system analysis model in Smalltalk and are iterating
towards the delivered solution; the client is enthusiastic. A power trade is
displayed as graphs and data, validated and colour-coded. Smalltalk also

makes deployment easy; the traders used to need smartcards, hence CD
for smartcard software upgrades, another for PC software upgrades, etc.
Now, Smalltalk VM is installed once, then upgrades are easy.

They started developing SpotLight in VW7 but went back to VW5i.4
with back-ported RB and other tools because 7 was not stable with
respect to Store at that time; they hope to deploy in 7. Their code is
written in English (previous power-trade system was written by Spanish
company; babelFish does not work on 3 letter acronyms in its database).

They use State Replication Protocol (from Gemstone, written by Paul
Baumann) to encode data for passing between traders. Updated objects
send changed messages to clients; timing issues about not changing while
client operating on needed care. Reinout made the server single-threaded
(sounds odd but right for this case). The server encodes an update as SRP
and it puts in a client s queue, all in single thread. For their scale and
given that Reinout s team would have needed training in multi-process
issues, he found single-threaded the simplest thing that could work. (May
change later, to scale; his team has now learned a lot).

Reinout then handed over to Danny Doog, an independent day-trader, to
demonstrate the system. Danny dialled in to Amsterdam. His day-trader
firm is small (only 3) so does not use the system s risk manager feature (a
firm of 20 would use it). Start screen showed three traders, each with own
fee, trade clearing cost, etc. Danny selected some stocks, examined the
market depth (open price, top price, and many other trade data summary
statistics). Stocks whose trade distribution becomes too abnormal get
frozen for five minutes, then are reopened. Danny works with limit
orders; the alternative order type is too dangerous. At the appropriate
depth of viewing of stocks, he showed how to place orders by clicking on
the appropriate trade statistics. When the trade is made, a screen appears
and his profit statistics are updated (unfortunately it was just a demo with
dummy stock market data being supplied by Reinout s team over the
phone line to Holland; Danny didn t actually make $8000 during the
demo). Eliot mentioned that JP Morgan s system paid for its entire $15
million development cost in the first 40 minutes of operation.

Q. Make it more graphical, less tabular. Danny explained traders are
familiar with the tabular layout.

Q. Use automatic market trader. It is against Dutch law to do so. A
SOOPS client has considered using such a system and making it legal by
having a human acknowledge each trade by pushing an OK button.

Q. How long for newbie to learn. A competent trader learns it in 2
seconds.

Web-TCM Translators workbench, Georg Heeg, Georg Heeg
Objectorientierte Systems
Web-TCM is multi-lingual web site used by Translators.

Microsoft has a localisation process. There is internationalisation (i.e.
base preparation), personalisation and localisation (VW thinks these are
the same which is not so). Web-localisation wants to offer every culture
and every language. This needs languages, characters (e.g. cyrrillic), date
formats (US and European differ), etc.

Translation Memory tools store human-translated phrases in repositories.
When a variant of the text is found, matching phrases are automatically
translated, with fuzzy matches for variant phrases. Translation memories
were not previously available for web-localisation. Web-TCM provides
one.

A Web-TCM system has one source and many target languages. The
original web-site is processed by a segmenter that extracts phrases,
keying them by ids in the web pages, working on XHTML (HTML
parsed to have a cleaner structure). VW parses XHTML into a parse-tree.
The segmenter transforms this into TM segments. Thence it generates
.ssp files which reference the original language segments in the TM.

<%lang := request anyParameterValueAt: lang.
tm := ...>

When the segmenter much fragments the text, it is hard for developers to
understand, so a UI lets them invoke Merge with next , Merge with next
two , etc., on too-granular segments. The UI presents all items not
already translated through matching, or fuzzy matching, with already-
translated phrases. Summary statics of how much has been translated are
presented. Users can select segments, see all language translations of it,
click to see where the phrase is used in the web pages (first version was
written in VisualWave; done again as ssp).

The system leaves all state on the client; the Web-TCM server is stateless
and entirely re-entrant. Persistence is handled simply by BOSSing out the
TM dictionary of ordered collections. The system is small: one core class
for retrieval system, some others for editor system plus helper servlets for
Merge with next , etc.

It took Georg two weeks to do all this. He started the Smalltalk server in
June 2001, restarted it in September 2001 after a power failure.
Otherwise, he delivered 55 versions of the package at Anhalt university
with the translators using it and there were no problems; he concludes
that VW + Store is stable (FYI, the server uses development image, not
run-time).

Web-TCM is the first TM tool that supports a virtual team, an obvious
value since translators are unlikely to be co-located (c.f. Microsoft s TM
has to resynchronise TM s from all parts of the world).

Q. Special handling for phrases of very different sizes? No, just tell web
page designer never to use fixed-size frames (and currently no support for
translation to Arabic or Hebrew right-to-left languages).

Several people commented that this was a good example to publicise. The
domain is generally understood and Smalltalk s strengths come through.

Decision Support in Smalltalk, Jerry Blinten, Caesar Systems
Jerry s background is engineering in the petroleum industry. This is the
first Smalltalk system he has built (in VSE; I was surprised to learn later
from Jason that Cincom are still selling two new VSE licences per month,
plus existing). The upstream (i.e. extracting oil from the ground)
petroleum industry is risky. Exploration and development decisions are
based on indirect measurements requiring some level of interpretation.
This technical uncertainty, added to the very large capital investment
requirements, plus economic and geo-political issues, creates a
challenging environment for decision makers.

PetroVR competes with spreadsheets used in an interactive team
environment. Hence it needed to be intuitive and fun to use.

Partly it is a project management tool (typical project management
gant-chart-like graphics, etc.) Each branch of the decision tree can
have its own business model with its own constraints.

Partly it is a simple mathematical modelling tool (c.f. Didier Bessier s
work). Data values are generalised to statistical summaries (in any
units) which are correlated via monte carlo methods, to produce
summary output statistics. These can then be subject to sensitivity
analysis (to see which variables are most strongly correlated).

Partly it is a simple flow/connection process model (usually
superimposed on a geographical or schematic background).

Scripting support allows users to make their own analyses. An equation
editor lets them develop their own economic models (e.g. tax structure
effects). BP has 20+ licences and think they have reduced cycle-time by
50% through using it, mainly because it improves communication.

He has been careful to separate decision support and business model
aspects so he thinks he could drop another industry s model into the tool.

Building Video Games in Smalltalk and C++, Anthony Lander
I missed most of this. See www.groovemonkeys.com/anthony for some
information. Eliot hopes to provide Anthony with the means to show a
very convincing performant 200-frame-per-second game running on VW
for OOPSLA.

eXtreme Programming and Testing
XP Release Planning and User Stories, Ann Anderson, Chet
Hendrickson, and Ron Jeffries.
Game: plan project three times in three styles. Task: do essential software
to save $2(arbitrary zeros) for company. The software needs 45 features;
plan which features to do in which month.

First style: high executive says do all features in 6 months: says
nothing meaningful re their relative priority, value, etc. Refuses to say

http://www.groovemonkeys.com/anthony

more as months progress and not all features planned are done.
Refuses to accept any plan that does not meet deadline. We don t
know feature difficulty. This style guarantees everyone gets fired at 8
months.

Second style: this time we were told the cost to do features but not the
value to deliver features. Plans made better progress but still
unsatisfactory.

Third style: we were told both cost and value.

The results were plotted on a spreadsheet; for a single release, releasing
in the second month gave maximal returns over the first year. Releasing
every month would give better returns, of course. In short, early release
of a project that has achieved high value per development month is better
than late release of high overall value.

Feature cards with costs and values on them let customers and managers
think about priorities whereas without them, all they remember is the
promised delivery date. Hence, always have feature cards; they are so
easy to pick up and move, the most uncooperative manager will be unable
to resist picking them up and moving them around. It can help to give
people a finite counters (poker chips, sweets, ...); this especially lets
multiple stake holders vote together about a feature s value.

Interdependency discussion: how to show feature value when e.g. three
features all need the same piece of infrastructure work so whichever is
done first will cost the additional effort of doing the infrastructure.
Suggested solutions:

Ron, Ann and Chet: score each story as explicitly two figures A + B
where A is cost to install infrastructure, paid once for first story to be
done, shown on all three story cards that need the infrastructure.

Kent Beck: stub out incomplete infrastructure while doing each story,
so show cost of these three stories as A/3 + B = single figure on each
card (assumes all will be chosen and that stubbing is feasible; Kent
told Ron he thought you can always stub out interdependencies and
that card values should be kept straightforward to let the customer
make all business decisions).

Niall: make the customer value stories in long-enough time
increments; developers then sequence them to produce maximum
value in each iteration, leveraging their understanding of how one
story may enable another. In short, customer assigns value to stories but
developer assigns stories to iterations.

Dirk (if I recall aright): get values from customer, produce 3-4
alternative technically well-sequenced plans, ask customer to choose
between them.

Adding Developer Testing Mid-Stream to the Development Process
on the KnowledgeScape(tm) Software Project, Randy Ynchausti,
EIMCO Process Equipment Company

(Randy kindly moved his talk to my session so we had an entire session
about introducing testing to existing systems.) The KnowledgeScape
software uses genetic algorithms and neural nets to provide real-time,
adaptive process control for industrial processing plants. At first,
marketers, management and developers failed to work as a team in this
project. Marketers promised things the software development team could
neither deliver nor communicate this fact to managers. Their process was
waterfall-like, resulting in significant post-delivery rework: internal
customers implicitly were saying Build me the wrong thing and then I ll
tell you what s wrong with it .

However Randy then took issue with Kent Beck (explicitly, when I raised
the point) by demanding that software process be predictable and
statistically controlled, the opposite of XP s philosophy. To achieve this,
they introduced a revised process in which developers used forms to
record estimates and actuals of the time they spend designing, coding,
testing, etc., and of the number of lines of code they write. This data was
used to argue back to management but management was not allowed to
use it to demand that estimates meet actuals. Thus it was administratively
useful to the team although they did find collecting it interrupted their
work. Randy claimed their single programmers produced code as good as
pair-programmers would have done in the same time elapsed.

A unit-testing process was integrated into the development cycle 3 years
ago, approximately mid-way through of the KnowledgeScape software,
when it already had several hundreds of thousands of lines of
VisualWorks Smalltalk, Visual Smalltalk Enterprise, GemStone
Smalltalk, and Visual C++. They went for 1:1 correspondence between
unit test code and production code, i.e. not so XP-refactor friendly. They
explicitly aim to reduce time spent coding in, or after viewing, the
debugger and while their process permits writing tests before code, it
does not at all require it. They also test GUI classes (another, less
controversial, departure from XP as Kent advises it).

I would have spent a lot of time debating the differences between this
process and XP - had my talk not been next :-). I definitely remain a
fanatic XPer, but were Randy s company recruiting I d consider working
there.

Solving the XP Legacy Problem with (Extreme) Meta-Programming
Niall Ross, eXtremeMetaProgrammers, Andrew McQuiggin, HECM
If I dumped all my detailed slide notes into this document, I would wildly
unbalance this conference write-up; see my slides and their
accompanying detailed notes on the conference web-site for details. Very
briefly:

XP depends on a synergy: the same tests that speeded development of
a feature show whether later changes are refactorings with respect to
it, i.e. whether they do or do not change that feature s (desired)
behaviour

Legacy systems break this synergy: either refactorings must be
confined to new code or adequate tests for the legacy must be written

Creating a full set of tests and assertions is a hard task for a large legacy
system. It is usually straightforward to create basic tests that use stored or
example data to drive an instance of each legacy product type into each
state; the problem is how to show that a given change is or is not a
refactoring with respect to these tests. The assertions an XP project writes
to develop its code may not detect every non-refactoring but assertions
quickly thrown together post-hoc to XP-ify code written years earlier
offer much less confidence (or take much more time).

Our solution began by noting that, in an OO system, the behaviour that a
would-be refactoring might disturb may be adequately represented by a
subgraph of the objects produced by running a test: e.g., a view layer
subgraph capturing what the user would actually see, a business logic
validation layer subgraph capturing the system s view of the test s
validity, etc. Hence a set of basic tests that captured (a deep copy of) a
chosen subgraph for a given product in a given state, along with two
utilities:

A deep comparison framework that allows very flexible
customisation per class compared and per comparison run.

A test framework, subclassed from the SUnit and SUnitBrowser
frameworks, that holds multiple test results and comparisons between
them.

enabled the process:

View test result, run selected tests in start (e.g. latest released) state.
As the released version was conventionally-tested, the subgraphs
captured represent acceptable behaviour.

View new test result, effect refactor (by coding in same image, by
loading already coded into same image or by exporting test result to
new image as supported by test framework) and rerun (all or some)
previously-run tests. The subgraphs now captured represent post-
refactor behaviour.

View a comparison result for these two test results. Invoking run on
a test now runs a deep-comparison test on its two run copies held in
the two test results being compared. A green result means the tests
had the same outcome and deep-comparable subgraphs. Yellow
means they had the same outcome but not comparable subgraphs. Red
means they did not even have the same outcome.

As only a small proportion of products are meant to change in each three-
monthly release, we expect to see comparisons passing for all others
tests; failure provides timely warning that a change is not a refactoring. I
demoed our system, running three tests, making a small change,
rerunning the tests against a new result, then running them against a
comparison result that showed examples of all three comparison
outcomes.

The rest of my talk described my comparison meta-program and asked
what others were in use and whether Smalltalk would benefit from
common meta-program patterns, protocol and/or frameworks. Some, but
not all, meta-data patterns are documented (see Joseph Yoder s talk), but
meta-programming patterns seem even rarer. I had benefited from
studying Paul Baumann s DeepCopy framework and the Refactoring
Browser s ReferenceFinder framework (and had found it easy to retrofit
my customisation strategies to subclasses of them), but my impression
was that they were little used. John Brant pointed me at the GFST
package in VW which also has some meta-programming behaviour but
agreed that these things were not prominent in the public domain.

I also raised the issue of how key instVars for tests fit SUnit s
philosophy; products defined in meta-data naturally suggest meta-data-
defined tests.

Tricks for Testing Your Smalltalk Project Efficiently, Mark
Foulkrod, Silvermark
They have VA and VW Test Mentors and also a Java product (written in
Smalltalk with tiny Java part). I missed most of this talk. The part I
caught surprised me by seeming slightly pre-XP in its approach (I ve no
reason to think the tool is). The talk s style may be appropriate to the
assumptions some of their clients still start from but in a Smalltalk
conference the basic philosophy of XP should be either assumed without
long discussion or explicitly argued against if the speaker so wishes.

Patterns and Frameworks
A Multi-Process Smalltalk Agent, Bob Nemec, Northwater Objects
Many applications need to load data automatically, trigger scheduled
actions, and run unattended, handling errors and not letting one task block
others. Bob has encountered this requirement in several jobs and evolved
ideas to handle it.

His agent started as a file monitor that read pending files and moved the
read files elsewhere. Next, he wanted to do this regularly: polling would
have been easy but he knew he wanted to develop it further, so added
scheduled events. He had a choice:

complex scheduler, simple events

simple scheduler, complex events

Bob chose the latter design. Every minute, the scheduler checks what
events should run. Events decide what they do when run.

The scheduler must trigger behaviour, not do it, so it uses not while loops
(could block) but a semaphore-controlled queue which calls e.g.

deferPerform: #checkForNewFiles answer: [:each | ...]

to put the event in an AsynchProxy whose queue passes it to a process
that will run it. It is important that the answer block not do non-trivial

work; if it needs to, make it put another event on the queue. It s also
important that, as well as semaphores for adding and removing from the
scheduler, you also use a mutex semaphore to protect modifying the
queue, lest adding and deleting overlap.

Example: request a quote and five minutes later get the quote you
requested (should be done by then) by adding #sendQuoteRequest event
to scheduler queue for time now and #getQuote event for time five
minutes from now.

Early on, they recognised that something had to hold these monitors,
scheduler, proxies, etc. They implemented a standalone agent with an ini
file for e.g. quote delays for the various systems, etc. Later they also had
an ini file for the schedule itself.

Next they developed it into an update monitor to invoke actions on their
GemStone database and their financial application to do, for example,
end-of-day processing. They separated the GemStone and application
(e.g. FTP quote request) schedulers because the two had different
requirements; the former had to signal support staff pagers, etc., if end-
of-day processing failed (aside: their pagers wouldn t work with the
email program the manual said would, but did work with TotallyObjects
socket set). All messages to GemStone went as events to the GemStone
process which alone could signal GemStone. To avoid the UI locking up,
they made it go through the GemStone process as well (took a little time).

The debugger can only debug one process at a time so can t debug multi-
process as other process may still be doing something. Hence, they wrote
trace logs, essential for understanding. These developed to three kinds:
Error log (details of serious errors) trace logs and status logs (trivial
notification of what happened). At first, he wrote text messages to the
status log but then switched to just providing the method call and
parameters as a debugger would.

They added an Agent window to view the agent; add event to tell window
to refresh every minute. They also had a scheduled GemStone abort every
five minutes if nothing done by user (thus updating their database view).
Likewise they scheduled closing of long-open files. In principle, the error
count can control behaviour, e.g.

errorCount > threshhold ifTrue: [self reinitialize].

but in fact they have so few errors they react by hand. Other counts can
ensure the system does not, for example, generate a huge phone bill by
sending millions of request. The system runs for weeks at a time.

Lessons learned:

don t fork and forget processes; keep the process in case it dies.

Don t try to do too much at once; it s hard, so get each increment
working before next.

Don t try this outside Smalltalk; it s too hard to do in inferior
languages.

Bob praised TotallyObject s tools: Their stuff just works.

Adaptive Object-Model Architecture: How to Build Systems That
Can Dynamically Adapt to New Business Requirements, Joseph
Yoder, Refactory, Inc. (www.refactory.com)
Multiple axes of change create the requirement for meta-data. Data is
easier to change than code, so put as much of your domain model as
possible into (meta-)data (a.k.a. meta-model, reflective architecture,
meta-architecture).

Joe attended the first meta-data workshop at the University of Illinois in
1998. Work has continued since then; www.adaptiveobjectmodel.com
has papers, including the slides of his talk (more recent than on
conference CD). He has worked with Michel Tilman and many others
(see list on his slide). He has noticed that the architects of a system with
Adaptive Object-Models often claim this is the best system they have
ever created, and they brag about its flexibility, power, and eloquence. At
the same time, many of the later developers of such systems find them
confusing and hard to work with. Such architectures are powerful but
their style needs to be grasped.

Ralph Johnson s meta-data rules:

If something is going to vary in a predictable way, store the
description of the variation in data so it s easy to change.

Never build a framework until

you have to

you ve done three examples (the rule of three)

Anything you can do I can do meta (to be sung :-)

Meta is better (to be pronounced in an upper-class English accent :-)

Meta-models usually arise as domain-specific frameworks, often in
financial domains. Thus public domain meta-model frameworks are rare.
Patterns for meta-data have been written up: TypeObject, Strategy, etc.
The various people working in this area have outlined some 30 patterns
used in meta-models

Joe presented a vaccination tracking system as an example in which to
demonstrate various meta-data patterns. The system used a TypeObject
pattern for the various types of vaccines and for the acts of vaccination.
Usually meta-data types will have varying properties, handled by the
Property pattern. TypeSquare pattern concerns the commutativity and
consistency conditions that must hold when the meta-model has closed
loops of relationships between types.

Note: We discussed the importance of having a naming pattern for the meta-
data class/instance relationship to avoid confusing it with the Smalltalk

http://www.refactory.com
http://www.adaptiveobjectmodel.com

class/instance relationship. Naming patterns suggested included
group/member, operation/knowledge, and dynamicClass/Instance (as
against static, i.e. Smalltalk, class/instance). I argued that method names
should also use a consistent preposition, e.g. choosing of as the preposition
would mean writing all methods with meta-model class parameters in the
style<selectorName>Of: aDynamicClass...

Fowler s Accountability pattern is one write-up of the Entity-
Relationship pattern. (When working with database people, ensure they
understand that ERs in the meta-model include abstract types; they do not
map one-one to database tables.)

Explanation is a key issue. Some people just don t get the meta-idea,
however often explained. I mentioned the meta-class subclasses class
pattern I developed for my system. Joe agreed that it, with visual tools for
displaying instances (which almost any such system would have), would
be a good way to help newbies understand what meta-data was about, and
asked me to write it up (he thinks no write up of it in public domain
today).

Strategy is the pattern that assigns behaviour to the meta-model. A
strategy can be a business rule. These can be logical - simple primitive
rules and compositions via AND, OR, NOT - or numerical (one paper on
their site gives an insurance calculation example). Joe remarked that these
can become complex (I agree - indeed I question this way of building the
meta-algorithm; I recommend meta-programming). He then talked of
building interpreters to execute the rules. I raised the alternative of
generic algorithms implemented in Smalltalk and overriding the compiler
e.g. to execute rules (as we have done in a production system). He agreed
that interpreters could become complex; they were best when there were
many and changing rules simply composed and without large transitive
closures.

Medical observations, where research advances and policy about what
data is collected on certain patients in certain states changes frequently, is
a perfect example of a domain area needing to be handled in meta-data.
(In one contract, his clients were so delighted at the flexibility of this that
they started wanting to use it for all their data, which was inappropriate.)
In the example system, the strategy pattern applied a simple validator
which checked whether an observation was within an acceptable value
interval.

When this system was built, the UI people found it took four weeks to
build a dynamic GUI layer to display the first model, thereafter two days
to show the second model, two hours the third, etc.

The meta-modellers created meta-data editors. Theirs were meta-data
specific but Joe agreed that editors that could browse both instances and
meta-instances would be good for system editing and also for explaining
meta-data (and he has seen systems that did). The whole system took five

years of effort but that includes UI, persistence layer, security, handling
politics with the client (who was a governmental organisation), etc.

Models and data require version-control to maintain consistency, else, for
example, an observation valid when it was made might appear invalid
due to a change in the validator s meta-data. The history pattern handles
this and is written up on the website. A change to the meta-data has to be
tracked as a release, needs XP test cases, etc., just as if it were a code
change.

He then showed three other examples:

Insurance: rules were values composed by simple arithmetic (Ralph
and Jeff Oakes have good paper on this system on the web site)

Document workflow (Argo: Michel Tilman, Martine Devos): the
fullest and most powerful example of meta-modelling he knows (I
agree). It handles complex constraints, business rules, dynamic UI
creation, scripting rules for system events, etc.

Objectiva telephony billing example (Francis Anderson). Accenture
used to take 100 years of effort to build telephony billing systems for
customers. Objectiva did the same in two years effort. (Some info on-
line from Joe s website but no paper as info is proprietary.)

Don t used meta-data for:

error and warning messages to user

relationships between actual Smalltalk classes

variable inherent to the design

because you don t want to re-implement the Smalltalk language.

Development and Deployment Platforms
Visual Works Web Services (VW User Session)
I missed some of this and due to the crowd (standing room only by the
time I arrived) could not type up the part I caught; my write up of Alan
Knight s ESUG talk covers some of the same information (navigate to it
from http://scgwiki.iam.unibe.ch:8080/SmalltalkWiki/117). Alan also
talked about work that uses a meta-model to keep customer web
interaction information in context.

Visual Works BOF
Some people like Store, some don t. The key is not to assume that you
use Store the same way you use Envy. VW 7 will come with
documentation on this. Store prereq tools will be available in the RB (or
Joseph Pelrine s tools). Store lacks an equivalent of an open config map;
bundles require versions so are not an equivalent. James Robertson and
Alan Knight agreed that they now realize that Store does need such an
equivalent. Petr (of Fractal) remarked that his group had already
implemented unversioned bundles precisely to achieve this. (They would
be happy to provide this and other things they ve done over the last two

http://scgwiki.iam.unibe.ch:8080/SmalltalkWiki/117

years for demo but would like some pay back if it was shipped with VW
and used. James remarked that an arrangement similar to what is already
done for the RB, for Terry s debugger and perhaps also in future for a
demo version of Silvermark s Test Mentor, might be possible.)

VW likes short release cycles because they can t go too far down a wrong
direction in six months and because short release cycles means less time
spent maintaining patches. James wants to build releases from current
valid features, while teams implement features as fast as they can but not
committed to any given release. Most (not every) patch is on the Cincom
Smalltalk wiki. They want to add get all patches

to Store but it s not due
for the next release.

James would be happy to put VW s SUnit tests on the CD. The VW
developer programme is semi-by-invitation. It can t get much larger
without overloading Cincom resources.

VW s customer base is 60% on 5i3/4, 25% on 2.5/3.0. The ObjectShare
confusion means sometimes customers contact them whom they didn t
know about (records lost in ObjectShare hand over).

In June 2002, 5i.2 with Envy will become legally unavailable for new
purchase. (IBM OTI group now working on Eclipse so IBM VA group is
now also supporting Envy, hence their dropping of Envy support for VW
was unavoidable and they asked way too much to sell it.) James thinks
VW is better off without Envy since they plan to eliminate stripping in
favour of loading parcels into a runtime image and that would be hard in
Envy.

Petr remarked he pays so much more for VW licences in the Czech
republic than in the U.S. that buying licences at the conference had paid
for his attendance. James told him to

talk to Jason Ayers and check whether it s due to different tax rates

if it s not, tell his sales rep to fix it; there should not be any non-tax-
induced difference

A set of stories wanted but not currently being worked on by Cincom
people could be posted and Smalltalkers with free time could work on
them (maybe use VisualWorks Wiki IRC as a means of Smalltalkers
communicating).

Q. 5.4 then 7, what happened to 6? We noticed we d only ever released
on a prime number, so decided to continue doing so.

SmallScript - Building Modularized Applications, Servers and
Components for Integration with Native Host Services, David
Simmons, SmallScript Corp
Smallscript is a superset of the Smalltalk language (N.B. not of the
standard Smalltalk frameworks; reproducing them is not the goal of
Smallscript, although Dave trusts this will probably happen, sometimes

from Smallscript Corp, mostly from third parties). There are 10 times as
many scripters in the world as all other programmers. Scripting languages
are by definition dynamic languages. Smalltalk was the best so he started
from there but wanted to support all other dynamic scripting languages
features. Thus he wanted a common dynamic language architecture.

Smallscript runs on two VMs:

Smalltalk Agents VM: now in its fourth generation. The Agent Object
System has a unified object model (richer than other STs). It
emphasises deployment via mainstream industry standards.

Example: building DLLs and COMs is hardish in many
Smalltalks (Smalltalk MT being an exception) and it is hard for
other STs to be servers; they mostly just consumed DLLs/COMs.

Example: the Unix/Linux piped text style of scripting is hard to do
in other Smalltalks.

Even good things in ST (keyword syntax, owning the UI, ...) impede
mainstream acceptance.

.NET Platform: the AOS.ON.NET Enabler assembles smallscript to

.NET with almost all features. Two are missing:

No allInstances calls (a security-oriented limitation).

No dynamic Smalltalk-style development. The .NET unit of
modularization is the assembly. This static-derived concept means
that changing a running application must freeze the whole
assembly that contains the class you re changing. This blocks
dynamic Smalltalk-style development. Thus the AOS hacker and
Wiki hacker won t work on .NET (there are some workarounds).
Microsoft knows this is a problem and would like to fix it, but it
gives them serious issues with their design.

The AOS to .NET compiler gives the ability to build in AOS for .NET.

Dave rebuilt Smalltalk from the ground up in AOS to make it more
modular, able to have small runtimes (2k example) and to scale from
trivial scripting up to complex. Dave s focus is to built tools for .NET
that happen to be built in Smalltalk, not to build another Smalltalk
language. That s how he thinks Smalltalk will grow.

Smallscript has many features.

Interfaces are first class mixin and aggregation entities.

Optional typing for marshalling and multi-methods

Static languages are more fragile than dynamic because the latter
assume you ll add code while running whereas static assume not.
Dave has selector namespaces as additional help to letting many
scripters add code to the same webpage... This also lets sandboxes be
built easily. Modules and Namespaces are distinct.

Smallscript s VM performance compares with VW s, both of which
dwarf most scripting languages performance. Scripters can be
persuaded to use Smalltalk if they can be shown this.

Object: Smalltalk objects have slots, bytevars, ... Some dynamic
languages are not class-based; instances can be given methods and slots
dynamically. Smallscript objects have:

Basic properties: can it be moved around in memory? Can direct
reading/writing of instvars be managed by another object? Is there a
manager?

From the object s viewpoint, named slots and index slots are much
the same. By-ref slots (named, indexed) are stored in the object.

Foreign function interface transparent across languages because
object model is aware of its types. ST information about an object can
be distinct from where the object actually lives in memory: ST-heap,
host-heap, C++ new/malloc, Thread Local Storage (lets objects have
different structure in different threads).

Characters are virtual objects. An object property is whether it has one-
byte chars, two-byte chars, etc., and what set these chars live in. An
object has no single permanent memory representation. The VM may
restructure an object during its lifetime, e.g. if an interface its class
inherits from has an instVar, so is not pure behaviour, then assigning to
that instVar causes that object to be restructured by aggregation to have a
slot for the instVar.

Class: in smallscript, a class is a method dictionary (keeps classes
lightweight). A smallscript class is a unit of behaviour, of meta-data, of
privilege/scope. A class is a unit of structure but this must be
distinguished from the others. Smallscript has single inheritance of field
layout but multiple inheritance of intrinsic aggregation and interface
composition. This is how Dave strongly believes SI and MI should be
used.

Public/protected/private are bogus ideas. It is use, not implementation,
that determines these because an object interacts with many frameworks,
not just one, playing different roles in each. Every smallscript class is a
namespace so can have its own view of other classes. As a namespace, a
class is a container of named fields and a scope for message selectors.
Classes inherit scope SI via single superscope and MI via importing.
Protocols are first class objects and can be run-time enforced.

Modules are the unit of packaging and deployment. They contain code,
media, manifest version and security data. In 1993, QKS fitted on two
floppies. Within five years it had grown to many megabytes and every
package had to drag it along. Dave decided to build Smalltalk by
composition, i.e. declaring what pieces your module needs to run, not by
decomposition, i.e. strippers / packagers that will usually include too
much. Mainstream languages already had standards for this information:

COFF basic format plus PE, ELF, CodeFragments, etc., so Dave used
them and benefited from their utilities.

A script is an independent unit of executable source, editable with text-
editing tools and auto-generation tools, and accessible to human beings
(thus SIF and XML are not scripting languages). Scripts assume they are
substitutable for binary code, both semantically and in terms of
performance (e.g. can you afford to launch VM for each script execution
when 50 scripts are chained together). The Smallscript VM has
millisecond start-up.

Dave demoed script writing in Visual SlickEdit, a language-agnostic IDE,
of which there are several e.g. Mac s CodeWarrior, to show Smallscript s
ability to work with such.

[stdout cr << nHello world]
OR
[stdout cr nextPutAll: nHello world]

(The second is a back-quote escape to say, Run nHello world.)

wstsc -eval: (the time is + Filename.now.asString)
alert (windowless vm eval exprn)

Compiler cmds: ...
Project name: MyApp

Function [<$entrypoint>
main
stdout cr << nHello world .

]

You could call main by any other name in the above as it is the entrypoint
annotation that tells the program this is the function you start at . This
script produced a 4k .exe file, plus 1k .rdb debugging file, not needed to
run (after the usual demo hiccough: where did it create those files?). The
files contain binary and source code. All classes, apps, etc., are strongly
versioned; the same user name for two apps will not cause problems.

Next Dave showed an example that launched its own UI,

Compiler cmds: ...gui...
...
IconResource id: 0
.... \IconFiles\....

creating a 10k file.

The current demo license is free, undistributable, and no distribution of
apps. The AOS.NET and VBscript folders in the demo release are empty:
first .NET Smallscript release will appear mid-July along with VB script
implementation running on it. Installation is straightforward (typical
windows style). Currently there are 700 tech previews out there with 20
active contributors of utilities (several of which are in the latest demo

distribution). There is an issue of which DLLs (6 or 7) should be
distributed with it (everyone has six, but for the last fortnight Dave has
been working on the latest .NET using 7). The AOS.dll is currently 1.5
Mb but the release should be 800-900k. This file must be distributed with
your apps (or auto-download over web when needed). All else is
development support, mostly written in Smallscript. All but the .NET
extension is and will be free. Dave xpects the .Net extension to cost ~
$2000.

Currently, these is no visual debugger (they use Visual Studio s
debugger). This is the first release with a GUI system so now they could
build a debugger. The documentation provided is work in progress. A
script dumps out classes and methods to HTML giving a simple viewer.
The browser, written in Smallscript, lets you browse Smallscript code but
is also a framework for browsing the registry, files, etc. The current
samples are examples of esoteric language features, not of typical code;
don t use them as indication of the usual degree of code complexity.

The process of going from source to executable code: Smallscript is
written in AML which is XML with flexible syntax to make it acceptable
for humans. Thus pure XML will compile fine but AML is easier to
write, e.g.

Class name: Example
{
Function [
selector

... body ...

]
}

The selector ...body... part can be written exactly as you
would in your smalltalk IDE and in fact is the Smallscript part; the rest is
declaring things about its context in an XMLish way (thus the Smallscript
compiler front-end is a powerful XML parser and can be extended to
handle other things, indeed has been to show icons, files, ...). (His DTD
for AML is out of date, unused by the engine; he may write an up-to-date
DTD sometime.)

Joseph Pelrine has written utilities to convert VA, VW and Dolphin to
Smallscript. He s used it to convert regex and other utilities. Thus in
theory one can develop in a rich IDE and then run on .NET. In practice,
use of frameworks in the rich IDE might limit what you can move.
However the business layer could probably be moved and then called as
DLL from the GUI layer. Moving to Smallscript automatically makes you
a COM component.

Compiler cmds: -target:dll...
Module name: MyDLL

Function [<$dllexport=callback>
EITHER main(hwnd, hInst, <LPTSTR> lpCmdline ...

OR main: hwnd : hInst : <LPTSTR> lpCmdline ...
OR main: hwnd with: hInst with: <LPTSTR> lpCmdline
...
lpCmdLine asString alert.

]

Function [<$dllexport>
greeting
stdout cr << nHello! .

]

The above main is calling the standard windows rundll32 which needs
parameters hwnd, hInst, etc. Type info is provided for the argument that
this main actually uses but not for the others as they are unused (but
rundll32 insists on their being there). Calling or being called by external
code situations are the only places where you must provide type
information. The types (classes) and converters you write in Smallscript.

Module name: client dll: SimpleDll
EITHER [greeting()]
OR [self greeting]
OR [client.greeting()]
OR [client greeting]

Note that if greeting had had keywords we could not have invoked it in
Smalltalk syntax from the DLL since the outside world does not
understand keyword selectors. (Dave agrees that there are many ways to
write this and we need to find the best patterns for reading and writing
code; his examples in folder sample are Dave s experiments, some of
them showing very bad examples of how to write smallscript.)

RunDLL32 SimpleDll,main ...

Calling this you don t have to provide the unused parameter types.
Callouts to C code, etc., are minimal penalty since the VM is designed to
be multi-threaded.

Currently, the frameworks are basic language infrastructure (MOP),
numerics, collections, specifiers, GUI and others. There are also the .NET
compatibility frameworks.

The GUI framework has been Dave s focus for the last three months, and
using it to build the Smallscript browser. The browser is deliberately like
the MS explorer and accesses items via URLs. Modification is easy.
Sensible defaults make it easy to browse many kinds of items. It was built
in one week and is currently largely the infrastructure from which a richer
browser will be built. Dave showed its code - typical menu creation
methods, etc. A platform-independent layer wraps platform-dependent
widget creation code. Dave uses platform widgets instead of emulating.
Dave s code mixes paren-forms and keyword forms, e.g

Button()
topLeft(10,10,100,32);

caption: Say Hello ;
when: #onButtonRelease do: [Hello alert].

as he finds one or other quickest and easiest.

Button() is a way of writing Button new. Dave showed the method on
constructor protocol in Behavior that aliases () to new:

()
tail:return(self new)

instead of

()
^self new

for performance; the VM replaces the alias with the actual in the method
frame.

Event specializes Method to provide a method that lets another object
than the receiver handle it. Assertions are innate to the language and
minimal cost. Smallscript supports declaring C structs and other external
types with minimal typing.

Dave demonstrated interfaces.

anObject as: anInterface

lets you see an object as if it were an instance of an interface of its class.
An example showed how the interaction of interface precedence ordering,
interface implementation and class implementation provides acceptable
MI resolution. Then he demoed selector scoping: an instance of a class
with methods scoped to different modules responds to in-scope methods,
raises doesNotUnderstand for out-of-scope methods and took the earliest
precedence implementation where different scopes had rival
implementations.

Sandboxes have secure methods which call their insecure equivalents.
Smallscript systems can have many sandboxes and can modify the
sandbox on-line, plus, unlike their static rivals which must check
everything up-front, they have zero up-front cost since you only check
what the user calls, i.e. pay the cost of the secure-calls-insecure call. A
simple demo showed a three-method sandbox. Dave also demonstrated
that Smallscript, like QKS, has full block closures, unlike Squeak and
Dolphin.

Types can be declared as values or expressions in the type algebra, which
includes self-reference but is not a completely general any expression
returning a type system (Dave avoided that so that the types need not
exist during the type analysis epoch). Using this, multi-methods can be
defined:

* <LargeInteger> multiplier
...

* <Float> multiplier

...

He also has implemented an ABIA (Around, Before, Inner, After)
framework. The inner method is the standard Smalltalk method. The
other three stages are usually unused but always available for use:
execution is in order Arounds then Befores (from outside in) then Inners
(called method and any super calls) then Afters (from inside out). There
is no performance cost for the framework s presence as it is effected on
the fly as needed. Example: a utility framework exposes method #foo and
a user overrides #foo to do stuff then calls super foo . Later, the utility
framework needs to do an additional action before #foo is called. In other
Smalltalks, we would use method wrappers but selector namespaces and
multi-methods conflict with these so Dave achieves the same effect using
an explicit ABIA mechanism: an around method for #foo defined in
framework becomes the first action done when #foo is called, even from
users code.

Miscellaneous
J2EE for Smalltalkers, Alan Knight, Cincom
When J2EE was first conceived, its goal was world domination,
particularly pushing out microsoft. Its means were supposed to be by
providing easier distributed application building (3-tier systems should
be 3+ tear systems) and a web power builder for VB programmers. The
idea was to have transparent mechanisms for distribution, transactions
and connection management. Everything was very Java-centric, which is
why some parts have been supplanted by web services which are
genuinely portable. Smalltalkers need to know about J2EE. It has some
things that not all ST dialects have, you may have to coexist with it, and
you may have to give reasons for not using it.

J2EE is a bundle of elements (JDBC database, messaging, etc.) most of
which are neither new nor interesting. JDBC is just another not-quite-
standard (but no less than others) database driver that you get from the
vendors. In Smalltalk, the vendors also have drivers but they are less
standardized and not always up-to-date. (One of the useful things Frost
could give would be the ability to run JDBC.)

Transaction service JTS is identical to CORBA Transaction Service: not-
perfectly-distributed transactions with two-phase commit. Smalltalk has
CORBA Transaction Service so JTS is unneeded.

JMS is a messaging service: guaranteed ordered transactional delivery.
The Smalltalk equivalent is binding to proprietary (e.g. MQ) services that
lack a portable API. (Alan admitted this isn t his area of expertise; some
vendors claim to have equivalent Smalltalk stuff).

JNDI Java Naming and Directory Service maps to various services of
which LDAP is by far the most important. LDAP is not language-centric
so JNDI is unneeded. The Smalltalk equivalent is CORBA bindings to
LDAP, DNS, etc.

Connectors give standard interfaces to outside systems. There are few
uses and few definers of them.

All these are fairly minor and trivial. The interesting J2EE stuff is servlets
and beans.

Servlets replace cgi scripts. The complaint was that cgi required forking a
process for script, etc., so doesn t scale. Servlets have simple lightweight
protocol, giving flexible control for programmers and automatic header
parsing, plus Java is easier than Perl. However it is still awkward since
pages must be built by programmers: a minor page change impacts all
code. Smalltalk equivalents are VW5i.4 web toolkit, whitecap (VW +
apache) Wiki works (has servlet-like protocol). Some similar projects are
Swazoo/AIDA, Commanche (squeak), VA web-connect and others.
Servlets are like commands, not like e.g. Swazoo objects that know how
to render themselves.

JSP, Java server pages (copied from ASP) try to fix servlet problems by
templates - HTML containing code e.g., <%/= Person name%>, compiled
into servlets at runtime. Smalltalk equivalents are VW5i.4 web toolkit,
Tsunami (custom tags only), Squeak, etc.

Servlets and templates have problems (e.g. loops syntax is not good) but
together they make up a reasonable web presentation layer.

All these are fairly lightweight things. The thing that really drove the
J2EE story was Enterprise Java Beans. The EJB spec is 600-pages and
growing. (People have been researching component and aspect
architecture for 20 years: along comes EJB and demonstrates it s ignorant
of all that work : Eliot Miranda.) It was very strongly hyped despite being
a joke technically. Currently, 1.1 is the implemented version, 2.0 is new.
It is now going downhill; people are realising its problems. It s
complexity is fractal; equally complex at every level.

EJB was meant to be a server-side component model, an answer to
microsoft s. EJB has no relation to Java beans; there are no features in
common between the two. EJBs are server-side RMI that divide
development into roles: writer, deployer, user. Beans are server
(unshared) and entity (componentised domain objects). Session beans are
stateless (like CICS, sort of) or stateful. Stateless beans are scalable. (NB
performance and scalable are not the same. Performance means go fast.
Scalable means do many things without dying. These two things can be
opposite, e.g. performance likes caching in memory but scalable systems
may not since memory may bottleneck. Many scalable architectures, e.g.
CICS, are stateless.)

Entity beans are explicitly persistent and shared. The persistence has a
very RDB flavour; the EJB people are explicitly hostile to OODBs (EJB
and JDO teams do not get on). Entity beans are always passed by
reference (even when local) but non-beans are always only passed by
value (i.e. Java serialization mechanism, again even when local call). The

spec does not permit optimising this, though some implementations do.
Related beans can see local or remote but never both, so your code cannot
be polymorphic. This is because Java methods insist on having
exceptions in their signature and remote and local exceptions differ
(maybe you could cheat by making local raise remote exceptions but
Alan is unsure whether that is possible). Deployment results in XML files
specifying security, transactions, etc., etc., which exceed the size of the
code by a large factor. EJB has had 6 public drafts each of which was
declared to be the last. The problems are many. Assignment semantics
take 18 pages and must be read to be believed!

Alan overviewed three kinds of component models:

Widget-like: e.g. java-beans: these are event coupled with strong
user/author distinction and no visible-to-user inheritance, and use
reflection to view and edit.

Service-like: e.g. session bean, COM/MTS. These have very little
coupling (usually one layer deep), little extensibility and a strong
author/user distinction.

Domain Objects: e.g. most business objects: these have strong
relationships with complex interactions so are hard to reuse. The
author/user distinction is weak, with heavy use of inheritance and
polymorphism. This is the model EJB is trying to componentise but it
has none of the characteristics that let the other two models work.

There are very few implementations: Alan tried to find examples with
little success (one dumped EJB between Alan s finding them and his
giving an earlier talk). You must restart server after loading/upgrading.
Typical debugging instructions start by telling you how to insert print
statements in your code, a real blast from the past. Paraphrasing XP s
motto, EJB is the most complicated thing that will never work .

For a workable development process, they advise you write fine-grained
non-bean business objects and wrap the beans (session, no entity) at the
end. So why did you pay all that money for EJB? Deployment is very
complex.

Threading was supposed to be made simple by enforcing bean-thread
isolation (only one call in bean at a time) which means you either do
pessimistic locking per entity or make per-user copies of the bean.
TopLink did transitive closure copy on write and were told that was a
spec violation; they had to do it for read as well!!! Loopback calls (B
calls A calls back to B) are not allowed. Re-entrant beans are strongly
discouraged in the spec.

Persistence: Alan could have talked for hours without exhausting the
problems.

It s a truism that distributed transactions cost 100 times normal ones
performance-wise and that 98% of the time you don t want them. EJB

forces you to have them always. Further, while some of the distributed
features are useful (e.g. pooling), others buy you little. Clustering is also
a problem.

Today, prominent authors are saying, Don t use entity beans. Session
beans are unnecessary though fairly harmless (typically, servlets and
domain objects are sufficient; a session bean between the two buys little).
A major customer found a factor of 200 slowdown between using
TOPlink without and with entity beans.

Smalltalk has no equivalents to EJB, thank God!!! Automated failure for
sessions and declarative transactions are its only interesting ideas and
they ve been done much better, albeit not standardised. The value
propositions of early Java lay in standardising things that were simple and
already well understood but gratuitously incompatible (e.g. JDBC). In
EJB they tried to standardise something that was not simple and failed
hopelessly.

In Smalltalk terms, servlets and server pages are useful; perhaps not the
best but viable and familiar to many people. (Alan knows people in
Cincom who are frightened by Smalltalk IDEs but very happy to read the
Smalltalk equivalents to asp syntax.) Never use EJB, even if you re
implementing in Java. Session beans add extra infrastructure, give little,
do little harm. Smalltalk could use a standard LDAP interface.

Alan ended the talk by taking us through a slide giving a hypothetical
answer to why not use EJB.

Q: Corba 3? Early Corba 3 was meant to be J2EE-compatible. Annick
Fron says it has changed since then. (Spec is even thicker than J2EE.)
Alan s vague impression is that existing CORBA is being much used,
new Corba ideas are being little used and may not catch on.

Q: Ever recommend Java? No.

Q: Client has J2EE. Can a Smalltalk application be added to this? VA has
Java RMI. VW does not but everyone except WebSphere has a Corba
interface.

Q: What s the next hype coming up now EJB is going down? Web
services, but J2EE is not helped thereby. IBM and Microsoft, not SUN
and BEA, are benefiting from this. Martin Kobetic will be happy to
explain that web services are more complex than Corba and superfluous,
but they are language-neutral and Smalltalk-friendly (any XML-talker
friendly) so much better for us.

Lastly, Alan described the absurdity of assignment semantics in EJB 2.0.
EJB 1.0 has no relationship semantics (as I complained two years ago
when Nortel wanted to use it). EJB 2.0 has hidden relationship
enforcement semantics. Thus, for example, making an Employee-has-
Address relationship have 1:1 cardinality means that if two Employees

marry and one has their address assigned to be their spouse address, the
said spouse address is invisibly set to nil.

Keynote: You have to either laugh or cry, Ron Jeffries
Ron had a summer job in 1962 in Strategic Air Command, where he
learned that everyone who worked there was sure they would not survive
a nuclear war (enemy would make sure of that), thus giving them what he
regarded as a very healthy attitude to the idea of starting a nuclear war.
There he learned to write fortran programs (but did not see the computer
that ran them; his clearance wasn t high enough for that. Later, he got
cleared to see the computer). It s often no fun working for the
government. They have strange rules, forms to fill in, accounting, etc. His
first boss told him, You have to either laugh or cry. Likewise, you have
to laugh or cry about Smalltalk s history.

Ron has programmed in a startling number of languages not (almost)
including Java. There are only two languages worth looking at: Lisp and
Smalltalk. Lisp makes him think in new ways. Smalltalk makes him think
in simple ways. His Smalltalk experience began by building a wonderful
system (generic tax system) that did not deliver enough in time to prevent
its company going bust.

Smalltalk gave the world:

Objects

Refactoring

XP (Kent Beck s formalising of what Ward Cunningham does
naturally)

However Smalltalk also gave the world C# and Java (but not C++; why
does C++ exist?). Smalltalk also gave the world Ruby.

Smalltalk has created programs that probably could not be translated to
other languages and certainly could not have been created in them (much
financial work he has seen but also graphics systems for pipe scheduling,
etc., etc.). Smalltalk is best at doing complex things simply. We need to
communicate this by creating a rich on-line community, talking to
schools and universities, etc.

His motto used to be Quality Will Out. He still believes this but now
realises he wants Quality to win in his lifetime. Forces from Microsoft
and Sun and IBM have moved the market toward technical mediocrity
(put charitably, they pursue different goods from those Ron as a techie
cares about). Smalltalk s own forces (farces?), such as ParcPlace,
ObjectShare and Digitalk, harmed our cause.

He partnered with another programmer to write an extended set theory
product. All 6 people who bought it said it was wonderful. He should
have partnered with a marketing guru. Quality needs money and
marketing. It also needs (and Smalltalk gets) commitment. The objective

of many of us is to go on programming in Smalltalk. Educators (e.g.
Ralph) want others to program in Smalltalk, to get what we get. Ron
would like Smalltalk to rule the world but does not know how to achieve
this. We would all like Smalltalk to be recognised. But Ron thinks the
real question should be, what would be better than Smalltalk? He sees
Ruby, .NET and above all Squeak as pointers.

Other Discussions
We swapped so many stories of Java projects that failed dismally (the
once-much-touted Java phone that never managed to make a phone call
being my contribution) that Jason suggested setting up a JavaFailures
web page. However I think it is becoming no longer necessary; Java is on
the way down, fashion-wise. .NET is the new thing but as Smalltalk is a
listed .NET language this is not creating the same political problems for
those of us who must persuade managers to let us use Smalltalk.

James told an anecdote of someone who, after 20 years of defending
static typing, got bitten by the Java primitive types problem, complained
bitterly about it, was told, In that case you want Smalltalk , and stopped
arguing for static typing. However, while the primitive type issue can be
a useful way of getting people to listen, of course James acquaintance
was really still confused; Java could have eliminated primitive types the
same way Smalltalk does while retaining static typing. I described how
hard I had found it to explain to people unused to Smalltalk the real
reasons why static typing is harmful. Show the absurdity of having to cast
an Object extracted from a collection, or having aSpecificType.clone()
return Object instead of this.getClass(), and even capable people reply
So what! Typing a cast doesn t take long. Explain they might not know

what cast to do and they reply, But I must; I m about to call a method on
it. To them, the prison walls of static typing are the edges of the
imaginable world; they have never been beyond them even in thought.
Primitive types get in the way of what Java programmers know they want
to do, so they re a great talking point. By contrast, I had to talk for hours
to a capable researcher keen on XP (whom I had hired at a non-trivial
hourly rate) to get him to see that, yes indeed you might want to write a
framework where no single type value could possibly be the right return
for a method and a rational and likely refactor would require writing new
casts on every call, most of which would probably be in code you didn t
own. And when he finally saw it, he ventured that, as it took so long to
explain, and he d never met such a case before, might it not be one of
those issues that are correct in theory but too esoteric to be worth
bothering about in practice :-/ !!!. Jason remarked that people usually
accept Smalltalk because they ve found they can do something in it
they d failed to do elsewhere, not because they understand why.

Over dinner, Eliot described seeing Don Roberts and John Brant in their
tutorial refactoring awful code with a truly bizarre Fortran-derived
implementation of log base 2 (print it as a string and study the size of the
resulting WriteStream collection!!). At one stage in the rewrite of this
dreadful method, the test failed as it should, but then passed when run a

second time, causing much alarm. The cause: Alan Knight s fix that
silently makes immutables mutable on a certain exception. It was
suggested that it should do so more noisily, if at all.

I asked Don and John which refactoring rewrote a method to be called
from one of its parameters. It s Move to component , which combines
extract method with what I wanted. John explained that the

implementation of ReferenceFinder was VA-oriented; if he had not been
keen to keep the same code in both dialects he could have written a VW
version with a single dictionary instVar for backlinks. However as I ve
found what he wrote easy to specialize, perhaps easier than one that had a
tighter implementation, I m not complaining.

Follow-up Actions
To Do:

Jason Ayers suggested that the VW7 Refactoring Browser
documentation include mention of the Camp Smalltalk custom
refactoring project pages so that people can use them for seeing how
to write custom refactorings and adding their own. Contact Bruce
Bowyer about this (and add more refactorings to those pages).

Email Ann Anderson and Petr Stepanek a copy of my XP-rience talk.

Write-up my meta-class subclasses class pattern (Joe Yoder has
seen it used but he thinks it s not written up anywhere).

Email Paul Baumann my deep comparison framework (he thinks he
may have a use for it in his SRP framework).

Requests:

Ask Joseph Pelrine for his resumable test cases utility.

Ask Jeff Odell about the checking of resources when running in
SUnitBrowser (I hoped Jeff would be at StS but he couldn t make it).

Conclusions
Good talks and good conversations. I look forward to next year.

Seven parallel tracks is too many. I missed many talks I longed to
attend because others clashed with them. On the other hand, it s not
easy to say what could have been done to improve things. We might
have opened with the songs and a Welcome from Tom Nies, then
started in promptly. We might have had another day. We might have
had repeat slots for popular talks. Or maybe I should apply Jane
Austen s maxim about holidays - Delightful in being much too short
- to Smalltalk conferences and just accept that there will always be
more going on than I can capture. (I hope the remaining talks will
appear on the website soon.)

Java is going down. Loads of it will live for ages but the political
problems it used to give anyone arguing for implementing in
Smalltalk are now diminishing as its flaws become more admitted and
more admissible.

Meta-data patterns are recognised and some are documented, but not
all (e.g. Michel Tilman s Argo remains an example of what could be
done rather than a model of what is being done). Meta-programming
patterns and frameworks seem even less available than meta-data
ones (Paul Baumann commented that I was one of few who had used
his deep copy framework). I shall see what I can do in this area.

Written by Niall Ross (nfr@bigwig.net) of eXtremeMetaProgrammers
Inc.

* End of Document *

