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Overview
Background
What is the problem ?
• In theory
• In context
What is the solution ?
• Elements: test-writing framework and domain objects
• Approach: refactor from data
• Future Work
• Discussion
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Background
Lifeware provides a system to manage life insurance cont
• clients design and sell insurance products
• Lifeware provide back-end support throught the lifecy
A generic system is customised to specific insurers’ needs
• benefits of robustness and experience
• each insurer sees their unique modus operandi
Lifeware’s value proposition: pay per contract, not per sy
• selling one contract commits a client to manage it for d

— develop your own system upfront = risk
— pay for what client sells = no more cost than client c

• ability to compute exact IT cost

Lifeware uses VW and GemStone.
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The Problem: Theo
Test-driven development: the greatest thing since sliced b
• Tests make you code faster, rewrite to get it right
• The tests stay around so your system stays right
So the developers all lived happily every after: well ...
• Development tests

— cluster near the initial / normal states
— describe how the system should be used
— guard against obvious errors
— are no longer than the developer will write
— are no more complex than the developer can imagin

• Real users
— use the system as they need to, not as they ‘should’
— do incredible things to correct incredible mistakes

So we should just write better tests? Well ...



 ESUG Conference 2006

XMP/general/pres/0007/1.0
Talk: Testing for real:

eXtremeMetaProgrammers

XMP

ntinued)

e operations
alkers)

s
ant:

adable.
eXtremeMetaProgrammers
Slide No: 5 — September 2006
Niall Ross

The Problem: Theory (co
What is a test? Theory in the literature speaks of
• Test fixture: an initialized model of domain objects
• Test Stimuli: operations applied to this model
• Expected results: assertions that should hold after thes
These states are not in fact separable (especially to Smallt
• production code is refactored against tests
• tests are refactored against production code
Very soon, fixtures, stimuli and assertions all mingle
• tests are scripts: building, asserting, reshaping, ...
• a domain evolves test frameworks to build these script
Test frameworks speed test writing but even more import

A test script must be re
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The Problem: exam
Lifeware was a very early adopter of Kent’s test framewo
• now they have an impressive, distinctive test framewor
• 12,000 tests run whenever a developer integrates; 3,00
• TestBuilder framework classes support writing test fix
But
• Insurance contracts have many configurations

— customer types and roles: person/company, funder/
— funding patterns: lump sums, scheduled payments,
— investment patterns: types of investment, specific fu

• Contracts have complex lifecycles
— intentionally complex: flexible payments, weighted 
— unintentionally complex: cancellations, missed/resto

– complex fixes to these unforeseen situations
Huge volumes of very complex domain objects accumulat
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Not the Solution
We have

Framework to create simple readable tes
Why not write more complex tests to match our complex 
• not enough keystrokes in the working day 
• not enough neurons in the developers brain

Complex persistent domain objects
Why not use them in tests?
• unreadable: the test’s meaning is in an inspectable obj
• brittle: small changes appear as failures, waste investig

If only we could somehow combine the two.
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The Solution: Refactor Test Scr
Enter the Refactoring Framework (Niall’s answer to ever

Pre-step: annotate appropriate test builder framework co
• Fault in the object model from GemStone to VW

— history reified as temporal series of events
— dependent temporal data reified as pseudo-events: 
— time travel via method wrappers: posting dates, eff

• Match the basic builder classes for this kind of contrac
• Match events to builder methods

— by event class, by data values, ...
• Parse methods and rewrite: evaluate some nodes, refac

— recursively1 inline conditional nodes and loops from
— replace parameter expressions with values (literals 
— anti-inline resulting code to convenience methods

1. Actually, this is more complex than mere recursion; it must mim
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Example of Refactoring from Pa
Pre-step) Rewrite test fragments ...

builder ...
fund1: 'Anlagestrategie-SpeedLane' percentage:
putInForceAs: ...

builder ...
fund6: 'Franklin US Equity' percentage: 5;
fund7: 'Vontobel Swiss Stars Equity' percentag
putInForceAs: ...

builder ...
lifelongStrategy: Strategy conservativeStrateg
putInForceAs: ...

... to event partial-evaluation fragments
self fundAllocation isManagedStrategy

ifTrue: [builder lifelongStrategy: self fundAl
ifFalse

[self fundAllocation funds doWithIndex:
[:each :index |
builder

fund: each fund displayShortString
at: index
percentage: each percent]].
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1) Inline conditionals
self fundAllocation funds doWithIndex:

[:each :index |
builder

fund: each fund displayShortString
at: index
percentage: each percent]

2) Expand loops ...
builder fund: each fund displayShortString at: 1 
builder fund: each fund displayShortString at: 2 
builder fund: each fund displayShortString at: 3 

... and anti-inline
builder fund1: each fund displayShortString perce
builder fund2: each fund displayShortString perce
builder fund3: each fund displayShortString perce

3) Evaluate and replace parameters as literals, e.g
builder fund1: 'Threadneedle European Growth' per
builder fund2: 'Franklin US Equity' percentage: 3
builder fund3: 'Vontobel Swiss Stars Equity' perc

or (e.g. if conditional above had evaluated to true
builder lifelongStrategy: Strategy dynamicStrateg
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4) Inline into overall ‘event’ method
TrioContract1001080Test>>application

self timestamp: (16 jun: 2003) @ '11:10:36'.
builder

newApplicationOn: (23 jun: 2003);
maleBornOn: (12 jun: 1967);
firstname: 'Peter' lastname: 'Winter';
street: 'Asylstrasse'

civicNumber: '55'
zip: '84030'
city: 'Zurich';

insuredJob: 'Research Engineer' jobKey: 780
monthlyPremium: 40 years: 20;
duration: 25;
coverage: 9600;
beneficiary: (Beneficiary text: 'Clara Wint
fund1: 'Threadneedle European Growth' perce
fund2: 'Franklin US Equity' percentage: 30;
fund3: 'Vontobel Swiss Stars Equity' percen
putInForceAs: '1001080'

Superclass of generated class chosen to match that contra

Superclass’ methods denote events in lifecycle (e.g. custom
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5) Finally we place this event in the overall history
replay2003Q2Events

self 
loadBank: 'Sparkasse Südliche Weinstraße in
zip: '76831'
city: 'Billigheim-Ingenheim'
clearing: 54850010
checkNumber: '00'
recordNumber: '012524'.

self brokerFirstname: 'Udo'lastname: 'Paul'num
self application.
self

loadPrice: 100
fund: 'Vontobel Swiss Stars Equity'
date: (27 jun: 2003)
timestamp: (27 jun: 2003) @ '07:47:00'.

self 
loadExchangeRate: 1.1457d
from: Currency EUR
to: Currency USD
date: (27 jun:2003)
timestamp: (27 jun:2003) @ '10:27:56'.

self
collectPremiumOn: (1 jul:2003)
timestamp: (27 jun:2003) @ '10:27:57'.
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Generating Tests
Map event to partially-evaluable method

TestEventMethodGenerator>>generateTestForEvent: a
^self

generateTest: (anEvent class parseTreeFor:
anEven

forEvent: anEvent

Overall partial-evaluation refactoring
TestEventMethodGenerator>>generateTest

"Evaluate all conditions and arguments in tree
event as self.  Thus rewrite the tree to inline al
all event-dependent expressions with literals or 
expressions (latter obtained via storeOn: sent to

self inlineSelfSendsInTree.
self inlineEventTempsInTree.
self inlineConditionsInTree.
self inlineLoopsInTree.
(self model classFor: event class) compileTree

(self mapTemporariesToInstVarsIn:
(self evaluateLiteralEvaluationsIn:

(self evaluateParametersIn: self tree))
^self tree arguments: #(); selector: event eve
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Generating Tests (cont
Find the data nodes ...

inlineSelfSendsInTree
"Recursively inline sends to self or super in th

in the intersection of the event class hierarchy 
model's environment (set when I am initialized). 
any temps which require instvars of the event for

self
matchesAnyOf: #('self `@method: dummyARG')
refactor: InlineMethodRefactoring
inMethod: event class buildOnSelector
forRBClass: (self model classFor: event cla
do: [:inlineRefactoring |

self
inlineEventTempsInMethod: inlineRefa
forRBClass: inlineRefactoring inline

... and evaluate them
RBProgramNode>>evaluateFor: anObject

"Primitive evaluation protocol; assumes caller
rational for this node. Evaluate the node as if i
anObject were self."

^Compiler evaluate: self formattedCode for: an
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Refactored Refactor
Refactoring of refactorings
• to support recursive evaluation

— InlineEvaluableTemporaryRefactoring
— InlineRefactoring and InlineToComponentRefactor

• to map between template test code and hand-written te
— InlineEvaluableIteratorRefactoring: small loops v. 
— Anti-inline: detect code an existing method can rep

Refactored Refactoring Framework
VW7: resurrected ability to restrict refactoring model’s v
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Future Work: make parse tree f
Today, we combine refactorings with RBProgramNode>>
• evaluate + inline of a conditional is just partial evaluat
• handle complex expressions

— our current mimicing of Smalltalk execution is imp
• deduce evaluable sections from abstract context

— or wrap in handler, stop when error raised? (bewar
Evaluable Abstract Grammar evaluation frameworks exi
• Zork-Analysis AG framework (VW, in Cincom OR)
• SmallTyper uses a framework for (VA Tool)
• others ?
We need to reuse or unify with them
• next step: partially evaluate the execution path, then r
• future ideal: a single unified parse tree for evaluation a
(For this use) Could partial evaluation wholly replace refa
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Discussion

“Extracting realistic tests bef
implementation is becoming a

writing tests by hand was whe
data were simpler

Kent Beck, after remotely pair-programming with Lifewa


