
Silt: Lessons Learned in a Smalltalk Web Deployment

Wednesday, September 6, 2006

How to Scale a Smalltalk Server
Without Any Planning

James A. Robertson
Product Manager

Smalltalk
Cincom Systems, Inc.

Agenda

• The Server: Basic Architecture
• A Few problems
• Summary

Project Discussed

• Silt
– http://www.cincomsmalltalk.com/CincomSmalltalkWik

i/Silt
– http://www.cincomsmalltalk.com/blog/blogView

• Managed in the public Store
– Silt is public domain

Architecture

BlogSaver

CacheManager StorageManager

Architecture

• BlogSaver
– The “ well known” API point for the server
– Originally, it was the entire server
– It still has way too much code in it 
– One instance per blog

Architecture

• StorageManager
– Manages the storage and retrieval of posts
– Extracted out of the BlogSaver class
– One serialized object file per day
– Posts (and their comments) are in a collection in that

object file

Architecture

• CacheManager
– Holds cache for the server

• Entire main page
• Last N individual posts asked for
• Keyword search cache
• Category search cache
• Dictionary of posts by year

– Older posts are less likely to change

Architecture

• Initially, BlogSaver was it
– Singleton
– Assumed a single blog
– Lots of references to it in the servlets, etc.

Problems

• First problem: Multiple Blogs
– I had set up the ability to have multiple posters
– I had not set up for multiple blogs
– Michael Lucas-Smith broached the subject

• I think he thought the delay was legal
• It was actually inertia – I didn’ t want to do the work!

Problems

Smalltalk.Blog defineClass: #AbstractBlogSaver
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'users settings ipFileSem settingsFile
syndicationSem '
classInstanceVariableNames: 'default '
imports: ''
category: 'Blog‘

Key was the “ default” class instance variable

Problems

• BlogSaver named: ‘ someName’ .
– The class instance variable holds a dictionary of blog

instances
– Those are created from configuration files
– Allowed me to set up multiple blogs
– There are now 24 active blogs, and a few inactive

ones
– Could easily add new Smalltalk servers and

segregate by blog

Problems

• Second Problem: Dynamic Request
Backup
– Posts are stored “ one file per day, all posts in that

file”
– To get the last few posts, every request ended up

reading the same files repeatedly

Problems

• Solution: Added a simple cache of all the
posts that belong on the front page
– New requests simply return the cached data
– Cleared out on updates to relevant posts, or on new

posts
– Immediately made the blog more responsive

Problems

• Third Problem: Slow Category Searches
– Each post can have a category
– Category searches required a scan of all posts
– Fine at first, but… I’ ve been at this since 2002

Problems

• Solution: A simple cache
– This is when I split out the CacheManager class
– One per blog
– Holds a Dictionary, where the keys are the categories, and the

values are the set of files containing matching posts
– One time hit to populate, updated on each new post or update
– Cache is saved to disk, so it does not need to be recreated at

startup

Problems

• Speeded up category searches
tremendously
– Only have to open matching files
– Linear search for matching posts in files
– “ fast enough”
– Considering Ajax for caching large result sets

Problems

• Fourth Problem: Keyword Searches
– Same problem as category searches, but cannot do

full up front cache
– Built same solution
– Cache the results as they get queried
– Still wasn’ t fast enough

Problems

• The issue: Scanning all blog posts in the
process that got kicked off by the servlet
– Runs at same priority as other queries
– Bogged the server down with I/O and CPU demands

Problems

• Solution: Class Promise
– Blogged: http://

www.cincomsmalltalk.com/blog/blogView?showComments
=true&entry=3307882025

Problems

• Original Code:
allResults := self actuallySearchFor: searchText

inTitle: searchInTitle
inText: searchInText.

^allResults asSortedCollection: [:a :b | a timestamp > b timestamp].

• New Code:
promise := [self actuallySearchFor: searchText

inTitle: searchInTitle
inText: searchInText] promiseAt: Processor

userBackgroundPriority.
allResults := promise value.

^allResults asSortedCollection: [:a :b | a timestamp > b timestamp].

Problems

• The Promise executes in the background,
and the asking thread waits as it executes

• Allows other server threads to execute
• Extended Back to Category searches
• As with Category searches, considering

an Ajax solution

Problems

• Still expensive: reading all posts takes
time

• Added a cache for posts, keyed to year
– Older posts unlikely to change
– Flush cache for year on change
– Makes searches much faster

Problems

• Fifth Problem: Spam
– Comments
– Trackbacks
– Referers

Problems

• In the server, comments and trackbacks
are handled the same way – i.e., solve
one, solve both

• Referers are gleaned from the server logs

Problems

• Comments/Trackbacks
– Turned off comments on posts off the front page
– Added a “ no more than N hrefs” rule for comments
– Added an IP throttle

• These steps mostly ended comment spam
• Turned off Trackback – it’ s a spam garden

Problems

• Referer Spam
– Bogus referrals from porn/pharma/etc sites
– Added a constantly updated blacklist of keywords
– List is updated every few hours

Problems

• The referral scanner was eating the
server!
– Executing the scan over the logs for each of the

blogs was wasteful
– Unified the scan
– Still ate too much time
– Ended up extracting the process from the server, set

it up as a CRON job
– The blog instances just look for (and cache) the

referral file every few hours

Summary

Summary

• I only solved these problems as they
came up
– I had no idea that they would be problems ahead of

time

• I patch the server live
– Update the code on the fly, including shape changes

to classes.

Summary

• I’ ve yet to hit a problem that wasn’ t my
fault

• Smalltalk is a powerful, scalable solution
for web applications

Contact Info

• James Robertson
– Jarober@gmail.com
– Jrobertson@cincom.com

• Silt
– http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Silt

• BottomFeeder
– http://www.cincomsmalltalk.com/BottomFeeder

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Silt

