
www.lukas-renggli.ch www.seaside.st

Lukas Renggli
renggli@iam.unibe.ch

The Art of Seaside

1

10 Steps to Mastering

www.lukas-renggli.ch www.seaside.st1
Different by Design

• We share as much state as possible.

• We don’t use clean, carefully chosen, or
meaningful URLs.

• We don’t use templates to separate the
model from the presentation.

2

www.lukas-renggli.ch www.seaside.st2
Components

• Components are the Views (and Controllers) of
a Seaside application.

• Components keep their state (model and
state of user-interface) in instance-variables.

3

WAComponent

HelloWorld

registerAsApplication: aString

www.lukas-renggli.ch www.seaside.st3
Rendering

• Override the template-method #render-
ContentOn: to generate the view.

• Rendering is a read-only phase.

4

HelloWorld

rendererClass

renderContentOn: html

^ WARenderCanvas

html render: 'Hello World'

www.lukas-renggli.ch www.seaside.st4
Canvas

• The argument html passed to #render-
ContentOn: is an instance of a rendering-
canvas.

• Render any object:
html render: ‘Hello World’

• Render a line-break:
html break

5 www.lukas-renggli.ch www.seaside.st5
Brushes

1. Ask the canvas for a brush:
html div

2. Configure the brush:
html div class: ‘beautiful’

3. Render the contents of the brush:
html div
 class: ‘beautiful’;
 with: ‘Hello World’

6

www.lukas-renggli.ch www.seaside.st6
Callbacks

1. Ask the canvas for an anchor:
html anchor

2. Define the callback action:
html anchor
 callback: [self inform: ‘Got it’]

3. Render the contents of the anchor:
html anchor
 callback: [self inform: ‘Got it’];
 with: ‘Get it’

7 www.lukas-renggli.ch www.seaside.st7
Forms

• Render a from around your form elements:
html form: [...]

• Put the form elements inside the form:
html form: [
 html textInput
 value: text;
 callback: [:value | text := value].
 html submitButton]

8

www.lukas-renggli.ch www.seaside.st8
Call

• Temporarily replace the receiving component
with a different component:
answer := self call: aComponent

9

A AB

call: B1 2

www.lukas-renggli.ch www.seaside.st9
Answer

• Restore the calling component and return the
resulting model object:
self answer: anObject

10

A A

answer: 1231 2

B

www.lukas-renggli.ch www.seaside.st10
Composition

• Nest components into each other using the
composite pattern.

• Display subcomponents using the method
#render: on the canvas.

11

ParentComponent

initialize
children
renderContentOn: html

child := HelloWorld new

html render: child

^ Array with: child

www.lukas-renggli.ch www.seaside.st

What is the Benefit?

• Did you notice, that ...

– we talked about Web applications

– we didn’t fiddle around with URLs

– we didn’t serialized state back and forth

– we implemented a complex workflow

– we separated design and logic?12

