
pypy-logo

PyPy - How to not write Virtual Machines for
Dynamic Languages

Armin Rigo

Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

ESUG 2007

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Scope

This talk is about:

implementing dynamic languages
(with a focus on complicated ones)
in a context of limited resources
(academic, open source, or domain-specific)

Complicated = requiring a large VM

Smalltalk (etc...): typically small core VM
Python (etc...): the VM contains quite a lot

Limited resources
Only near-complete implementations are really useful
Minimize implementer’s duplication of efforts

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Scope

This talk is about:

implementing dynamic languages
(with a focus on complicated ones)
in a context of limited resources
(academic, open source, or domain-specific)

Complicated = requiring a large VM

Smalltalk (etc...): typically small core VM
Python (etc...): the VM contains quite a lot

Limited resources
Only near-complete implementations are really useful
Minimize implementer’s duplication of efforts

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Scope

This talk is about:

implementing dynamic languages
(with a focus on complicated ones)
in a context of limited resources
(academic, open source, or domain-specific)

Complicated = requiring a large VM

Smalltalk (etc...): typically small core VM
Python (etc...): the VM contains quite a lot

Limited resources
Only near-complete implementations are really useful
Minimize implementer’s duplication of efforts

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Our point

Our point:

Do not write virtual machines “by hand”
Instead, write interpreters in high-level languages
Meta-programming is your friend

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Common Approaches to VM construction

Using C directly (or C disguised as another language)

CPython
Ruby
Spidermonkey (Mozilla’s JavaScript VM)
but also: Squeak, Scheme48

Building on top of a general-purpose OO VM
Jython, IronPython
JRuby, IronRuby

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Implementing VMs in C

When writing a VM in C it is hard to reconcile:
flexibility, maintainability
simplicity of the VM
performance (needs dynamic compilation techniques)

Python Case
CPython is a very simple bytecode VM, performance not
great
Psyco is a just-in-time-specializer, very complex, hard to
maintain, but good performance
Stackless is a fork of CPython adding microthreads. It was
never incorporated into CPython for complexity reasons

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Implementing VMs in C

When writing a VM in C it is hard to reconcile:
flexibility, maintainability
simplicity of the VM
performance (needs dynamic compilation techniques)

Python Case
CPython is a very simple bytecode VM, performance not
great
Psyco is a just-in-time-specializer, very complex, hard to
maintain, but good performance
Stackless is a fork of CPython adding microthreads. It was
never incorporated into CPython for complexity reasons

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Compilers are a bad encoding of Semantics

to reach good performance levels, dynamic compilation is
often needed
a dynamic compiler needs to encode language semantics
this encoding is often obscure and hard to change

Python Case
Psyco is a dynamic compiler for Python
synchronizing with CPython’s rapid development is a lot of
effort
many of CPython’s new features not supported well

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Compilers are a bad encoding of Semantics

to reach good performance levels, dynamic compilation is
often needed
a dynamic compiler needs to encode language semantics
this encoding is often obscure and hard to change

Python Case
Psyco is a dynamic compiler for Python
synchronizing with CPython’s rapid development is a lot of
effort
many of CPython’s new features not supported well

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Fixing of Early Design Decisions

when starting a VM in C, many design decisions need to
be made upfront
examples: memory management technique, threading
model
the decision is manifested throughout the VM source
very hard to change later

Python Case
CPython uses reference counting, increfs and decrefs
everywhere
CPython uses OS threads with one global lock, hard to
change to lightweight threads or finer locking

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Fixing of Early Design Decisions

when starting a VM in C, many design decisions need to
be made upfront
examples: memory management technique, threading
model
the decision is manifested throughout the VM source
very hard to change later

Python Case
CPython uses reference counting, increfs and decrefs
everywhere
CPython uses OS threads with one global lock, hard to
change to lightweight threads or finer locking

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Implementation Proliferation

restrictions of the original implementation lead to
re-implementations, forks
all implementations need to be synchronized with
language evolution
lots of duplicate effort

Python Case
several serious implementations: CPython, Stackless,
Psyco, Jython, IronPython, PyPy
the implementations have various grades of compliance

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Implementation Proliferation

restrictions of the original implementation lead to
re-implementations, forks
all implementations need to be synchronized with
language evolution
lots of duplicate effort

Python Case
several serious implementations: CPython, Stackless,
Psyco, Jython, IronPython, PyPy
the implementations have various grades of compliance

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Implementing Languages on Top of General-Purpose
OO VMs

users wish to have easy interoperation with the
general-purpose OO VMs used by the industry (JVM, CLR)
therefore re-implementations of the language on the OO
VMs are started
even more implementation proliferation
implementing on top of an OO VM has its own set of
problems

Python Case
Jython is a Python-to-Java-bytecode compiler
IronPython is a Python-to-CLR-bytecode compiler
both are slightly incompatible with the newest CPython
version (especially Jython)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Implementing Languages on Top of General-Purpose
OO VMs

users wish to have easy interoperation with the
general-purpose OO VMs used by the industry (JVM, CLR)
therefore re-implementations of the language on the OO
VMs are started
even more implementation proliferation
implementing on top of an OO VM has its own set of
problems

Python Case
Jython is a Python-to-Java-bytecode compiler
IronPython is a Python-to-CLR-bytecode compiler
both are slightly incompatible with the newest CPython
version (especially Jython)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Benefits of implementing on top of OO VMs

higher level of implementation
the VM supplies a GC and mostly a JIT
better interoperability than what the C level provides
some proponents believe that eventually one single VM
should be enough

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

The problems of OO VMs

some of the benefits of OO VMs don’t work out in practice
most immediate problem: it can be hard to map concepts
of the dynamic lang to the host OO VM
performance is often not improved, and can be very bad,
because of the semantic mismatch between the dynamic
language and the host VM
poor interoperability with everything outside the OO VM
in practice, one OO VM is not enough

Python Case
Jython about 5 times slower than CPython
IronPython is about as fast as CPython (but some
introspection features missing)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

The problems of OO VMs

some of the benefits of OO VMs don’t work out in practice
most immediate problem: it can be hard to map concepts
of the dynamic lang to the host OO VM
performance is often not improved, and can be very bad,
because of the semantic mismatch between the dynamic
language and the host VM
poor interoperability with everything outside the OO VM
in practice, one OO VM is not enough

Python Case
Jython about 5 times slower than CPython
IronPython is about as fast as CPython (but some
introspection features missing)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

PyPy’s Approach to VM Construction

Goal: achieve flexibility, simplicity and performance together

Approach: auto-generate VMs from high-level descriptions
of the language
... using meta-programming techniques and aspects
high-level description: an interpreter written in a high-level
language
... which we translate (i.e. compile) to VMs running on top
of various targets, like C/Posix, CLR, JVM

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

PyPy

PyPy = Python interpreter written in RPython + translation
toolchain for RPython

What is RPython
RPython is a subset of Python
subset chosen in such a way that type-inference can be
performed
still a high-level language (unlike SLang or Prescheme)
...really a subset, can’t give a small example of code that
doesn’t just look like Python :-)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

PyPy

PyPy = Python interpreter written in RPython + translation
toolchain for RPython

What is RPython
RPython is a subset of Python
subset chosen in such a way that type-inference can be
performed
still a high-level language (unlike SLang or Prescheme)
...really a subset, can’t give a small example of code that
doesn’t just look like Python :-)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Auto-generating VMs

high-level source: early design decisions not necessary
we need a custom translation toolchain to compile the
interpreter to a full VM
many aspects of the final VM are orthogonal to the
interpreter source: they are inserted during translation
translation aspect ∼= monads, with more ad-hoc control

Examples
Garbage Collection strategy
Threading models (e.g. coroutines with CPS...)
non-trivial translation aspect: auto-generating a dynamic
compiler from the interpreter

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Auto-generating VMs

high-level source: early design decisions not necessary
we need a custom translation toolchain to compile the
interpreter to a full VM
many aspects of the final VM are orthogonal to the
interpreter source: they are inserted during translation
translation aspect ∼= monads, with more ad-hoc control

Examples
Garbage Collection strategy
Threading models (e.g. coroutines with CPS...)
non-trivial translation aspect: auto-generating a dynamic
compiler from the interpreter

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Good Points of the Approach

Simplicity:

dynamic languages can be implemented in a high level
language
separation of concerns from low-level details
a potential single-source-fits-all interpreter – less
duplication of efforts
runs everywhere with the same semantics – no outdated
implementations, no ties to any standard platform

PyPy
arguably the most readable Python implementation so far

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Good Points of the Approach

Simplicity:

dynamic languages can be implemented in a high level
language
separation of concerns from low-level details
a potential single-source-fits-all interpreter – less
duplication of efforts
runs everywhere with the same semantics – no outdated
implementations, no ties to any standard platform

PyPy
arguably the most readable Python implementation so far

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Good Points of the Approach

Flexibility at all levels:

when writing the interpreter (high-level languages rule!)
when adapting the translation toolchain as necessary
to break abstraction barriers when necessary

Example
boxed integer objects, represented as tagged pointers
manual system-level RPython code

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Good Points of the Approach

Flexibility at all levels:

when writing the interpreter (high-level languages rule!)
when adapting the translation toolchain as necessary
to break abstraction barriers when necessary

Example
boxed integer objects, represented as tagged pointers
manual system-level RPython code

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Good Points of the Approach

Performance:

“reasonable” performance
can generate a dynamic compiler from the interpreter
(work in progress, 60x faster on very simple Python code)

JIT compiler generator

almost orthogonal from the interpreter source - applicable
to many languages, follows language evolution “for free”
based on Partial Evaluation
benefits from a high-level interpreter and a tweakable
translation toolchain
generating a dynamic compiler is easier than generating a
static one!

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Good Points of the Approach

Performance:

“reasonable” performance
can generate a dynamic compiler from the interpreter
(work in progress, 60x faster on very simple Python code)

JIT compiler generator

almost orthogonal from the interpreter source - applicable
to many languages, follows language evolution “for free”
based on Partial Evaluation
benefits from a high-level interpreter and a tweakable
translation toolchain
generating a dynamic compiler is easier than generating a
static one!

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Open Issues / Drawbacks / Further Work

writing the translation toolchain in the first place takes lots
of effort (but it can be reused)
writing a good GC is still necessary. But: maybe we can
reuse existing good GCs (e.g. from the Jikes RVM)?
conceptually simple approach but many abstraction layers
dynamic compiler generation seems to work, but needs
more efforts. Also: can we layer it on top of the JIT of a
general purpose OO VM?

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

Conclusion / Meta-Points

high-level languages are suitable to implement dynamic
languages
doing so has many benefits
VMs shouldn’t be written by hand
PyPy’s concrete approach is not so important
diversity is good
let’s write more meta-programming toolchains!

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



pypy-logo

For more information

PyPy

http://codespeak.net/pypy/

“Sprints”
Main way we develop PyPy
They are programming camps, a few days to one week
long
We may have one in Bern soon (PyPy+Squeak) and/or in
Germany (JIT and other topics)

See also
Google for the full paper corresponding to these slides that was
submitted at Dyla’2007

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages

http://codespeak.net/pypy/

