
 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

Slide No:
Niall Ros

R f Real Data

N wig.net
M
M

Slides h - 8th, 2006.
eXtremeMetaProgrammers
 1 — September 2006
s

Testing for R
ESUG: 200

efactoring Test Code ou

iall Ross, eXtremeMetaProgrammers Ltd, nf
assimo Milan, Lifeware SA
assimo Arnoldi, Lifeware SA

 of my talk at the European Smalltalk Users Group Conference in Prague, Sep
eal
6

t o

r@big

tember 4t

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP
eXtremeMetaProgrammers
Slide No: 2 — September 2006
Niall Ross

Overview
Background
What is the problem ?
• In theory
• In context
What is the solution ?
• Elements: test-writing framework and domain objects
• Approach: refactor from data
• Future Work
• Discussion

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

racts.

cle

stem
ecades

an afford = no risk
eXtremeMetaProgrammers
Slide No: 3 — September 2006
Niall Ross

Background
Lifeware provides a system to manage life insurance cont
• clients design and sell insurance products
• Lifeware provide back-end support throught the lifecy
A generic system is customised to specific insurers’ needs
• benefits of robustness and experience
• each insurer sees their unique modus operandi
Lifeware’s value proposition: pay per contract, not per sy
• selling one contract commits a client to manage it for d

— develop your own system upfront = risk
— pay for what client sells = no more cost than client c

• ability to compute exact IT cost

Lifeware uses VW and GemStone.

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ry
read !

e

eXtremeMetaProgrammers
Slide No: 4 — September 2006
Niall Ross

The Problem: Theo
Test-driven development: the greatest thing since sliced b
• Tests make you code faster, rewrite to get it right
• The tests stay around so your system stays right
So the developers all lived happily every after: well ...
• Development tests

— cluster near the initial / normal states
— describe how the system should be used
— guard against obvious errors
— are no longer than the developer will write
— are no more complex than the developer can imagin

• Real users
— use the system as they need to, not as they ‘should’
— do incredible things to correct incredible mistakes

So we should just write better tests? Well ...

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ntinued)

e operations
alkers)

s
ant:

adable.
eXtremeMetaProgrammers
Slide No: 5 — September 2006
Niall Ross

The Problem: Theory (co
What is a test? Theory in the literature speaks of
• Test fixture: an initialized model of domain objects
• Test Stimuli: operations applied to this model
• Expected results: assertions that should hold after thes
These states are not in fact separable (especially to Smallt
• production code is refactored against tests
• tests are refactored against production code
Very soon, fixtures, stimuli and assertions all mingle
• tests are scripts: building, asserting, reshaping, ...
• a domain evolves test frameworks to build these script
Test frameworks speed test writing but even more import

A test script must be re

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ple
rk
k

0 more run nightly / weekends
tures

beneficiary, ...
 ...
nds, ...

schedules, ...
red payments, revisions, ...

e in GemStone.
eXtremeMetaProgrammers
Slide No: 6 — September 2006
Niall Ross

The Problem: exam
Lifeware was a very early adopter of Kent’s test framewo
• now they have an impressive, distinctive test framewor
• 12,000 tests run whenever a developer integrates; 3,00
• TestBuilder framework classes support writing test fix
But
• Insurance contracts have many configurations

— customer types and roles: person/company, funder/
— funding patterns: lump sums, scheduled payments,
— investment patterns: types of investment, specific fu

• Contracts have complex lifecycles
— intentionally complex: flexible payments, weighted
— unintentionally complex: cancellations, missed/resto

– complex fixes to these unforeseen situations
Huge volumes of very complex domain objects accumulat

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ts
actual usage?

ect graph, not in code
ation time
eXtremeMetaProgrammers
Slide No: 7 — September 2006
Niall Ross

Not the Solution
We have

Framework to create simple readable tes
Why not write more complex tests to match our complex
• not enough keystrokes in the working day
• not enough neurons in the developers brain

Complex persistent domain objects
Why not use them in tests?
• unreadable: the test’s meaning is in an inspectable obj
• brittle: small changes appear as failures, waste investig

If only we could somehow combine the two.

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ipts from Data
y question :-)

de with value getters. Then

fund values, exchange rates
ectives dates, perspectives
t

tor others
 their values

or constructors)

ic smaltalk code execution (see below).
eXtremeMetaProgrammers
Slide No: 8 — September 2006
Niall Ross

The Solution: Refactor Test Scr
Enter the Refactoring Framework (Niall’s answer to ever

Pre-step: annotate appropriate test builder framework co
• Fault in the object model from GemStone to VW

— history reified as temporal series of events
— dependent temporal data reified as pseudo-events:
— time travel via method wrappers: posting dates, eff

• Match the basic builder classes for this kind of contrac
• Match events to builder methods

— by event class, by data values, ...
• Parse methods and rewrite: evaluate some nodes, refac

— recursively1 inline conditional nodes and loops from
— replace parameter expressions with values (literals
— anti-inline resulting code to convenience methods

1. Actually, this is more complex than mere recursion; it must mim

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

rtial Evaluation

 100;

e: 10;

y;

location strategy]
eXtremeMetaProgrammers
Slide No: 9 — September 2006
Niall Ross

Example of Refactoring from Pa
Pre-step) Rewrite test fragments ...

builder ...
fund1: 'Anlagestrategie-SpeedLane' percentage:
putInForceAs: ...

builder ...
fund6: 'Franklin US Equity' percentage: 5;
fund7: 'Vontobel Swiss Stars Equity' percentag
putInForceAs: ...

builder ...
lifelongStrategy: Strategy conservativeStrateg
putInForceAs: ...

... to event partial-evaluation fragments
self fundAllocation isManagedStrategy

ifTrue: [builder lifelongStrategy: self fundAl
ifFalse

[self fundAllocation funds doWithIndex:
[:each :index |
builder

fund: each fund displayShortString
at: index
percentage: each percent]].

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

percentage: each percent
percentage: each percent
percentage: each percent

ntage: each percent
ntage: each percent
ntage: each percent

.
centage: 50.
0.
entage: 20.

) as storeOn: expressions
y.
eXtremeMetaProgrammers
Slide No: 10 — September 2006
Niall Ross

1) Inline conditionals
self fundAllocation funds doWithIndex:

[:each :index |
builder

fund: each fund displayShortString
at: index
percentage: each percent]

2) Expand loops ...
builder fund: each fund displayShortString at: 1
builder fund: each fund displayShortString at: 2
builder fund: each fund displayShortString at: 3

... and anti-inline
builder fund1: each fund displayShortString perce
builder fund2: each fund displayShortString perce
builder fund3: each fund displayShortString perce

3) Evaluate and replace parameters as literals, e.g
builder fund1: 'Threadneedle European Growth' per
builder fund2: 'Franklin US Equity' percentage: 3
builder fund3: 'Vontobel Swiss Stars Equity' perc

or (e.g. if conditional above had evaluated to true
builder lifelongStrategy: Strategy dynamicStrateg

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

4;

er');
ntage: 50.

tage: 20;

ct’s lifecycle

er applies for insurance)
eXtremeMetaProgrammers
Slide No: 11 — September 2006
Niall Ross

4) Inline into overall ‘event’ method
TrioContract1001080Test>>application

self timestamp: (16 jun: 2003) @ '11:10:36'.
builder

newApplicationOn: (23 jun: 2003);
maleBornOn: (12 jun: 1967);
firstname: 'Peter' lastname: 'Winter';
street: 'Asylstrasse'

civicNumber: '55'
zip: '84030'
city: 'Zurich';

insuredJob: 'Research Engineer' jobKey: 780
monthlyPremium: 40 years: 20;
duration: 25;
coverage: 9600;
beneficiary: (Beneficiary text: 'Clara Wint
fund1: 'Threadneedle European Growth' perce
fund2: 'Franklin US Equity' percentage: 30;
fund3: 'Vontobel Swiss Stars Equity' percen
putInForceAs: '1001080'

Superclass of generated class chosen to match that contra

Superclass’ methods denote events in lifecycle (e.g. custom

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

 Landau'

ber: '1006400'.
eXtremeMetaProgrammers
Slide No: 12 — September 2006
Niall Ross

5) Finally we place this event in the overall history
replay2003Q2Events

self
loadBank: 'Sparkasse Südliche Weinstraße in
zip: '76831'
city: 'Billigheim-Ingenheim'
clearing: 54850010
checkNumber: '00'
recordNumber: '012524'.

self brokerFirstname: 'Udo'lastname: 'Paul'num
self application.
self

loadPrice: 100
fund: 'Vontobel Swiss Stars Equity'
date: (27 jun: 2003)
timestamp: (27 jun: 2003) @ '07:47:00'.

self
loadExchangeRate: 1.1457d
from: Currency EUR
to: Currency USD
date: (27 jun:2003)
timestamp: (27 jun:2003) @ '10:27:56'.

self
collectPremiumOn: (1 jul:2003)
timestamp: (27 jun:2003) @ '10:27:57'.

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

nEvent

t class buildOnSelector)

, treating the supplied
l conditions and replace
independently-evaluable
 result of evaluation)."

:

).
ntSelector; yourself
eXtremeMetaProgrammers
Slide No: 13 — September 2006
Niall Ross

Generating Tests
Map event to partially-evaluable method

TestEventMethodGenerator>>generateTestForEvent: a
^self

generateTest: (anEvent class parseTreeFor:
anEven

forEvent: anEvent

Overall partial-evaluation refactoring
TestEventMethodGenerator>>generateTest

"Evaluate all conditions and arguments in tree
event as self. Thus rewrite the tree to inline al
all event-dependent expressions with literals or
expressions (latter obtained via storeOn: sent to

self inlineSelfSendsInTree.
self inlineEventTempsInTree.
self inlineConditionsInTree.
self inlineLoopsInTree.
(self model classFor: event class) compileTree

(self mapTemporariesToInstVarsIn:
(self evaluateLiteralEvaluationsIn:

(self evaluateParametersIn: self tree))
^self tree arguments: #(); selector: event eve

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

inued)

e tree with implementors
with the refactoring's
 Before inlining, inline
 their evaluation."

ss)

ctoring inlineSelector
Class].

 has ensured anObject is
ts code were running and

Object logged: false
eXtremeMetaProgrammers
Slide No: 14 — September 2006
Niall Ross

Generating Tests (cont
Find the data nodes ...

inlineSelfSendsInTree
"Recursively inline sends to self or super in th

in the intersection of the event class hierarchy
model's environment (set when I am initialized).
any temps which require instvars of the event for

self
matchesAnyOf: #('self `@method: dummyARG')
refactor: InlineMethodRefactoring
inMethod: event class buildOnSelector
forRBClass: (self model classFor: event cla
do: [:inlineRefactoring |

self
inlineEventTempsInMethod: inlineRefa
forRBClass: inlineRefactoring inline

... and evaluate them
RBProgramNode>>evaluateFor: anObject

"Primitive evaluation protocol; assumes caller
rational for this node. Evaluate the node as if i
anObject were self."

^Compiler evaluate: self formattedCode for: an

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ings

ing clean-up
st code styles

repetition
lace and ‘extract method’ to it

iew of image
eXtremeMetaProgrammers
Slide No: 15 — September 2006
Niall Ross

Refactored Refactor
Refactoring of refactorings
• to support recursive evaluation

— InlineEvaluableTemporaryRefactoring
— InlineRefactoring and InlineToComponentRefactor

• to map between template test code and hand-written te
— InlineEvaluableIteratorRefactoring: small loops v.
— Anti-inline: detect code an existing method can rep

Refactored Refactoring Framework
VW7: resurrected ability to restrict refactoring model’s v

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ully evaluable
evaluateFor: aSelfObject
ion

erfect

e unintended polymorphism)
st

efactor the remaining nodes
nd refactoring
ctoring ?
eXtremeMetaProgrammers
Slide No: 16 — September 2006
Niall Ross

Future Work: make parse tree f
Today, we combine refactorings with RBProgramNode>>
• evaluate + inline of a conditional is just partial evaluat
• handle complex expressions

— our current mimicing of Smalltalk execution is imp
• deduce evaluable sections from abstract context

— or wrap in handler, stop when error raised? (bewar
Evaluable Abstract Grammar evaluation frameworks exi
• Zork-Analysis AG framework (VW, in Cincom OR)
• SmallTyper uses a framework for (VA Tool)
• others ?
We need to reuse or unify with them
• next step: partially evaluate the execution path, then r
• future ideal: a single unified parse tree for evaluation a
(For this use) Could partial evaluation wholly replace refa

 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ore beginning
s addictive as

n the code and
.”

re staff in summer 2006
eXtremeMetaProgrammers
Slide No: 17 — September 2006
Niall Ross

Discussion

“Extracting realistic tests bef
implementation is becoming a

writing tests by hand was whe
data were simpler

Kent Beck, after remotely pair-programming with Lifewa

