
Département d’Ingénierie Informatique - Université catholique de Louvain

 Cava := Eclipse asSmalltalkPlugin.

Johan Brichau (Université de Louvain-la-Neuve, Belgium)

Coen De Roover (Vrije Universiteit Brussel, Belgium)

Using Eclipse as a Smalltalk Plugin

The talk

• Why use Eclipse in Smalltalk tools ?

• Cava

• JavaConnect

• Eclipse interface

• Example demos:

• SOUL

• IntensiVE

• Template Queries

2

Using Eclipse as a Smalltalk Plugin

Motivation

3

Smalltalk-based program-analysis tools

Using Eclipse as a Smalltalk Plugin

Motivation

4

Smalltalk-based program-analysis tools

Using Eclipse as a Smalltalk Plugin

Motivation

4

Smalltalk-based program-analysis tools

Using Eclipse as a Smalltalk Plugin

Motivation

5

Working with Java (source) code in
Smalltalk-based program-analysis tools

Using Eclipse as a Smalltalk Plugin

Motivation

5

Working with Java (source) code in
Smalltalk-based program-analysis tools

Using Eclipse as a Smalltalk Plugin

Motivation

6

Working with Java (source) code in
Smalltalk-based program-analysis tools

Using Eclipse as a Smalltalk Plugin

Motivation

6

Working with Java (source) code in
Smalltalk-based program-analysis tools

Using Eclipse as a Smalltalk Plugin

Java is not Smalltalk...

7

..........

• Implement symbolic resolution
• Implement call-graph, control-flow, ... analysis
• Causal link is lost!

• Need mutable Java source code representation
• Need Java exporter

• ...
• Keep up with java language changes !!

Using Eclipse as a Smalltalk Plugin

But we can reuse:

8

Plugins:

JDT:

Using Eclipse as a Smalltalk Plugin

Cava := Eclipse asSmalltalkPlugin

9

Cava

JavaConnect

Launch Java applications
inside Smalltalk

Eclipse interface

Java parsetrees as Smalltalk
object-trees

Library of logic SOUL rules

Reason about Java code

Using Eclipse as a Smalltalk Plugin

JavaConnect

10

Using Eclipse as a Smalltalk Plugin

Cava’s SOUL library

11

Eclipse workspace

Cava

Using Eclipse as a Smalltalk Plugin

Cava’s SOUL library

11

Eclipse workspace

Cava?project isJavaProject

Using Eclipse as a Smalltalk Plugin

Cava’s SOUL library

12

Eclipse workspace

Cava

Using Eclipse as a Smalltalk Plugin

JDT standard behaviour

13

Using Eclipse as a Smalltalk Plugin

Customizing JDT

14

Using Eclipse as a Smalltalk Plugin

Customizing JDT

14

‘Mixed-in’ Smalltalk behaviour
into Java classes

To be replaced with traits?

Using Eclipse as a Smalltalk Plugin

Customized behaviour

15

Using Eclipse as a Smalltalk Plugin

Querying Java Code

• “I want to refactor all for-loops that can use the
enhanced Java 5 style”

• “I want to detect all classes that should be enums”

• “Events published on the bus should not be
modified anymore”

• “Custom events should be subclasses of EventX or
EventY”

• ...

16

Using Eclipse as a Smalltalk Plugin

Enum classes query

17

?cu isCompilationUnit,
?cu hasClassDeclaration: ?class,
?class classDeclarationHasBodyDeclarations: ?body,
findall(?field,and(?field isChildOf: ?body,
 ?field isPublicStaticFinalFieldDeclaration,
 ?field hasNumericType),
 ?fields),
?fields hasLength: ?l,
[?l > 2]

Using Eclipse as a Smalltalk Plugin

Enum classes query

17

?cu isCompilationUnit,
?cu hasClassDeclaration: ?class,
?class classDeclarationHasBodyDeclarations: ?body,
findall(?field,and(?field isChildOf: ?body,
 ?field isPublicStaticFinalFieldDeclaration,
 ?field hasNumericType),
 ?fields),
?fields hasLength: ?l,
[?l > 2]

Automatically derived from
ASTNode’s property descriptors

Using Eclipse as a Smalltalk Plugin

Aside: ASTNode navigation

Automatic generation of AST navigation

18

CU

TypeDecl

PackageDecl

Using Eclipse as a Smalltalk Plugin

Aside: ASTNode navigation

Automatic generation of AST navigation

18

CU

TypeDecl

PackageDecl

Using Eclipse as a Smalltalk Plugin

For-loops Example

19

for (Iterator i = c.iterator(); i.hasNext();) {
 String s = (String) i.next();
 ...
 }

for (String s : c) {
 ...
 }

Using Eclipse as a Smalltalk Plugin

For-loops Example

20

Using Eclipse as a Smalltalk Plugin

For-loops example

21

Using Eclipse as a Smalltalk Plugin

Detect for-loops to be enhanced

22

Using Eclipse as a Smalltalk Plugin

Detecting Accessor Methods ?

23

public Integer gethour() {
 return this.hour;
}

public Integer gethourlazy() {
 if(hour==null)
 hour = this.currentHour();
 return hour;
}

public Integer getBuffer() {
 Integer temp;
 temp = buffer;
 buffer = null;
 return temp;
}

public boolean setBuffer(Integer
i) {
 if(buffer==null) {
 buffer = i;
 return true;
 }
 else return false;
}

public void sethour(Integer i) {
 if(i.intValue()<0 || i.intValue()>23) {
 } else {
 hour = i;
 this.notifyDependents();
 }
}

Using Eclipse as a Smalltalk Plugin

Detecting Accessor Methods ?

23

public Integer gethour() {
 return this.hour;
}

public Integer gethourlazy() {
 if(hour==null)
 hour = this.currentHour();
 return hour;
}

public Integer getBuffer() {
 Integer temp;
 temp = buffer;
 buffer = null;
 return temp;
}

public boolean setBuffer(Integer
i) {
 if(buffer==null) {
 buffer = i;
 return true;
 }
 else return false;
}

public void sethour(Integer i) {
 if(i.intValue()<0 || i.intValue()>23) {
 } else {
 hour = i;
 this.notifyDependents();
 }
}

priv
ate

Inte
ger

hour
;

priv
ate

Inte
ger

buff
er;

publ
ic void

seth
our(

Inte
ger

i) {

if(i
.int

Valu
e()<

0 || i.in
tVal

ue()
>23)

{

// do some
thin

g

} else
{

hour
= i;

this
.not

ifyD
epen

dent
s();

}

}

publ
ic Inte

ger
geth

our(
) {

retu
rn hour

;

}

publ
ic Inte

ger
geth

ourl
azy(

) {

if(h
our=

=nul
l)

hour
= this

.cur
rent

Hour
();

retu
rn hour

;

}

publ
ic Inte

ger
geth

ourl
azyt

oo()
{

if(h
our=

=nul
l) {

hour
= this

.cur
rent

Hour
();

retu
rn hour

;

}
else

retu
rn hour

;

}

publ
ic Inte

ger
getB

uffe
r()

{

Inte
ger

temp
;

temp
= buff

er;

buff
er = null

;

retu
rn temp

;

}

publ
ic bool

ean
setB

uffe
r(In

tege
r i) {

if(b
uffe

r==n
ull)

{

buff
er = i;

retu
rn true

;

}
else

retu
rn fals

e;

}

Figure 10. Some typical accessor methods.

detected as those methods that assign their sole argument to the a

private field, and the type of the argument needs to be identical to

the type of the field.

These queries can be further refined with additional constraints

that verify the naming conventions or other possible coding conven-

tions that are agreed upon by the development team. Furthermore,

a tool can use the results of these queries to verify if all direct field

accesses occur in a method that is detected as an accessor method.

3.2 Finding “Inadvertent Invocation on null” bugs

A software development environment often signals the developers

about incorrect syntax, inexistent method names, incorrect variable

references, etc. Many development environments are even extensi-

ble in the sense that they permit to write plugins that can produce

additional warnings which are otherwise only detected at compile-

time or even at run-time. One such a run-time error is the invocation

of a message on the null
value. Such an error typically occurs in

systems that use the null
value as a special return value, indicat-

ing specific events. Figure 12 illustrates some code that features this

1
if jtCl

assD
ecla

rati
on(?

c){

2

clas
s ?c {

3

priv
ate

?typ
e ?fie

ld;

4

publ
ic ?typ

e ?nam
e()

{ retu
rn ?fie

ld;
}

5

}

6
}

8
if jtCl

assD
ecla

rati
on(?

c){

9

clas
s ?c {

10

priv
ate

?typ
e ?fie

ld;

11

publ
ic ?rt

?nam
e(?t

ype
?var

) { ?fie
ld = ?var

; }

12

}

13
}

Figure 11. Detect accessor methods

1
publ

ic void
will

Send
ToNu

ll(I
nteg

er x) {

2
if (x == null

)

3

this
.per

form
Oper

atio
n(x)

;

4
}

6
priv

ate
void

perf
ormO

pera
tion

(Int
eger

y) {

7
y.fl

oatV
alue

();

8
}

Figure 12. Inadvertent method invocation on null.

1
if jtSt

atem
ent(

?sta
t){

2

if(
x == null

) x.?m
essa

ge()
;

3
},

4
not(

jtSt
atem

ent(
?sta

t){

5

if(
x == null

) {x = ?exp
; x.?m

essa
ge()

;}

6

}),

7
java

Meth
odCo

ntai
nsSt

atem
ent(

?met
hod,

?sta
t)

Figure 13. Detect method invocations on null.

bug. In order to prevent such errors as much as possible, we can use

our approach as a plugin to a development environment and let the

developers write a set of queries that try to detect such errors.

Figure 13 shows a query that can detect the inadvertent invo-

cations on the null value. It detects these by finding all method

invocations on variables that are guaranteed to contain a null value.

First, line 1 detects all the method invocations on a variable x in

the then
-branch of an if-statement that contains the condition

(x==
null

). Next, the second line filters all found statements such

that only those statements in which an assign to the variable x does

not occur in-between the condition and the method invocation on x.

In other words, we are not interested in finding those places in the

code where the variable is assigned a value after the null
-check,

because that is typically what developers would do in the then
-

branch of such a condition. However, if a developer fails to do so,

the query will detect this as a possible bug and warn him or her.

Finally, the last line retrieves the method in which the statement

occurs, which facilitates finding the statement that leads to the bug.

Once again, we are able to express the simplest implementation

of the pattern we wish to detect in the source code and rely on

our matching algorithm to detect all similar implementations. In

particular, this query shows how the combination of structural and

behavioral matching is necessary to easily detect certain patterns.

First of all, the structural matching allows us to match the condition

in an if-statement. Next, we need behavioral matching to detect

any method invocation in the entire control-flow of the then
-

8

2006/11/15

Template Queries

Using Eclipse as a Smalltalk Plugin

Soot Eclipse Plugin

24

Static analysis of Java programs

Points-to analysis

Call-graph analysis

Using Eclipse as a Smalltalk Plugin

Soot Eclipse Plugin

24

Static analysis of Java programs

Points-to analysis

Call-graph analysis

More interesting code analysis

Using Eclipse as a Smalltalk Plugin

Accessor Method Template Query

25

public Integer gethour() {
 return this.hour;
}
public Integer gethourlazy() {
 if(hour==null)
 hour = this.currentHour();
 return hour;
}
public Integer getBuffer() {
 Integer temp;
 temp = buffer;
 buffer = null;
 return temp;
}

private Integer hour;
private Integer buffer;

public void sethour(Integer i) {
if(i.intValue()<0 || i.intValue()>23) {

// do something
} else {

hour = i;
this.notifyDependents();

}
}

public Integer gethour() {
return hour;

}

public Integer gethourlazy() {
if(hour==null)

hour = this.currentHour();
return hour;

}

public Integer gethourlazytoo() {
if(hour==null) {

hour = this.currentHour();
return hour;

}
else

return hour;
}

public Integer getBuffer() {
Integer temp;
temp = buffer;
buffer = null;
return temp;

}

public boolean setBuffer(Integer i) {
if(buffer==null) {

buffer = i;
return true;

}
else return false;

}

Figure 10. Some typical accessor methods.

detected as those methods that assign their sole argument to the a
private field, and the type of the argument needs to be identical to
the type of the field.

These queries can be further refined with additional constraints
that verify the naming conventions or other possible coding conven-
tions that are agreed upon by the development team. Furthermore,
a tool can use the results of these queries to verify if all direct field
accesses occur in a method that is detected as an accessor method.

3.2 Finding “Inadvertent Invocation on null” bugs
A software development environment often signals the developers
about incorrect syntax, inexistent method names, incorrect variable
references, etc. Many development environments are even extensi-
ble in the sense that they permit to write plugins that can produce
additional warnings which are otherwise only detected at compile-
time or even at run-time. One such a run-time error is the invocation
of a message on the null value. Such an error typically occurs in
systems that use the null value as a special return value, indicat-
ing specific events. Figure 12 illustrates some code that features this

1 if jtClassDeclaration(?c){
2 class ?c {
3 private ?type ?field;
4 public ?type ?name() { return ?field; }
5 }
6 }

8 if jtClassDeclaration(?c){
9 class ?c {

10 private ?type ?field;
11 public ?rt ?name(?type ?var) { ?field = ?var; }
12 }
13 }

Figure 11. Detect accessor methods

1 public void willSendToNull(Integer x) {
2 if (x == null)
3 this.performOperation(x);
4 }

6 private void performOperation(Integer y) {
7 y.floatValue();
8 }

Figure 12. Inadvertent method invocation on null.

1 if jtStatement(?stat){
2 if(x == null) x.?message();
3 },
4 not(jtStatement(?stat){
5 if(x == null) {x = ?exp; x.?message();}
6 }),
7 javaMethodContainsStatement(?method,?stat)

Figure 13. Detect method invocations on null.

bug. In order to prevent such errors as much as possible, we can use
our approach as a plugin to a development environment and let the
developers write a set of queries that try to detect such errors.

Figure 13 shows a query that can detect the inadvertent invo-
cations on the null value. It detects these by finding all method
invocations on variables that are guaranteed to contain a null value.
First, line 1 detects all the method invocations on a variable x in
the then-branch of an if-statement that contains the condition
(x==null). Next, the second line filters all found statements such
that only those statements in which an assign to the variable x does
not occur in-between the condition and the method invocation on x.
In other words, we are not interested in finding those places in the
code where the variable is assigned a value after the null-check,
because that is typically what developers would do in the then-
branch of such a condition. However, if a developer fails to do so,
the query will detect this as a possible bug and warn him or her.
Finally, the last line retrieves the method in which the statement
occurs, which facilitates finding the statement that leads to the bug.

Once again, we are able to express the simplest implementation
of the pattern we wish to detect in the source code and rely on
our matching algorithm to detect all similar implementations. In
particular, this query shows how the combination of structural and
behavioral matching is necessary to easily detect certain patterns.
First of all, the structural matching allows us to match the condition
in an if-statement. Next, we need behavioral matching to detect
any method invocation in the entire control-flow of the then-

8 2006/11/15

Using Eclipse as a Smalltalk Plugin

Concurrent Collection Modification

26

public List list;

public void insertElement(Object x) {
 Iterator i = list.iterator();
 while(i.hasNext()) {
 Object o = i.next();
 operation(x, (Collection) this.self().list);
 }
}

public void operation(Object o, Collection c) {
 c.add(o);
}

1 public List list;
2

3 public void initializeContainer() {
4 List l = new LinkedList();
5 list = l;
6 }
7

8 public void insertElement(Object x) {
9 Iterator i = list.iterator();

10

11 while(i.hasNext()) {
12 Object o = i.next();
13 operation(x, (Collection) this.self().list);
14 }
15 }
16

17 public void operation(Object o, Collection c) {
18 c.add(o);
19 }
20

21 public Example self() {
22 return this;
23 }

Figure 14. Modification of a container during iteration.

branch. Obviously, if our matching algorithm would only match
the then-branches that directly contain a single method invocation,
we would not find many bugs using this query. Because of the
behavioral matching of statement sequences using the call-graph
analysis, we can safely restrict the template to those statements that
are essential to the pattern. Finally, although our template uses the
same variable in the condition of the if-statement as well as in the
method invocation, the actual code that will be found does not have
to because we match the variables based on the points-to analysis.
This means that any expression that evaluates to the same value as
the variable x will be matched.

3.3 Detecting Concurrent Modification Exceptions
Another possible bug in Java programs happens when a modifica-
tion is made to a collection that is currently being iterated over. This
bug will appear upon execution of the insertElement method
in the code of Figure 14. This method executes an iteration over
a Linkedlist collection object during which it calls the method
operation that adds the element to the collection. However, a col-
lection that is under iteration may not be modified and therefore,
a ConcurrentModificationException will be thrown and the
program crashes. Obviously, in this small code snippet, the bug is
easily detectable by the human developer but the same observation
does not hold for large programs written by different developers.
Therefore, we want to implement the automated detection of such
concurrent modifications and we can do so by writing and execut-
ing a query in our tool.

The query in Figure 15 shows how we can detect one possi-
ble occurrence of the bug. It searches for all while-statements that
use an iterator ?iterator to loop over a collection ?collection and
that perform an addition on that collection during the execution
of the while-body. On line 3, the query also states that the value
that is bound to the logic variable ?iterator is actually an itera-
tor object that is obtained by invoking iterator() on the collec-
tion object ?collection. This particular query will thus detect the
bug that is present in the code snippet of Figure 14. The template
again requires a matching process that takes both structural as well
as behavioral information into account. For instance, the while-
statement can be found using mere matching on a structural meta
model of the program but the call to the addition operation can oc-
cur anywhere in the control flow of the while-body. Furthermore,
the logic variables ?collection and ?iterator will match with any

1 if jtStatement(?s) {
2 while(?iterator.hasNext()) {
3 ?collection.add(?element);
4 }
5 },
6 jtExpression(?iterator){?collection.iterator()}

Figure 15. Detect additions to a container during iteration.

expression that evaluates to the collection and iterator objects re-
spectively. Once again, because of this matching process, the pro-
totype implementation that is present in the template matches all
actual places in the code where similar behavior and structure is
implemented.

Of course, this template does not detect all possible occurrences
of this bug. For example, we also need to detect removals of
elements and take into account that there are other loop constructs
available in Java. We can detect all these possibilities using multiple
similar templates that each detect a possible case5.

4. Related Work
Several works have been presented on the use of templates for code
base querying. Works that are closely related to our approach are
the LogicAJ2 [27] and Spoon [23] templates that provide a way
of selecting program elements based on whether or not their im-
plementation syntactically matches a given template. Compared to
our approach, matching program elements in a syntactical way re-
quires a template for each of the alternative ways in which a be-
havior can be specified. This renders the templates less expressive
for finding different variations of the same pattern. Behavioral pat-
terns are better supported in the Trace-matches [2] AspectJ exten-
sion. In it, interesting patterns on the call-graph are defined as reg-
ular expressions that are matched during the execution of the pro-
gram. Trace matches are similar in spirit to our interpretation of
statement sequences in source code templates. Their use of regular
expressions even permits to define more complex sequences, for
example allowing repetition of edges as well as optional or alterna-
tive edges. However, trace matches operate on an online dynamic
analysis while our approach uses an offline call-graph analysis in
combination with other representations of the program.

In the domain of program transformation, templates normally
serve as a condition to a rewrite rule. In JaTS [6], a transforma-
tion is specified as a left hand side template, that must match to
the elements which will be transformed, and a right hand side tem-
plate which will be used instantiated to replace the matched ele-
ments. SmPL [24] follows a similar principle, it is specified not as
a LHS - RHS rule, but as a Unix diff file that on a single template
defines the changes that must occur on matching elements. SmPL
allows for more semantic matches than JaTS by relaying on the
function’s control flow to match on sequences of statements, and
on code isomorphisms to cope with the different ways to specify
a behavior (for example, in C, X == null ↔ !X). The analysis
done in SmPL, however, is intraprocedural only, and does not take
into account aliasing between variables on its matching; neverthe-
less, the use of isomorphisms permit a greater, albeit limited, degree
of variability than what our approach offers.

Finally, PQL [20] is a domain specific language that uses
template-like queries to match on context-sensitive traces of the
program. These traces represent, for example, security flaws, vi-
olations to design rules, or possible unsafe behaviors. PQL is the
closest work to ours, although it is not a complete template lan-

5 We are also currently working on an extension of the templates to express
more variability (such as logical ’or’) inside the templates themselves.

9 2006/11/15

Using Eclipse as a Smalltalk Plugin

Load and play!

JavaConnect
- public repository

- http://www.info.ucl.ac.be/~jbrichau/javaconnect.html

Cava

- public repository (soon)

- currently focused at SOUL and IntensiVE

- working on integration for MOOSE

- looking for more!

27

J. Brichau, C. De Roover, K. Mens, Open Unification for Program Query Languages,
To be published at SCCC’07, Chile, 2007.

C. De Roover, J. Brichau, C. Noguera, T. D’Hondt, and L. Duchien. Behavioural similarity matching using concrete
source code templates in logic queries. In Proceedings of the ACM Sigplan Workshop on Partial Evaluation and Program
Manipulation (PEPM), 2007.

